JP2017076559A - Scanning type charged particle microscope - Google Patents

Scanning type charged particle microscope Download PDF

Info

Publication number
JP2017076559A
JP2017076559A JP2015204213A JP2015204213A JP2017076559A JP 2017076559 A JP2017076559 A JP 2017076559A JP 2015204213 A JP2015204213 A JP 2015204213A JP 2015204213 A JP2015204213 A JP 2015204213A JP 2017076559 A JP2017076559 A JP 2017076559A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
irradiation position
scanning
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015204213A
Other languages
Japanese (ja)
Other versions
JP6468160B2 (en
Inventor
丈寛 石川
Takehiro Ishikawa
丈寛 石川
大越 暁
Akira Ogoshi
暁 大越
正道 永井
Masamichi Nagai
正道 永井
哲也 森井
Tetsuya Morii
哲也 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015204213A priority Critical patent/JP6468160B2/en
Publication of JP2017076559A publication Critical patent/JP2017076559A/en
Application granted granted Critical
Publication of JP6468160B2 publication Critical patent/JP6468160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To correct, in a short time, an irradiation position of a charged particle beam in a scanning type charged particle microscope which scans a sample surface in a range to be measured with the charged particle beam to measure a predetermined physical quantity.SOLUTION: Provided is a scanning type charged particle microscope 1 which comprises: a charged particle beam control part 10 operable to scan a range to be measured with a charged particle beam; a first detector 9 operable to measure a reference image and a partial image; a second detector 11 operable to measure a predetermined physical quantity; a reference image acquisition part 22 operable to scan the range to be measured to acquire the reference image; a physical quantity measurement part 23 operable to scan the range to be measured and measure the predetermined physical quantity; a partial image acquisition part 24 operable to acquire the partial image in parallel with the measurement of the physical quantity; a drift calculating part 25 operable to compare the partial image with the reference image and to determine a drift quantity at an irradiation position; and a charged particle beam correcting part 26 operable to correct the irradiation position of the charged particle beam.SELECTED DRAWING: Figure 2

Description

本発明は、走査型荷電粒子顕微鏡に関し、特に、試料表面の測定対象領域を電子線で走査して該試料から発せられる特性X線を検出する電子線マイクロアナライザに関する。   The present invention relates to a scanning charged particle microscope, and more particularly to an electron beam microanalyzer that scans a measurement target region on a sample surface with an electron beam and detects characteristic X-rays emitted from the sample.

走査型荷電粒子顕微鏡では、試料載置台に載置した試料の表面の測定対象範囲を電子線等の荷電粒子線で走査し、試料表面から発せられる二次電子や特性X線などを検出して試料表面の形状や元素分布を測定する。   In a scanning charged particle microscope, the measurement target range of the surface of the sample placed on the sample stage is scanned with a charged particle beam such as an electron beam to detect secondary electrons and characteristic X-rays emitted from the sample surface. Measure the sample surface shape and element distribution.

走査型荷電粒子顕微鏡の1つに、試料表面の測定対象領域を電子線で走査して該試料から発せられる特性X線を検出する電子線マイクロアナライザ(EPMA)がある。図1に、電子線マイクロアナライザ101の要部構成を示す。電子線源102から発せられた電子線は、集束レンズ103、走査コイル104、対物レンズ105を順に通過し、試料載置台106に載置された試料107の表面に照射される。電子線の照射位置は、制御部110からの制御信号に基づき動作する駆動部108によって走査コイル104を動作させることにより移動される。   One scanning charged particle microscope is an electron beam microanalyzer (EPMA) that detects a characteristic X-ray emitted from a sample by scanning a measurement target region on the surface of the sample with an electron beam. FIG. 1 shows a main configuration of the electron beam microanalyzer 101. The electron beam emitted from the electron beam source 102 sequentially passes through the focusing lens 103, the scanning coil 104, and the objective lens 105, and is irradiated on the surface of the sample 107 placed on the sample placing table 106. The irradiation position of the electron beam is moved by operating the scanning coil 104 by the driving unit 108 that operates based on a control signal from the control unit 110.

電子線マイクロアナライザを用いた測定では、試料表面の測定対象範囲を電子線で走査し、電子検出器109により所定の時間間隔で二次電子を検出する。これにより、前記所定の時間間隔と電子線の走査速度に応じた距離で離間する多数の測定点から放出された二次電子の強度が得られる。電子検出器109からの出力信号は制御部110に送られ、該出力信号に基づいて測定対象範囲の二次電子像が作成される。   In the measurement using the electron beam microanalyzer, the measurement target range on the sample surface is scanned with an electron beam, and secondary electrons are detected by the electron detector 109 at predetermined time intervals. Thereby, the intensity | strength of the secondary electron discharge | released from many measurement points spaced apart by the distance according to the said predetermined time interval and the scanning speed of an electron beam is obtained. An output signal from the electron detector 109 is sent to the control unit 110, and a secondary electron image of the measurement target range is created based on the output signal.

前記二次電子の検出と同時に、X線検出器111により特性X線を検出することもできる。一般に、試料表面から発せられる特性X線の強度は低いため、十分な強度で特性X線を検出するために、この走査は低速で行われる。電子線や試料台を走査しながら所定の物理量を検出し、画像を作成する測定はマッピングと呼ばれる。   Simultaneous with the detection of the secondary electrons, characteristic X-rays can be detected by the X-ray detector 111. In general, since the intensity of characteristic X-rays emitted from the sample surface is low, this scan is performed at a low speed in order to detect characteristic X-rays with sufficient intensity. Measurement that detects a predetermined physical quantity while scanning an electron beam or a sample stage and creates an image is called mapping.

電子線マイクロアナライザ101において長時間、試料に電子線を照射し続けると、試料や電子線源の安定性に応じて、電子線の走査と試料の測定対象範囲にずれが生じてくることがある。そのため、電子線マイクロアナライザ101では、長時間のマッピング測定において、測定中に電子線の照射位置を補正する手法がある。   When the electron beam microanalyzer 101 continues to irradiate the sample with an electron beam for a long time, there may be a difference between the scanning of the electron beam and the measurement target range of the sample depending on the stability of the sample and the electron beam source. . Therefore, in the electron beam microanalyzer 101, there is a method of correcting the irradiation position of the electron beam during measurement in long-time mapping measurement.

