JP2017079193A - Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same - Google Patents

Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2017079193A
JP2017079193A JP2015207911A JP2015207911A JP2017079193A JP 2017079193 A JP2017079193 A JP 2017079193A JP 2015207911 A JP2015207911 A JP 2015207911A JP 2015207911 A JP2015207911 A JP 2015207911A JP 2017079193 A JP2017079193 A JP 2017079193A
Authority
JP
Japan
Prior art keywords
lithium salt
mol
secondary battery
electrolyte
lipf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015207911A
Other languages
Japanese (ja)
Inventor
森垣 健一
Kenichi Morigaki
健一 森垣
栄部 比夏里
Hikari Sakabe
比夏里 栄部
博 妹尾
Hiroshi Senoo
博 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015207911A priority Critical patent/JP2017079193A/en
Publication of JP2017079193A publication Critical patent/JP2017079193A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte for a nonaqueous secondary battery, improved in cycle characteristics even when being charged at high voltages (for example, 4.7-4.8 V or the like) in order to increase energy density.SOLUTION: An electrolyte for a nonaqueous secondary battery contains an inorganic lithium salt, an organic lithium salt having a sulfonyl group, and an organic lithium salt having a boron atom, the inorganic lithium salt having a concentration of 0.3 mol/L or more. The inorganic lithium salt is preferably LiPF, the organic lithium salt having a sulfonyl group is preferably Li(CFSO)N, and the organic lithium salt having a boron atom is preferably lithium bis(oxalato)borate.SELECTED DRAWING: None

Description

本発明は、非水二次電池用電解液及びそれを用いた非水二次電池に関する。   The present invention relates to an electrolyte for a non-aqueous secondary battery and a non-aqueous secondary battery using the same.

リチウムイオン二次電池等の非水二次電池は高エネルギー密度を有するため、ノートパソコン、携帯電話等の電源等に広く用いられている。また、近年になって、電動工具用電源、電気自動車用電源の他、携帯電話、ノートパソコン、タブレット等のポータブル電子機器用の電源等としての開発も進んでいる。   Non-aqueous secondary batteries such as lithium ion secondary batteries have a high energy density, and are therefore widely used for power supplies for notebook computers, mobile phones and the like. In recent years, in addition to power sources for electric tools and power sources for electric vehicles, development as power sources for portable electronic devices such as mobile phones, notebook computers, tablets, and the like is also progressing.

このように、リチウムイオン二次電池は、現在さまざまな電源に使用されているが、市場の要求はとどまることを知らず、エネルギー密度をさらに向上させることが求められている。エネルギー密度を向上させる方法のなかでも、充電電圧を高電圧化する手法は、電池設計の変更等が少ないという利点があるため、この手法が効果的である。しかしながら、現行電解液の主流である電解液(電解質塩:LiPFのみ、溶媒:エチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶媒)を用いて、単純に高電圧で充電した場合は、高電圧域においてガス発生等の電解液副反応が発生し、急速に電池性能が劣化してしまう。 As described above, lithium ion secondary batteries are currently used for various power sources, but the market demand is not limited, and there is a demand for further improving the energy density. Among the methods for improving the energy density, the method of increasing the charging voltage has an advantage that there are few changes in the battery design, and this method is effective. However, when the current electrolyte is the mainstream electrolyte (electrolyte salt: LiPF 6 only, solvent: mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC)), simply charging at high voltage, An electrolyte side reaction such as gas generation occurs in a high voltage range, and the battery performance deteriorates rapidly.

一方、全く新規な電解液系を採用するには、充放電サイクル特性以外にも、安全性、信頼性等の長期評価も必要となり、開発に時間を要する。このため、現行系に近い電解液をベースとして、高電圧の充電に耐え得る電解液の開発が求められている。   On the other hand, in order to adopt a completely new electrolyte system, in addition to charge / discharge cycle characteristics, long-term evaluations such as safety and reliability are required, and development takes time. For this reason, there is a demand for the development of an electrolytic solution that can withstand high-voltage charging based on an electrolytic solution close to the current system.

このような状況下、例えば、特許文献1には、リチウム化合物としてLiTFSI又はLiTFSA(Li(CFSO)等、添加剤としてLiBOB、LiPF等を含む電解液が記載されており、実施例2ではLiTFSI及びLiBOB、実施例3〜5ではLiTFSI及びLiPF、実施例6ではLiTFSI、LiPF及びLiBOBを含む電解液が採用されている。これらの例によれば、4.2Vの充電に耐え得る非水二次電池が得られることが示されている。 Under such circumstances, for example, Patent Document 1 describes an electrolytic solution containing LiTFSI or LiTFSA (Li + (CF 3 SO 2 ) 2 N ) as a lithium compound and LiBOB, LiPF 6 or the like as an additive. In Example 2, an electrolyte containing LiTFSI and LiBOB, in Examples 3 to 5 LiTFSI and LiPF 6 , and in Example 6 using LiTFSI, LiPF 6, and LiBOB is employed. According to these examples, it is shown that a non-aqueous secondary battery that can withstand a charge of 4.2 V can be obtained.

特表2013−546137号公報Special table 2013-546137 gazette

しかしながら、特許文献1では、LiTFSI等を主な電解質として使用しており、LiPF及びLiBOBは添加剤であるため、LiTFSI等の添加量が多く、LiPF及びLiBOBの添加量が少ない。このため、さらに高電圧(例えば4.7〜4.8V等)の充電を行った場合には正極の集電体として通常使用されるアルミニウム箔を溶解させるため到底耐えられず、いずれにしても、サイクル特性が十分とは言えない。 However, in Patent Document 1, LiTFSI or the like is used as a main electrolyte, and LiPF 6 and LiBOB are additives. Therefore, the addition amount of LiTFSI and the like is large, and the addition amount of LiPF 6 and LiBOB is small. For this reason, when charging at a higher voltage (for example, 4.7 to 4.8 V, etc.), the aluminum foil normally used as the positive electrode current collector is dissolved, so it cannot be endured at all. The cycle characteristics are not sufficient.

そこで、本発明は、エネルギー密度を向上させるために高電圧(例えば4.7〜4.8V等)での充電を行った場合でもサイクル特性を向上させた非水二次電池用電解液を提供することを目的とする。   Accordingly, the present invention provides an electrolyte for a non-aqueous secondary battery that has improved cycle characteristics even when charged at a high voltage (for example, 4.7 to 4.8 V) in order to improve energy density. The purpose is to do.

本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を含有し、前記無機リチウム塩の濃度を0.3mol/L以上とした電解液を採用することで、高電圧(例えば4.7〜4.8V等)での充電を行った場合でもサイクル特性を著しく向上させることができることを見出した。本発明は、このような知見に基づいて更に研究を重ねた結果、完成されたものである。即ち、本発明は、以下の構成を包含する。
項1.無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を含有し、前記無機リチウム塩の濃度が0.3mol/L以上である、非水二次電池用電解液。
項2.前記無機リチウム塩がLiPFである、項1に記載の非水二次電池用電解液。
項3.前記スルホニル基を有する有機リチウム塩がLi(CFSOである、項1又は2に記載の非水二次電池用電解液。
項4.前記ホウ素原子を有する有機リチウム塩がリチウムビス(オキサレート)ボレートである、項1〜3のいずれかに記載の非水二次電池用電解液。
項5.前記ホウ素原子を有する有機リチウム塩の含有量が0.2mol/L以下である、項1〜4のいずれかに記載の非水二次電池用電解液。
項6.前記スルホニル基を有する有機リチウム塩の濃度が0.1〜2.0mol/Lである、項1〜5のいずれかに記載の非水二次電池用電解液。
項7.前記無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の総濃度が1.0mol/L以上である、項1〜6のいずれかに記載の非水二次電池用電解液。
項8.項1〜7のいずれかに記載の非水二次電池用電解液を備える非水二次電池。
項9.さらに、正極合剤層を正極集電体の片面又は両面に形成した正極を備え、前記正極集電体の上に導電性コーティングが施されていない、項8に記載の非水二次電池。
The inventors of the present invention have intensively studied to achieve the above-described object. As a result, by employing an electrolytic solution containing an inorganic lithium salt, an organic lithium salt having a sulfonyl group, and an organic lithium salt having a boron atom, and having a concentration of the inorganic lithium salt of 0.3 mol / L or more, It has been found that the cycle characteristics can be remarkably improved even when charging is performed at a high voltage (for example, 4.7 to 4.8 V). The present invention has been completed as a result of further research based on such knowledge. That is, the present invention includes the following configurations.
Item 1. An electrolyte solution for a non-aqueous secondary battery, comprising an inorganic lithium salt, an organic lithium salt having a sulfonyl group, and an organic lithium salt having a boron atom, wherein the concentration of the inorganic lithium salt is 0.3 mol / L or more.
Item 2. Wherein the inorganic lithium salt is LiPF 6, non-aqueous liquid electrolyte for a secondary battery according to claim 1.
Item 3. Item 3. The electrolyte solution for a nonaqueous secondary battery according to Item 1 or 2, wherein the organic lithium salt having a sulfonyl group is Li + (CF 3 SO 2 ) 2 N .
Item 4. Item 4. The electrolyte solution for a non-aqueous secondary battery according to any one of Items 1 to 3, wherein the organic lithium salt having a boron atom is lithium bis (oxalate) borate.
Item 5. Item 5. The electrolyte solution for a non-aqueous secondary battery according to any one of Items 1 to 4, wherein the content of the organic lithium salt having a boron atom is 0.2 mol / L or less.
Item 6. Item 6. The electrolyte solution for a non-aqueous secondary battery according to any one of Items 1 to 5, wherein the concentration of the organic lithium salt having a sulfonyl group is 0.1 to 2.0 mol / L.
Item 7. Item 7. The nonaqueous secondary battery according to any one of Items 1 to 6, wherein the total concentration of the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and the organic lithium salt having a boron atom is 1.0 mol / L or more. Electrolytic solution.
Item 8. A non-aqueous secondary battery comprising the electrolyte solution for a non-aqueous secondary battery according to any one of Items 1 to 7.
Item 9. The nonaqueous secondary battery according to Item 8, further comprising a positive electrode in which a positive electrode mixture layer is formed on one side or both sides of the positive electrode current collector, and no conductive coating is applied on the positive electrode current collector.

