JP2017077597A - drill - Google Patents

drill Download PDF

Info

Publication number
JP2017077597A
JP2017077597A JP2015206452A JP2015206452A JP2017077597A JP 2017077597 A JP2017077597 A JP 2017077597A JP 2015206452 A JP2015206452 A JP 2015206452A JP 2015206452 A JP2015206452 A JP 2015206452A JP 2017077597 A JP2017077597 A JP 2017077597A
Authority
JP
Japan
Prior art keywords
thinning
cutting edge
drill
margin
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015206452A
Other languages
Japanese (ja)
Other versions
JP5940205B1 (en
Inventor
隆悟 阿部
Ryugo Abe
隆悟 阿部
孝政 遠藤
Takamasa Endo
孝政 遠藤
昌之 高野
Masayuki Takano
昌之 高野
千田 聡
Satoshi Chida
聡 千田
真 桂澤
Makoto Katsurazawa
真 桂澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NS Tool Co Ltd
Original Assignee
NS Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Tool Co Ltd filed Critical NS Tool Co Ltd
Priority to JP2015206452A priority Critical patent/JP5940205B1/en
Application granted granted Critical
Publication of JP5940205B1 publication Critical patent/JP5940205B1/en
Publication of JP2017077597A publication Critical patent/JP2017077597A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To execute up to finish processing from rough processing, while securing high accuracy processing by high sharpness and the tool service life.SOLUTION: A drill 1 is formed by opposing a pair of chip discharge grooves 6 of extending to the rear end side from a tip surface 2a of a drill body 2 to a tip side outer peripheral surface, and a main cutting edge 7 is formed in a crossing part between a surface of turning to the rotational direction of the chip discharge grooves 6 and the tip surface 2a. A thinning cutting edge 14 is formed toward the central axis O side of becoming the rotational center of the drill body 2 from the main cutting edge 7. A small-width chisel core thickness 15 is formed by sandwiching the central axis O between the opposed thinning cutting edges 14. The chisel core thickness 15 in the tip surface 2a of the drill body 2 has a thickness of 0.8-3% of a maximum outer diameter D. The thinning cutting edge 14 has a projection part 14a of projecting forward in the rotational direction to the center line L of a virtual line of connecting the central axis O and an outer peripheral edge 11 formed on an extension line of the main cutting edge 7.SELECTED DRAWING: Figure 3

Description

本発明は、例えば精密機械部品や精密加工部品等に穴加工するために用いられ、被削材の加工面が斜面であっても精度良く穴加工できるドリルに関する。   The present invention relates to a drill that is used for drilling holes in, for example, precision machine parts, precision machined parts, and the like, and can drill holes with high accuracy even if the work surface of the work material is an inclined surface.

フライス盤やマシニングセンタ、旋盤等に取り付けて穴加工に用いられるドリルは工具先端の刃先部が直線状に被削材に喰い込むために扇形や凸形状等に尖っているものが一般的である。一方、最近のドリルでは刃先部の先端切刃をフラット形状にして被削材の斜面に対しても穴加工できるようにしたものが知られている。
例えば特許文献1に記載されたドリルは、先端部の一対の切刃が180度の先端角を備えたフラットドリルであり、先端面に形成した逃げ面と切屑排出溝に形成したシンニング面とが交差する稜線が切刃とされている。
A drill that is attached to a milling machine, a machining center, a lathe, or the like and used for drilling has a sharp tip in a fan shape or a convex shape so that the cutting edge at the tip of the tool is linearly bite into the work material. On the other hand, recent drills are known in which the cutting edge of the cutting edge portion is made flat so that holes can be drilled in the slope of the work material.
For example, the drill described in Patent Document 1 is a flat drill in which a pair of cutting blades at the tip has a tip angle of 180 degrees, and a flank formed on the tip and a thinning surface formed on the chip discharge groove. The intersecting ridgeline is the cutting edge.

また、特許文献2に記載されたドリルは扇形の刃先部を有しており、対向する2条の切屑排出溝に形成した正のすくい角を有するすくい面と先端面との交差部に第1切れ刃が形成され、切屑排出溝を含む凹部からなるシンニング部に形成されたシンニング面と先端面との交差部に第2切れ刃が形成されている。そして、第2切れ刃は第1切れ刃に接続されると共にチゼルエッジと交差している。
このドリルは、工具径と対向する2つのシンニング間の距離との比を15%以上、35%以下に設定しており、この範囲より小さいと先端部分の強度が不足して食い付き時に破損や折損を生じ易くなり、逆に大きいと加工時にドリルが振れを生じて加工穴が拡径して加工精度が低下するという欠点があるとしている。
In addition, the drill described in Patent Document 2 has a fan-shaped cutting edge, and the first is at the intersection of the rake face having a positive rake angle formed in two opposing chip discharge grooves and the tip face. A cutting edge is formed, and a second cutting edge is formed at the intersection of the thinning surface formed at the thinning portion including the recess including the chip discharge groove and the tip surface. The second cutting edge is connected to the first cutting edge and intersects the chisel edge.
In this drill, the ratio of the tool diameter to the distance between two opposing thinnings is set to 15% or more and 35% or less, and if it is smaller than this range, the strength of the tip is insufficient and breakage occurs when biting. Breaking is likely to occur, and conversely, if it is large, the drill sways during processing, and the processing hole expands to reduce the processing accuracy.

特開2002−66822号公報JP 2002-66822 A 国際公開第2012/070640号International Publication No. 2012/070640

しかしながら、上述した特許文献1に記載されたドリルは心厚が大きいために、傾斜面等に穴加工を施すと先端部の切刃が逃げてしまいぶれてしまうので加工穴径が広がってしまう欠点があり、しかも加工面粗さが粗いので加工穴の出入口でバリが発生する等の加工精度上の欠点があった。
また、特許文献2に記載されたドリルでは、2つのシンニング間の距離が15%〜35%に設定されているためドリルの剛性を確保できるが、工具径に対してシンニング間の心厚が大きいので、特許文献1と同様に振れ回りを起こしてしまい、高い切れ味で高精度な加工を行うことは困難であった。
However, since the drill described in the above-mentioned Patent Document 1 has a large core thickness, if a hole is drilled on an inclined surface or the like, the cutting edge at the tip portion escapes and is distorted, so that the hole diameter is widened. In addition, since the machined surface is rough, there are defects in machining accuracy such as burrs occurring at the entrance and exit of the machined hole.
Further, in the drill described in Patent Document 2, since the distance between two thinnings is set to 15% to 35%, the rigidity of the drill can be secured, but the thickness between the thinnings is larger than the tool diameter. Therefore, as in Patent Document 1, the whirling occurs, and it is difficult to perform high-precision processing with high sharpness.

また、上述した従来技術によるドリルでは、高精度な加工を行うにはセンタドリル(もみつけ加工)、ドリル(下穴加工)、ドリル、リーマ(仕上げ加工)等の3〜4種の工具を用いて3工程か4工程で加工しなければならず、工具交換が煩雑で工程数が増大する欠点がある。   In addition, the above-described conventional drills use 3 to 4 types of tools such as center drill (grinding), drill (preparation), drill, and reamer (finishing) for high-precision machining. Therefore, there is a disadvantage that the number of processes is increased due to the complicated tool change.

本発明は、このような実情に鑑みてなされたものであり、高い切れ味による高精度な加工と工具寿命を確保しながら、粗加工から仕上げ加工まで行えるようにしたドリルを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a drill capable of performing from roughing to finishing while ensuring high-precision processing and tool life due to high sharpness. To do.