電子線の照射位置を補正する際には、まず、測定前に補正の基準画像となる二次電子像を取得する。基準画像を取得するための走査は高速で行われ、測定対象範囲の大きさが数μm×数μmの場合、基準画像の作成は数秒で完了する。測定を開始した後は、補正を行う都度、一旦電子線の走査を停止し、基準画像と制御上同じ領域で二次電子像を取得する。そして、取得した二次電子像を基準画像と比較して電子線の照射位置のドリフトを求め、該ドリフトを相殺するように駆動部108を調整する。これにより、試料107の表面における電子線の照射位置が補正される。電子線の照射位置の補正を終えると、先の測定において走査を停止した位置から走査及び測定を再開する(例えば特許文献1、2)。   When correcting the irradiation position of the electron beam, first, a secondary electron image serving as a reference image for correction is acquired before measurement. The scanning for acquiring the reference image is performed at high speed, and when the size of the measurement target range is several μm × several μm, the creation of the reference image is completed in a few seconds. After the measurement is started, every time correction is performed, scanning of the electron beam is temporarily stopped, and a secondary electron image is acquired in the same area as the reference image in terms of control. Then, the obtained secondary electron image is compared with the reference image to determine the drift of the irradiation position of the electron beam, and the drive unit 108 is adjusted so as to cancel the drift. Thereby, the irradiation position of the electron beam on the surface of the sample 107 is corrected. When the correction of the electron beam irradiation position is completed, scanning and measurement are restarted from the position where scanning was stopped in the previous measurement (for example, Patent Documents 1 and 2).

特開平9−43173号公報JP 9-43173 A 特開2000−106121号公報JP 2000-106121 A

従来の手法では、走査及び測定を停止して電子線の照射位置を初期位置に戻し、基準画像と同じ領域を走査して二次電子像を取得し、電子線の照射位置を補正するという操作を繰り返し行うため、測定時間が長くなってしまうという問題があった。一方、測定時間を短くするために補正間隔を長くすると、補正されない領域が大きくなり、補正時に測定画像に段差が生じる問題があった。   In the conventional method, scanning and measurement are stopped, the electron beam irradiation position is returned to the initial position, the same region as the reference image is scanned to obtain a secondary electron image, and the electron beam irradiation position is corrected. Repeatedly, there is a problem that the measurement time becomes long. On the other hand, if the correction interval is lengthened in order to shorten the measurement time, the uncorrected area becomes large, and there is a problem that a step is generated in the measurement image during correction.

ここでは、電子線マイクロアナライザで特性X線を測定する場合を例に説明したが、反射電子、蛍光、電流等を測定する場合にも上記同様の問題があった。また、電子線以外の荷電粒子線(例えばイオンビーム)で測定対象範囲を走査する場合にも上記同様の問題があった。   Here, the case where characteristic X-rays are measured with an electron beam microanalyzer has been described as an example. However, the same problem as described above also occurs when measuring reflected electrons, fluorescence, current, and the like. In addition, there is a problem similar to the above when the measurement target range is scanned with a charged particle beam (for example, an ion beam) other than an electron beam.

本発明が解決しようとする課題は、測定対象試料の表面の測定対象範囲を電子線等の荷電粒子線で走査することにより該測定対象範囲において所定の物理量を測定する走査型荷電粒子顕微鏡において、測定時間を延ばすことなく荷電粒子線の照射位置を補正しながら測定することである。   The problem to be solved by the present invention is a scanning charged particle microscope that measures a predetermined physical quantity in a measurement target range by scanning the measurement target range of the surface of the measurement target sample with a charged particle beam such as an electron beam. The measurement is performed while correcting the irradiation position of the charged particle beam without extending the measurement time.

上記課題を解決するために成された本発明は、測定対象試料の表面の測定対象範囲を荷電粒子線で走査することにより該測定対象範囲において所定の物理量を測定する走査型荷電粒子顕微鏡であって、
a) 前記荷電粒子線を発生させる荷電粒子線源と、該荷電粒子線源から発せられた荷電粒子線の照射位置を制御して前記測定対象範囲を走査するための走査光学系とを有する荷電粒子線制御部と、
b) 前記測定対象試料の前記荷電粒子線の照射位置における、基準画像に用いる物理量を測定する第1検出器と、
c) 前記測定対象試料の前記荷電粒子線の照射位置における前記所定の物理量を測定する第2検出器と、
d) 前記測定対象範囲を荷電粒子線で走査し、前記第1検出器によって前記測定対象範囲の基準画像を取得する基準画像取得部と、
e) 前記基準画像の取得後に、前記測定対象範囲を荷電粒子線で走査し、前記第2検出器によって前記所定の物理量を測定する物理量測定部と、
f) 前記物理量測定部による前記所定の物理量の測定と並行して、前記第1検出器によって前記測定対象範囲の一部に対応する部分画像を取得する部分画像取得部と、
g) 前記部分画像を前記基準画像と照合して該部分画像の位置を特定し、該部分画像の位置と、該部分画像を取得した際に設定した前記荷電粒子線制御部による荷電粒子線の照射位置とを比較して、該荷電粒子線の照射位置のドリフトを求めるドリフト算出部と、
h) 前記ドリフトに基づいて前記荷電粒子線制御部による荷電粒子線の照射位置を補正する荷電粒子線補正部と、
を備えることを特徴とする。
The present invention made to solve the above problems is a scanning charged particle microscope that measures a predetermined physical quantity in a measurement target range by scanning the measurement target range on the surface of the measurement target sample with a charged particle beam. And
a) Charging having a charged particle beam source for generating the charged particle beam and a scanning optical system for controlling the irradiation position of the charged particle beam emitted from the charged particle beam source to scan the measurement object range A particle beam control unit;
b) a first detector for measuring a physical quantity used for a reference image at an irradiation position of the charged particle beam of the measurement target sample;
c) a second detector for measuring the predetermined physical quantity at the irradiation position of the charged particle beam of the measurement target sample;
d) a reference image acquisition unit that scans the measurement target range with a charged particle beam and acquires a reference image of the measurement target range by the first detector;
e) after obtaining the reference image, scanning the measurement object range with a charged particle beam, and measuring the predetermined physical quantity by the second detector;
f) In parallel with the measurement of the predetermined physical quantity by the physical quantity measurement unit, a partial image acquisition unit that acquires a partial image corresponding to a part of the measurement target range by the first detector;
g) Collating the partial image with the reference image to identify the position of the partial image, and the position of the partial image and the charged particle beam control unit set when the partial image is acquired A drift calculation unit that compares the irradiation position and obtains the drift of the irradiation position of the charged particle beam;
h) a charged particle beam correction unit that corrects an irradiation position of the charged particle beam by the charged particle beam control unit based on the drift; and
It is characterized by providing.