本発明によれば、非水二次電池用電解液は無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の全てを含有しており、無機リチウム塩の濃度を高く設定しているため、エネルギー密度を向上させるために高電圧(例えば4.7〜4.8V等)での充電を行った場合でもサイクル特性を著しく向上させることができる。   According to the present invention, the electrolyte for a non-aqueous secondary battery contains all of the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and the organic lithium salt having a boron atom, and the concentration of the inorganic lithium salt is increased. Therefore, even when charging is performed at a high voltage (for example, 4.7 to 4.8 V or the like) in order to improve the energy density, the cycle characteristics can be remarkably improved.

試験例1の結果を示すグラフである。6 is a graph showing the results of Test Example 1. 試験例2の結果を示すグラフである。6 is a graph showing the results of Test Example 2. 試験例3の結果を示すグラフである。10 is a graph showing the results of Test Example 3. 試験例4の結果を示すグラフである。10 is a graph showing the results of Test Example 4. 試験例5の結果を示すグラフである。10 is a graph showing the results of Test Example 5.

本明細書において、各成分の濃度(mol/L)は、有機溶媒1Lに対して、所望のモル数含んでいることを意味する。   In this specification, the concentration (mol / L) of each component means that the desired number of moles is included with respect to 1 L of the organic solvent.

1.非水二次電用電解液
本発明の非水二次電池用電解液は、無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を含有し、前記無機リチウム塩の濃度が0.3mol/L以上である。
1. Non -aqueous secondary battery electrolyte The non-aqueous secondary battery electrolyte of the present invention contains an inorganic lithium salt, an organic lithium salt having a sulfonyl group, and an organic lithium salt having a boron atom. The concentration is 0.3 mol / L or more.

無機リチウム塩としては、従来から非水二次電池用電解液に使用されるものであれば特に制限されず、例えば、リチウムヘキサフルオロフォスファート(LiPF)、リチウムテトラフルオロボレート(LiBF)、リチウムヘキサフルオロアルセナート(LiAsF)、過塩素酸リチウム(LiClO)等が挙げられる。なかでも、より高電圧(例えば4.7〜4.8V等)での充電に耐え、サイクル特性をより向上させる観点から、LiPF、LiBF等が好ましく、LiPFがより好ましい。これらの無機リチウム塩は、単独で用いてもよいし、2種以上を組合せて用いてもよい。 The inorganic lithium salt is not particularly limited as long as it is conventionally used in electrolytes for non-aqueous secondary batteries. For example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), Examples thereof include lithium hexafluoroarsenate (LiAsF 6 ) and lithium perchlorate (LiClO 4 ). Among these, LiPF 6 , LiBF 4, and the like are preferable, and LiPF 6 is more preferable from the viewpoint of enduring charging at a higher voltage (for example, 4.7 to 4.8 V) and further improving cycle characteristics. These inorganic lithium salts may be used alone or in combination of two or more.

本発明の非水二次電池用電解液において、無機リチウム塩の濃度は0.3mol/L以上、好ましくは0.35mol/L以上、より好ましくは0.4mol/L以上である。無機リチウム塩の濃度が0.3mol/L未満では、高電圧(例えば4.7〜4.8V等)での充放電時にサイクル特性が悪化するためエネルギー密度を向上させることができない。なお、本発明の非水二次電池用電解液において、無機リチウム塩の濃度の上限値は特に制限されないが、溶解性等を考慮して、2.5mol/L以下が好ましく、2.0mol/L以下がより好ましい。   In the electrolyte solution for a non-aqueous secondary battery of the present invention, the concentration of the inorganic lithium salt is 0.3 mol / L or more, preferably 0.35 mol / L or more, more preferably 0.4 mol / L or more. When the concentration of the inorganic lithium salt is less than 0.3 mol / L, the cycle characteristics deteriorate during charge / discharge at a high voltage (for example, 4.7 to 4.8 V, etc.), so that the energy density cannot be improved. In the electrolyte for a non-aqueous secondary battery of the present invention, the upper limit of the concentration of the inorganic lithium salt is not particularly limited, but is preferably 2.5 mol / L or less in consideration of solubility and the like, and is 2.0 mol / L L or less is more preferable.

スルホニル基を有する有機リチウム塩としては、従来から非水二次電池用電解液に使用されるものであれば特に制限されず、例えば、LiCFSO;パーフルオロアルカンスルホニル基を有する有機リチウム塩(Li(CFSO(LiTFSA)、Li(CSO等)、Li(CFSO等が挙げられる。なかでも、より高電圧(例えば4.7〜4.8V等)での充電に耐え、サイクル特性をより向上させる観点から、パーフルオロアルカンスルホニル基を有する有機リチウム塩が好ましく、Li(CFSO(LiTFSA)がより好ましい。これらのスルホニル基を有する有機リチウム塩は、単独で用いてもよいし、2種以上を組合せて用いてもよい。 The organic lithium salt having a sulfonyl group is not particularly limited as long as it is conventionally used in an electrolyte for a non-aqueous secondary battery. For example, LiCF 3 SO 3 ; an organic lithium salt having a perfluoroalkanesulfonyl group (Li + (CF 3 SO 2 ) 2 N - (LiTFSA), Li + (C 2 F 5 SO 2) 2 N - , etc.), Li + (CF 3 SO 2) 3 C - , and the like. Among these, from the viewpoint of withstanding charging at a higher voltage (for example, 4.7 to 4.8 V, etc.) and further improving cycle characteristics, an organic lithium salt having a perfluoroalkanesulfonyl group is preferable, and Li + (CF 3 SO 2) 2 N - (LiTFSA ) is more preferable. These organic lithium salts having a sulfonyl group may be used alone or in combination of two or more.

本発明の非水二次電池用電解液において、スルホニル基を有する有機リチウム塩の濃度は0.1〜2.0mol/Lが好ましく、0.15〜1.5mol/Lがより好ましく、0.2〜1.0mol/Lがさらに好ましい。スルホニル基を有する有機リチウム塩の濃度をこの範囲とすることにより、電解液中にスルホニル基を有する有機リチウム塩をより適度に溶解させつつ、高電圧(例えば4.7〜4.8V等)での充放電時にサイクル特性をより向上させエネルギー密度をより向上させることができる。   In the electrolyte solution for a non-aqueous secondary battery of the present invention, the concentration of the organic lithium salt having a sulfonyl group is preferably 0.1 to 2.0 mol / L, more preferably 0.15 to 1.5 mol / L, and 2-1.0 mol / L is more preferable. By setting the concentration of the organic lithium salt having a sulfonyl group within this range, the organic lithium salt having a sulfonyl group is dissolved more appropriately in the electrolytic solution, and at a high voltage (for example, 4.7 to 4.8 V). Cycle characteristics can be further improved during charging and discharging, and the energy density can be further improved.

ホウ素原子を有する有機リチウム塩としては、従来から非水二次電池用電解液に使用されるものであれば特に制限されず、例えば、LiBFCF、リチウムビス(オキサレート)ボレート(LiBOB;LiB(C)、リチウムオキサレートジフルオロボレート(LiBF(C))、リチウムビス(マロネート)ボレート(LiB(C)等が挙げられる。なかでも、より高電圧(例えば4.7〜4.8V等)での充電に耐え、サイクル特性をより向上させる観点から、リチウムビス(オキサレート)ボレート(LiBOB;LiB(C)が好ましい。これらのホウ素原子を有する有機リチウム塩は、単独で用いてもよいし、2種以上を組合せて用いてもよい。 The organic lithium salt having a boron atom is not particularly limited as long as it is conventionally used in an electrolyte for non-aqueous secondary batteries. For example, LiBF 3 CF 3 , lithium bis (oxalate) borate (LiBOB; LiB (C 2 O 4 ) 2 ), lithium oxalate difluoroborate (LiBF 2 (C 2 O 4 )), lithium bis (malonate) borate (LiB (C 3 O 4 H 2 ) 2 ) and the like. Among these, lithium bis (oxalate) borate (LiBOB; LiB (C 2 O 4 ) 2 ) is used from the viewpoint of withstanding charging at a higher voltage (for example, 4.7 to 4.8 V, etc.) and further improving cycle characteristics. Is preferred. These organolithium salts having a boron atom may be used alone or in combination of two or more.