本発明によるドリルは、ドリル本体の先端面から後端側に延びる切屑排出溝が先端側外周面に形成され、該切屑排出溝の回転方向を向く面と先端面との交差部に主切刃が形成され、該主切刃からドリル本体の回転中心となる中心軸線側に向けてシンニング切刃が形成されたドリルであって、対向するシンニング切刃間に中心軸線を挟んで心厚が形成されており、ドリル本体の先端面における最大外径をDとして、心厚は最大外径Dの0.8〜3%の厚さを有すると共に、シンニング刃は、中心軸線と主切刃の延長上に形成された外周刃とを結ぶ仮想線に対して回転方向前方に突出する凸部を有する形状としたことを特徴とする。
本発明によれば、心厚をドリル本体の最大外径Dの0.8%〜3%に小さく設定したことで被削材への食い付きが良く穴加工時の振れ回りを防いで加工精度を向上できると共に、シンニング切刃に凸部を形成して剛性を高めたことで心厚の剛性も高めることができる。そのため、被削材の加工面が斜面等であっても刃先部の食い付きが良く高い穴加工精度と工具寿命を得られる。
なお、シンニング切刃の凸部はドリルの最大外径Dの2〜5%の範囲で回転方向に突出させることで、シンニング切刃と心厚の剛性を高めることができて心厚の厚みを小さくしても切削時の欠損が発生しなくなり、工具寿命を向上できる。
In the drill according to the present invention, a chip discharge groove extending from the front end surface of the drill body to the rear end side is formed on the outer peripheral surface of the front end side, and the main cutting edge is formed at the intersection of the surface facing the rotation direction of the chip discharge groove and the front end surface. And a thinning blade is formed from the main cutting edge toward the central axis that is the rotation center of the drill body, and a core thickness is formed by sandwiching the central axis between opposing thinning cutting edges. The core thickness is 0.8 to 3% of the maximum outer diameter D, and the thinning blade is an extension of the central axis and the main cutting edge. It is characterized by having a shape having a convex portion protruding forward in the rotational direction with respect to a virtual line connecting the outer peripheral blade formed above.
According to the present invention, since the core thickness is set to be small between 0.8% and 3% of the maximum outer diameter D of the drill body, the work material can bite well and machining accuracy can be prevented by preventing runout during drilling. In addition, it is possible to increase the rigidity of the core thickness by increasing the rigidity by forming a convex portion on the thinning cutting edge. Therefore, even when the work surface of the work material is an inclined surface or the like, the cutting edge portion is well bitten and high drilling accuracy and tool life can be obtained.
The convex part of the thinning cutting edge protrudes in the rotation direction within the range of 2 to 5% of the maximum outer diameter D of the drill, so that the rigidity of the thinning cutting edge and the core thickness can be increased and the thickness of the core thickness can be increased. Even if it is made smaller, chipping is not generated and the tool life can be improved.

また、シンニング刃は、切屑排出溝の回転方向前方を向く面にシンニングすくい面が形成され、シンニングすくい面のすくい角は5°〜20°の正角とされていることが好ましい。
シンニング切刃に凸部を形成してもシンニングすくい面のすくい角を5°〜20°の正角に設定したため、高い切れ味と穴加工精度を得られる。
Moreover, it is preferable that the thinning rake face is formed in the surface which faces the rotation direction front of a chip | tip discharge groove | channel, and the rake angle of a thinning rake face is a positive angle of 5 degrees-20 degrees.
Even if the convex portion is formed on the thinning cutting edge, since the rake angle of the thinning rake face is set to a positive angle of 5 ° to 20 °, high sharpness and hole machining accuracy can be obtained.

また、主切刃の回転方向に設けていて外周面から中心軸線を超える領域まで延びて心厚を形成するシンニング深さの凹部形状を備えたシンニング部を備えており、該シンニング部の凹部形状は断面略多角形状または略円弧状に形成されていてもよい。
切屑排出溝を含むシンニング部は中心軸線を超える領域まで延びて心厚を形成するシンニング深さを有するため、切屑排出性と刃先部の剛性を確保できる。
なお、シンニング切刃のすくい面を正面に見て、シンニング部に形成したシンニング面のシンニング通し角αを25°〜45°の範囲に設定したから、心厚とシンニング面の強度低下を抑制しつつシンニング切刃で生成した切屑の排出性を向上できる。
In addition, a thinning portion provided with a concave shape of a thinning depth that is provided in the rotation direction of the main cutting edge and extends from the outer peripheral surface to a region exceeding the central axis to form a core thickness, and the concave shape of the thinning portion The cross section may be formed in a substantially polygonal shape or a substantially arc shape.
Since the thinning portion including the chip discharge groove has a thinning depth that extends to a region exceeding the central axis to form a core thickness, it is possible to ensure the chip discharge performance and the rigidity of the blade edge portion.
In addition, when the rake face of the thinning cutting edge is viewed in front, the thinning through angle α of the thinning surface formed in the thinning part is set in the range of 25 ° to 45 °, so the core thickness and strength reduction of the thinning surface are suppressed. However, it is possible to improve the discharge of chips generated by the thinning cutting blade.

また、ドリル本体の先端面において、外周刃を設けた外周面に回転方向後方側に向けて突出形成した第一マージンと、第一マージンの回転方向後方側に間隔を開けて突出形成した第二マージンとを備えていることが好ましい。
ドリル本体の外径が2.5mm超〜6mmである場合、刃先部の外周面に第一マージンと第二マージンを間隔を開けて形成することで、第一マージンと第二マージンがドリルによる加工穴の加工面に当接して回転切削加工することで加工をガイドし、ドリルの振れ回りを抑制してリーマによる仕上げ加工と同等の高い加工穴精度を得られる。
更に、第二マージン25のすくい面のすくい角を負角の20°〜70°に設定することで、第二マージンの加工穴の加工面への食い付きを防止して加工面の粗さが悪化することを防止できる。
Also, on the tip surface of the drill body, a first margin that protrudes toward the rear side in the rotational direction on the outer peripheral surface provided with the outer peripheral blade, and a second margin that protrudes from the rear side in the rotational direction of the first margin. And a margin.
When the outer diameter of the drill body is more than 2.5 mm to 6 mm, the first margin and the second margin are formed by drilling by forming the first margin and the second margin at an interval on the outer peripheral surface of the cutting edge. The machining is guided by abutting against the machining surface of the hole, and the cutting process is guided, and the drill hole is suppressed to obtain the high machining hole accuracy equivalent to the finishing process by the reamer.
Further, by setting the rake angle of the rake face of the second margin 25 to a negative angle of 20 ° to 70 °, the machining hole of the second margin is prevented from biting into the machining surface and the roughness of the machining surface is reduced. It can be prevented from getting worse.

本発明によるドリルによれば、心厚を小さくしてシンニング切刃を工具回転方向に突出させたことで、切削加工時の振れ回りを抑制して高い加工精度を確保すると共に心厚の剛性が高く長寿命を得られる。   According to the drill of the present invention, by reducing the core thickness and causing the thinning cutting edge to protrude in the tool rotation direction, the whirling during the cutting process is suppressed to ensure high processing accuracy and the rigidity of the core thickness is increased. High and long life can be obtained.

本発明の実施形態によるドリルの側面図である。It is a side view of the drill by embodiment of this invention. 図1に示すドリルの先端の刃先部の拡大側面図である。It is an enlarged side view of the blade edge | tip part of the front-end | tip of the drill shown in FIG. 図2に示すドリルの刃先部の先端面図である。FIG. 3 is a front end view of a cutting edge portion of the drill shown in FIG. 2. 図3に示すドリルのチゼル心厚部分の拡大図である。It is an enlarged view of the chisel core thick part of the drill shown in FIG. 図2に示すドリルを90度異なる角度から見た側面図である。It is the side view which looked at the drill shown in FIG. 2 from 90 degrees different. 変形例によるドリルの刃先部を示す先端面図である。It is a front end view which shows the blade edge | tip part of the drill by a modification.