前記荷電粒子線は、例えば電子線やイオンビームである。
前記基準画像に用いる物理量は、それ自体を測定対象としてもよい。その場合、上記所定の物理量と前記基準画像に用いる物理量は同じ物理量であるため、1つの検出器を前記第1検出器及び第2検出器として用いることができる。
前記所定の物理量は、例えば特性X線、蛍光、反射電子、電流、あるいは電圧である。また、複数の物理量を並行して測定するものであってもよい。
The charged particle beam is, for example, an electron beam or an ion beam.
The physical quantity used for the reference image may itself be a measurement target. In that case, since the predetermined physical quantity and the physical quantity used for the reference image are the same physical quantity, one detector can be used as the first detector and the second detector.
The predetermined physical quantity is, for example, characteristic X-rays, fluorescence, reflected electrons, current, or voltage. Further, a plurality of physical quantities may be measured in parallel.

本発明に係る走査型荷電粒子顕微鏡では、まず、測定対象範囲を荷電粒子線で走査し、検出強度に基づいて基準画像を取得する。その後、再び測定対象範囲を荷電粒子線で走査し、第1検出器により1つの物理量を、第2検出器により所定の物理量を同時に測定する。そして、第1検出器による検出結果から測定対象範囲の一部に対応する部分画像を取得し、該部分画像を基準画像と照合することにより該部分画像の位置を求める。こうして求めた部分画像の位置を、荷電粒子線が本来照射されるべき位置(荷電粒子線の制御位置)と比較して荷電粒子線の照射位置のドリフトを求め、該ドリフトを相殺するように荷電粒子線の照射位置を補正する。この走査型電子顕微鏡では、所定の物理量を取得する測定と並行して荷電粒子線の照射位置のドリフトを求め、荷電粒子線の照射位置を補正するため、従来の走査型電子顕微鏡に比べて測定時間を短くすることができる。   In the scanning charged particle microscope according to the present invention, first, a measurement target range is scanned with a charged particle beam, and a reference image is acquired based on the detected intensity. Thereafter, the measurement target range is again scanned with the charged particle beam, and one physical quantity is measured simultaneously by the first detector, and a predetermined physical quantity is simultaneously measured by the second detector. Then, a partial image corresponding to a part of the measurement target range is acquired from the detection result by the first detector, and the position of the partial image is obtained by collating the partial image with the reference image. The position of the partial image obtained in this way is compared with the position where the charged particle beam should be irradiated (the control position of the charged particle beam) to determine the drift of the charged particle beam irradiation position, and charging is performed so as to cancel the drift. Correct the irradiation position of the particle beam. In this scanning electron microscope, in parallel with the measurement to acquire a predetermined physical quantity, the drift of the irradiation position of the charged particle beam is obtained and the irradiation position of the charged particle beam is corrected. Time can be shortened.

本発明に係る走査型荷電粒子顕微鏡では、
前記荷電粒子線の照射位置が前記測定対象範囲の端部に達した時点で、前記荷電粒子線補正部が前記荷電粒子線の照射位置を補正する
ことが望ましい。
In the scanning charged particle microscope according to the present invention,
It is desirable that the charged particle beam correction unit corrects the irradiation position of the charged particle beam when the irradiation position of the charged particle beam reaches the end of the measurement target range.

従来の走査型荷電粒子顕微鏡では、測定対象範囲の端部以外の位置で荷電粒子線照射位置が補正されると二次元画像が不連続になり不自然になってしまう、という問題があった。一方、上記態様の荷電粒子顕微鏡では、荷電粒子線の照射位置が測定対象範囲の端部に位置した時点で荷電粒子線の照射位置を補正するため、連続的で自然な二次元画像を取得することができる。   The conventional scanning charged particle microscope has a problem that when the charged particle beam irradiation position is corrected at a position other than the end of the measurement target range, the two-dimensional image becomes discontinuous and unnatural. On the other hand, in the charged particle microscope of the above aspect, since the irradiation position of the charged particle beam is corrected when the irradiation position of the charged particle beam is located at the end of the measurement target range, a continuous and natural two-dimensional image is acquired. be able to.

前記部分画像取得部は、前記部分画像を複数の画像に分割し、
前記ドリフト算出部は、前記複数の画像のそれぞれを基準画像と照合して分割ドリフトを求め、それら分割ドリフトに基づいて前記ドリフトを求める
ことが望ましい。
The partial image acquisition unit divides the partial image into a plurality of images,
It is preferable that the drift calculation unit obtains a division drift by comparing each of the plurality of images with a reference image, and obtains the drift based on the division drift.

測定対象範囲の基準画像のコントラストが小さい場合、部分画像と基準画像を正確に照合することが困難な場合がある。部分画像の位置を誤って特定すると、荷電粒子線の照射位置を正しく補正することができない。上記のように、部分画像を複数の画像に分割し、それら複数の画像のそれぞれについて分割ドリフトを求め、それら複数の分割ドリフトに基づいてドリフトを求める構成を採ることにより、部分画像の位置が誤って特定される可能性を低減し、荷電粒子線の照射位置を正確に補正することができる。この態様では、例えば複数の分割ドリフトの中から外れ値を除外して残りの平均値からドリフトを求めるような統計処理を行うように構成することができる。   When the contrast of the reference image in the measurement target range is small, it may be difficult to accurately check the partial image and the reference image. If the position of the partial image is specified incorrectly, the irradiation position of the charged particle beam cannot be corrected correctly. As described above, by dividing the partial image into a plurality of images, obtaining a division drift for each of the plurality of images, and obtaining a drift based on the plurality of division drifts, the position of the partial image is incorrect. Therefore, the irradiation position of the charged particle beam can be accurately corrected. In this aspect, for example, it is possible to perform a statistical process in which an outlier is excluded from a plurality of division drifts and a drift is obtained from the remaining average value.