本発明の非水二次電池用電解液において、ホウ素原子を有する有機リチウム塩の濃度は0.2mol/L以下が好ましく、0.01〜0.18mol/Lがより好ましく、0.02〜0.15mol/Lがさらに好ましい。なお、無機リチウム塩の濃度が高い場合(例えば1.2mol/L以上である場合)は、0.03〜0.12mol/Lが特に好ましい。ホウ素原子を有する有機リチウム塩の含有量(濃度)をこの範囲とすることにより、電解液中にホウ素原子を有する有機リチウム塩をより適度に溶解させつつ、高電圧(例えば4.7〜4.8V等)での充放電時にサイクル特性をより向上させエネルギー密度をより向上させることができる。   In the electrolyte solution for a non-aqueous secondary battery of the present invention, the concentration of the organic lithium salt having a boron atom is preferably 0.2 mol / L or less, more preferably 0.01 to 0.18 mol / L, and 0.02 to 0 More preferably, 15 mol / L. In addition, when the density | concentration of inorganic lithium salt is high (for example, when it is 1.2 mol / L or more), 0.03-0.12 mol / L is especially preferable. By setting the content (concentration) of the organic lithium salt having a boron atom within this range, the organic lithium salt having a boron atom is more appropriately dissolved in the electrolytic solution, and a high voltage (for example, 4.7 to 4. The cycle characteristics can be further improved and the energy density can be further improved during charging / discharging at 8V or the like.

本発明の非水二次電池用電解液において、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の総濃度は1.0mol/L以上が好ましく、1.2〜4.0mol/Lがより好ましく、1.3〜3.5mol/Lがさらに好ましい。無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の総濃度をこの範囲とすることにより、高電圧(例えば4.5〜5.0V等)での充放電時にサイクル特性をより向上させエネルギー密度をより向上させることができる。   In the electrolyte solution for a non-aqueous secondary battery of the present invention, the total concentration of the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and the organic lithium salt having a boron atom is preferably 1.0 mol / L or more. 2 to 4.0 mol / L is more preferable, and 1.3 to 3.5 mol / L is more preferable. By setting the total concentration of the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and the organic lithium salt having a boron atom within this range, the cycle is performed at the time of charging / discharging at a high voltage (for example, 4.5 to 5.0 V). The characteristics can be further improved and the energy density can be further improved.

本発明の非水二次電池用電解液には、電解質塩として、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を使用するが、その他の成分は、従来から非水二次電池用電解液に採用されている成分と同様の成分とすることができる。例えば、本発明の非水二次電池用電解液には、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩以外に、有機溶媒を含有し、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を溶解していることが好ましい。   The electrolyte solution for a non-aqueous secondary battery of the present invention uses the above-described inorganic lithium salt, organic lithium salt having a sulfonyl group, and organic lithium salt having a boron atom as an electrolyte salt. It can be set as the component similar to the component conventionally employ | adopted as the electrolyte solution for non-aqueous secondary batteries. For example, the electrolyte for a non-aqueous secondary battery of the present invention contains an organic solvent in addition to the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and the organic lithium salt having a boron atom, It is preferable to dissolve a lithium salt, an organic lithium salt having a sulfonyl group, and an organic lithium salt having a boron atom.

本発明の非水二次電池用電解液に含み得る有機溶媒としては、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を溶解し得る有機溶媒であれば特に制限されず、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート等の鎖状カーボネート;エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート;γーブチロラクトン等の環状カルボン酸エステル;酢酸メチル、プロピオン酸メチル、酢酸エチル等の鎖状カルボン酸エステル;スルホラン、ジエチルスルホン等のスルホン;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類等が挙げられ、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の溶解性等の観点から、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート等の鎖状カーボネート;エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート等が好ましく、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒がより好ましい。これらの有機溶媒は、単独で用いてもよいし、2種以上を組合せて用いてもよい。   The organic solvent that can be included in the electrolyte solution for a non-aqueous secondary battery of the present invention is an organic solvent that can dissolve the above-described inorganic lithium salt, organic lithium salt having a sulfonyl group, and organic lithium salt having a boron atom. Not particularly limited, for example, chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate; ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, etc. Cyclic carbonates such as γ-butyrolactone; chain carboxylic acid esters such as methyl acetate, methyl propionate and ethyl acetate; sulfones such as sulfolane and diethylsulfone; tetrahydrofuran, 2-methyltetrahydrofuran, 1, -Ethers such as dimethoxyethane and the like. From the viewpoint of solubility of the above-described inorganic lithium salt, organic lithium salt having a sulfonyl group, and organic lithium salt having a boron atom, dimethyl carbonate (DMC), diethyl carbonate (DEC), chain carbonates such as ethyl methyl carbonate (EMC), methyl propyl carbonate; cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, etc. are preferred, ethylene carbonate (EC) and ethyl methyl A mixed solvent of carbonate (EMC) is more preferable. These organic solvents may be used alone or in combination of two or more.

本発明の非水二次電池用電解液における有機溶媒の含有量としては、過剰量とすればよく、具体的には、上記の無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の濃度が上記範囲内となるように調整することが好ましい。   The content of the organic solvent in the electrolyte solution for a non-aqueous secondary battery of the present invention may be an excess amount. Specifically, the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and a boron atom may be used. It is preferable to adjust the concentration of the organic lithium salt to be within the above range.

本発明の非水二次電池用電解液においては、本発明の効果を損なわない範囲(例えば、0〜0.2mol/L、特に0〜0.1mol/L)であれば、上記以外の成分、例えば添加剤を含ませることもできる。このような添加剤としては、例えば、テトラブチルアンモニウムヘキサフルオロフォスファート、テトラブチルアンモニウムパークロレート、テトラメチルアンモニウムテトラフルオロボレート、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム、ビニレンカーボネート、フルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート、ビニルエチレンカーボネート、1,3,2−ジオキサチオラン−2−オキシド、3−スルホレン、ビフェニル、トリアルキルホスファート(トリメチルホスファート等)等が挙げられる。これらの添加剤は、単独で用いてもよいし、2種以上を組合せて用いてもよい。   In the electrolyte solution for a non-aqueous secondary battery of the present invention, components other than those described above are within a range not impairing the effects of the present invention (for example, 0 to 0.2 mol / L, particularly 0 to 0.1 mol / L). For example, additives can be included. Examples of such additives include tetrabutylammonium hexafluorophosphate, tetrabutylammonium perchlorate, tetramethylammonium tetrafluoroborate, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, and tetramethylammonium bromide. , Tetraethylammonium bromide, tetrabutylammonium bromide, vinylene carbonate, fluoroethylene carbonate, trifluoromethyl ethylene carbonate, vinyl ethylene carbonate, 1,3,2-dioxathiolane-2-oxide, 3-sulfolene, biphenyl, trialkylphos Examples thereof include fert (trimethyl phosphate, etc.). These additives may be used alone or in combination of two or more.

本発明の非水二次電池用電解液は、通常、液状であるが、ポリマー等からなるゲル化剤でゲル化させたゲル状の電解質等も用いることができる。   The electrolyte solution for a non-aqueous secondary battery of the present invention is usually in a liquid state, but a gel electrolyte gelled with a gelling agent composed of a polymer or the like can also be used.

2.非水二次電池
本発明の非水二次電池は、上記した非水二次電池用電解液を備える。その他の構成及び構造については、従来から知られている非水二次電池で採用されている構成及び構造を適用し得る。通常は、本発明の非水二次電池は、上記の非水二次電池用電解液の他、正極、負極及びセパレータを備え得る。
2. Non-aqueous secondary battery The non-aqueous secondary battery of the present invention includes the above-described electrolyte for a non-aqueous secondary battery. About another structure and structure, the structure and structure employ | adopted by the conventionally known non-aqueous secondary battery are applicable. In general, the non-aqueous secondary battery of the present invention can include a positive electrode, a negative electrode, and a separator in addition to the above-described electrolyte for a non-aqueous secondary battery.

<正極>
正極としては、正極活物質、結着剤等を含有する正極合剤層を、正極集電体の片面又は両面に形成した構成を採用し得る。
<Positive electrode>
As a positive electrode, the structure which formed the positive mix layer containing a positive electrode active material, a binder, etc. in the single side | surface or both surfaces of a positive electrode electrical power collector can be employ | adopted.

この正極合剤層は、以下の正極活物質と必要に応じて添加される導電助剤に結着剤を加え、これを有機溶剤に分散させて正極合剤層形成用ペーストを調製し(この場合、結着剤はあらかじめ有機溶剤に溶解又は分散させておいてもよい)、金属箔等からなる正極集電体の表面(片面又は両面)に塗布し、乾燥して正極合剤層を形成し、必要に応じて加工する工程を経て製造することができる。   In this positive electrode mixture layer, a binder is added to the following positive electrode active material and a conductive additive added as necessary, and this is dispersed in an organic solvent to prepare a positive electrode mixture layer forming paste (this In this case, the binder may be dissolved or dispersed in an organic solvent in advance) and applied to the surface (one side or both sides) of a positive electrode current collector made of a metal foil or the like and dried to form a positive electrode mixture layer. And it can manufacture through the process processed as needed.

