JP2017075398A5 - - Google Patents

Download PDF

Info

Publication number
JP2017075398A5
JP2017075398A5 JP2016196127A JP2016196127A JP2017075398A5 JP 2017075398 A5 JP2017075398 A5 JP 2017075398A5 JP 2016196127 A JP2016196127 A JP 2016196127A JP 2016196127 A JP2016196127 A JP 2016196127A JP 2017075398 A5 JP2017075398 A5 JP 2017075398A5
Authority
JP
Japan
Prior art keywords
anode
porous mesh
corrugated porous
corrugated
mesh anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016196127A
Other languages
Japanese (ja)
Other versions
JP2017075398A (en
Filing date
Publication date
Priority claimed from US13/474,598 external-priority patent/US9187834B2/en
Application filed filed Critical
Publication of JP2017075398A publication Critical patent/JP2017075398A/en
Publication of JP2017075398A5 publication Critical patent/JP2017075398A5/ja
Pending legal-status Critical Current

Links

Claims (9)

波形の多孔質メッシュアノードであって、  A corrugated porous mesh anode,
前記波形の多孔質メッシュアノードは、波状の幾何学構造を有し、4mm〜8mmの間の波形振幅、2mm〜35mmの間の波形周期、および2×1mm〜20×10mmの間の細孔サイズを含む、  The corrugated porous mesh anode has a corrugated geometry, corrugation amplitude between 4 mm and 8 mm, corrugation period between 2 mm and 35 mm, and pore size between 2 x 1 mm and 20 x 10 mm. including,
多孔質メッシュアノード。Porous mesh anode.
前記波形の多孔質メッシュアノードが、0.5mm〜5mmの間のメッシュ厚さを有する、請求項1に記載の波形の多孔質メッシュアノード。  The corrugated porous mesh anode of claim 1, wherein the corrugated porous mesh anode has a mesh thickness between 0.5 mm and 5 mm. 前記波形の多孔質メッシュアノードが、準化学量論的酸化チタン、例えば、式TiO  The corrugated porous mesh anode comprises a substoichiometric titanium oxide, eg, the formula TiO x (ここで、xは約1.67〜約1.9の範囲である)を有するマグネリ相準化学量論的酸化チタンから製造されている、請求項1または2に記載の波形の多孔質メッシュアノード。3. A corrugated porous mesh according to claim 1 or 2, wherein the corrugated porous mesh is made from Magneli phase substoichiometric titanium oxide having (where x is in the range of about 1.67 to about 1.9). anode. 前記波形の多孔質メッシュアノードが、白金族金属の金属または合金あるいはそれらの組み合わせから選択される電気触媒でコーティングされたチタン、PtIr混合金属酸化物、亜鉛めっき白金、金属酸化物、金、タンタル、炭素、グラファイトもしくは有機金属大環状化合物でコーティングされたチタンメッシュから製造されている、請求項1〜3のいずれか1項に記載の波形の多孔質メッシュアノード。  Titanium, PtIr mixed metal oxide, galvanized platinum, metal oxide, gold, tantalum, wherein the corrugated porous mesh anode is coated with an electrocatalyst selected from platinum group metal metals or alloys or combinations thereof The corrugated porous mesh anode according to any one of claims 1 to 3, wherein the corrugated porous mesh anode is manufactured from a titanium mesh coated with carbon, graphite or an organometallic macrocycle. 前記波形の多孔質メッシュアノードがアノード電解質と接触しており、ここで、前記アノード電解質は金属イオンを含む、請求項1〜4のいずれか1項に記載の波形の多孔質メッシュアノード。  The corrugated porous mesh anode according to any one of claims 1 to 4, wherein the corrugated porous mesh anode is in contact with an anode electrolyte, wherein the anode electrolyte comprises metal ions. 前記波形の多孔質メッシュアノードが、前記アノードのより大きい表面積、活性部位の増大、電圧の低下、前記アノード電解質による抵抗の減少または排除、電流密度の増大、前記アノードにおける改善された物質移動、またはこれらの組み合わせを提供する、請求項5に記載の波形の多孔質メッシュアノード。  The corrugated porous mesh anode has a larger surface area of the anode, increased active sites, decreased voltage, decreased or eliminated resistance due to the anode electrolyte, increased current density, improved mass transfer at the anode, or 6. The corrugated porous mesh anode of claim 5 providing a combination of these. 前記波形の多孔質メッシュアノードが、前記アノード電解質中の乱流を増大させるように構成されている、請求項5に記載の波形の多孔質メッシュアノード。  6. The corrugated porous mesh anode of claim 5, wherein the corrugated porous mesh anode is configured to increase turbulence in the anode electrolyte. 前記アノード電解質中の前記金属イオンの濃度が、1〜12Mの間、または1〜11Mの間である、請求項5に記載の波形の多孔質メッシュアノード。  6. A corrugated porous mesh anode according to claim 5, wherein the concentration of the metal ions in the anode electrolyte is between 1-12M or between 1-11M. 前記波形の多孔質メッシュアノードが、扁平多孔質アノードと比較して、10〜500mVの間の電圧節減をもたらす、請求項1〜8のいずれか1項に記載の波形の多孔質メッシュアノード。  9. A corrugated porous mesh anode according to any one of the preceding claims, wherein the corrugated porous mesh anode provides a voltage saving of between 10 and 500 mV compared to a flat porous anode.
JP2016196127A 2012-03-29 2016-10-04 Electrochemical hydroxide systems and methods using metal oxidation Pending JP2017075398A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261617390P 2012-03-29 2012-03-29
US61/617,390 2012-03-29
US13/474,598 US9187834B2 (en) 2011-05-19 2012-05-17 Electrochemical hydroxide systems and methods using metal oxidation
US13/474,598 2012-05-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015503281A Division JP6039054B2 (en) 2012-03-29 2013-03-13 Electrochemical hydroxide system and method using metal oxidation