図1に示すように、本実施形態によるドリル1は、例えば工具鋼や超硬合金等の硬質材料からなり、中心軸線Oを中心として回転可能で略円柱状に形成されたドリル本体2を備えている。ドリル本体2の後端側(図1における左側)の部分が工作機械の回転軸に把持されるシャンク部3とされる一方、先端側部分が被削材に加工を施す刃先部4とされている。
このドリル1は例えば精密機械部品や精密加工部品等に穴加工するのに適したものであり、被削材として例えば非鉄金属、一般鋼材、耐熱合金等を用いる。本実施形態によるドリル1において、刃先部4側を先端側、シャンク部3側を後端側というものとする。
As shown in FIG. 1, a drill 1 according to the present embodiment includes a drill body 2 made of a hard material such as tool steel or cemented carbide, which is rotatable about a central axis O and formed in a substantially cylindrical shape. ing. The portion on the rear end side (left side in FIG. 1) of the drill body 2 is a shank portion 3 that is gripped by the rotating shaft of the machine tool, while the tip end portion is a blade edge portion 4 that processes the work material. Yes.
The drill 1 is suitable for drilling holes in precision machine parts, precision machined parts, and the like, and uses, for example, non-ferrous metals, general steel materials, heat-resistant alloys, and the like as work materials. In the drill 1 according to this embodiment, the cutting edge portion 4 side is referred to as a front end side, and the shank portion 3 side is referred to as a rear end side.

ドリル1の刃先部4の外周側面には、先端側(図1及び図2における右側)から中心軸線O方向の後端側に向かうに従い一定のねじれ角でドリル回転方向T後方側に捩れる一対の切屑排出溝6が中心軸線Oに対して対称となる配置で螺旋状に形成されている。また、これら切屑排出溝6とドリル本体2の先端面2aとの交差部に主切刃7が対向して形成されている。
図2及び図3において、主切刃7における切屑排出溝6のドリル回転方向Tを向く壁面の先端領域がすくい面8とされている。図3に示すように、ドリル本体2の先端面2aには主切刃7の回転方向後方に逃げ面10が設けられている。シンニング切刃14のすくい角と逃げ角は適宜の正角に設定でき、すくい角は例えば5°〜20°程度に設定できるが、この範囲を外れてもよい。
On the outer peripheral side surface of the cutting edge portion 4 of the drill 1, a pair twisted toward the rear side in the drill rotation direction T at a constant twist angle from the front end side (right side in FIGS. 1 and 2) toward the rear end side in the central axis O direction. The chip discharge grooves 6 are formed in a spiral shape in a symmetrical arrangement with respect to the central axis O. Further, a main cutting edge 7 is formed to face each other at the intersection between the chip discharge groove 6 and the tip end surface 2 a of the drill body 2.
2 and 3, the tip region of the wall surface of the main cutting edge 7 facing the drill rotation direction T of the chip discharge groove 6 is a rake face 8. As shown in FIG. 3, a flank 10 is provided on the distal end surface 2 a of the drill body 2 behind the main cutting edge 7 in the rotational direction. The rake angle and clearance angle of the thinning cutting edge 14 can be set to appropriate positive angles, and the rake angle can be set to about 5 ° to 20 °, for example, but may be outside this range.

図3に示す刃先部4の先端面2aにおいて、一対の主切刃7は先端面2a内とこれに直交する中心軸線Oの方向にそれぞれ180度対向する位置に配設された二枚刃を構成している。そのため、ドリル1はフラットドリルを構成する。本実施形態によるドリル1は例えば先が封止された止まり穴、座繰り穴の座やキャップボルトの頭部穴、浅いネジ穴等の加工や斜面への穴加工等に好適に用いられる。   In the front end surface 2a of the blade edge portion 4 shown in FIG. 3, the pair of main cutting blades 7 have two blades disposed at positions facing each other by 180 degrees in the front end surface 2a and in the direction of the central axis O perpendicular thereto. It is composed. Therefore, the drill 1 constitutes a flat drill. The drill 1 according to the present embodiment is suitably used, for example, for machining a blind hole with a sealed tip, a seat for a countersink hole, a head hole for a cap bolt, a shallow screw hole, or a hole for a slope.

また、ドリル本体2の先端面2aには主切刃7の回転方向後方に逃げ面10が中心軸線Oを中心とした回転対称に配置されている。逃げ面10は主切刃7の回転方向後方側に正の逃げ角を有する二番逃げ面10aが設けられ、その後方に更に逃げ角を大きくした三番逃げ面10bが形成されている。一対の主切刃7の外周側端部には切屑排出溝6に沿って外周刃11がそれぞれ設けられている。
また、一方の主切刃7とその回転方向に形成された他方の主切刃7の逃げ面10との間に、外周面を凹部状に切除して切屑排出溝6を含むシンニング溝がシンニング部12として形成されている。
Further, a flank 10 is disposed on the distal end surface 2 a of the drill body 2 in a rotationally symmetrical manner about the central axis O at the rear of the main cutting edge 7 in the rotational direction. The flank 10 is provided with a second flank 10a having a positive flank on the rear side in the rotational direction of the main cutting edge 7, and a third flank 10b with a larger flank is formed behind the flank. An outer peripheral edge 11 is provided along the chip discharge groove 6 at the outer peripheral end of the pair of main cutting edges 7.
Further, a thinning groove including the chip discharge groove 6 is formed by cutting the outer peripheral surface into a concave shape between one main cutting edge 7 and the flank 10 of the other main cutting edge 7 formed in the rotation direction. It is formed as part 12.

図3及び図4に示すドリル本体2の先端面2aにおいて、一対の主切刃7の中心軸線O側にはシンニング切刃14がそれぞれ形成されている。これらのシンニング切刃14は主切刃7との接続部から主切刃7の回転方向前方に突出する凸部14aを形成し、他端部14bは中心軸線Oの近傍を超えて反対側のシンニング切刃14の他端部14bに平行に重なる位置まで互いに延びている。本実施形態では、主切刃7とシンニング切刃14からなる切刃は中心軸線Oを中心に180度回転対称に形成されている。
図4の拡大図に示すように各シンニング切刃14の他端部14b同士は中心軸線Oを挟む両側の領域で所定の微小間隔の厚さで重なっており、この他端部14b間の厚み部分がチゼル心厚15とされている。中心軸線Oを通過してチゼル心厚15を斜めに交差する二番逃げ面10a同士の交差稜線はチゼル刃17とされている。チゼル刃17はドリル本体2の周速の最も小さい中心軸線Oを含む切刃であり被削材を低速で切削加工できる。
On the distal end surface 2a of the drill body 2 shown in FIGS. 3 and 4, a thinning cutting edge 14 is formed on the center axis O side of the pair of main cutting edges 7 respectively. These thinning cutting edges 14 form a convex portion 14a that protrudes forward in the rotational direction of the main cutting edge 7 from the connecting portion with the main cutting edge 7, and the other end 14b extends beyond the vicinity of the central axis O on the opposite side. The thinning cutting blades 14 extend to a position overlapping with the other end portion 14b of the thinning cutting edge 14 in parallel. In the present embodiment, the cutting edge composed of the main cutting edge 7 and the thinning cutting edge 14 is formed 180 degrees rotationally symmetric about the central axis O.
As shown in the enlarged view of FIG. 4, the other end portions 14b of the thinning cutting blades 14 overlap with each other at a predetermined minute interval in the regions on both sides of the central axis O, and the thickness between the other end portions 14b. The part has a chisel core thickness of 15. The intersecting ridgeline between the second flank surfaces 10a that pass through the central axis O and obliquely intersect the chisel core thickness 15 is a chisel blade 17. The chisel blade 17 is a cutting blade including the central axis O having the smallest peripheral speed of the drill body 2, and can cut the work material at a low speed.

ここで、図3に示す刃先部4の先端面2aにおいて、180度対向して配設された一対の外周刃11間の距離を刃先部4の最大外径Dとする。ドリル1の外径Dはφ6mm以下、例えばφ0.5mm〜φ6mmの範囲に設定されている。実施形態によるドリル1は例えばφ3mm程度に設定されている。   Here, the distance between the pair of outer peripheral blades 11 arranged to face each other at 180 degrees on the tip surface 2 a of the blade edge portion 4 shown in FIG. 3 is defined as the maximum outer diameter D of the blade edge portion 4. The outer diameter D of the drill 1 is set to φ6 mm or less, for example, in the range of φ0.5 mm to φ6 mm. The drill 1 according to the embodiment is set to about φ3 mm, for example.