正極活物質としては、特に制限されず、高電位で充放電が行われる材料を採用することができる。例えば、LiMnO、LiNiO、LiCoO、Li(MnNi1−x)O、Li(MnCo1−x)O、Li(NiCo1−y)O、Li(MnNiCo1−x−y)O等の層状酸化物;LiMnO−LiNiO、LiMnO−LiCoO、LiMnO−Li(NiCo1−y)O等の固溶体;LiMnSiO、LiNiSiO、LiCoSiO、Li(MnNi1−x)SiO、Li(MnCo1−x)SiO、Li(NiCo1−y)SiO、Li(MnNiCo1−x−y)SiO等のケイ酸塩;LiMnBO、LiNiBO、LiCoBO、Li(MnNi1−x)BO、Li(MnCo1−x)BO、Li(NiCo1−y)BO、Li(MnNiCo1−x−y)BO等のホウ酸塩;V;LiV;MnO等が挙げられる。上記式において、0<x<1、0<y<1、0<x+y<1である。これらの材料のうち、層状酸化物は2.8〜4.5V程度、固溶体は2.7〜4.5V程度、ケイ酸塩は3.0〜4.5V程度、ホウ酸塩は2.5〜4.0V程度、V、LiV及びMnOは2.5〜3.5V程度で充放電できる材料として知られている。これらの材料を、本発明の非水二次電池用電解液と組合せて使用することで、より高電位(例えば4.7〜4.8V等)での充放電が可能となる。なかでも、層状酸化物及び固溶体は、充電電位を高くすればするほど容量密度も大きくなることが知られている(他の材料は、充電電位を高くしても容量密度はほとんど変わらない)ことから、正極活物質として層状酸化物及び固溶体を使用した場合、充電電位を高くする効果と、充電電位を高くすることによる容量密度の改善効果との相乗効果により、特にエネルギー密度を向上させることが可能である。なかでも、充電電位、容量密度、サイクル特性のバランスの観点から、LiMnO−Li(NiCo1−y)Oが特に好ましい。これら正極活物質は、単独で用いてもよいし、2種以上を組合せて用いてもよい。 The positive electrode active material is not particularly limited, and a material that is charged and discharged at a high potential can be employed. For example, LiMnO 2 , LiNiO 2 , LiCoO 2 , Li (Mn x Ni 1-x ) O 2 , Li (Mn x Co 1-x ) O 2 , Li (Ni y Co 1-y ) O 2 , Li (Mn x Ni y Co 1-x- y) layered oxides such as O 2; Li 2 MnO 3 -LiNiO 2, Li 2 MnO 3 -LiCoO 2, Li 2 MnO 3 -Li (Ni y Co 1-y) O 2 Li 2 MnSiO 4 , Li 2 NiSiO 4 , Li 2 CoSiO 4 , Li 2 (Mn x Ni 1-x ) SiO 4 , Li 2 (Mn x Co 1-x ) SiO 4 , Li 2 (Ni y Co 1-y) SiO 4, Li 2 (Mn x Ni y Co 1-x-y) silicates of SiO 4 and the like; LiMnBO 3, LiNiBO 3, LiCoBO 3, Li (Mn x i 1-x) BO 3, Li (Mn x Co 1-x) BO 3, Li (Ni y Co 1-y) BO 3, Li (Mn x Ni y Co 1-x-y) BO 3 boric of salt; V 2 O 5; LiV 3 O 6; MnO and the like. In the above formula, 0 <x <1, 0 <y <1, and 0 <x + y <1. Among these materials, the layered oxide is about 2.8 to 4.5 V, the solid solution is about 2.7 to 4.5 V, the silicate is about 3.0 to 4.5 V, and the borate is 2.5. ˜4.0V, V 2 O 5 , LiV 3 O 6 and MnO are known as materials that can be charged and discharged at about 2.5 to 3.5V. By using these materials in combination with the electrolyte for non-aqueous secondary batteries of the present invention, charging / discharging at a higher potential (for example, 4.7 to 4.8 V) can be performed. In particular, it is known that the layered oxide and solid solution have a higher capacity density as the charging potential is increased (the capacity density of other materials is almost the same even when the charging potential is increased). Thus, when a layered oxide and a solid solution are used as the positive electrode active material, the energy density can be particularly improved by the synergistic effect of the effect of increasing the charging potential and the effect of improving the capacity density by increasing the charging potential. Is possible. Among these, Li 2 MnO 3 —Li (Ni y Co 1-y ) O 2 is particularly preferable from the viewpoint of the balance between the charging potential, the capacity density, and the cycle characteristics. These positive electrode active materials may be used alone or in combination of two or more.

導電助剤としては、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラック等);表面に非晶質炭素を生成させた炭素材料等の非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維等);カーボンナノチューブ(各種の多層又は単層のカーボンナノチューブ)等を用いることができる。正極の導電助剤としては、単独で用いてもよいし、2種以上を組合せて用いてもよい。   As a conductive auxiliary agent, as with normal non-aqueous secondary batteries, amorphous carbon materials such as graphite; carbon black (acetylene black, ketjen black, etc.); carbon materials with amorphous carbon formed on the surface Fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing after spinning a pitch, etc.); carbon nanotubes (various multi-layer or single-wall carbon nanotubes), etc. can be used. As a conductive support agent of a positive electrode, you may use individually and may be used in combination of 2 or more type.

結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム、ポリイミド、ポリビニルアルコール、水溶性カルボキシメチルセルロース等が挙げられる。   Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, styrene butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethyl cellulose.

正極合剤を製造する際に使用する有機溶媒としては、特に制限はなく、N−メチルピロリドン(NMP)等が挙げられ、これと正極活物質、結着剤等を用いてペースト状とすることができる。   There is no restriction | limiting in particular as an organic solvent used when manufacturing a positive electrode mixture, N-methylpyrrolidone (NMP) etc. are mentioned, Make it into paste form using this, a positive electrode active material, a binder, etc. Can do.

正極合剤層の組成については、例えば、上記の正極活物質が70〜95重量%程度、結着剤が1〜30重量%程度であることが好ましい。また、導電助剤を使用する場合には、上記の正極活物質が50〜90重量%程度、結着剤が1〜20重量%程度、導電助剤が1〜40重量%程度であることが好ましい。さらに、正極合剤層の厚みは、集電体の片面あたり、1〜100μm程度であることが好ましい。   Regarding the composition of the positive electrode mixture layer, for example, the positive electrode active material is preferably about 70 to 95% by weight, and the binder is preferably about 1 to 30% by weight. Moreover, when using a conductive support agent, said positive electrode active material is about 50 to 90 weight%, a binder is about 1 to 20 weight%, and a conductive support agent is about 1 to 40 weight%. preferable. Furthermore, the thickness of the positive electrode mixture layer is preferably about 1 to 100 μm per one side of the current collector.

正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網等を用いることができ、通常、厚みが10〜30μm程度のアルミニウム箔が好適に用いられる。なお、特許文献1のように、高電位での充電時に電解液と正極集電体とが反応して腐食することを抑制して電池の劣化及び性能損失を防止するために、正極集電体の上に、導電性炭素、グラファイト等を含む導電性コーティングが施されることがあるが、その製造工程が増えるとともに、製造コストが高くなる。本発明の非水二次電池用電解液を採用した場合には、高電位での充電時にも電解液と正極集電体とが反応しにくいため、正極集電体の上に導電性コーティングを形成する必要性がない。   As the positive electrode current collector, for example, a foil made of aluminum, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a net, or the like can be used. Usually, aluminum having a thickness of about 10 to 30 μm. A foil is preferably used. In addition, like patent document 1, in order to prevent deterioration and performance loss of a battery by suppressing that an electrolyte solution and a positive electrode collector react and corrode at the time of charge at a high potential, the positive electrode collector A conductive coating containing conductive carbon, graphite, or the like may be applied on the substrate, but the manufacturing process increases and the manufacturing cost increases. When the electrolyte for a non-aqueous secondary battery of the present invention is adopted, since the electrolyte and the positive electrode current collector hardly react even when charged at a high potential, a conductive coating is formed on the positive electrode current collector. There is no need to form.

<負極>
負極としては、負極活物質、結着剤等を含有する負極合剤層を、負極集電体の片面又は両面に形成した構成を採用し得る。
<Negative electrode>
As a negative electrode, the structure which formed the negative mix layer containing a negative electrode active material, a binder, etc. in the single side | surface or both surfaces of a negative electrode collector can be employ | adopted.

この負極合剤層は、負極活物質と必要に応じて添加される導電助剤に結着剤を混合してシート状に成形し、これを金属箔等からなる負極集電体の表面(片面又は両面)に圧着する工程を経て製造することができる。   This negative electrode mixture layer is formed into a sheet by mixing a negative electrode active material and a conductive additive added as necessary, into a sheet, and this is formed on the surface (one side of the negative electrode current collector made of a metal foil or the like. Or it can manufacture through the process crimped | bonded to both surfaces.