Publications (2)

Publication Number Publication Date
JP2017075398A JP2017075398A (en) 2017-04-20
JP2017075398A5 true JP2017075398A5 (en) 2017-12-21

Family

ID=49261035

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015503281A Active JP6039054B2 (en) 2012-03-29 2013-03-13 Electrochemical hydroxide system and method using metal oxidation
JP2016196127A Pending JP2017075398A (en) 2012-03-29 2016-10-04 Electrochemical hydroxide systems and methods using metal oxidation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015503281A Active JP6039054B2 (en) 2012-03-29 2013-03-13 Electrochemical hydroxide system and method using metal oxidation

Country Status (4)

Country Link
EP (2) EP3219829A1 (en)
JP (2) JP6039054B2 (en)
CN (2) CN107254689A (en)
WO (1) WO2013148216A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股份有限公司 Electrochemical hydroxide systems and methods using metal oxidation
PE20210787A1 (en) 2014-05-12 2021-04-22 Summit Mining Int Inc BRINE LEACHING PROCESS FOR THE RECOVERY OF VALUABLE METALS FROM OXIDE MATERIALS
EP3195395A1 (en) * 2014-09-15 2017-07-26 Calera Corporation Electrochemical systems and methods using metal halide to form products
WO2016077368A1 (en) * 2014-11-10 2016-05-19 Calera Corporation Measurement of ion concentration in presence of organics
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
CN105506669B (en) * 2016-01-05 2017-07-11 西南石油大学 A kind of preparation method of chlorocyclohexane
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
EP3615709A4 (en) * 2017-04-27 2021-01-20 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
WO2019060345A1 (en) 2017-09-19 2019-03-28 Calera Corporation Systems and methods using lanthanide halide
CN110438524B (en) * 2018-05-02 2021-04-20 万华化学集团股份有限公司 Method for preparing diethylenetriamine by electrochemical reduction of iminodiacetonitrile
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
CN110961733A (en) * 2018-09-29 2020-04-07 天津大学 Method for cathode electrolytic machining of tungsten tool by using electrolyte film
KR102600507B1 (en) * 2018-12-21 2023-11-09 맹그로브 워터 테크놀로지스 리미티드 Li recovery processes and onsite chemical production for li recovery processes
CN110921885A (en) * 2019-10-29 2020-03-27 南京工大膜应用技术研究所有限公司 Domestic sewage treatment device based on water treatment agent and ceramic membrane
CN111425849B (en) * 2020-03-20 2022-02-08 哈尔滨锅炉厂有限责任公司 Peak-shaving pulverized coal boiler with double-layer clean energy and pulverized coal coupled
DE102020107923A1 (en) 2020-03-23 2021-09-23 WME Gesellschaft für windkraftbetriebene Meerwasserentsalzung mbH Method for producing lithium hydroxide or an aqueous solution thereof using a lithium salt-containing raw water and using it accordingly
CN111266394B (en) * 2020-03-26 2022-05-17 广州派安环保科技有限公司 Efficient dechlorinating agent for waste incineration fly ash and dechlorinating method and device
WO2023012810A1 (en) * 2021-08-06 2023-02-09 Prerna Goradia Method and system for production of antimicrobial disinfectant coatings using electrochemical synthesis
US12007322B2 (en) * 2021-10-06 2024-06-11 Southwest Research Institute Corrosion sensors suitable for corrosion under insulation (CUI) detection