そして、中心軸線Oを通過して外周刃11同士を結ぶ仮想線である中心線Lに対して、シンニング切刃14の凸部14aをその回転方向に多角形状または円弧状または凸曲線状に突出させている。この凸部14aの中心線Lに対する最大突出量Pを外径Dの2%〜5%の範囲に設定した。凸部14aによってシンニング切刃14とチゼル心厚15の剛性を高めることができてチゼル心厚15の厚みtを小さくしても切削時の欠損が発生しなくなり、ドリル1の寿命を向上できる。一方、突出量Pが2%に満たないとシンニング切刃14の剛性向上とチゼル心厚15の欠損抑制に効果がなく、5%を超えると切屑排出溝6を狭めてシンニング切刃14で生成する切屑の排出性を低下させる。   And the convex part 14a of the thinning cutting blade 14 protrudes in the polygonal shape or the circular arc shape or the convex curve shape with respect to the center line L which passes the central axis O and is the virtual line which connects the outer periphery blades 11 with each other. I am letting. The maximum protrusion amount P with respect to the center line L of the convex portion 14a was set in the range of 2% to 5% of the outer diameter D. The convex portion 14a can increase the rigidity of the thinning cutting edge 14 and the chisel core thickness 15, and even if the thickness t of the chisel core thickness 15 is reduced, no chipping occurs during cutting, and the life of the drill 1 can be improved. On the other hand, if the protrusion amount P is less than 2%, there is no effect in improving the rigidity of the thinning cutting edge 14 and suppressing the chip thickness of the chisel core thickness 15. If it exceeds 5%, the chip discharge groove 6 is narrowed and generated by the thinning cutting edge 14. Reduces the discharge of chips.

しかも、チゼル心厚15の厚みtを刃先部4の外径Dの0.8%〜3.0%の範囲に設定した。この範囲であれば回転加工時の中心軸線O付近での切削抵抗を低減して振れ回りを抑えて高精度な穴加工を行えると共にシンニング切刃14の凸部14aとの関係でチゼル心厚15の欠損を抑制できる。一方、0.8%より小さいと切削時にチゼル心厚15が容易に欠損し易く、3.0%を超えると切削時にぶれを生じ易く穴の加工精度を向上できない。
そして、シンニング切刃14に凸部14aを形成したことで、図5に示すように、切屑排出溝6に形成したシンニング切刃14のすくい面16のすくい角θを正角の5°〜20°の範囲に設定できる。これによって、主切刃7と同等なすくい角に近づけることができて刃先部4の切れ味を高めることができる。シンニング切刃14のすくい角θが5°より小さいと刃先強度は高いが切れ味が低下し、20°を超えると切れ味は高くなるが刃先が欠損し易くなる。
Moreover, the thickness t of the chisel core thickness 15 is set in the range of 0.8% to 3.0% of the outer diameter D of the blade edge portion 4. Within this range, the cutting resistance in the vicinity of the central axis O at the time of rotary machining can be reduced to suppress the whirling so that highly accurate drilling can be performed, and the chisel core thickness 15 is related to the convex portion 14a of the thinning cutting edge 14. Deficiency can be suppressed. On the other hand, if it is less than 0.8%, the chisel core thickness 15 tends to be easily lost during cutting, and if it exceeds 3.0%, it tends to cause blurring during cutting and the hole machining accuracy cannot be improved.
And by forming the convex part 14a in the thinning cutting edge 14, the rake angle θ of the rake face 16 of the thinning cutting edge 14 formed in the chip discharge groove 6 is 5 ° to 20 ° as shown in FIG. Can be set in the range of °. Thereby, the rake angle equivalent to that of the main cutting edge 7 can be brought close to, and the sharpness of the cutting edge portion 4 can be enhanced. If the rake angle θ of the thinning cutting edge 14 is smaller than 5 °, the cutting edge strength is high but the sharpness is lowered, and if it exceeds 20 °, the cutting edge is increased but the cutting edge is easily lost.

穴加工時にシンニング切刃14で生成される切屑をスムーズに排出するために、切屑排出溝6を含む凹部形状のシンニング部12は、刃先部4の外周面から切屑排出溝6を含んで中心軸線O方向に延びて中心軸線Oを超える程度に凹部を形成して、一対のシンニング部12の先端凹部によって所定幅tのチゼル心厚15を形成するようにシンニング深さを形成している。図3、図4に示す例では、シンニング部12の先端凹部の形状は例えば多角形形状に形成されている。
しかも、図2に示すようにシンニング切刃14のすくい面16を正面に見て、シンニング部12においてシンニング切刃14で生成された切屑を排出するためのシンニング面20の中心軸線Oに対する角度であるシンニング通し角αを25°〜45°の範囲に設定した。これによって、シンニング面20の強度低下を抑制しつつシンニング切刃14による切屑の排出性を向上できる。また、シンニング切刃14で生成した切屑を基端側に排出できる。
In order to smoothly discharge the chips generated by the thinning cutting edge 14 during drilling, the recessed thinning portion 12 including the chip discharge groove 6 includes the chip discharge groove 6 from the outer peripheral surface of the cutting edge portion 4 and the central axis. A recess is formed so as to extend in the O direction and exceed the central axis O, and a thinning depth is formed so that a chisel core thickness 15 having a predetermined width t is formed by the tip recesses of the pair of thinning portions 12. In the example shown in FIGS. 3 and 4, the shape of the concave portion at the tip of the thinning portion 12 is formed in a polygonal shape, for example.
Moreover, as shown in FIG. 2, the rake face 16 of the thinning cutting edge 14 is viewed from the front, and an angle with respect to the central axis O of the thinning face 20 for discharging chips generated by the thinning cutting edge 14 in the thinning portion 12. A certain thinning through angle α was set in a range of 25 ° to 45 °. Thereby, the chip | tip discharge property by the thinning cutting blade 14 can be improved, suppressing the intensity | strength fall of the thinning surface 20. FIG. Further, the chips generated by the thinning cutting edge 14 can be discharged to the base end side.

また、シンニング部12のシンニング深さが大きいとチゼル心厚15の幅tが小さくなって剛性が低下し欠損し易いが、上述したシンニング切刃14の凸部14aと共に、シンニング面20のシンニング通し角αを上述した25°〜45°の範囲に設定したことで剛性を補い、切屑排出性と剛性を確保することができる。即ち、シンニング通し角αが25°〜45°の範囲であればシンニング面20の強度は比較的小さくなるが必要な強度を確保できる上にシンニング切刃14による切屑排出性が良好である。
一方、シンニング通し角αが25°より小さいと切屑排出性は一層高くなるが、シンニング面20の強度が低下する欠点が生じる。シンニング通し角αが45°より大きいとシンニング面20の強度は大きくなるがシンニング切刃14による切屑の排出性が低下する。
Further, if the thinning depth of the thinning portion 12 is large, the width t of the chisel core thickness 15 becomes small and the rigidity is lowered and the chipping is likely to be lost. By setting the angle α in the range of 25 ° to 45 ° described above, the rigidity can be supplemented, and chip dischargeability and rigidity can be ensured. That is, if the thinning through angle α is in the range of 25 ° to 45 °, the strength of the thinning surface 20 is relatively small, but the necessary strength can be ensured and the chip discharge performance by the thinning cutting edge 14 is good.
On the other hand, when the thinning through angle α is smaller than 25 °, the chip discharging property is further improved, but there is a disadvantage that the strength of the thinning surface 20 is lowered. When the thinning through angle α is greater than 45 °, the strength of the thinning surface 20 is increased, but the chip discharging performance by the thinning cutting edge 14 is lowered.