本発明に係る走査型荷電粒子顕微鏡を用いることにより、荷電粒子線の照射位置を補正しつつ二次元画像を取得する測定を従来よりも短時間で行うことができる。   By using the scanning charged particle microscope according to the present invention, it is possible to perform measurement for acquiring a two-dimensional image while correcting the irradiation position of the charged particle beam in a shorter time than before.

従来の電子線マイクロアナライザの要部構成図。The principal part block diagram of the conventional electron beam microanalyzer. 本発明に係る走査型荷電粒子顕微鏡の一実施例である電子線マイクロアナライザの要部構成図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part block diagram of the electron beam microanalyzer which is one Example of the scanning charged particle microscope which concerns on this invention. 本実施例の電子線マイクロアナライザにおける測定対象範囲の走査を説明する図。The figure explaining the scanning of the measurement object range in the electron beam microanalyzer of a present Example. 本実施例における基準画像の一例。An example of the reference | standard image in a present Example. 本実施例における分割画像の照合及びドリフトの算出を説明する図。The figure explaining collation of a divided image in this example, and calculation of drift.

本発明に係る走査型荷電粒子顕微鏡の一実施例である電子線マイクロアナライザについて、以下、図面を参照して説明する。   An electron beam microanalyzer that is one embodiment of a scanning charged particle microscope according to the present invention will be described below with reference to the drawings.

本実施例の電子線マイクロアナライザ1は、試料載置台6上に載置された試料7に電子線を照射し、そこから発せられる電子や特性X線を検出する装置である。電子線マイクロアナライザ1は、電子線源2、該電子線源2から発せられた電子線を集束させる集束レンズ3、電子線の照射位置を移動させる走査コイル4、対物レンズ5、該走査コイル4を動作させる駆動部8を有する電子線制御部10と、試料7から発せられる電子を検出する電子検出器9(PMT)と、特性X線を検出するX線検出器11と、前記各部の動作を制御する制御部20を備えている。   The electron beam microanalyzer 1 according to this embodiment is an apparatus that irradiates a sample 7 placed on a sample placing table 6 with an electron beam and detects electrons and characteristic X-rays emitted therefrom. An electron beam microanalyzer 1 includes an electron beam source 2, a focusing lens 3 that focuses an electron beam emitted from the electron beam source 2, a scanning coil 4 that moves an irradiation position of the electron beam, an objective lens 5, and the scanning coil 4. An electron beam control unit 10 having a driving unit 8 for operating the electron beam, an electron detector 9 (PMT) for detecting electrons emitted from the sample 7, an X-ray detector 11 for detecting characteristic X-rays, and operations of the respective units The control part 20 which controls is provided.

制御部20は、記憶部21のほか、機能ブロックとして、基準画像取得部22、物理量測定部23、部分画像取得部24、ドリフト算出部25、及び荷電粒子線補正部26を備えている。制御部20の実体は所要のOS及びソフトウェアがインストールされたパーソナルコンピュータであり、入力部30と表示部40が接続されている。記憶部21には、試料7の表面の測定対象範囲の大きさ、該測定対象範囲における測定点の配列、基準画像取得時の走査速度(第1速度、高速)、本測定時の走査速度(第2速度、低速)、及び部分画像の取得時間間隔を含む測定条件情報が予め使用者により決定され保存されている。これらの具体的な内容については後述する。   In addition to the storage unit 21, the control unit 20 includes a reference image acquisition unit 22, a physical quantity measurement unit 23, a partial image acquisition unit 24, a drift calculation unit 25, and a charged particle beam correction unit 26 as functional blocks. The entity of the control unit 20 is a personal computer in which a required OS and software are installed, and the input unit 30 and the display unit 40 are connected. The storage unit 21 stores the size of the measurement target range on the surface of the sample 7, the arrangement of measurement points in the measurement target range, the scanning speed (first speed, high speed) at the time of acquiring a reference image, Measurement condition information including a second speed, a low speed), and a partial image acquisition time interval is determined and stored in advance by the user. Details of these will be described later.

本実施例では、試料7の表面における矩形状の測定対象範囲に640×480で格子状に配列された各測定点に順次電子線を照射し、それら各点から発せられる特性X線の強度を測定する。各測定点はP(1,1), P(2,1), …, P(640,480)のように表され、図3に示すように位置している。P(1,1)が電子線照射の初期位置(走査開始位置)であり、P(640,480)が走査終了位置である。電子線で測定対象範囲を走査する際、電子線制御部10は電子線照射位置を測定点P(1,1)からX軸方向に移動させ、端部に位置する測定点P(640,1)に達すると、Y軸方向(Y方向)に移動させて、続いて測定点P(1,2)から測定点P(640,2)へと電子線照射位置を移動させる。つまり、X方向への移動(ライン走査)、Y方向への移動を繰り返し行い、終了位置である測定点P(640,480)に到達すると電子線の照射位置を初期位置である測定点P(1,1)に移動させる。   In this embodiment, each measurement point arranged in a grid of 640 × 480 is sequentially irradiated onto a rectangular measurement target range on the surface of the sample 7, and the intensity of characteristic X-rays emitted from each point is measured. taking measurement. Each measurement point is represented as P (1,1), P (2,1),..., P (640,480), and is positioned as shown in FIG. P (1,1) is the initial position (scanning start position) of electron beam irradiation, and P (640,480) is the scanning end position. When scanning the measurement target range with the electron beam, the electron beam control unit 10 moves the electron beam irradiation position from the measurement point P (1, 1) in the X-axis direction, and the measurement point P (640, 1) located at the end. ) Is moved in the Y-axis direction (Y direction), and then the electron beam irradiation position is moved from the measurement point P (1, 2) to the measurement point P (640, 2). That is, the movement in the X direction (line scanning) and the movement in the Y direction are repeated, and when the measurement point P (640, 480) that is the end position is reached, the irradiation position of the electron beam is set to the measurement point P (1, 1, the initial position). Move to 1).

次に、本実施例の電子線マイクロアナライザ1を用いた試料の測定動作を説明する。
使用者が測定開始を指示すると、電子線制御部10は、記憶部21に保存された第1速度により上述のように電子線を高速で移動させる。そして、該第1速度と測定点の離間間隔に応じた時間間隔で、各測定点において試料7から発せられる二次電子を電子検出器9により検出する。電子検出器9からの出力は、順次、記憶部21に蓄積され、二次電子の検出結果に基づき、基準画像取得部22は測定対象範囲全体の二次電子像である基準画像(640画素×480画素の画像)を取得する。図4に基準画像の一例を示す。
Next, the sample measurement operation using the electron beam microanalyzer 1 of the present embodiment will be described.
When the user instructs the start of measurement, the electron beam control unit 10 moves the electron beam at a high speed as described above at the first speed stored in the storage unit 21. Then, secondary electrons emitted from the sample 7 are detected by the electron detector 9 at each measurement point at a time interval corresponding to the separation interval between the first speed and the measurement point. The output from the electron detector 9 is sequentially accumulated in the storage unit 21, and based on the detection result of the secondary electrons, the reference image acquisition unit 22 performs a reference image (640 pixels × 640 pixels) that is a secondary electron image of the entire measurement target range. 480 pixel image). FIG. 4 shows an example of the reference image.

基準画像が得られると、電子線制御部10は、初期位置である測定点P(1,1)から、記憶部21に保存された第2速度により上述のように電子線の照射位置を低速で移動させる。そして、該第2速度と測定点の離間間隔に応じた時間間隔で、物理量測定部23が各測定点において試料7から発せられる特性X線をX線検出器11で検出し、これと並行して部分画像取得部24が二次電子を電子検出器9により検出する。X線検出器11及び電子検出器9からの出力は順次記憶部21に蓄積される。   When the reference image is obtained, the electron beam control unit 10 reduces the irradiation position of the electron beam from the measurement point P (1, 1), which is the initial position, at the second speed stored in the storage unit 21 as described above. Move with. Then, the physical quantity measuring unit 23 detects the characteristic X-rays emitted from the sample 7 at each measurement point at the time interval corresponding to the separation interval between the second speed and the measurement point, and in parallel with this. Then, the partial image acquisition unit 24 detects secondary electrons by the electron detector 9. Outputs from the X-ray detector 11 and the electron detector 9 are sequentially stored in the storage unit 21.

第2速度での電子線の移動開始から、記憶部21に保存された部分画像の取得時間間隔に相当する時間が経過すると、部分画像取得部24は、記憶部に蓄積された二次電子の検出結果を用いて部分画像を作成する。本実施例では、X軸方向に4回、電子線の照射位置を移動する毎(4ライン走査ごと)に部分画像が作成される。図5(a)に部分画像の一例を示す。なお、図5(a)に示す例は、測定対象範囲のうち、(Y軸方向の)中央付近で取得した二次電子像である。   When the time corresponding to the acquisition time interval of the partial images stored in the storage unit 21 has elapsed since the start of the movement of the electron beam at the second speed, the partial image acquisition unit 24 stores the secondary electrons accumulated in the storage unit. A partial image is created using the detection result. In this embodiment, a partial image is created every time the irradiation position of the electron beam is moved four times in the X-axis direction (every four lines are scanned). FIG. 5A shows an example of the partial image. The example shown in FIG. 5A is a secondary electron image acquired near the center (in the Y-axis direction) in the measurement target range.

図5(a)に示すような部分画像が取得されると、部分画像取得部24は、さらにこれを予め決められた大きさの複数の分割画像に分割する。本実施例では、図5(b)に示すような、4画素×80画素の大きさの8枚の分割画像に分割される。   When the partial image as shown in FIG. 5A is acquired, the partial image acquisition unit 24 further divides it into a plurality of divided images having a predetermined size. In this embodiment, the image is divided into eight divided images each having a size of 4 pixels × 80 pixels as shown in FIG.

分割画像が作成されると、ドリフト算出部25は、各分割画像を基準画像と照合(パターンマッチング)し、それぞれの基準画像上での位置を決定する(図5(c))。図5(c)において、破線で示す位置は、電子線制御部10による電子線の理想的な照射位置であり、実線で示す位置は各分割画像の照合位置である。各分割画像の位置を決定すると、それぞれについて、理想的な照射位置と照合位置を比較し、電子線のドリフト量及びドリフト方向を求める。図5(c)の矢印の長さがドリフト量であり、矢印の向きがドリフト方向である。つまり、この矢印は各分割画像のドリフトを表すベクトル(ドリフトベクトル、本発明における分割ドリフトに相当)である。全ての分割画像のドリフトベクトルが決まると、これらに基づき電子線照射位置の補正方向及び補正量(距離)を決定する。補正方向及び補正量は、例えば、複数の分割画像(本実施例では8枚)のドリフト量及び方向を平均化したものとすることができる。
部分画像取得部24及びドリフト算出部25による上記処理は、電子線制御部10による電子線の移動、並びに特性X線及び二次電子の検出と並行して行われる。
When the divided images are created, the drift calculator 25 collates each divided image with the reference image (pattern matching), and determines the position on each reference image (FIG. 5C). In FIG. 5C, a position indicated by a broken line is an ideal irradiation position of the electron beam by the electron beam control unit 10, and a position indicated by a solid line is a collation position of each divided image. When the position of each divided image is determined, the ideal irradiation position and the collation position are compared for each, and the drift amount and the drift direction of the electron beam are obtained. The length of the arrow in FIG. 5C is the drift amount, and the direction of the arrow is the drift direction. That is, this arrow is a vector representing the drift of each divided image (drift vector, corresponding to the divided drift in the present invention). When the drift vectors of all the divided images are determined, the correction direction and correction amount (distance) of the electron beam irradiation position are determined based on these drift vectors. For example, the correction direction and the correction amount can be obtained by averaging the drift amounts and directions of a plurality of divided images (eight in this embodiment).
The above processing by the partial image acquisition unit 24 and the drift calculation unit 25 is performed in parallel with the movement of the electron beam by the electron beam control unit 10 and the detection of characteristic X-rays and secondary electrons.