負極活物質としては、特に制限されず、例えば、黒鉛(天然黒鉛、人造黒鉛等)、難焼結性炭素、リチウム金属、スズやシリコン及びこれらを含む合金、SiO等を用いることができる。好ましくは、金属リチウム一次電池及び金属リチウム二次電池ではリチウム金属、リチウム合金等を用いることができ、リチウムイオン二次電池では、リチウムイオンをドープ・脱ドープ可能な材料(黒鉛(天然黒鉛、人造黒鉛等)、難焼結性炭素等)等を活物質として用いることができる。これら負極活物質は、単独で用いてもよいし、2種以上を組合せて用いてもよい。   The negative electrode active material is not particularly limited, and for example, graphite (natural graphite, artificial graphite, etc.), hardly sinterable carbon, lithium metal, tin, silicon, an alloy containing these, SiO, or the like can be used. Preferably, a lithium metal, a lithium alloy, or the like can be used in a metal lithium primary battery and a metal lithium secondary battery. In a lithium ion secondary battery, a material (graphite (natural graphite, artificial Graphite, etc.), hardly sinterable carbon, etc.) can be used as the active material. These negative electrode active materials may be used alone or in combination of two or more.

導電助剤としては、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラック等);表面に非晶質炭素を生成させた炭素材料等の非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維等);カーボンナノチューブ(各種の多層又は単層のカーボンナノチューブ)等を用いることができる。負極の導電助剤としては、単独で用いてもよいし、2種以上を組合せて用いてもよいし、負極活物質の導電性が高い場合は用いなくてもよい。   As a conductive auxiliary agent, as with normal non-aqueous secondary batteries, amorphous carbon materials such as graphite; carbon black (acetylene black, ketjen black, etc.); carbon materials with amorphous carbon formed on the surface Fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing after spinning a pitch, etc.); carbon nanotubes (various multi-layer or single-wall carbon nanotubes), etc. can be used. As a conductive support agent of a negative electrode, it may be used independently, may be used in combination of 2 or more type, and may not be used when the electroconductivity of a negative electrode active material is high.

結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム、ポリイミド、ポリビニルアルコール、水溶性カルボキシメチルセルロース等が挙げられる。   Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, styrene butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethyl cellulose.

負極合剤層の組成については、例えば、上記の負極活物質が70〜95重量%程度、結着剤が1〜30重量%程度であることが好ましい。また、導電助剤を使用する場合には、上記の負極活物質が50〜90重量%程度、結着剤が1〜20重量%程度、導電助剤が1〜40重量%程度であることが好ましい。さらに、負極合剤層の厚みは、集電体の片面あたり、1〜100μm程度であることが好ましい。   About the composition of a negative mix layer, it is preferable that said negative electrode active material is about 70 to 95 weight% and a binder is about 1 to 30 weight%, for example. Moreover, when using a conductive support agent, it is preferable that said negative electrode active material is about 50 to 90 weight%, a binder is about 1 to 20 weight%, and a conductive support agent is about 1 to 40 weight%. preferable. Furthermore, the thickness of the negative electrode mixture layer is preferably about 1 to 100 μm per one side of the current collector.

負極集電体としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金からなる箔、パンチドメタル、エキスパンドメタル、メッシュ、網等を用いることができ、通常、厚みが5〜30μm程度の銅箔が好適に用いられる。   As the negative electrode current collector, for example, a foil made of aluminum, copper, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a mesh, a net, or the like can be used. A copper foil of about 30 μm is preferably used.

<セパレータ>
上記した正極と負極は、例えば、セパレータを介在させつつ積層した積層電極体や、さらにこれを渦巻状に巻回した巻回電極体の形で用いることができる。
<Separator>
The above-described positive electrode and negative electrode can be used, for example, in the form of a laminated electrode body laminated with a separator interposed therebetween, or a wound electrode body obtained by winding the separator in a spiral shape.

セパレータとしては、強度が十分で且つ電解液を多く保持できるものがよく、そのような観点から、厚さが10〜50μmで開口率が30〜70%の、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等の一種又は複数を含む微多孔フィルムや不織布等が好ましい。   As the separator, a separator having sufficient strength and capable of holding a large amount of electrolyte is preferable. From such a viewpoint, polyethylene, polypropylene, and ethylene-propylene copolymer having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% are used. A microporous film or a non-woven fabric containing one kind or plural kinds of coalescence is preferable.

また、本発明の非水二次電池の形態としては、ステンレススチール缶やアルミニウム缶等を外装缶として使用した筒形(角筒形や円筒形等)等を採用できる。また、金属箔と一体化したラミネートフィルムを外装体としたソフトパッケージ電池も採用し得る。   Moreover, as a form of the non-aqueous secondary battery of the present invention, a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a stainless steel can, an aluminum can, or the like as an outer can can be employed. Moreover, a soft package battery having a laminate film integrated with a metal foil as an outer package may be employed.

以下、実施例に基づいて本発明を詳細に説明するが、本発明は以下の実施例に限定されないことは言うまでもない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, it cannot be overemphasized that this invention is not limited to a following example.

実施例1:1.5 M LiPF 6 +0.5 M LiTFSA+0.12 M LiBOB
エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒(EC:EMC=3:7(体積比))に、リチウムヘキサフルオロフォスファート(LiPF)、リチウムパーフルオロメタンスルホニルアミド(Li(CFSON;LiTFSA)、及びリチウムビス(オキサレート)ボレート(LiB(C;LiBOB)を、LiPFの濃度が1.5mol/L(体積は溶媒基準)、LiTFSAの濃度が0.5mol/L、LiBOBの含有量が0.12mol/Lとなるように添加し、1.5mol/LのLiPF、0.5mol/LのLiTFSA、及び0.12mol/LのLiBOBが溶解した電解液を得た。
Example 1: 1.5 M LiPF 6 +0.5 M LiTFSA + 0.12 M LiBOB
In a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (EC: EMC = 3: 7 (volume ratio)), lithium hexafluorophosphate (LiPF 6 ), lithium perfluoromethanesulfonylamide (Li (CF 3 SO 2 ) 2 N; LiTFSA), lithium bis (oxalate) borate (LiB (C 2 O 4 ) 2 ; LiBOB), LiPF 6 concentration of 1.5 mol / L (volume based on solvent), LiTFSA It was added so that the concentration was 0.5 mol / L and the content of LiBOB was 0.12 mol / L, and 1.5 mol / L LiPF 6 , 0.5 mol / L LiTFSA, and 0.12 mol / L LiBOB were added. Was obtained.

比較例1:1.5 M LiPF 6
LiTFSA及びLiBOBを使用しなかった(LiTFSA:0mol/L、LiBOB:0mol/L)こと以外は実施例1と同様に、1.5mol/LのLiPFが溶解した電解液を得た。
Comparative Example 1: 1.5 M LiPF 6
An electrolyte solution in which 1.5 mol / L of LiPF 6 was dissolved was obtained in the same manner as in Example 1 except that LiTFSA and LiBOB were not used (LiTFSA: 0 mol / L, LiBOB: 0 mol / L).

比較例2:1.5 M LiPF 6 +0.12 M LiBOB
LiTFSAを使用しなかった(0mol/L)こと以外は実施例1と同様に、1.5mol/LのLiPF、及び0.12mol/LのLiBOBが溶解した電解液を得た。
Comparative Example 2: 1.5 M LiPF 6 +0.12 M LiBOB
An electrolyte solution in which 1.5 mol / L LiPF 6 and 0.12 mol / L LiBOB were dissolved was obtained in the same manner as in Example 1 except that LiTFSA was not used (0 mol / L).

実施例2:1.0 M LiPF 6 +0.5 M LiTFSA+0.12 M LiBOB
LiPFの濃度が1.0mol/Lとなるように調整したこと以外は実施例1と同様に、1.0mol/LのLiPF、0.5mol/LのLiTFSA、及び0.12mol/LのLiBOBが溶解した電解液を得た。
Example 2: 1.0 M LiPF 6 +0.5 M LiTFSA + 0.12 M LiBOB
Similar to Example 1, except that the concentration of LiPF 6 was adjusted to 1.0 mol / L, 1.0 mol / L LiPF 6 , 0.5 mol / L LiTFSA, and 0.12 mol / L An electrolytic solution in which LiBOB was dissolved was obtained.

比較例3:1.0 M LiPF 6 +0.12 M LiBOB
LiPFの濃度が1.0mol/Lとなるように調整し、LiTFSAを使用しなかった(0mol/L)こと以外は実施例1と同様に、1.0mol/LのLiPF、及び0.12mol/LのLiBOBが溶解した電解液を得た。
Comparative Example 3: 1.0 M LiPF 6 +0.12 M LiBOB
The concentration of LiPF 6 was adjusted to 1.0 mol / L, and LiTFSA was not used (0 mol / L), except that 1.0 mol / L LiPF 6 and 0. An electrolytic solution in which 12 mol / L LiBOB was dissolved was obtained.

実施例3:1.5 M LiPF 6 +0.5 M LiTFSA+0.03 M LiBOB
LiBOBの含有量が0.03mol/Lとなるように調整したこと以外は実施例1と同様に、1.5mol/LのLiPF、0.5mol/LのLiTFSA、及び0.03mol/LのLiBOBが溶解した電解液を得た。
Example 3: 1.5 M LiPF 6 +0.5 M LiTFSA + 0.03 M LiBOB
Similar to Example 1, except that the LiBOB content was adjusted to 0.03 mol / L, 1.5 mol / L LiPF 6 , 0.5 mol / L LiTFSA, and 0.03 mol / L An electrolytic solution in which LiBOB was dissolved was obtained.