また、図3に示す刃先部4の先端面2aにおいて、外周刃11の回転方向後方側の外周面にはドリル1による穴の加工面(内壁面)に沿って第一マージン22が形成されている。第一マージン22の回転方向後方側には段差23による縮径された外周面24が形成され、更にその後方には第二マージン25が穴の加工面に沿って突出して形成されている。第一マージン22に交差する先端面2aには主切刃7の二番逃げ面10aが形成され、その後方側には外周面24を介した第二マージン25にかけて三番逃げ面10bが形成されている。   Further, in the distal end surface 2a of the cutting edge portion 4 shown in FIG. 3, a first margin 22 is formed on the outer peripheral surface on the rear side in the rotation direction of the outer peripheral blade 11 along the processing surface (inner wall surface) of the hole by the drill 1. Yes. An outer peripheral surface 24 having a reduced diameter due to a step 23 is formed on the rear side in the rotation direction of the first margin 22, and a second margin 25 is formed on the rear side thereof so as to protrude along the processing surface of the hole. A second flank 10a of the main cutting edge 7 is formed on the front end surface 2a intersecting the first margin 22, and a third flank 10b is formed on the rear side of the tip margin 2a through the outer margin 24 to the second margin 25. ing.

第一マージン22は、図3に示すドリル1の平面視で中心軸線Oを中心とする小幅な円筒面からなるランド部22aと第一マージン22の後方に形成された正の逃げ角を設定した逃げ面22bとが形成されている。ランド部22aは外径Dの0.3%〜3%の範囲の幅を有しており、逃げ角は形成されていない。ランド部22aは穴の加工面に当接して穴加工をガイドするが、逃げ面22bは加工面に当接しない。
そのため、穴加工時に第一マージン22は加工穴の加工面への食い付きと圧縮応力とびびり振動を抑えてランド部22aは加工面に当接して均すことができる。
The first margin 22 has a land portion 22a formed of a small cylindrical surface centered on the central axis O in a plan view of the drill 1 shown in FIG. 3 and a positive clearance angle formed behind the first margin 22. A flank 22b is formed. The land portion 22a has a width in the range of 0.3% to 3% of the outer diameter D, and no clearance angle is formed. The land portion 22a abuts the hole machining surface to guide the hole machining, but the flank 22b does not abut the machining surface.
Therefore, the first margin 22 can suppress the biting of the processed hole on the processed surface, compressive stress, and chatter vibration during the hole processing, and the land portion 22a can be in contact with the processed surface and leveled.

第一マージン22の逃げ面22bの回転方向後方には外周面24を介して第二マージン25が突出して形成されている。第一マージン22と第二マージン25は周方向に角度γが70°〜90°の間隔を開けている。第二マージン25は逃げ角0°の略円筒面形状を有していて穴の加工面に当接している。
第二マージン25はドリル1の外径Dの2%〜8%の範囲の幅に設定することが好ましい。この範囲であれば、ドリル1において第一マージン22の後方に第二マージン25を設置することで穴加工中のドリル1の振れ回り(びびり振動)を抑えてドリル1の直線的な降下をガイドすることができる。
第二マージン25の幅が外径Dの2%に満たないとドリル1のガイド性が弱く、工具の振れ回りを抑制できずに穴径を広げてしまう欠点があり、8%を超えると被削材の加工穴の加工面に接触する面積が多くなり、切削抵抗が増えることによって摩擦熱が上がり、第二マージン25の外面に被削材や切屑が溶着することによって穴径を拡大させたり、加工面を著しく粗すという欠点が生じる。
A second margin 25 is formed so as to protrude through the outer peripheral surface 24 behind the flank 22 b of the first margin 22 in the rotation direction. The first margin 22 and the second margin 25 are spaced at an angle γ of 70 ° to 90 ° in the circumferential direction. The second margin 25 has a substantially cylindrical surface shape with a clearance angle of 0 ° and is in contact with the processed surface of the hole.
The second margin 25 is preferably set to a width in the range of 2% to 8% of the outer diameter D of the drill 1. Within this range, the second margin 25 is installed behind the first margin 22 in the drill 1 to suppress the whirling (chatter vibration) of the drill 1 during drilling and guide the linear descent of the drill 1. can do.
If the width of the second margin 25 is less than 2% of the outer diameter D, the guide property of the drill 1 is weak, and there is a drawback that the hole diameter is widened without suppressing the swinging of the tool. The contact area of the machined hole of the cutting material increases, the frictional heat increases by increasing the cutting resistance, and the hole diameter is increased by welding the work material and chips to the outer surface of the second margin 25. , The disadvantage is that the processed surface is significantly roughened.

また、第二マージン25はドリル1のガイド作用のために加工面を切削させないようにすくい角に設定する必要がある。例えば、第二マージン25の回転方向を向くすくい面25aのすくい角が正角から負角の20°未満の範囲の場合には、加工面に対する食い付きが発生し易く加工穴の拡大や加工面を著しく粗すという欠点がある。そのため、すくい面25aのすくい角を負角の20°〜70°の範囲に設定して加工面を削らない角度に設定することが好ましい。   Further, the second margin 25 needs to be set at a rake angle so as not to cut the machined surface for the guide action of the drill 1. For example, when the rake angle of the rake face 25a facing the rotation direction of the second margin 25 is in the range of less than 20 ° from a positive angle to a negative angle, the machining surface is likely to bite and the machining hole is enlarged or the machining surface is There is a disadvantage that it is roughened. For this reason, it is preferable to set the rake angle of the rake face 25a to a negative angle in the range of 20 ° to 70 ° so as not to cut the machined surface.

また、第二マージン25は、ドリル1の外径Dが2.5mm以下の場合には工具径が細いために工具剛性が小さく工具の撓みが発生して加工穴の穴径が大きくなったり工具が折損し易くなる。そのため、切削条件の回転数を下げて工具の振れ回りを抑え、更に1回転あたりの送り速度を小さく設定する必要があるため加工能率が低下する。
これらの負の現象を解決する手段として、刃先部4の外周面に第一マージン22のみを形成して第二マージン25を設置しないようにすることが好ましい。しかも、ドリル1の工具径が2.5mm以下と小さいため、第二マージン25を形成することが技術的に困難であり、また第二マージン25を形成しても切削抵抗になってしまい、折損の原因になる。この場合には第一マージン22のみを刃先部4の外周面に形成することで小径工具であっても加工能率を下げないで穴加工できる。
Further, the second margin 25 is such that when the outer diameter D of the drill 1 is 2.5 mm or less, the tool diameter is thin, so that the tool rigidity is small, the tool is bent, and the hole diameter of the machining hole is increased. Is easy to break. For this reason, it is necessary to reduce the rotation speed of the cutting conditions to suppress the tool swing and further to set the feed speed per one revolution, so that the machining efficiency is lowered.
As a means for solving these negative phenomena, it is preferable that only the first margin 22 is formed on the outer peripheral surface of the cutting edge portion 4 and the second margin 25 is not installed. In addition, since the tool diameter of the drill 1 is as small as 2.5 mm or less, it is technically difficult to form the second margin 25, and even if the second margin 25 is formed, cutting resistance is generated and breakage occurs. Cause. In this case, by forming only the first margin 22 on the outer peripheral surface of the cutting edge portion 4, even a small diameter tool can be drilled without lowering the machining efficiency.

なお、ドリル1の外径Dがφ2.5mm超である場合には、第一マージン22に第二マージン25を上述した条件で設置することが好ましい。この場合、ドリル1による被削材の穴加工において第一マージン22及び第二マージン25が加工面に当接してガイドすることでリーマ加工とほぼ同程度の穴径精度が得られる。そのため、穴径精度は例えばはめあい公差でH5〜H6を実現できる。   When the outer diameter D of the drill 1 is more than φ2.5 mm, it is preferable to install the second margin 25 in the first margin 22 under the above-described conditions. In this case, in the drilling of the work material by the drill 1, the first margin 22 and the second margin 25 are in contact with the processing surface and are guided, so that a hole diameter accuracy substantially equal to that of the reamer processing can be obtained. Therefore, the hole diameter accuracy can realize H5 to H6 with fit tolerance, for example.

なお、本実施形態によるドリル1の刃先部4に例えばTiAlN等の多層構造の硬質皮膜をコーティングしてもよい。この場合、ドリル1の、刃先部4の先端から工具径D以下の長さまでコーティングを施し、それ以降の切屑排出溝6の部分にはコーティングを施さないことが好ましい。
ドリル1の特性として、主に工具先端部が主切刃7となっているため、その部分のみに有効なコーティング膜の硬さ、耐摩耗性、耐熱性を必要としているが、それ以降の切屑排出溝6の部分にコーティングが施されていると、コーティング表面の凹凸(ドロップレット)が切屑を排出する際の抵抗となり切屑を排出しずらい欠点を生じる。そのため、上述したようにドリル1の先端からドリル1の外径D以下の長さまでコーティングすることによって、それ以降の切屑排出溝6にドロップレットの凹凸がないことで切屑の滑りが良く切屑排出溝6からスムーズに切屑が排出される。
なお、本実施形態によるドリル1は切屑排出溝6の長さに応じて刃先部4の最大外径Dの2倍程度までノンステップで穴加工が行える。
In addition, you may coat the hard-coat of multilayered structures, such as TiAlN, on the blade edge | tip part 4 of the drill 1 by this embodiment. In this case, it is preferable that the drill 1 is coated from the tip of the cutting edge portion 4 to a length equal to or less than the tool diameter D, and the subsequent portion of the chip discharge groove 6 is not coated.
As the characteristics of the drill 1, since the tool tip portion is mainly the main cutting edge 7, the hardness, abrasion resistance, and heat resistance of the coating film effective for only that portion are required. When the coating is applied to the portion of the discharge groove 6, the irregularities (droplets) on the coating surface become a resistance when discharging the chips, resulting in a disadvantage that it is difficult to discharge the chips. Therefore, as described above, coating from the tip of the drill 1 to a length equal to or smaller than the outer diameter D of the drill 1 allows the chip discharge groove 6 after that to have no droplet irregularities, resulting in good chip slippage. Chips are discharged smoothly from 6.
Note that the drill 1 according to the present embodiment can perform non-step drilling up to about twice the maximum outer diameter D of the cutting edge portion 4 according to the length of the chip discharge groove 6.

上述したように、本実施形態によるドリル1によれば、刃先部4の先端切刃を主切刃7とその中心軸線O側に接続して形成したシンニング切刃14とを180度対向して形成し、しかも主切刃7をフラット形状に形成し、チゼル心厚15を外径Dの0.8%〜3%の小幅tに形成したから、被削材の加工面が斜面であっても主切刃7の食い付きが良く高い穴精度と加工面粗さを得られる。
また、シンニング切刃14の凸部14aを外周刃11と中心軸線Oを通る中心線Lに対して回転方向にドリル1の外径Dの2%〜5%の範囲に亘って突出させてシンニング切刃14の剛性を高めることができる。しかも、チゼル心厚15を外径Dの0.8%〜3%に小さく設定してもシンニング切刃14の凸部14aによって剛性を高めることができるため欠損を生じ難い。
また、シンニング切刃14に凸部14aを形成して剛性を高めたことでそのすくい面16のすくい角を5°〜20°の範囲の正角に設定できるため、シンニング切刃14の切れ味を高めることができる。
As described above, according to the drill 1 according to the present embodiment, the thinning edge 14 formed by connecting the leading edge 7 of the cutting edge 4 to the main cutting edge 7 and the central axis O side is opposed by 180 degrees. In addition, since the main cutting edge 7 is formed in a flat shape and the chisel core thickness 15 is formed in a small width t of 0.8% to 3% of the outer diameter D, the processing surface of the work material is a slope. In addition, the main cutting edge 7 has good biting and high hole accuracy and machined surface roughness can be obtained.
Further, the thinning is performed by projecting the convex portion 14a of the thinning cutting edge 14 in the rotational direction with respect to the center line L passing through the outer peripheral edge 11 and the central axis O in the range of 2% to 5% of the outer diameter D of the drill 1. The rigidity of the cutting blade 14 can be increased. Moreover, even if the chisel core thickness 15 is set to be 0.8% to 3% of the outer diameter D, the rigidity can be increased by the convex portion 14a of the thinning cutting edge 14, so that the chipping hardly occurs.
Moreover, since the rake angle of the rake face 16 can be set to a positive angle in the range of 5 ° to 20 ° by forming the convex portion 14a on the thinning cutting blade 14 to increase the rigidity, the sharpness of the thinning cutting blade 14 can be set. Can be increased.

また、一対のシンニング部12として、切屑排出溝6を含んで中心軸線Oを超える領域まで互いに喰い込むように凹部を形成して小幅tのチゼル心厚15を形成し、しかもシンニング切刃14のすくい面16を正面に見て、シンニング部12においてシンニング面20のシンニング通し角αを25°〜45°の範囲に設定したから、チゼル心厚15とシンニング面20の強度低下を抑制しつつシンニング切刃14で生成した切屑の排出性を向上できる。   Further, as the pair of thinning portions 12, recesses are formed so as to bite each other up to a region exceeding the central axis O including the chip discharge groove 6, thereby forming a chisel core thickness 15 having a small width t. When the rake face 16 is viewed in front, the thinning through angle α of the thinning surface 20 is set in the range of 25 ° to 45 ° in the thinning portion 12, so that the thinning is performed while suppressing the strength reduction of the chisel core thickness 15 and the thinning surface 20. The discharge property of the chips generated by the cutting blade 14 can be improved.

また、ドリル1の外径Dが2.5mm超の場合、刃先部4の外周刃11の外周面に第一マージン22と第二マージン25を70°〜90度離れて形成し、第一マージン22のランド部22aと第二マージン25がドリル1による加工穴の加工面に当接して回転切削加工することで加工をガイドし、ドリル1の振れ回りを抑制してリーマによる仕上げ加工と同等の高い加工穴精度を得られる。
更に、第二マージン25のすくい面25aのすくい角を負角の20°〜70°に設定することで、穴加工時における第二マージン25の加工面への食い付きを防止して加工面の粗さを悪化することを防止できる。
Further, when the outer diameter D of the drill 1 is more than 2.5 mm, the first margin 22 and the second margin 25 are formed on the outer peripheral surface of the outer peripheral blade 11 of the cutting edge portion 4 so as to be 70 ° to 90 ° apart from each other. The land portion 22a and the second margin 25 are in contact with the machining surface of the drilled hole by the drill 1 to guide the machining, thereby suppressing the swing of the drill 1 and equivalent to the finishing by the reamer. High hole accuracy can be obtained.
Furthermore, by setting the rake angle of the rake face 25a of the second margin 25 to a negative angle of 20 ° to 70 °, the second margin 25 is prevented from biting into the machining surface during drilling. It is possible to prevent the roughness from being deteriorated.

また、ドリル1の外径Dが2.5mm以下の場合には、第二マージン25を設けず第一マージン22によって小径の穴加工をガイドすることで、第二マージン25の切削抵抗による折損を防止できる。しかも、小径のドリル1であっても、加工能率を下げないで穴加工を行える。   Further, when the outer diameter D of the drill 1 is 2.5 mm or less, the second margin 25 is not provided, and the first margin 22 is used to guide the small-diameter hole processing, so that the breakage due to the cutting resistance of the second margin 25 can be prevented. Can be prevented. Moreover, even the small-diameter drill 1 can perform hole drilling without reducing the machining efficiency.