電子線照射位置の補正方向及び補正量が決定すると、荷電粒子線補正部26は、その時点での電子線の照射位置を確認し、該照射位置が測定対象範囲のX軸方向の端部に位置する測定点になるまで待機する。そして、該測定点におけるX線及び二次電子の検出が終了し、電子線の照射位置をY軸方向に移動する際に、ドリフト算出部25により決定された補正方向及び補正量を用いて電子線照射位置を補正する。
上記の部分画像の取得、分割画像の作成、ドリフトベクトルの算出、及び電子線照射位置の補正は、測定対象範囲の走査開始から終了まで、繰り返し行われる。なお、2回目以降のドリフト算出時には、前回のドリフト算出以降に取得した部分画像が用いられる。
When the correction direction and correction amount of the electron beam irradiation position are determined, the charged particle beam correction unit 26 confirms the electron beam irradiation position at that time, and the irradiation position is at the end of the measurement target range in the X-axis direction. Wait until the measurement point is located. Then, when the detection of X-rays and secondary electrons at the measurement point is completed and the irradiation position of the electron beam is moved in the Y-axis direction, electrons are corrected using the correction direction and correction amount determined by the drift calculation unit 25. Correct the irradiation position.
The acquisition of the partial image, creation of the divided image, calculation of the drift vector, and correction of the electron beam irradiation position are repeatedly performed from the start to the end of scanning of the measurement target range. In the second and subsequent drift calculations, partial images acquired after the previous drift calculation are used.

本実施例の電子線マイクロアナライザ1では、第2速度で電子線を低速移動させその照射位置から発せられる特性X線を測定するという動作を停止することなく、部分画像から電子線照射位置のドリフトを求め、電子線照射位置を補正する。従って、電子線の照射位置を補正するたびに上記動作を停止する従来の装置に比べて測定時間が短くなる。   In the electron beam microanalyzer 1 of the present embodiment, the drift of the electron beam irradiation position from the partial image is performed without stopping the operation of moving the electron beam at the second speed at a low speed and measuring characteristic X-rays emitted from the irradiation position. And correct the electron beam irradiation position. Therefore, the measurement time is shortened compared to the conventional apparatus that stops the above operation every time the electron beam irradiation position is corrected.

また、本実施例の電子線マイクロアナライザ1では、荷電粒子線補正部26が、電子線の照射位置が測定対象範囲の端部に到達するまで待機し、該端部の測定点から電子線の照射位置を変更する際に、電子線照射位置を補正する。そのため、連続で自然な二次元画像(本実施例では特定の元素の二次元分布像)が得られる。   Further, in the electron beam microanalyzer 1 of the present embodiment, the charged particle beam correction unit 26 waits until the irradiation position of the electron beam reaches the end of the measurement target range, and the electron beam from the measurement point of the end is measured. When changing the irradiation position, the electron beam irradiation position is corrected. Therefore, a continuous and natural two-dimensional image (in this embodiment, a two-dimensional distribution image of a specific element) is obtained.

さらに、本実施例の電子線マイクロアナライザ1では、部分画像取得部24が、取得した部分画像を複数の(8つの)分割画像に分割し、それぞれについてドリフト量及び方向を求める。   Furthermore, in the electron beam microanalyzer 1 of the present embodiment, the partial image acquisition unit 24 divides the acquired partial image into a plurality of (eight) divided images, and obtains the drift amount and direction for each of them.

測定対象範囲の基準画像のコントラストが小さい場合、部分画像と基準画像を正確に照合(パターンマッチング)することが困難な場合がある。そうした場合でも、本実施例のように部分画像を複数の分割画像に分割し、それら複数の分割画像をそれぞれパターンマッチングして複数のドリフト量及びドリフト方向(分割ドリフト)を求め、それらを用いて電子線照射位置補正方向及び量を決定するため、より正確に電子線照射位置を補正することができる。
上記実施例では、最も簡単な一例として、複数の分割画像のドリフトベクトルを平均化して電子線照射位置を補正する例を説明したが、他にも全分割画像のドリフトベクトルを統計処理してドリフト量の外れ値を除外した後に平均化して電子線の補正量及び方向を決定する等、種々の方法を用いることができる。
When the contrast of the reference image in the measurement target range is small, it may be difficult to accurately match (pattern matching) the partial image and the reference image. Even in such a case, as in the present embodiment, the partial image is divided into a plurality of divided images, and each of the plurality of divided images is subjected to pattern matching to obtain a plurality of drift amounts and drift directions (divided drifts). Since the electron beam irradiation position correction direction and amount are determined, the electron beam irradiation position can be corrected more accurately.
In the above embodiment, as the simplest example, the example in which the drift vectors of a plurality of divided images are averaged to correct the electron beam irradiation position has been described. Various methods can be used, such as determining the correction amount and direction of the electron beam by averaging after removing the outlier of the amount.

上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
上記実施例では電子線マイクロアナライザを例に挙げたが、その他、電子線に代えてイオンビームを励起源として用いることもできる。また、上記実施例では二次電子(本発明における、基準画像に用いる物理量)を検出して基準画像を作成し、特性X線(本発明における所定の物理量)を検出して特定の元素の二次元分布像を得る構成としたが、基準画像に用いる物理量及び所定の物理量として、他の物理量(反射電子や蛍光等)を検出することも可能であり、種々の走査型荷電粒子顕微鏡において本発明の構成を用いることができる。さらに、基準画像に用いる物理量自体を測定対象としてもよい。
The above-described embodiment is an example, and can be appropriately changed in accordance with the gist of the present invention.
Although the electron beam microanalyzer has been described as an example in the above embodiment, an ion beam can be used as an excitation source instead of the electron beam. In the above embodiment, secondary electrons (physical quantities used in the reference image in the present invention) are detected to create a reference image, and characteristic X-rays (predetermined physical quantities in the present invention) are detected to detect the secondary element of a specific element. Although it is configured to obtain a dimensional distribution image, other physical quantities (such as reflected electrons and fluorescence) can be detected as the physical quantity used for the reference image and the predetermined physical quantity, and the present invention is used in various scanning charged particle microscopes. Can be used. Furthermore, the physical quantity itself used for the reference image may be a measurement target.