実施例4:1.5 M LiPF 6 +0.5 M LiTFSA+0.06 M LiBOB
LiBOBの含有量が0.06mol/Lとなるように調整したこと以外は実施例1と同様に、1.5mol/LのLiPF、0.5mol/LのLiTFSA、及び0.06mol/LのLiBOBが溶解した電解液を得た。
Example 4: 1.5 M LiPF 6 +0.5 M LiTFSA + 0.06 M LiBOB
Similar to Example 1 except that the LiBOB content was adjusted to 0.06 mol / L, 1.5 mol / L LiPF 6 , 0.5 mol / L LiTFSA, and 0.06 mol / L An electrolytic solution in which LiBOB was dissolved was obtained.

比較例4:1.5 M LiPF 6 +0.5 M LiTFSA
LiBOBを使用しなかった(0mol/L)こと以外は実施例1と同様に、1.5mol/LのLiPF、及び0.5mol/LのLiTFSAが溶解した電解液を得た。
Comparative Example 4: 1.5 M LiPF 6 +0.5 M LiTFSA
An electrolytic solution in which 1.5 mol / L LiPF 6 and 0.5 mol / L LiTFSA were dissolved was obtained in the same manner as in Example 1 except that LiBOB was not used (0 mol / L).

実施例5:1.5 M LiPF 6 +1.0 M LiTFSA+0.06 M LiBOB
LiTFSAの濃度が1.0mol/L、LiBOBの含有量が0.06mol/Lとなるように調整したこと以外は実施例1と同様に、1.5mol/LのLiPF、1.0mol/LのLiTFSA、及び0.06mol/LのLiBOBが溶解した電解液を得た。
Example 5: 1.5 M LiPF 6 +1.0 M LiTFSA + 0.06 M LiBOB
Similar to Example 1, except that the concentration of LiTFSA was 1.0 mol / L and the content of LiBOB was 0.06 mol / L, 1.5 mol / L LiPF 6 , 1.0 mol / L An electrolytic solution in which LiTFSA and 0.06 mol / L LiBOB were dissolved was obtained.

実施例6:1.0 M LiPF 6 +1.0 M LiTFSA+0.06 M LiBOB
LiPFの濃度が1.0mol/L、LiTFSAの濃度が1.0mol/L、LiBOBの含有量が0.06mol/Lとなるように調整したこと以外は実施例1と同様に、1.0mol/LのLiPF、1.0mol/LのLiTFSA、及び0.06mol/LのLiBOBが溶解した電解液を得た。
Example 6: 1.0 M LiPF 6 +1.0 M LiTFSA + 0.06 M LiBOB
As in Example 1, 1.0 mol except that the concentration of LiPF 6 was adjusted to 1.0 mol / L, the concentration of LiTFSA was 1.0 mol / L, and the content of LiBOB was 0.06 mol / L. An electrolytic solution in which / L LiPF 6 , 1.0 mol / L LiTFSA, and 0.06 mol / L LiBOB were dissolved was obtained.

比較例5:1.0 M LiTFSA+0.06 M LiBOB
LiTFSAの濃度が1.0mol/L、LiBOBの含有量が0.06mol/Lとなるように調整し、LiPFを使用しなかった(0mol/L)こと以外は実施例1と同様に、1.0mol/LのLiTFSA、及び0.06mol/LのLiBOBが溶解した電解液を得た。
Comparative Example 5: 1.0 M LiTFSA + 0.06 M LiBOB
In the same manner as in Example 1, except that the concentration of LiTFSA was adjusted to 1.0 mol / L and the content of LiBOB was adjusted to 0.06 mol / L, and LiPF 6 was not used (0 mol / L). An electrolytic solution in which 0.0 mol / L LiTFSA and 0.06 mol / L LiBOB were dissolved was obtained.

比較例6:0.1 M LiPF 6 +1.0 M LiTFSA+0.06 M LiBOB
LiPFの濃度が0.1mol/L、LiTFSAの濃度が1.0mol/L、LiBOBの含有量が0.06mol/Lとなるように調整したこと以外は実施例1と同様に、0.1mol/LのLiPF、1.0mol/LのLiTFSA、及び0.06mol/LのLiBOBが溶解した電解液を得た。
Comparative Example 6: 0.1 M LiPF 6 +1.0 M LiTFSA +0.06 M LiBOB
0.1 mol as in Example 1 except that the concentration of LiPF 6 was adjusted to 0.1 mol / L, the concentration of LiTFSA was adjusted to 1.0 mol / L, and the content of LiBOB was adjusted to 0.06 mol / L. An electrolytic solution in which / L LiPF 6 , 1.0 mol / L LiTFSA, and 0.06 mol / L LiBOB were dissolved was obtained.

製造例1(黒鉛負極)
実施例1〜6及び比較例1〜6の電解液を用いて、試験用3極式ラミセルを作製した。具体的には、以下のように、試験用3極式ラミセルを作製した。
Production Example 1 (graphite negative electrode)
Using the electrolyte solutions of Examples 1 to 6 and Comparative Examples 1 to 6, test tripolar lamicelles were produced. Specifically, a test tripolar lamicelle was prepared as follows.

正極活物質として、LiMnO−Li(NiCo1−y)O固溶体(戸田工業(株)製のMNC0125)を用い、これに導電助剤として鱗片状黒鉛(TIMCAL社製のSuper?P)と、結着剤としてポリフッ化ビニリデン(PVDF)((株)クレハ製のKFポリマー)を、正極活物質:導電助剤:結着剤=90:5:5(重量比)の割合で、N−メチルピロリドン(NMP)に分散させて正極合剤とした。この正極合剤をアルミニウム箔(厚み20μm;表面に導電性コーティングが施されていない)に塗布し、乾燥後に合剤剥離や集電体皺等が生じない程度に圧延することにより、正極を作製した。 Li 2 MnO 3 —Li (Ni y Co 1-y ) O 2 solid solution (MNC0125 manufactured by Toda Kogyo Co., Ltd.) was used as a positive electrode active material, and scaly graphite (Super manufactured by TIMCAL) was used as a conductive aid. P) and polyvinylidene fluoride (PVDF) (a KF polymer manufactured by Kureha Co., Ltd.) as a binder, and a ratio of positive electrode active material: conductive aid: binder = 90: 5: 5 (weight ratio) Thus, a positive electrode mixture was prepared by dispersing in N-methylpyrrolidone (NMP). This positive electrode mixture is applied to an aluminum foil (thickness 20 μm; no conductive coating is provided on the surface), and after drying, rolled to such an extent that no peeling of the mixture or current collector flaws occur. did.

次に、負極活物質として、カーボンブラック(日立化成(株)製のMAGD)を用い、これに結着剤としてポリフッ化ビニリデン(PVDF)((株)クレハ製のKFポリマー)を、負極活物質:結着剤=95:5(重量比)の割合で混合してシート状に成形し、銅箔(厚み15μm)に塗布し、乾燥後圧延することにより、負極を作製した。   Next, carbon black (MAGD manufactured by Hitachi Chemical Co., Ltd.) is used as the negative electrode active material, and polyvinylidene fluoride (PVDF) (KF polymer manufactured by Kureha Co., Ltd.) is used as the binder. : Binder = 95: 5 (weight ratio) mixed to form a sheet, applied to a copper foil (thickness 15 μm), dried and rolled to prepare a negative electrode.

このようにして作製した正極及び負極を、セパレータ(ポリプロピレンフィルム;厚み25μm;セルガード社製のセルガード2500)を介して積層し、電池容器としてのラミセル中に、実施例1〜6及び比較例1〜6の電解液と、参照電極としてのリチウム金属とともに収容し、黒鉛負極を用いた3極式ラミセル(1)を作製した。   The positive electrode and the negative electrode thus produced were laminated via a separator (polypropylene film; thickness 25 μm; Cellguard 2500 manufactured by Celgard), and Examples 1 to 6 and Comparative Examples 1 to 1 were incorporated into the Ramellels as battery containers. A tripolar lamicel (1) using a graphite negative electrode was prepared by accommodating together with the electrolytic solution 6 and lithium metal as a reference electrode.

製造例2(シリコン負極)
負極活物質として、カーボンブラック(日立化成(株)製のMAGD)ではなく、シリコン(Nanostructured & Amorphous Materials社製の30〜50nmSiナノパウダー)を使用し、これに導電助剤としてアセチレンブラック(デンカ(株)製のデンカブラック)と、結着剤としてポリイミド(IST社製のDREAMBOND)を、負極活物質:導電助剤:結着剤=80:5:15(重量比)の割合で混合したこと以外は製造例1と同様に、シリコン負極を用いた3極式ラミセル(2)を作製した。
Production Example 2 (silicon negative electrode)
Instead of carbon black (MAGD manufactured by Hitachi Chemical Co., Ltd.) as the negative electrode active material, silicon (30-50 nm Si nanopowder manufactured by Nanostructured & Amorphous Materials) is used, and acetylene black (DENKA (DENKA Denka Black manufactured by Co., Ltd.) and polyimide (DREAMBOND manufactured by IST) as a binder were mixed in a ratio of negative electrode active material: conductive aid: binder = 80: 5: 15 (weight ratio). Except for the above, a tripolar lamellar cell (2) using a silicon negative electrode was produced in the same manner as in Production Example 1.

試験例1
実施例1及び比較例1〜2の電解液を用いて製造例1にしたがって作製した3極式ラミセル(1)を用いて、以下の条件:
充電 2mA及び4.8Vにて10分間定電流定電圧充電
放電 2mAの定電流にて2.5Vまで放電
サイクル間の放置時間(レストタイム) 5分
途中24サイクル目と25サイクル目の試験の前に別の電気化学測定を行ったため、サイクル試験を一時停止
充放電温度 25℃
で30サイクルまで充放電を行った。
Test example 1
Using the tripolar lamicelle (1) produced according to Production Example 1 using the electrolytic solutions of Example 1 and Comparative Examples 1 and 2, the following conditions:
Charging 10 mA constant current and constant voltage charging at 2 mA and 4.8 V Discharging Discharging to 2.5 V at a constant current of 2 mA Standing time between cycles (rest time) 5 minutes Before the 24th and 25th cycle tests Since another electrochemical measurement was performed, the cycle test was temporarily suspended. Charge / discharge temperature 25 ° C
The battery was charged and discharged up to 30 cycles.

結果を図1に示す。図1から、LiTFSA及びLiBOBを使用していない比較例1では、高電位での充電条件では電解液と正極活物質とが反応しているためか、劣化が早く、サイクル特性に劣ることが理解できる。また、LiTFSAを使用していない比較例2では、高電位での充電条件では電解液と正極活物質とが反応しているためか、劣化が早く、サイクル特性に劣ることが理解できる。それに対して、実施例1では、LiPF、LiTFSA及びLiBOBの3種を含み、LiPFの濃度が高い電解液を採用しているため、高電位での充電条件においても電解液と正極活物質との反応を抑制し、サイクル特性を向上させることができた。また、比較例1と比較例2とを比較すると、電解質塩の種類を増やしてもサイクル特性が悪化していることから、LiPF、LiTFSA及びLiBOBの3種を含み、LiPFの濃度が高い電解液を採用することでサイクル特性を特に向上することができることは予想外の結果である。 The results are shown in FIG. From FIG. 1, it is understood that in Comparative Example 1 in which LiTFSA and LiBOB are not used, the electrolyte solution and the positive electrode active material are reacted under a high potential charging condition, or the deterioration is rapid and the cycle characteristics are inferior. it can. Further, in Comparative Example 2 in which LiTFSA is not used, it can be understood that the deterioration is fast and the cycle characteristics are inferior because the electrolytic solution and the positive electrode active material are reacted under the high potential charging condition. On the other hand, in Example 1, since an electrolyte containing three types of LiPF 6 , LiTFSA, and LiBOB and having a high concentration of LiPF 6 is employed, the electrolyte and the positive electrode active material even under charging conditions at a high potential And the cycle characteristics could be improved. Further, when Comparative Example 1 and Comparative Example 2 are compared, since the cycle characteristics are deteriorated even when the type of electrolyte salt is increased, the concentration of LiPF 6 is high, including three types of LiPF 6 , LiTFSA, and LiBOB. It is an unexpected result that the cycle characteristics can be particularly improved by employing the electrolytic solution.

試験例2
実施例2及び比較例3の電解液を用いて製造例1にしたがって作製した3極式ラミセル(1)を用いて、試験例1と同様の方法で20サイクルまで充放電を行った。つまり、以下の条件:
充電 2mA及び4.8Vにて10分間定電流定電圧充電
放電 2mAの定電流にて2.5Vまで放電
サイクル間の放置時間(レストタイム) 5分
充放電温度 25℃
で20サイクルまで充放電を行った。
Test example 2
Using the tripolar lamellar cell (1) produced according to the manufacture example 1 using the electrolyte solution of Example 2 and the comparative example 3, it charged / discharged to 20 cycles by the method similar to the test example 1. FIG. In other words, the following conditions:
Charging Constant current constant voltage charging for 10 minutes at 2 mA and 4.8 V Discharging Discharge to 2.5 V at a constant current of 2 mA Standing time between cycles (rest time) 5 minutes Charging / discharging temperature 25 ° C.
The battery was charged and discharged up to 20 cycles.

結果を図2に示す。図2から、LiTFSAを使用していない比較例3では、高電位での充電条件では電解液と正極活物質とが反応しているためか、劣化が早く、サイクル特性に劣ることが理解できる。それに対して、実施例2では、LiPF、LiTFSA及びLiBOBの3種を含み、LiPFの濃度が高い電解液を採用しているため、高電位での充電条件においても電解液と正極活物質との反応を抑制し、サイクル特性を向上させることができた。 The results are shown in FIG. From FIG. 2, it can be understood that in Comparative Example 3 in which LiTFSA is not used, the deterioration is rapid and the cycle characteristics are inferior because the electrolytic solution and the positive electrode active material are reacted under the charge condition at a high potential. On the other hand, in Example 2, since an electrolyte containing three types of LiPF 6 , LiTFSA, and LiBOB and having a high concentration of LiPF 6 is employed, the electrolyte and the positive electrode active material are used even under charging conditions at a high potential. And the cycle characteristics could be improved.

試験例3
実施例3■4及び比較例4の電解液を用いて製造例1にしたがって作製した3極式ラミセル(1)を用いて、以下の条件:
1〜50サイクル
充電 2mA及び4.8Vにて10分間定電流定電圧充電
放電 2mAの定電流にて2.5Vまで放電
51〜59サイクル
充電 1mA及び4.8Vにて10分間定電流定電圧充電
放電 1mAの定電流にて2.5Vまで放電
実施例3と比較例4は途中24サイクル目と25サイクル目の試験の前と50サイクル目の試験の前に、また、実施例4は途中50サイクル目の試験の前に、別の電気化学測定を行ったためサイクル試験を一時停止
充放電温度:25℃
で59サイクルまで充放電を行った。
Test example 3
Using the tripolar lamicel (1) produced according to Production Example 1 using the electrolytic solutions of Example 3 (4) and Comparative Example 4, the following conditions:
1-50 cycle charge 10mA constant current constant voltage charge at 2mA and 4.8V Discharge 51mA to 59cycle charge 2mA constant current to 2.5V constant current 10V constant current constant voltage charge at 1mA and 4.8V Discharge Discharge to 2.5 V at a constant current of 1 mA. Example 3 and Comparative Example 4 were performed before the 24th and 25th cycle tests and before the 50th cycle test. Before the cycle test, another electrochemical measurement was performed, so the cycle test was suspended. Charge / discharge temperature: 25 ° C
The battery was charged and discharged up to 59 cycles.

結果を図3に示す。図3から、LiBOBを使用していない比較例4では、高電位での充電条件では電解液と正極活物質とが反応しているためか、劣化が早く、サイクル特性に劣ることが理解できる。それに対して、実施例3及び4では、LiPF、LiTFSA及びLiBOBの3種を含み、LiPFの濃度が高い電解液を採用しているため、高電位での充電条件においても電解液と正極活物質との反応を抑制し、サイクル特性を向上させることができた。 The results are shown in FIG. From FIG. 3, it can be understood that in Comparative Example 4 in which LiBOB is not used, the deterioration is rapid and the cycle characteristics are inferior because the electrolytic solution and the positive electrode active material are reacted under the charging condition at a high potential. On the other hand, in Examples 3 and 4, since an electrolyte containing three types of LiPF 6 , LiTFSA, and LiBOB and having a high concentration of LiPF 6 is employed, the electrolyte and the positive electrode are used even under charging conditions at a high potential. It was possible to suppress the reaction with the active material and improve the cycle characteristics.

試験例4
実施例5〜6及び比較例5〜6の電解液を用いて製造例1にしたがって作製した3極式ラミセル(1)を用いて、以下の条件:
充電 1mA及び4.8Vにて定電流定電圧充電(カットオフ電流0.2mA)
放電 1mAの定電流にて2.5Vまで放電
充放電温度:25℃
で49サイクルまで充放電を行った。なお、比較例5は、途中21サイクル目の試験の前に、別の電気化学測定を行ったためサイクル試験を一時停止した。
Test example 4
Using the three-electrode lamicel (1) produced according to Production Example 1 using the electrolytic solutions of Examples 5 to 6 and Comparative Examples 5 to 6, the following conditions:
Charging Constant current and constant voltage charging at 1mA and 4.8V (cutoff current 0.2mA)
Discharge up to 2.5 V at a constant current of 1 mA Discharge charge / discharge temperature: 25 ° C.
The battery was charged and discharged up to 49 cycles. In Comparative Example 5, the cycle test was suspended because another electrochemical measurement was performed before the 21st cycle test.

結果を図4に示す。図4から、LiPFを使用していない比較例5、LiPF、LiTFSA及びLiBOBの3種を含むもののLiPFの濃度が低い比較例6では、高電位での充電条件では電解液と正極活物質とが反応しているためか、劣化が著しく早く、サイクル特性に劣ることが理解できる。これらの結果から、LiTFSA及びLiBOBの2成分のみを含む電解液(比較例5)と比較して、LiPFを少量だけ添加した比較例6では、サイクル特性がさらに悪化していることから、電解質塩の種類を増やすほどサイクル特性が向上するとは限らないことが理解できる。それに対して、実施例5〜6では、LiPF、LiTFSA及びLiBOBの3種を含み、LiPFの濃度が高い電解液を採用しているため、高電位での充電条件においても電解液と正極活物質との反応を抑制し、サイクル特性を向上させることができた。この結果は、電解質塩の種類を増やすほどサイクル特性が向上するとは限らないことの上記の開示からは予期できない結果である。 The results are shown in FIG. 4, the density is low comparative example 6 of LiPF 6 but including a three Comparative Example 5, LiPF 6, LiTFSA and LiBOB are not using LiPF 6, electrolyte and cathode active in charge condition at high potential It can be understood that the deterioration is remarkably fast and the cycle characteristics are inferior because of the reaction with the substance. From these results, compared with the electrolytic solution containing only two components of LiTFSA and LiBOB (Comparative Example 5), in Comparative Example 6 in which only a small amount of LiPF 6 was added, the cycle characteristics were further deteriorated. It can be understood that the cycle characteristics are not always improved as the number of salt types is increased. In contrast, in Examples 5-6, includes three LiPF 6, LiTFSA and LiBOB, since the concentration of LiPF 6 employs a high electrolyte, the electrolyte and the cathode even in the charge condition of a high potential It was possible to suppress the reaction with the active material and improve the cycle characteristics. This result is an unexpected result from the above disclosure that the cycle characteristics are not always improved as the types of electrolyte salts are increased.

試験例5
実施例4及び比較例4の電解液を用いて製造例2にしたがって作製した3極式ラミセル(2)を用いて、以下の条件:
充電 2mAの定電流にて4.7Vにて10分間定電流定電圧充電
放電 2mAの定電流にて2.5Vまで放電
充放電温度:25℃
で49サイクルまで充放電を行った。
Test Example 5
Using the three-electrode lamicel (2) produced according to Production Example 2 using the electrolytic solutions of Example 4 and Comparative Example 4, the following conditions:
Charging Constant current constant voltage charging at 4.7 mA at a constant current of 2 mA for 10 minutes Discharging / discharging temperature up to 2.5 V at a constant current of 2 mA: 25 ° C.
The battery was charged and discharged up to 49 cycles.

結果を図5に示す。図5から、シリコン負極を使用した場合であっても、LiBOBを使用していない比較例4は、高電位での充電条件では電解液と正極活物質とが反応しているためか、劣化が早く、サイクル特性に劣ることが理解できる。それに対して、実施例4では、LiPF、LiTFSA及びLiBOBの3種を含み、LiPFの濃度が高い電解液を採用しているため、高電位での充電条件においても電解液と正極活物質との反応を抑制し、サイクル特性を向上させることができた。 The results are shown in FIG. From FIG. 5, even when a silicon negative electrode is used, Comparative Example 4 in which LiBOB is not used is deteriorated because the electrolyte solution and the positive electrode active material are reacted under a high potential charging condition. It can be understood early that the cycle characteristics are inferior. On the other hand, in Example 4, since an electrolyte containing three types of LiPF 6 , LiTFSA, and LiBOB and having a high concentration of LiPF 6 is employed, the electrolyte and the positive electrode active material are used even under charging conditions at a high potential. And the cycle characteristics could be improved.

Claims (9)

無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩を含有し、前記無機リチウム塩の濃度が0.3mol/L以上である、非水二次電池用電解液。 An electrolyte solution for a non-aqueous secondary battery, comprising an inorganic lithium salt, an organic lithium salt having a sulfonyl group, and an organic lithium salt having a boron atom, wherein the concentration of the inorganic lithium salt is 0.3 mol / L or more. 前記無機リチウム塩がLiPFである、請求項1に記載の非水二次電池用電解液。 The electrolyte solution for non-aqueous secondary batteries according to claim 1, wherein the inorganic lithium salt is LiPF 6 . 前記スルホニル基を有する有機リチウム塩がLi(CFSOである、請求項1又は2に記載の非水二次電池用電解液。 The organic lithium salt having a sulfonyl group is Li + (CF 3 SO 2) 2 N - is a non-aqueous liquid electrolyte for a secondary battery according to claim 1 or 2. 前記ホウ素原子を有する有機リチウム塩がリチウムビス(オキサレート)ボレートである、請求項1〜3のいずれかに記載の非水二次電池用電解液。 The electrolyte solution for nonaqueous secondary batteries in any one of Claims 1-3 whose organic lithium salt which has the said boron atom is lithium bis (oxalate) borate. 前記ホウ素原子を有する有機リチウム塩の含有量が0.2mol/L以下である、請求項1〜4のいずれかに記載の非水二次電池用電解液。 The electrolyte solution for nonaqueous secondary batteries in any one of Claims 1-4 whose content of the organic lithium salt which has the said boron atom is 0.2 mol / L or less. 前記スルホニル基を有する有機リチウム塩の濃度が0.1〜2.0mol/Lである、請求項1〜5のいずれかに記載の非水二次電池用電解液。 The electrolyte solution for nonaqueous secondary batteries in any one of Claims 1-5 whose density | concentration of the organic lithium salt which has the said sulfonyl group is 0.1-2.0 mol / L. 前記無機リチウム塩、スルホニル基を有する有機リチウム塩、及びホウ素原子を有する有機リチウム塩の総濃度が1.0mol/L以上である、請求項1〜6のいずれかに記載の非水二次電池用電解液。 The nonaqueous secondary battery according to any one of claims 1 to 6, wherein a total concentration of the inorganic lithium salt, the organic lithium salt having a sulfonyl group, and the organic lithium salt having a boron atom is 1.0 mol / L or more. Electrolyte. 請求項1〜7のいずれかに記載の非水二次電池用電解液を備える非水二次電池。 A nonaqueous secondary battery provided with the electrolyte solution for nonaqueous secondary batteries in any one of Claims 1-7. さらに、正極合剤層を正極集電体の片面又は両面に形成した正極を備え、前記正極集電体の上に導電性コーティングが施されていない、請求項8に記載の非水二次電池。 The nonaqueous secondary battery according to claim 8, further comprising a positive electrode in which a positive electrode mixture layer is formed on one side or both sides of a positive electrode current collector, wherein a conductive coating is not applied on the positive electrode current collector. .
JP2015207911A 2015-10-22 2015-10-22 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same Pending JP2017079193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207911A JP2017079193A (en) 2015-10-22 2015-10-22 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207911A JP2017079193A (en) 2015-10-22 2015-10-22 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2017079193A true JP2017079193A (en) 2017-04-27

Family

ID=58667097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207911A Pending JP2017079193A (en) 2015-10-22 2015-10-22 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2017079193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556585A (en) * 2018-06-01 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
JP2020161428A (en) * 2019-03-28 2020-10-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296849A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH0817468A (en) * 1994-06-29 1996-01-19 Sony Corp Non-aqueous electrolytic secondary battery
JP2008146929A (en) * 2006-12-07 2008-06-26 Sony Corp Electrolytic solution and battery
JP2013239307A (en) * 2012-05-14 2013-11-28 Toyota Industries Corp Electrolytic solution and lithium ion secondary battery including the same
WO2015073419A1 (en) * 2013-11-18 2015-05-21 Basf Corporation Use of lithium bis(fluorosulfonyl) imide (lifsi) in non-aqueous electrolyte solutions for use with 4.2v and higher cathode materials for lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296849A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH0817468A (en) * 1994-06-29 1996-01-19 Sony Corp Non-aqueous electrolytic secondary battery
JP2008146929A (en) * 2006-12-07 2008-06-26 Sony Corp Electrolytic solution and battery
JP2013239307A (en) * 2012-05-14 2013-11-28 Toyota Industries Corp Electrolytic solution and lithium ion secondary battery including the same
WO2015073419A1 (en) * 2013-11-18 2015-05-21 Basf Corporation Use of lithium bis(fluorosulfonyl) imide (lifsi) in non-aqueous electrolyte solutions for use with 4.2v and higher cathode materials for lithium ion batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556585A (en) * 2018-06-01 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN110556585B (en) * 2018-06-01 2024-06-28 松下知识产权经营株式会社 Lithium secondary battery
JP2020161428A (en) * 2019-03-28 2020-10-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP7301266B2 (en) 2019-03-28 2023-07-03 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
CN105637692B (en) Secondary cell including silicon base compound
JP2017528885A (en) Electrolyte solutions for rechargeable batteries
KR101444992B1 (en) Non aqueous electrolyte and secondary battery comprising the same
JP2016048624A (en) Lithium secondary battery
JP6208560B2 (en) Lithium secondary battery
JP2010177124A (en) Nonaqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2016119180A (en) Non-aqueous lithium secondary battery
CN105449189A (en) Lithium secondary battery
KR101902646B1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP2010073647A (en) Nonaqueous secondary battery
JP2014067490A (en) Nonaqueous electrolyte secondary battery
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
JP2017079193A (en) Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2005294028A (en) Lithium secondary battery
JP7513983B2 (en) Lithium-ion secondary battery and its manufacturing method
JP2010177020A (en) Nonaqueous electrolyte and lithium-ion secondary battery using the same
JP7091574B2 (en) Non-aqueous electrolyte secondary battery
JP2010009806A (en) Nonaqueous electrolyte secondary battery
JP5426809B2 (en) Secondary battery, electronic equipment using secondary battery and transportation equipment
JP2023531038A (en) Improved electrolyte for electrochemical cells
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721