以上、本発明の実施形態によるドリル1について説明したが、本発明はこのような実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で種々の異なる形態や態様を採用できることはいうまでもない。これらはいずれも本発明の範囲に含まれる。
次に本発明の変形例について説明するが、上述した実施形態の部分や部品と同一または同様なものについては同一の符号を用いて説明を行うものとする。
As mentioned above, although the drill 1 by embodiment of this invention was demonstrated, this invention is not limited to such embodiment, A various different form and aspect can be employ | adopted within the range which does not deviate from the meaning of this invention. Needless to say. These are all included in the scope of the present invention.
Next, modified examples of the present invention will be described, and the same or similar parts or parts as those of the above-described embodiment will be described using the same reference numerals.

図6は本実施形態の変形例によるドリル1Aを示すものであり、本変形例によるドリル1Aは実施形態によるドリル1との相違点として、一対の主切刃7及びシンニング切刃14の回転方向前方に形成した凹部形状のシンニング部30が、180度対向する位置に一対形成されている。この一対のシンニング部30は、上述した実施形態によるシンニング部12と同様に、刃先部4の外周面の対向する位置から中心軸線Oに向けて形成され、中心軸線Oを超える領域まで互いに喰い込むようにシンニング深さを形成して所定幅tのチゼル心厚15を形成している。しかも、本変形例では、シンニング部30はそれぞれ先端部が略円弧状に湾曲して形成されている。
これによって、シンニング切刃14で生成した切屑をすくい面16からシンニング部30を通して後端側に排出できるようにした。しかも、シンニング切刃14のすくい面16を正面に見て、シンニング部12においてシンニング切刃14で生成された切屑を排出するためのシンニング面20のシンニング通し角αを25°〜45°の範囲に設定したから、シンニング面20の強度低下を抑制しつつシンニング切刃14による切屑の排出性を向上できる。
FIG. 6 shows a drill 1A according to a modified example of the present embodiment. The drill 1A according to the modified example is different from the drill 1 according to the embodiment in the rotational direction of the pair of main cutting edges 7 and the thinning cutting edge 14. A pair of recessed thinning portions 30 formed in the front are formed at positions facing each other by 180 degrees. The pair of thinning portions 30 are formed from the opposed positions of the outer peripheral surface of the blade edge portion 4 toward the central axis O and bite each other up to a region beyond the central axis O, similarly to the thinning portion 12 according to the above-described embodiment. Thus, the thinning depth is formed to form the chisel core thickness 15 having a predetermined width t. In addition, in this modification, the thinning portion 30 is formed such that the tip portion is curved in a substantially arc shape.
Thus, the chips generated by the thinning cutting edge 14 can be discharged from the rake face 16 through the thinning portion 30 to the rear end side. Moreover, when the rake face 16 of the thinning cutting edge 14 is viewed from the front, the thinning through angle α of the thinning face 20 for discharging chips generated by the thinning cutting edge 14 in the thinning portion 12 is in the range of 25 ° to 45 °. Therefore, it is possible to improve the chip discharging performance by the thinning cutting edge 14 while suppressing the strength reduction of the thinning surface 20.

また、上述した実施形態によるドリル1では、刃先部4の先端面2aに形成した主切刃7及びシンニング切刃14をフラット形状に形成したが、本発明によるドリルは必ずしもフラット形状に形成する必要はなく、先端角を先細の凸部形状や扇形形状にしてもよい。
また、上述した実施形態や変形例では、ドリル1を一対の主切刃7とシンニング切刃14とを備えた二枚刃で形成したが、三枚刃や四枚刃で構成してもよい。また、上述した実施形態ではドリル1の主切刃7とシンニング切刃14を等刃に設定したが不等刃でもよい。
Moreover, in the drill 1 by embodiment mentioned above, although the main cutting edge 7 and the thinning cutting edge 14 which were formed in the front end surface 2a of the blade edge | tip part 4 were formed in flat shape, the drill by this invention needs to be necessarily formed in flat shape. Rather, the tip angle may be a tapered convex shape or a sector shape.
Further, in the above-described embodiment and modification, the drill 1 is formed with a two-blade provided with a pair of main cutting blades 7 and a thinning cutting blade 14, but may be configured with a three-blade or a four-blade. . Further, in the above-described embodiment, the main cutting edge 7 and the thinning cutting edge 14 of the drill 1 are set as equal blades, but they may be unequal blades.

1 ドリル
2 ドリル本体
2a 先端面
4 刃先部
6 切屑排出溝
7 主切刃
8、16 すくい面
10 逃げ面
11 外周刃
12、30 シンニング部
14 シンニング切刃
14a 凸部
15 チゼル心厚
20 シンニング面
22 第一マージン
22a ランド部
25 第二マージン
25a すくい面
DESCRIPTION OF SYMBOLS 1 Drill 2 Drill main body 2a Front end surface 4 Cutting edge part 6 Chip discharge groove 7 Main cutting edge 8, 16 Rake face 10 Relief face 11 Outer peripheral edge 12, 30 Thinning part 14 Thinning cutting edge 14a Convex part 15 Chisel core thickness 20 Thinning surface 22 First margin 22a Land 25 Second margin 25a Rake face

本発明によるドリルは、ドリル本体の先端面から後端側に延びる切屑排出溝が先端側外周面に形成され、該切屑排出溝の回転方向を向く面と先端面との交差部に主切刃が形成され、該主切刃からドリル本体の回転中心となる中心軸線側に向けてシンニング切刃が形成されたドリルであって、対向するシンニング切刃間に中心軸線を挟んで心厚が形成されており、ドリル本体の先端面における最大外径をDとして、心厚は最大外径Dの0.8〜3%の厚さを有すると共に、主切刃は正角のすくい角で形成され、シンニング切刃は、中心軸線と主切刃の延長上に形成された外周刃とを結ぶ仮想線に対して回転方向前方に突出する凸部を有すると共に、該凸部は心厚と主切刃より回転方向前方に突出しており、シンニング切刃は、切屑排出溝の回転方向前方を向く面にすくい角が正角とされたシンニングすくい面が形成されたことを特徴とする。
本発明によれば、心厚をドリル本体の最大外径Dの0.8%〜3%に小さく設定したことで被削材への食い付きが良く穴加工時の振れ回りを防いで加工精度を向上できると共に、シンニング切刃に凸部を形成して剛性を高めたことで心厚の剛性も高めることができる。そのため、被削材の加工面が斜面等であっても刃先部の食い付きが良く高い穴加工精度と工具寿命を得られる。
なお、シンニング切刃の凸部はドリルの最大外径Dの2〜5%の範囲で回転方向に突出させることで、シンニング切刃と心厚の剛性を高めることができて心厚の厚みを小さくしても切削時の欠損が発生しなくなり、工具寿命を向上できる。
In the drill according to the present invention, a chip discharge groove extending from the front end surface of the drill body to the rear end side is formed on the outer peripheral surface of the front end side, and the main cutting edge is formed at the intersection of the surface facing the rotation direction of the chip discharge groove and the front end surface. And a thinning blade is formed from the main cutting edge toward the central axis that is the rotation center of the drill body, and a core thickness is formed by sandwiching the central axis between opposing thinning cutting edges. The core thickness has a thickness of 0.8 to 3% of the maximum outer diameter D, and the main cutting edge is formed with a regular rake angle. , thinning cutting edge, which has a protrusion protruding forward in the rotational direction relative to the imaginary line connecting the outer peripheral edge formed at the central axis and the extension of the major cutting edge, convex portions are the axial thicknesses and main selector Projects forward in the rotational direction from the blade, and the thinning blade rotates the chip discharge groove. The rake angle on the surface facing the direction forward thinning rake face that is a positive angle is formed, characterized in.
According to the present invention, since the core thickness is set to be small between 0.8% and 3% of the maximum outer diameter D of the drill body, the work material can bite well and machining accuracy can be prevented by preventing runout during drilling. In addition, it is possible to increase the rigidity of the core thickness by increasing the rigidity by forming a convex portion on the thinning cutting edge. Therefore, even when the work surface of the work material is an inclined surface or the like, the cutting edge portion is well bitten and high drilling accuracy and tool life can be obtained.
The convex part of the thinning cutting edge protrudes in the rotation direction within the range of 2 to 5% of the maximum outer diameter D of the drill, so that the rigidity of the thinning cutting edge and the core thickness can be increased and the thickness of the core thickness can be increased. Even if it is made smaller, chipping is not generated and the tool life can be improved.