また、上記実施例では複数の分割画像を用いてドリフト量を求める例を説明したが、部分画像をそのままパターンマッチングしてドリフト量を求めるようにしてもよい。
さらに、上記実施例では1枚の二次元画像を取得する場合に、電子線の照射位置が測定対象範囲の端部に位置するまで待機して電子線照射位置を補正する例を説明したが、測定対象範囲の走査を繰り返し行って複数枚の二次元画像を取得する構成において、1枚の二次元画像を取得するごとに(即ち測定対象範囲の走査を終えるごとに)電子線照射位置を補正することもできる。
Moreover, although the example which calculates | requires drift amount using the some divided image was demonstrated in the said Example, you may make it obtain | require drift amount by pattern-matching a partial image as it is.
Furthermore, in the above embodiment, when one two-dimensional image is acquired, an example in which the electron beam irradiation position is corrected by waiting until the electron beam irradiation position is located at the end of the measurement target range has been described. In a configuration in which a plurality of two-dimensional images are acquired by repeatedly scanning the measurement target range, the electron beam irradiation position is corrected each time one two-dimensional image is acquired (that is, every time the measurement target range is scanned). You can also

1…電子線マイクロアナライザ
2…電子線源
3…集束レンズ
4…走査コイル
5…対物レンズ
6…試料載置台
7…試料
8…駆動部
9…電子検出器
11…X線検出器
20…制御部
21…記憶部
22…基準画像取得部
23…物理量測定部
24…部分画像取得部
25…ドリフト算出部
26…荷電粒子線補正部
30…入力部
40…表示部
DESCRIPTION OF SYMBOLS 1 ... Electron beam microanalyzer 2 ... Electron beam source 3 ... Condensing lens 4 ... Scanning coil 5 ... Objective lens 6 ... Sample mounting base 7 ... Sample 8 ... Drive part 9 ... Electron detector 11 ... X-ray detector 20 ... Control part DESCRIPTION OF SYMBOLS 21 ... Memory | storage part 22 ... Reference | standard image acquisition part 23 ... Physical quantity measurement part 24 ... Partial image acquisition part 25 ... Drift calculation part 26 ... Charged particle beam correction | amendment part 30 ... Input part 40 ... Display part

Claims (5)

測定対象試料の表面の測定対象範囲を荷電粒子線で走査することにより該測定対象範囲において所定の物理量を測定する走査型荷電粒子顕微鏡であって、
a) 前記荷電粒子線を発生させる荷電粒子線源と、該荷電粒子線源から発せられた荷電粒子線の照射位置を制御して前記測定対象範囲を走査するための走査光学系とを有する荷電粒子線制御部と、
b) 前記測定対象試料の前記荷電粒子線の照射位置における、基準画像に用いる物理量を測定する第1検出器と、
c) 前記測定対象試料の前記荷電粒子線の照射位置における前記所定の物理量を測定する第2検出器と、
d) 前記測定対象範囲を荷電粒子線で走査し、前記第1検出器によって前記測定対象範囲の基準画像を取得する基準画像取得部と、
e) 前記基準画像の取得後に、前記測定対象範囲を荷電粒子線で走査し、前記第2検出器によって前記所定の物理量を測定する物理量測定部と、
f) 前記物理量測定部による前記所定の物理量の測定と並行して、前記第1検出器によって前記測定対象範囲の一部に対応する部分画像を取得する部分画像取得部と、
g) 前記部分画像を前記基準画像と照合して該部分画像の位置を特定し、該部分画像の位置と、該部分画像を取得した際に設定した前記荷電粒子線制御部による荷電粒子線の照射位置とを比較して、該荷電粒子線の照射位置のドリフトを求めるドリフト算出部と、
h) 前記ドリフトに基づいて前記荷電粒子線制御部による荷電粒子線の照射位置を補正する荷電粒子線補正部と、
を備えることを特徴とする走査型荷電粒子顕微鏡。
A scanning charged particle microscope that measures a predetermined physical quantity in a measurement target range by scanning the measurement target range on the surface of a measurement target sample with a charged particle beam,
a) Charging having a charged particle beam source for generating the charged particle beam and a scanning optical system for controlling the irradiation position of the charged particle beam emitted from the charged particle beam source to scan the measurement object range A particle beam control unit;
b) a first detector for measuring a physical quantity used for a reference image at an irradiation position of the charged particle beam of the measurement target sample;
c) a second detector for measuring the predetermined physical quantity at the irradiation position of the charged particle beam of the measurement target sample;
d) a reference image acquisition unit that scans the measurement target range with a charged particle beam and acquires a reference image of the measurement target range by the first detector;
e) after obtaining the reference image, scanning the measurement object range with a charged particle beam, and measuring the predetermined physical quantity by the second detector;
f) In parallel with the measurement of the predetermined physical quantity by the physical quantity measurement unit, a partial image acquisition unit that acquires a partial image corresponding to a part of the measurement target range by the first detector;
g) Collating the partial image with the reference image to identify the position of the partial image, and the position of the partial image and the charged particle beam control unit set when the partial image is acquired A drift calculation unit that compares the irradiation position and obtains the drift of the irradiation position of the charged particle beam;
h) a charged particle beam correction unit that corrects an irradiation position of the charged particle beam by the charged particle beam control unit based on the drift; and
A scanning charged particle microscope comprising:
前記荷電粒子線の照射位置が前記測定対象範囲の端部に達した時点で、前記荷電粒子線補正部が前記荷電粒子線の照射位置を補正することを特徴とする請求項1に記載の走査型荷電粒子顕微鏡。   2. The scanning according to claim 1, wherein the charged particle beam correction unit corrects the irradiation position of the charged particle beam when the irradiation position of the charged particle beam reaches an end of the measurement target range. Type charged particle microscope. 前記荷電粒子線による前記測定対象範囲の走査を完了した時点で、前記荷電粒子線補正部が前記荷電粒子線の照射位置を補正することを特徴とする請求項1に記載の走査型荷電粒子顕微鏡。   2. The scanning charged particle microscope according to claim 1, wherein the charged particle beam correction unit corrects an irradiation position of the charged particle beam when the scanning of the measurement target range by the charged particle beam is completed. . 前記部分画像取得部は、前記部分画像を複数の画像に分割し、
前記ドリフト算出部は、前記複数の画像のそれぞれを基準画像と照合して分割ドリフト量を求め、それら分割ドリフト量に基づいて前記ドリフト量を求める
ことを特徴とする請求項1に記載の荷電粒子顕微鏡。
The partial image acquisition unit divides the partial image into a plurality of images,
The charged particle according to claim 1, wherein the drift calculation unit obtains a divided drift amount by comparing each of the plurality of images with a reference image, and obtains the drift amount based on the divided drift amount. microscope.
前記荷電粒子線が電子線であり、前記基準画像に用いる物理量が二次電子、前記第2検出器がX線検出器であることを特徴とする請求項1から4のいずれかに記載の走査型荷電粒子顕微鏡。   The scanning according to claim 1, wherein the charged particle beam is an electron beam, a physical quantity used for the reference image is a secondary electron, and the second detector is an X-ray detector. Type charged particle microscope.
JP2015204213A 2015-10-16 2015-10-16 Scanning charged particle microscope Active JP6468160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204213A JP6468160B2 (en) 2015-10-16 2015-10-16 Scanning charged particle microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204213A JP6468160B2 (en) 2015-10-16 2015-10-16 Scanning charged particle microscope

Publications (2)

Publication Number Publication Date
JP2017076559A true JP2017076559A (en) 2017-04-20
JP6468160B2 JP6468160B2 (en) 2019-02-13

Family

ID=58551472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204213A Active JP6468160B2 (en) 2015-10-16 2015-10-16 Scanning charged particle microscope

Country Status (1)

Country Link
JP (1) JP6468160B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114426A (en) * 2017-12-25 2019-07-11 株式会社島津製作所 Scanning charged particle microscope and control program
JP2019114427A (en) * 2017-12-25 2019-07-11 株式会社島津製作所 Electron beam microanalyzer
JP2022119426A (en) * 2021-02-04 2022-08-17 日本電子株式会社 Analysis device and image processing method
EP4250330A1 (en) 2022-03-23 2023-09-27 Jeol Ltd. Charged particle beam apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06162986A (en) * 1992-11-13 1994-06-10 Sharp Corp Auger electron spectral analyzer and method for relaxing electrification in x-ray micro analyzer and drift correction method
JP2000106121A (en) * 1998-07-29 2000-04-11 Jeol Ltd Electron microscope or analogous equipment thereof
WO2010070815A1 (en) * 2008-12-15 2010-06-24 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP2012078234A (en) * 2010-10-04 2012-04-19 Jeol Ltd X-ray analysis method and apparatus
JP2012169233A (en) * 2011-02-17 2012-09-06 Hitachi High-Technologies Corp Charge particle beam microscope and measured image correction method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06162986A (en) * 1992-11-13 1994-06-10 Sharp Corp Auger electron spectral analyzer and method for relaxing electrification in x-ray micro analyzer and drift correction method
JP2000106121A (en) * 1998-07-29 2000-04-11 Jeol Ltd Electron microscope or analogous equipment thereof
WO2010070815A1 (en) * 2008-12-15 2010-06-24 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP2012078234A (en) * 2010-10-04 2012-04-19 Jeol Ltd X-ray analysis method and apparatus
JP2012169233A (en) * 2011-02-17 2012-09-06 Hitachi High-Technologies Corp Charge particle beam microscope and measured image correction method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114426A (en) * 2017-12-25 2019-07-11 株式会社島津製作所 Scanning charged particle microscope and control program
JP2019114427A (en) * 2017-12-25 2019-07-11 株式会社島津製作所 Electron beam microanalyzer
JP2022119426A (en) * 2021-02-04 2022-08-17 日本電子株式会社 Analysis device and image processing method
JP7250054B2 (en) 2021-02-04 2023-03-31 日本電子株式会社 Analysis device and image processing method
EP4250330A1 (en) 2022-03-23 2023-09-27 Jeol Ltd. Charged particle beam apparatus

Also Published As

Publication number Publication date
JP6468160B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6468160B2 (en) Scanning charged particle microscope
JP2010276487A (en) Template creating method for template matching, and template creating apparatus
US20110233400A1 (en) Pattern measurement apparatus and pattern measurement method
US10930468B2 (en) Charged particle beam apparatus using focus evaluation values for pattern length measurement
US20210125806A1 (en) Electron beam observation device, electron beam observation system, and control method of electron beam observation device
WO2017130365A1 (en) Overlay error measurement device and computer program
JP4194526B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2016115503A (en) Charged particle beam device
JP6859944B2 (en) Scanning electron microscope and control program
JP4928971B2 (en) Scanning electron microscope
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
TWI809319B (en) Image adjustment method and charged particle beam system
US11177112B2 (en) Pattern measurement device and non-transitory computer readable medium having stored therein program for executing measurement
JP5103253B2 (en) Charged particle beam equipment
JP2014020974A (en) Pattern measurement device
JP6163063B2 (en) Scanning transmission electron microscope and aberration measurement method thereof
JP6660774B2 (en) Height data processing device, surface shape measuring device, height data correction method, and program
JP2015007587A (en) Template creation apparatus for sample observation device
JP5411866B2 (en) Pattern measuring apparatus and pattern measuring method
JP6565601B2 (en) Image correction device
JP2005201810A (en) Dimension measuring instrument, dimension measuring method, and program
US20230317406A1 (en) Charged Particle Beam System
JP7323574B2 (en) Charged particle beam device and image acquisition method
JP2002244029A (en) Minute dimension measuring instrument
JP4231891B2 (en) Charged particle beam adjustment method and charged particle beam apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R151 Written notification of patent or utility model registration

Ref document number: 6468160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151