CN113860278B (en) * 2021-10-21 2023-08-01 湖北云翔聚能新能源科技有限公司 Method for preparing battery-grade ferric phosphate by taking high-iron Bayer process red mud as iron source
WO2024043228A1 (en) * 2022-08-22 2024-02-29 株式会社アサカ理研 Method for producing lithium hydroxide aqueous solution

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6968981A (en) * 1980-05-01 1981-11-05 Imperial Chemical Industries Ltd. Halogenation process
EP0039547B1 (en) * 1980-05-01 1984-07-18 Imperial Chemical Industries Plc Halogenation process using a halide carrier and process for regeneration of the halide carrier
US4908198A (en) 1986-06-02 1990-03-13 The Electrosynthesis Company, Inc. Fluorinated carbons and methods of manufacture
US4936970A (en) * 1988-11-14 1990-06-26 Ebonex Technologies, Inc. Redox reactions in an electrochemical cell including an electrode comprising Magneli phase titanium oxide
JP3002232B2 (en) * 1990-05-29 2000-01-24 ペルメレック電極株式会社 Reactivation method of electrode for electrolysis
IT1248564B (en) * 1991-06-27 1995-01-19 Permelec Spa Nora ELECTROCHEMICAL DECOMPOSITION OF NEUTRAL SALTS WITHOUT HALOGEN OR ACID CO-PRODUCTION AND ELECTROLYSIS CELL SUITABLE FOR ITS REALIZATION.
US5296107A (en) * 1992-03-04 1994-03-22 Hydro-Quebec Indirect cerium medicated electrosynthesis
IN192223B (en) * 1995-12-28 2004-03-20 Du Pont
JPH1081986A (en) * 1996-09-03 1998-03-31 Permelec Electrode Ltd Horizontal double-polarity electrolytic cell
JPH11256385A (en) * 1998-03-10 1999-09-21 Koji Hashimoto Oxygen generating electrode and its production method
JP2000199093A (en) 1998-12-28 2000-07-18 Ekowaado:Kk Electrode for water electrolysis
JP2000355785A (en) * 1999-06-16 2000-12-26 Mitsubishi Materials Corp Electrochemical cell
JP3707985B2 (en) * 2000-03-22 2005-10-19 株式会社トクヤマ Alkali metal salt electrolytic cell
CN2530957Y (en) * 2002-03-29 2003-01-15 上海欣晨新技术有限公司 Electrolytic bath with multi-layer vibration screen electrode
JP2004027267A (en) * 2002-06-24 2004-01-29 Association For The Progress Of New Chemistry Salt electrolytic cell provided with gas diffusion cathode
AU2003238520A1 (en) * 2003-04-29 2004-11-23 N.V. Bekaert S.A. Bipolar plate comprising metal wire
US7309408B2 (en) * 2003-06-11 2007-12-18 Alfonso Gerardo Benavides Industrial wastewater treatment and metals recovery apparatus
US7967967B2 (en) * 2007-01-16 2011-06-28 Tesla Laboratories, LLC Apparatus and method for electrochemical modification of liquid streams
US20090029199A1 (en) * 2007-05-02 2009-01-29 Celltech Power Llc Cathode Arrangements for Fuel Cells and Other Applications
DE102009004031A1 (en) * 2009-01-08 2010-07-15 Bayer Technology Services Gmbh Structured gas diffusion electrode for electrolysis cells
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
CN102712548B (en) 2009-12-31 2014-03-26 卡勒拉公司 Methods and compositions using calcium carbonate
US20110277474A1 (en) 2010-02-02 2011-11-17 Constantz Brent R Methods and systems using natural gas power plant
JP2012208239A (en) 2011-03-29 2012-10-25 Funai Electric Co Ltd Liquid crystal display module and liquid crystal display
SA112330516B1 (en) * 2011-05-19 2016-02-22 كاليرا كوربوريشن Electrochemical hydroxide systems and methods using metal oxidation