また、シンニング切刃は、シンニングすくい面のすくい角が5°〜20°とされていることが好ましい。
シンニング切刃に凸部を形成してもシンニングすくい面のすくい角を5°〜20°の正角に設定したため、高い切れ味と穴加工精度を得られる。
Moreover, it is preferable that the rake angle of the thinning rake face of the thinning cutting edge is 5 ° to 20 ° .
Even if the convex portion is formed on the thinning cutting edge, since the rake angle of the thinning rake face is set to a positive angle of 5 ° to 20 °, high sharpness and hole machining accuracy can be obtained.

Claims (4)

ドリル本体の先端面から後端側に延びる切屑排出溝が先端側外周面に形成され、該切屑排出溝の回転方向を向く面と前記先端面との交差部に主切刃が形成され、該主切刃から前記ドリル本体の中心軸線側に向けてシンニング切刃が形成されたドリルであって、
対向する前記シンニング切刃間に前記中心軸線を挟んで心厚が形成されており、
前記ドリル本体の先端側における最大外径をDとして、前記心厚は最大外径Dの0.8〜3%の厚さを有すると共に、
前記シンニング切刃は、前記中心軸線と前記主切刃の延長上に形成された外周刃とを結ぶ仮想線に対して回転方向前方に突出する凸部を有する形状としたことを特徴とするドリル。
A chip discharge groove extending from the front end surface of the drill body to the rear end side is formed on the outer peripheral surface of the front end, and a main cutting edge is formed at the intersection of the surface facing the rotation direction of the chip discharge groove and the front end surface, A drill in which a thinning cutting edge is formed from the main cutting edge toward the center axis side of the drill body,
A core thickness is formed across the central axis between the opposing thinning cutting edges,
The maximum outer diameter on the tip side of the drill body is D, and the core thickness is 0.8 to 3% of the maximum outer diameter D,
The thinning cutting blade has a shape having a convex portion protruding forward in the rotation direction with respect to a virtual line connecting the central axis and an outer peripheral blade formed on an extension of the main cutting blade. .
前記シンニング切刃は、前記切屑排出溝の回転方向前方を向く面にシンニングすくい面が形成され、前記シンニングすくい面のすくい角は5°〜20°の正角とされている請求項1に記載されたドリル。   The thinning rake face is formed on a surface of the thinning rake face that faces forward in the rotational direction of the chip discharge groove, and the rake angle of the thinning rake face is a positive angle of 5 ° to 20 °. Drill. 前記主切刃の回転方向に設けていて前記先端側外周面から中心軸線を超える領域まで延びて前記心厚を形成する凹部形状をなすシンニング部を備えており、該シンニング部の先端の凹部形状は断面略多角形状または略円弧状に形成されている請求項1または2に記載されたドリル。   A thinning portion that is provided in the rotational direction of the main cutting edge and extends from the distal end side outer peripheral surface to a region exceeding the central axis to form the concave portion, and has a concave shape at the distal end of the thinning portion The drill according to claim 1, wherein the cross section is formed in a substantially polygonal shape or a substantially arc shape. 前記ドリル本体の先端面において、前記外周刃を設けた外周面に回転方向後方側に向けて突出形成した第一マージンと、前記第一マージンの回転方向後方側に間隔を開けて突出形成した第二マージンとを備えている請求項1から3のいずれか1項に記載されたドリル。   A first margin that protrudes toward the rear side in the rotational direction on the outer peripheral surface provided with the outer peripheral blade on the front end surface of the drill body, and a first margin that protrudes from the rear side in the rotational direction of the first margin. The drill according to any one of claims 1 to 3, comprising two margins.
JP2015206452A 2015-10-20 2015-10-20 drill Active JP5940205B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206452A JP5940205B1 (en) 2015-10-20 2015-10-20 drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206452A JP5940205B1 (en) 2015-10-20 2015-10-20 drill

Publications (2)

Publication Number Publication Date
JP5940205B1 JP5940205B1 (en) 2016-06-29
JP2017077597A true JP2017077597A (en) 2017-04-27

Family

ID=56244636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206452A Active JP5940205B1 (en) 2015-10-20 2015-10-20 drill

Country Status (1)

Country Link
JP (1) JP5940205B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201298A1 (en) * 2021-03-23 2022-09-29 住友電工ハードメタル株式会社 Drill head, tip-interchangeable drill, and drill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791985B2 (en) * 2016-12-26 2020-11-25 京セラ株式会社 A drill and a method for manufacturing a machined product using it
EP3680047B1 (en) 2017-09-07 2023-11-01 OSG Corporation Drill
JP7422442B1 (en) 2023-06-23 2024-01-26 株式会社メドメタレックス Drill

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667857A (en) * 1970-10-30 1972-06-06 Nat Twist Drill & Tool Co Combined drill and reamer construction
JPS6056809A (en) * 1983-09-08 1985-04-02 Nachi Fujikoshi Corp Drill
JPH0263912U (en) * 1988-11-02 1990-05-14
JP2006212724A (en) * 2005-02-02 2006-08-17 Hitachi Tool Engineering Ltd Drill for high efficiency machining of aluminum
JP2007001011A (en) * 2006-10-10 2007-01-11 Mitsubishi Materials Corp Drilling tool
JP2012192514A (en) * 2011-03-03 2012-10-11 Big Tool Co Ltd Drill
JP2013013997A (en) * 2011-07-02 2013-01-24 Kennametal Inc Drilling/reaming tool
US20130121778A1 (en) * 2011-11-15 2013-05-16 Kennametal, Inc. Manufacturing of holemaking tools

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667857A (en) * 1970-10-30 1972-06-06 Nat Twist Drill & Tool Co Combined drill and reamer construction
JPS6056809A (en) * 1983-09-08 1985-04-02 Nachi Fujikoshi Corp Drill
JPH0263912U (en) * 1988-11-02 1990-05-14
JP2006212724A (en) * 2005-02-02 2006-08-17 Hitachi Tool Engineering Ltd Drill for high efficiency machining of aluminum
JP2007001011A (en) * 2006-10-10 2007-01-11 Mitsubishi Materials Corp Drilling tool
JP2012192514A (en) * 2011-03-03 2012-10-11 Big Tool Co Ltd Drill
JP2013013997A (en) * 2011-07-02 2013-01-24 Kennametal Inc Drilling/reaming tool
US20130121778A1 (en) * 2011-11-15 2013-05-16 Kennametal, Inc. Manufacturing of holemaking tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201298A1 (en) * 2021-03-23 2022-09-29 住友電工ハードメタル株式会社 Drill head, tip-interchangeable drill, and drill

Also Published As

Publication number Publication date
JP5940205B1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5940208B1 (en) drill
US9833843B2 (en) Drill
JP6057038B1 (en) drill
CN109070239B (en) Small-diameter drill bit
JP6556229B2 (en) Drill and cutting method
JP5940205B1 (en) drill
JP6838164B2 (en) Taper reamer
JP2011073129A (en) Boring drill
JP2010105119A (en) Drill reamer
JP2006281407A (en) Machining drill for nonferrous metal
JP2009184043A (en) Stepped twist drill and method of manufacturing the same
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP2008142834A (en) Drill
JP2016064477A (en) drill
JPWO2018074542A1 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP2018126842A (en) Cutting tool
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
KR20200096983A (en) drill
JP7400311B2 (en) Drill
JP2010162643A (en) Drill and grinding method of the drill
JP6902284B2 (en) Cutting tools
JP4815386B2 (en) 3-flute ball end mill and 4-flute ball end mill
JP4725369B2 (en) Drill
JP7423965B2 (en) Drill
JP3686022B2 (en) Drilling tool with coolant hole

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160517

R150 Certificate of patent or registration of utility model

Ref document number: 5940205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250