Similar Documents

Publication Publication Date Title
JP2017075398A5 (en)
Hu et al. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition
JP5952149B2 (en) Metal porous body and method for producing the same
Erikson et al. Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media
Fischer et al. Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore-solid structure and electrochemical performance
CN105588864B (en) A kind of electrode and preparation method thereof and electrochemica biological sensor
Kim et al. Controlled TiO2 nanotube arrays as an active material for high power energy-storage devices
JP2006198570A (en) Production method for electrode catalyst
JP2020513064A5 (en)
Tamašauskaitė-Tamašiūnaitė et al. Investigation of electrocatalytic activity of titania nanotube supported nanostructured Pt–Ni catalyst towards methanol oxidation
Kim et al. Iridium oxide dendrite as a highly efficient dual electro-catalyst for water splitting and sensing of H2O2
US20140242462A1 (en) Corrosion resistance metallic components for batteries
Kurowska-Tabor et al. Synthesis of porous thin silver films and their application for hydrogen peroxide sensing
Singh et al. Preparation and electrochemical characterization of a new NiMoO 4 catalyst for electrochemical O 2 evolution
Daniele et al. Voltammetric Determination of Glucose at Bismuth‐Modified Mesoporous Platinum Microelectrodes
Rezaei et al. Electrocatalytic activity of bimetallic PdAu nanostructure supported on nanoporous stainless steel surface using galvanic replacement reaction toward the glycerol oxidation in alkaline media
Zhuo et al. Morphological variation of highly porous Ni–Sn foams fabricated by electro-deposition in hydrogen-bubble templates and their performance as pseudo-capacitors
Hu et al. In situ metal doping during modified anodization synthesis of Nb2O5 with enhanced photoelectrochemical water splitting
Kazemi et al. Electrodeposited Ni (OH) 2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors
Leonard et al. Carbon-supported iron phosphides: highest intrinsic oxygen evolution activity of the iron triad
Low et al. A gold-coated titanium oxide nanotube array for the oxidation of borohydride ions
Sakita et al. Potential-dependent electrochemical impedance spectroscopy as a powerful tool for evaluating supercapacitor electrode performance
Lee et al. Ion-selective composite carbon electrode coated with TiO2 nanoparticles for the application of electrosorption process
Yu et al. RuxBi1‐x‐oxide as an electrode material for pseudocapacitors
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance