JP2017073869A - Regenerative electric power amount estimation device and brake planning device - Google Patents

Regenerative electric power amount estimation device and brake planning device Download PDF

Info

Publication number
JP2017073869A
JP2017073869A JP2015198458A JP2015198458A JP2017073869A JP 2017073869 A JP2017073869 A JP 2017073869A JP 2015198458 A JP2015198458 A JP 2015198458A JP 2015198458 A JP2015198458 A JP 2015198458A JP 2017073869 A JP2017073869 A JP 2017073869A
Authority
JP
Japan
Prior art keywords
brake
plan
power amount
electric energy
regenerative electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015198458A
Other languages
Japanese (ja)
Other versions
JP6643030B2 (en
Inventor
徹 江澤
Toru Ezawa
徹 江澤
板倉 昭宏
Akihiro Itakura
昭宏 板倉
孝浩 西沢
Takahiro Nishizawa
孝浩 西沢
幸造 伴野
Kozo Tomono
幸造 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015198458A priority Critical patent/JP6643030B2/en
Priority to US15/265,310 priority patent/US20170096153A1/en
Publication of JP2017073869A publication Critical patent/JP2017073869A/en
Application granted granted Critical
Publication of JP6643030B2 publication Critical patent/JP6643030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or vehicle train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes
    • B61H13/34Details
    • B61L15/0058
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/667Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/009On-board display devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regenerative electric power amount estimation device accurately estimating a regenerative electric power amount and being capable of contributing to power-saving operation, and a brake planning device.SOLUTION: According to one embodiment, a regenerative electric power estimation device includes: a regenerative electric power amount estimation model for each brake notch switching constituted so as to include a transient response of an electric brake corresponding to switching operation of a brake notch for each switching operation of the brake notch in operation of a railway vehicle; and regenerative electric power amount estimation means estimating an expected regenerative electric power amount obtained for a brake plan being time transition data of the brake notch based on the regenerative electric power amount estimation model for each brake notch switching.SELECTED DRAWING: Figure 25

Description

本発明の実施形態は、回生電力量推定装置およびブレーキ計画立案装置に関する。 Embodiments described herein relate generally to a regenerative electric energy estimation device and a brake plan planning device.

鉄道車両の運行において、運転士は運転台に設けられた主幹制御器のブレーキノッチを操作することによって、列車を目的位置へ停止させる。主幹制御器の指令は車両制御装置に伝送され、車両制御装置は、ブレーキノッチ操作に対応した、列車が減速・停止するために必要なブレーキ力を演算する。ブレーキは電気ブレーキと摩擦ブレーキで構成される。基本的には電気ブレーキが優先され、必要なブレーキ力が得られない場合に摩擦ブレーキで補助する。電気ブレーキは、通常は回転力を出力するモータに対して逆軸回転をさせることにより発電機として作動(回生)させて制動する方式であるため、可能な限り電気ブレーキを利用した方が、回生電力量が多くなり、省エネルギーな運行に貢献できる。 In the operation of the railway vehicle, the driver stops the train to the target position by operating the brake notch of the master controller provided in the cab. The command of the master controller is transmitted to the vehicle control device, and the vehicle control device calculates the braking force necessary for the train to decelerate and stop corresponding to the brake notch operation. The brake is composed of an electric brake and a friction brake. Basically, electric brakes are given priority, and friction brakes assist when the necessary braking force cannot be obtained. The electric brake is usually a system that operates (regenerates) and brakes as a generator by rotating the reverse shaft of a motor that outputs rotational force. Therefore, it is better to use the electric brake as much as possible. Electricity can be increased, contributing to energy-saving operation.

従来、できるだけ多くの回生電力量を得るために、電気ブレーキを最大限に活用するようなブレーキノッチの切替え判断を行い、その判断結果を運転台へ表示もしくは運転制御に適用する方式が提案されている。しかし、ブレーキノッチの切替え操作に対する電気ブレーキの応答は、回路形成や伝送遅延などにより異なる時間遅れ(過渡応答)がある。従来の手法では、この過渡応答の時間についてはタイマーにより処理が省略されているため、過渡応答を含めた回生電力量の推定及びブレーキノッチの切替え判断ができない。 Conventionally, in order to obtain as much regenerative energy as possible, a method has been proposed in which a brake notch switching decision is made to make the best use of an electric brake, and the decision result is displayed on the cab or applied to driving control. Yes. However, the electric brake response to the brake notch switching operation has a different time delay (transient response) due to circuit formation, transmission delay, and the like. In the conventional method, since the process of the transient response time is omitted by the timer, it is impossible to estimate the regenerative electric energy including the transient response and determine whether to switch the brake notch.

特開2013−207992号公報JP 2013-207992 A 特開2008−301702号公報JP 2008-301702 A 特開2003−274516号公報JP 2003-274516 A

本発明が解決しようとする課題は、精度良く回生電力量を推定し、省エネルギーな運行に貢献できる回生電力量推定装置およびブレーキ計画立案装置を提供することである。 The problem to be solved by the present invention is to provide a regenerative power amount estimation device and a brake plan planning device that can accurately estimate the regenerative power amount and contribute to energy-saving operation.

一実施形態に係る回生電力推定装置は、鉄道車両の運行において、ブレーキノッチの切替え操作毎に当該ブレーキノッチの切替え操作に対応する電気ブレーキの過渡応答を含んで構成されるブレーキノッチ切替え別回生電力量推定モデルと、前記ブレーキノッチ切替え別回生電力量推定モデルに基づいて、前記ブレーキノッチの時間推移データであるブレーキ計画について得られる期待回生電力量を推定する回生電力量推定手段とを有する。 A regenerative power estimation apparatus according to an embodiment includes a brake notch switching-specific regenerative power that includes a transient response of an electric brake corresponding to a brake notch switching operation for each brake notch switching operation in operation of a railway vehicle. And a regenerative electric energy estimating means for estimating an expected regenerative electric energy obtained for a brake plan which is time transition data of the brake notch based on the regenerative electric energy estimation model classified by brake notch switching.

ブレーキノッチと期待回生電力の関係の例を示す表。The table | surface which shows the example of the relationship between a brake notch and expected regenerative electric power. ブレーキノッチと回生電力の時間推移の例を示す図。The figure which shows the example of the time transition of a brake notch and regenerative electric power. 実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと期待回生電力の関係の例を示す表。The table | surface which shows the example of the relationship between the brake notch before switching in the embodiment, the brake notch after switching, and expected regenerative electric power. ブレーキノッチと回生電力の時間推移と過渡応答区間の区別の例を示す図。The figure which shows the example of the time transition of a brake notch and regenerative electric power, and the distinction of a transient response area. 実施形態における回生電力量推定装置のブロック図。The block diagram of the regeneration electric energy estimation apparatus in embodiment. 実施形態における回生電力量推定装置のフローチャート。The flowchart of the regeneration electric energy estimation apparatus in embodiment. 実施形態における各種情報の取得部を有する回生電力量推定装置のブロック図。The block diagram of the regeneration electric energy estimation apparatus which has the acquisition part of various information in embodiment. 実施形態における各種情報の取得部を有する回生電力量推定装置のフローチャート。The flowchart of the regeneration electric energy estimation apparatus which has an acquisition part of various information in embodiment. 車両速度と期待回生電力の関係の例を示す図。The figure which shows the example of the relationship between vehicle speed and expected regeneration electric power. 実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと車両速度と期待回生電力の関係の例を示す図。The figure which shows the example of the relationship between the brake notch before switching in the embodiment, the brake notch after switching, vehicle speed, and expected regenerative electric power. 車両速度と天候と期待回生電力の関係の例を示す図。The figure which shows the example of the relationship between vehicle speed, a weather, and expected regenerative electric power. 実施形態における回生電力量推定装置を有するブレーキ計画立案装置のブロック図。The block diagram of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment. 実施形態における回生電力量推定装置を有するブレーキ計画立案装置のフローチャート。The flowchart of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment. 実施形態におけるブレーキ計画生成部で生成されるブレーキ計画案の例を示す図。The figure which shows the example of the brake plan plan produced | generated by the brake plan production | generation part in embodiment. 実施形態におけるブレーキ計画選択部で利用される選択条件の例を示す図。The figure which shows the example of the selection conditions utilized in the brake plan selection part in embodiment. 実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のブロック図。The block diagram of the brake plan planning apparatus which has a regeneration electric energy estimation apparatus and various information acquisition part in embodiment. 実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のフローチャート。The flowchart of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment, and the acquisition part of various information. 実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のブロック図。The block diagram of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment, and can input selection conditions. 実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のフローチャート。The flowchart of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment, and can input selection conditions. 実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のブロック図。The block diagram of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment, and can output to vehicle control. 実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のフローチャート。The flowchart of the brake plan planning apparatus which has the regenerative electric energy estimation apparatus in embodiment, and can output to vehicle control. 実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のブロック図。The block diagram of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment, and can output to vehicle control via an execution instruction. 実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のフローチャート。The flowchart of the brake plan planning apparatus which has the regeneration electric energy estimation apparatus in embodiment, and can output to vehicle control via an execution instruction. 実施形態における実行指示を入力するGUIの例を示す図。6 is a diagram illustrating an example of a GUI for inputting an execution instruction in the embodiment. FIG. 実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のブロック図。The block diagram of the regenerative electric energy estimation apparatus and brake plan planning apparatus which have the said each additional function in embodiment. 実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のフローチャート。The flowchart of the regenerative electric energy estimation apparatus and brake plan planning apparatus which have each said additional function in embodiment.

以下、図面を参照しながら実施形態を説明する。以下の実施形態では、同一の構成要素に同一の参照符号を付して、重ねての説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same components are denoted by the same reference numerals, and repeated description is omitted.

実施例1において、回生電力量推定装置について説明する。 In the first embodiment, a regenerative electric energy estimation device will be described.

図1は、ブレーキノッチと期待回生電力の関係の例を示す表である。図1のように、ブレーキノッチに対して、得られるであろう回生電力(期待回生電力[kW])を予め把握しておくことにより、任意の運行区間におけるブレーキノッチの時間推移から期待回生電力の時間積分値である期待回生電力量を算出することができる。これは最も単純な方法であり、ブレーキノッチ以外の情報による影響は考慮しない。なお、図1の例ではブレーキノッチの段数は0から3の4段階をとっているが、実際には何段階でも構わない。 FIG. 1 is a table showing an example of the relationship between the brake notch and the expected regenerative power. As shown in FIG. 1, by knowing in advance the regenerative power (expected regenerative power [kW]) that will be obtained for the brake notch, the expected regenerative power can be determined from the time transition of the brake notch in any operation section. It is possible to calculate the expected regenerative electric energy that is the time integral value of. This is the simplest method and does not consider the effects of information other than brake notches. In the example of FIG. 1, the number of steps of the brake notch takes four steps from 0 to 3, but any number of steps may actually be used.

図2は、ブレーキノッチと回生電力の時間推移の例を示す図である。横軸が時間、縦軸がブレーキノッチ及び回生電力[kW]であり、実線がブレーキノッチ、破線が回生電力を示す。図2のように、ブレーキノッチの切替え操作に対する回生電力は、ブレーキノッチを切替えた瞬間の時刻に対して回路形成や伝送遅延などに起因する時間遅れ(過渡応答)がある。図1で示した関係だけを利用した場合は、この過渡応答を考慮することができないため、実際の回生電力量に対する期待回生電力量の推定精度が悪化してしまう。 FIG. 2 is a diagram illustrating an example of a time transition of the brake notch and the regenerative power. The horizontal axis represents time, the vertical axis represents the brake notch and the regenerative power [kW], the solid line represents the brake notch, and the broken line represents the regenerative power. As shown in FIG. 2, the regenerative electric power for the switching operation of the brake notch has a time delay (transient response) due to circuit formation or transmission delay with respect to the instant at which the brake notch is switched. When only the relationship shown in FIG. 1 is used, this transient response cannot be taken into account, and therefore the estimation accuracy of the expected regenerative power amount with respect to the actual regenerative power amount is deteriorated.

そこで、本実施形態では、ブレーキノッチの切替えによって発生すること、また、ブレーキノッチの切替え操作において切替える前のブレーキノッチと切替えた後のブレーキノッチの組み合わせで過渡応答の特性が変化することに着目し、ブレーキノッチの切替え操作ごとに回生電力を推定するモデルを構築する。 Therefore, in the present embodiment, attention is paid to the fact that the characteristics of the transient response change depending on the combination of the brake notch before switching and the brake notch after switching in the brake notch switching operation. Then, a model for estimating the regenerative power for each switching operation of the brake notch is constructed.

図3は、実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと期待回生電力の関係の例を示す表である。行が切替え前のブレーキノッチ(0〜3)、列が切替え後のブレーキノッチ(0〜3)を示し、各数値は期待回生電力[kW]を示している。例えば、ある推定対象時刻におけるブレーキノッチが2であるとする。図1の関係を利用すると、期待回生電力は1000[kW]となる。ここで、図3の関係を利用すると、当該時刻すなわち切替え後のブレーキノッチが2であるときの期待回生電力は、当該時刻の直前のブレーキノッチによって異なる。0の場合は800[kW]、1の場合は900[kW]、2の場合は切替えなしのため1000[kW]のまま(図3では規定されず、図1に基づく。)、3の場合は1100[kW]であり、まとめると、800〜1100[kW]の範囲の期待回生電力となる。 FIG. 3 is a table showing an example of the relationship between the brake notch before switching, the brake notch after switching, and the expected regenerative power in the embodiment. The row indicates the brake notch (0 to 3) before switching, the column indicates the brake notch (0 to 3) after switching, and each numerical value indicates the expected regenerative power [kW]. For example, assume that the brake notch at a certain estimation target time is 2. If the relationship of FIG. 1 is utilized, an expected regenerative electric power will be 1000 [kW]. Here, if the relationship of FIG. 3 is used, the expected regenerative power at the time, that is, the brake notch after switching is 2, differs depending on the brake notch immediately before the time. In the case of 0, 800 [kW], in the case of 1, 900 [kW], in the case of 2, since there is no switching, it remains 1000 [kW] (not defined in FIG. 3 and based on FIG. 1). Is 1100 [kW], and in summary, the expected regenerative power is in the range of 800 to 1100 [kW].

図4は、ブレーキノッチと回生電力の時間推移と過渡応答区間の区別の例を示す図である。過渡応答は時間の経過に応じて徐々に定常状態に収束していく。そこで、図4に示すように、Aを過渡応答区間、Bを過渡応答以外の区間と定義し、Aの範囲については図3の関係を利用し、Bの範囲については図1の関係を利用しても良い。 FIG. 4 is a diagram illustrating an example of distinguishing between the brake notch, the time transition of the regenerative power, and the transient response section. The transient response gradually converges to a steady state as time passes. Therefore, as shown in FIG. 4, A is defined as a transient response section, B is defined as a section other than the transient response, the relationship of FIG. 3 is used for the range of A, and the relationship of FIG. 1 is used for the range of B. You may do it.

このように、図3の関係、または、図3および図1の両方の関係を利用することで、任意の運行区間におけるブレーキノッチの時間推移から、回生電力の過渡応答を考慮しながら期待回生電力量を算出することができる。したがって、図1で示した関係だけを利用した場合に比べて、過渡応答を考慮する分、実際の回生電力量に対する期待回生電力量の推定精度を改善できる。 In this way, by using the relationship of FIG. 3 or the relationship of both FIG. 3 and FIG. 1, the expected regenerative power is considered while considering the transient response of the regenerative power from the time transition of the brake notch in any operation section. The amount can be calculated. Therefore, compared with the case where only the relationship shown in FIG. 1 is used, the estimation accuracy of the expected regenerative power amount with respect to the actual regenerative power amount can be improved by considering the transient response.

図5は、実施形態における回生電力量推定装置のブロック図である。回生電力量推定装置500は、回生電力量推定部501、ブレーキノッチ切替え別回生電力推定モデル502を備える。ブレーキ計画503を入力とし、表示部504に推定結果を出力する。図5は、上記で説明した各機能の構成に対応する。 FIG. 5 is a block diagram of the regenerative power amount estimation apparatus according to the embodiment. The regenerative power amount estimation apparatus 500 includes a regenerative power amount estimation unit 501 and a regenerative power estimation model 502 for each brake notch switching. The brake plan 503 is input, and the estimation result is output to the display unit 504. FIG. 5 corresponds to the configuration of each function described above.

図6は、実施形態における回生電力量推定装置のフローチャートである。図6は、上記で説明した各機能の処理の流れに対応する。本実施形態においては、あらかじめブレーキノッチ切替え別回生電力量推定モデル502を構築しておく必要がある。このモデルとは、具体的には、図3で示した表(切替え前のブレーキノッチ及び切替え後のブレーキノッチと期待回生電力の関係)や、後で説明する図10で示す表(切替え前のブレーキノッチ及び切替え後のブレーキノッチと車両速度と期待回生電力の関係)である。例えば、鉄道車両の運行データを取得し、ブレーキノッチの切替え操作ごとにデータを集計することにより、モデル502を構築する。このモデルは、記憶装置に記憶しておくことができる。 FIG. 6 is a flowchart of the regenerative power amount estimation apparatus in the embodiment. FIG. 6 corresponds to the processing flow of each function described above. In the present embodiment, it is necessary to construct a regenerative electric energy estimation model 502 for each brake notch switching in advance. Specifically, this model refers to the table shown in FIG. 3 (the relationship between the brake notch before switching, the brake notch after switching, and the expected regenerative power), and the table shown in FIG. 10 described later (before switching). Brake notch, brake notch after switching, vehicle speed, and expected regenerative power). For example, the model 502 is constructed by acquiring railway vehicle operation data and totaling the data for each brake notch switching operation. This model can be stored in a storage device.

処理を開始する(S601)。はじめに回生電力量推定装置500は、回生電力量を推定したいブレーキノッチの時間推移データ(ブレーキ計画503)を取得する(S602)。回生電力量推定部501は、ブレーキノッチ切替え別回生電力量推定モデル502に基づいて、入力されたブレーキ計画503で得られるであろう期待回生電力量を推定する(S603)。そして、ブレーキ計画とともに推定した期待回生電力量を表示部504へ出力する(S604)。以上で処理を終了する(S605)。 Processing is started (S601). First, the regenerative electric energy estimating apparatus 500 acquires time transition data (brake plan 503) of a brake notch for which the regenerative electric energy is to be estimated (S602). The regenerative power amount estimation unit 501 estimates the expected regenerative power amount that will be obtained in the input brake plan 503 based on the brake notch switching-specific regenerative power amount estimation model 502 (S603). And the expected regenerative electric energy estimated with the brake plan is output to the display part 504 (S604). Then, the process ends (S605).

実施例1で説明した構成では、ブレーキノッチの切替え操作ごとに回生電力量推定モデルを持つことにより、過渡応答を考慮しながら期待回生電力量を高精度に推定することができる。 In the configuration described in the first embodiment, by having a regenerative power amount estimation model for each brake notch switching operation, the expected regenerative power amount can be estimated with high accuracy while considering a transient response.

実施例2では、各種情報の取得部を有する回生電力量推定装置について説明する。 In the second embodiment, a regenerative power amount estimation device having various information acquisition units will be described.

図7は、実施形態における各種情報の取得部を有する回生電力量推定装置のブロック図である。実施例1で説明した構成に対して、回生電力量推定部の入力として、勾配・カーブ情報701、車両速度、車両重量、天候、架線電圧、滑走状態、車両併結状態の各取得部702〜707が追加された構成である。 FIG. 7 is a block diagram of a regenerative power amount estimation apparatus having an acquisition unit for various information according to the embodiment. In contrast to the configuration described in the first embodiment, as the input of the regenerative electric energy estimation unit, each acquisition unit 702 to 707 for gradient / curve information 701, vehicle speed, vehicle weight, weather, overhead line voltage, sliding state, and vehicle combined state. Is added.

勾配・カーブ情報は、軌道に関わる固有の勾配及びカーブの情報である。車両速度は、車両の運行速度であり、普通は号車別ではなく編成で同一の値をもつ。車両重量は、乗客やその他設備を含む車両の重量であり、号車別に異なる値をもつ。天候は、運行場所の雨や雪などの情報である。架線電圧は、架線からパンタグラフを通じてモータにかかる電圧であり、モータの特性などに応じて号車別に異なる値をもつ。滑走状態は、車両の車輪のレールに対する粘着力が弱くなることにより発生する滑りの現象を滑走と言い、その発生の有無や発生予兆などの情報である。車両制御においては、滑走が発生しないようにブレーキ力を制御している。車両併結状態は、異なる系の編成が連結されているかどうかの情報である。 The gradient / curve information is information on a specific gradient and curve related to the trajectory. The vehicle speed is the operation speed of the vehicle, and usually has the same value in knitting, not by car number. The vehicle weight is the weight of the vehicle including passengers and other equipment, and has a different value for each car. The weather is information such as rain and snow at the service location. The overhead line voltage is a voltage applied to the motor from the overhead line through the pantograph, and has a different value for each car depending on the characteristics of the motor. The sliding state is a phenomenon of slipping that occurs when the adhesion of the vehicle wheel to the rail of the vehicle is weakened, and is information such as the presence / absence of the occurrence and a sign of the occurrence. In vehicle control, the braking force is controlled so that no sliding occurs. The vehicle combined state is information on whether or not different trains are connected.

実施例2では、回生電力量推定部において、これらの情報を併用して期待回生電力量を推定する。 In the second embodiment, the regenerative electric energy estimation unit estimates the expected regenerative electric energy by using these pieces of information together.

図8は、実施形態における各種情報の取得部を有する回生電力量推定装置のフローチャートである。 FIG. 8 is a flowchart of the regenerative power amount estimation apparatus including an acquisition unit for various information according to the embodiment.

処理を開始する(S801)。はじめに回生電力量推定装置は、回生電力量を推定したいブレーキノッチの時間推移データ(ブレーキ計画)を取得する(S802)。回生電力量推定部は、勾配・カーブ・車両速度・車両重量・天候・架線電圧・滑走状態・車両併結状態を、各取得部から取得する(S803)。回生電力量推定部は、これら取得した情報と、ブレーキノッチ切替え別回生電力量推定モデルに基づいて、入力されたブレーキ計画で得られるであろう期待回生電力量を推定する(S804)。そして、ブレーキ計画とともに推定した期待回生電力量を表示部へ表示する(S804)。以上で処理を終了する(S806)。 Processing is started (S801). First, the regenerative power amount estimation device acquires time transition data (brake plan) of a brake notch for which the regenerative power amount is to be estimated (S802). The regenerative power amount estimation unit acquires the slope, curve, vehicle speed, vehicle weight, weather, overhead line voltage, running state, and vehicle combined state from each acquisition unit (S803). The regenerative power amount estimation unit estimates the expected regenerative power amount that will be obtained in the input brake plan based on the acquired information and the regenerative power amount estimation model classified by brake notch switching (S804). Then, the expected regenerative electric energy estimated together with the brake plan is displayed on the display unit (S804). The process ends here (S806).

図9は、車両速度と期待回生電力の関係の例を示す図である。例えば車両速度については、車両速度が上がれば上がるほど期待回生電力が大きくなることが分かっているため、図9のような関係を線形式などでモデル化することができる。したがって、期待回生電力の推定に車両速度を考慮することにより、より精度の高い期待回生電力の推定が可能になる。 FIG. 9 is a diagram illustrating an example of the relationship between the vehicle speed and the expected regenerative power. For example, with regard to the vehicle speed, it is known that the expected regenerative power increases as the vehicle speed increases, so the relationship as shown in FIG. 9 can be modeled in a linear format or the like. Therefore, it is possible to estimate the expected regenerative power with higher accuracy by considering the vehicle speed in the estimation of the expected regenerative power.

図10は、実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと車両速度と期待回生電力の関係の例を示す図である。図9で示したように車両速度を考慮する場合、図10のようにブレーキノッチの切替え操作ごとに車両速度を変数とした関係式でモデル化することができる。 FIG. 10 is a diagram illustrating an example of the relationship between the brake notch before switching, the brake notch after switching, the vehicle speed, and the expected regenerative power in the embodiment. When the vehicle speed is considered as shown in FIG. 9, it can be modeled by a relational expression using the vehicle speed as a variable for each brake notch switching operation as shown in FIG.

図11は、車両速度と天候と期待回生電力の関係の例を示す図である。図9の関係に対して、さらに天候情報を加えたものであり、例えば晴れ、雨、雪といった天候別に、図9の関係のモデルを切替えることができる。 FIG. 11 is a diagram illustrating an example of a relationship between vehicle speed, weather, and expected regenerative power. The weather information is further added to the relationship of FIG. 9, and the model of the relationship of FIG. 9 can be switched according to the weather such as sunny, rain, and snow.

その他の情報についても、関係式の変数として考慮、関係式を切替えて考慮するなど、考慮の具体的な方法は問わない。 Other information may be taken into consideration as a variable of the relational expression, or a specific method of consideration may be considered, such as switching the relational expression.

実施例2で説明した構成においては、期待回生電力の推定に、勾配・カーブ情報、車両速度、車両重量、天候、架線電圧、滑走状態、車両併結状態を考慮することにより、より精度の高い期待回生電力の推定が可能になる。 In the configuration described in the second embodiment, the expected regenerative power is estimated by considering the gradient / curve information, the vehicle speed, the vehicle weight, the weather, the overhead line voltage, the running state, and the vehicle combined state. Regenerative power can be estimated.

実施例3では、ブレーキ計画立案装置について説明する。   In the third embodiment, a brake planning device will be described.

図12は、実施形態における回生電力量推定装置を有するブレーキ計画立案装置のブロック図である。実施例1で説明した構成に対して、ブレーキ計画を単数ではなく複数生成することで保持し、全てのブレーキ計画における期待回生電力量を推定し、選択条件に適合するブレーキ計画を選択する構成である。 FIG. 12 is a block diagram of a brake planning apparatus having a regenerative power amount estimating apparatus according to the embodiment. In contrast to the configuration described in the first embodiment, a configuration is used in which a plurality of brake plans are generated instead of a single one, the expected regenerative electric energy in all brake plans is estimated, and a brake plan that meets the selection conditions is selected. is there.

ブレーキ計画立案装置1200において、ブレーキ計画生成部1201は、時刻取得部1202で得られる時刻、ダイヤ情報1203、および位置情報1204に基づいて、複数のブレーキ計画を生成する。 In the brake plan planning device 1200, the brake plan generation unit 1201 generates a plurality of brake plans based on the time obtained by the time acquisition unit 1202, the diagram information 1203, and the position information 1204.

回生電力量推定装置は、全てのブレーキ計画における期待回生電力量を、回生電力量推定部において、ブレーキノッチ切替え別回生電力量推定モデルに基づいて推定する。選択条件に適合するブレーキ計画をブレーキ計画選択部1205が選択する構成である。各種の結果は表示部に出力される。 The regenerative power amount estimation device estimates the expected regenerative power amount in all brake plans based on a regenerative power amount estimation model for each brake notch switching in a regenerative power amount estimation unit. The brake plan selection unit 1205 selects a brake plan that meets the selection conditions. Various results are output to the display unit.

図13は、実施形態における回生電力量推定装置を有するブレーキ計画立案装置のフローチャートである。 FIG. 13 is a flowchart of the brake planning device having the regenerative power amount estimating device according to the embodiment.

処理を開始する(S1301)。まず、時刻・ダイヤ・位置の情報を取得する(S1302)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S1303)。このとき、ブレーキ計画を生成する方法としては、ランダムにブレーキノッチを時間推移させて生成しても良いし、過去のブレーキ実績データに基づいて生成しても良く、その具体的方法は問わない。 Processing is started (S1301). First, time / diagram / position information is acquired (S1302). Based on the acquired information, a plurality of brake plans capable of regular operation are generated (S1303). At this time, as a method of generating the brake plan, the brake notch may be generated by temporal transition at random, or may be generated based on past brake performance data, and the specific method thereof is not limited.

図14は、実施形態におけるブレーキ計画生成部で生成されるブレーキ計画案の例を示す図である。図14においては、ブレーキ計画案1、ブレーキ計画案2、ブレーキ計画案3の3通りのブレーキ計画を生成している様子が示されている。実施例3のブレーキ計画立案装置は、このように複数のブレーキ計画を生成する。各ブレーキ計画案において、横軸は時間を、縦軸はブレーキノッチを示している。 FIG. 14 is a diagram illustrating an example of a brake plan generated by the brake plan generation unit in the embodiment. FIG. 14 shows a state in which three types of brake plans, brake plan plan 1, brake plan plan 2, and brake plan plan 3, are generated. The brake plan planning apparatus according to the third embodiment thus generates a plurality of brake plans. In each brake plan, the horizontal axis represents time and the vertical axis represents the brake notch.

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S1304)。推定した期待回生電力量はそれぞれ対応するブレーキ計画に紐付けられて保持される。 Based on the brake notch switching-specific regenerative power amount estimation model, the expected regenerative power amount of the generated plurality of brake plans is estimated (S1304). The estimated expected regenerative electric energy is held in association with the corresponding brake plan.

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S1305)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S1305).

図15は、実施形態におけるブレーキ計画選択部で利用される選択条件の例である。ブレーキ計画を選択する選択条件として、図15のような条件を予め設定しておく。これらの選択条件は、定量的に評価可能な範囲内であれば、自由に切替えることができる。例えば、図15の選択条件4に示した「急ブレーキをしないで期待回生電力量が最大」という表現は、単位時間区間でブレーキノッチの操作上限を規定する、などで対応することができる。 FIG. 15 is an example of selection conditions used in the brake plan selection unit in the embodiment. As selection conditions for selecting a brake plan, conditions as shown in FIG. 15 are set in advance. These selection conditions can be freely switched as long as they are within a range that can be quantitatively evaluated. For example, the expression “the expected regenerative electric energy is maximum without sudden braking” shown in the selection condition 4 in FIG. 15 can be dealt with, for example, by defining an upper operation limit of the brake notch in a unit time interval.

選択したブレーキ計画と推定した期待回生電力量を表示する(S1306)。以上で処理を終了する(S1307)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S1306). Thus, the process ends (S1307).

実施例3で説明した構成においては、取得した情報に基づいて複数のブレーキ計画を生成し、全てのブレーキ計画における期待回生電力量を推定し、選択条件に適合するブレーキ計画を選択することによって、単数のブレーキ計画を入力して期待回生電力量を推定するだけでなく、期待回生電力量が更に多くなるブレーキ計画を立案することが可能になる。 In the configuration described in the third embodiment, by generating a plurality of brake plans based on the acquired information, estimating the expected regenerative electric energy in all brake plans, and selecting a brake plan that meets the selection condition, In addition to estimating the expected regenerative power amount by inputting a single brake plan, it is possible to formulate a brake plan that further increases the expected regenerative power amount.

実施例4では、各種情報の取得部を有するブレーキ計画立案装置について説明する。 In the fourth embodiment, a brake planning device having an acquisition unit for various information will be described.

図16は、実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のブロック図である。実施例3で説明した構成に対して、ブレーキ計画生成部の入力として、勾配・カーブ情報1601と、車両速度、車両重量、天候の各取得部1602〜1604が追加された構成である。ブレーキ計画を立案する際に、例えば車両重量が大きい場合にはより多くのブレーキ力が必要になるため、車両重量を考慮しながらブレーキ計画を生成する。その他の情報についても、関係式の変数として考慮、関係式を切替えて考慮するなど、考慮の具体的な方法は問わない。 FIG. 16 is a block diagram of a regenerative power amount estimating apparatus and a brake plan planning apparatus having various information acquisition units in the embodiment. In contrast to the configuration described in the third embodiment, gradient / curve information 1601 and vehicle speed, vehicle weight, and weather acquisition units 1602 to 1604 are added as inputs to the brake plan generation unit. When planning a brake plan, for example, if the vehicle weight is large, more braking force is required, so the brake plan is generated while taking the vehicle weight into consideration. Other information may be taken into consideration as a variable of the relational expression, or a specific method of consideration may be considered, such as switching the relational expression.

図17は、実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のフローチャートである。 FIG. 17 is a flowchart of a regenerative electric energy estimation device and a brake plan planning device having various information acquisition units in the embodiment.

処理を開始する(S1701)。まず、時刻・ダイヤ・位置・勾配・カーブ・車両速度・車両重量・天候の情報を取得する(S1702)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S1703)。 Processing is started (S1701). First, information on time, diamond, position, gradient, curve, vehicle speed, vehicle weight, and weather is acquired (S1702). Based on the acquired information, a plurality of brake plans capable of regular operation are generated (S1703).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S1704)。 Based on the brake notch switching-specific regenerative electric energy estimation model, the expected regenerative electric energy of the generated plurality of brake plans is estimated (S1704).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S1705)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S1705).

選択したブレーキ計画と推定した期待回生電力量を表示する(S1706)。以上で処理を終了する(S1707)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S1706). Thus, the process ends (S1707).

実施例4で説明した構成においては、ブレーキ計画の生成に、勾配・カーブ、車両速度、車両重量、天候を考慮することにより、より精度良く定時運行が可能なブレーキ計画を生成することが可能になる。 In the configuration described in the fourth embodiment, it is possible to generate a brake plan that can be operated on time more accurately by considering the gradient / curve, vehicle speed, vehicle weight, and weather in generating the brake plan. Become.

実施例5では、選択条件の入力が可能なブレーキ計画立案装置について説明する。 In the fifth embodiment, a brake planning device capable of inputting selection conditions will be described.

図18は、実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のブロック図である。実施例3で説明した構成に対して、ブレーキ計画選択部の入力として、選択条件入力部1801が追加された構成である。図15に示したような選択条件について、運用時の状況に応じて適宜切替えられるようになる。 FIG. 18 is a block diagram of a brake plan planning device that has the regenerative power amount estimation device according to the embodiment and is capable of inputting selection conditions. In contrast to the configuration described in the third embodiment, a selection condition input unit 1801 is added as an input to the brake plan selection unit. The selection conditions as shown in FIG. 15 are appropriately switched according to the situation during operation.

図19は、実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のフローチャートである。 FIG. 19 is a flowchart of the brake plan planning apparatus that has the regenerative power amount estimation apparatus according to the embodiment and is capable of inputting selection conditions.

処理を開始する(S1901)。まず、時刻・ダイヤ・位置の情報を取得する(S1902)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S1903)。 Processing is started (S1901). First, time / diagram / position information is acquired (S1902). Based on the acquired information, a plurality of brake plans capable of regular operation are generated (S1903).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S1904)。選択条件を取得する(S1905)。 Based on the brake notch switching-specific regenerative electric energy estimation model, the expected regenerative electric energy of the generated plurality of brake plans is estimated (S1904). Selection conditions are acquired (S1905).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、取得した選択条件を満足するブレーキ計画を選択する(S1906)。 A brake plan that satisfies the acquired selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S1906).

選択したブレーキ計画と推定した期待回生電力量を表示する(S1907)。以上で処理を終了する(S1908)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S1907). Thus, the process ends (S1908).

実施例5で説明した構成においては、ブレーキ計画選択部の選択条件を外部から入力できるようにしておくことで、運用時の状況に応じて適宜切替えられるようになり、省エネルギー性重視や快適性重視などを考慮した適応的な運行が可能になる。 In the configuration described in the fifth embodiment, the selection condition of the brake plan selection unit can be input from the outside, so that it can be switched as appropriate according to the situation during operation, emphasizing energy saving and comfort. Adaptive operation that takes into account such factors becomes possible.

実施例6では、車両制御への出力が可能なブレーキ計画立案装置について説明する。 In the sixth embodiment, a brake planning device capable of outputting to vehicle control will be described.

図20は、実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のブロック図である。実施例3で説明した構成に対して、ブレーキ計画選択部の出力先として、車両制御部2001が追加された構成である。選択したブレーキ計画に則って、実際に車両を制御できるようになる。 FIG. 20 is a block diagram of a brake planning device that has the regenerative power amount estimation device in the embodiment and can output to vehicle control. In contrast to the configuration described in the third embodiment, a vehicle control unit 2001 is added as an output destination of the brake plan selection unit. The vehicle can be actually controlled according to the selected brake plan.

図21は、実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のフローチャートである。 FIG. 21 is a flowchart of a brake plan planning device that has the regenerative power amount estimation device in the embodiment and can output to vehicle control.

処理を開始する(S2101)。まず、時刻・ダイヤ・位置の情報を取得する(S2102)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S2103)。 Processing is started (S2101). First, time / diagram / position information is acquired (S2102). Based on the acquired information, a plurality of brake plans capable of regular operation are generated (S2103).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S2104)。 Based on the brake notch switching-specific regenerative electric energy estimation model, the expected regenerative electric energy of the generated plurality of brake plans is estimated (S2104).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S2105)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S2105).

選択したブレーキ計画と推定した期待回生電力量を表示する(S2106)。選択したブレーキ計画に基づき車両を制御する(S2107)。以上で処理を終了する(S2108)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S2106). The vehicle is controlled based on the selected brake plan (S2107). The process ends here (S2108).

実施例6で説明した構成においては、ブレーキ計画選択部で選択したブレーキ計画を外部に出力できるようにしておくことで、ブレーキ計画に則った車両制御ができるようになり、運転士の操作技量に依らない運行が可能になる。 In the configuration described in the sixth embodiment, by making it possible to output the brake plan selected by the brake plan selection unit to the outside, it becomes possible to perform vehicle control in accordance with the brake plan, which increases the operating skill of the driver. Independent operation is possible.

実施例7では、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置について説明する。   In the seventh embodiment, a brake planning device capable of outputting to vehicle control via an execution instruction will be described.

図22は、実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のブロック図である。実施例6で説明した構成に対して、ブレーキ計画選択部の出力と車両制御部の入力との間に実行指示入力部2201が追加された構成である。選択したブレーキ計画に則って実際に車両を制御する前に、運転士などに実行の意思確認ができるようになる。 FIG. 22 is a block diagram of a brake plan planning device that has the regenerative power amount estimation device according to the embodiment and can output to vehicle control via an execution instruction. In contrast to the configuration described in the sixth embodiment, an execution instruction input unit 2201 is added between the output of the brake plan selection unit and the input of the vehicle control unit. Before actually controlling the vehicle according to the selected brake plan, the driver can confirm his intention to execute.

図23は、実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のフローチャートである。 FIG. 23 is a flowchart of a brake plan planning apparatus that has the regenerative power amount estimation apparatus according to the embodiment and can output to vehicle control via an execution instruction.

処理を開始する(S2301)。まず、時刻・ダイヤ・位置の情報を取得する(S2302)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S2303)。 Processing is started (S2301). First, time / diagram / position information is acquired (S2302). Based on the acquired information, a plurality of brake plans capable of regular operation are generated (S2303).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S2304)。 Based on the brake notch switching-specific regenerative electric energy estimation model, the expected regenerative electric energy of the generated plurality of brake plans is estimated (S2304).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S2305)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S2305).

選択したブレーキ計画と推定した期待回生電力量を表示する(S2306)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S2306).

選択したブレーキ計画を実行するかどうかの実行指示を取得する(S2307)。実行指示である場合(S2308:Yes)、選択したブレーキ計画に基づき車両を制御し、(S2309)、処理を終了する(S2310)。実行指示でない場合(S2308:No)、処理を終了する(S2310)。 An execution instruction as to whether to execute the selected brake plan is acquired (S2307). If it is an execution instruction (S2308: Yes), the vehicle is controlled based on the selected brake plan (S2309), and the process is terminated (S2310). If it is not an execution instruction (S2308: No), the process ends (S2310).

図24は、実施形態における実行指示を入力するGUIの例を示す図である。図の一番上は選択されたブレーキ計画の時間推移データ、真ん中の表は上記ブレーキ計画を実行したときの期待回生電力量と使用した選択条件、図の一番下は運転士などに実行の意思確認をするための質問内容および回答のためのボタン、を示している。これらの情報以外にも、車両状態や天候情報など、意思確認に必要なデータを併せて示しても良い。 FIG. 24 is a diagram illustrating an example of a GUI for inputting an execution instruction in the embodiment. At the top of the figure is the time transition data of the selected brake plan, the middle table is the expected regenerative energy when the brake plan is executed and the selection conditions used, and the bottom of the figure is executed by the driver, etc. The question content for confirming the intention and the button for answering are shown. In addition to these pieces of information, data necessary for intention confirmation, such as vehicle status and weather information, may also be indicated.

実施例7で説明した構成においては、ブレーキ計画選択部で選択したブレーキ計画を実行するかどうかをGUIで確認できるようにしておくことで、運転士などと合意を得たうえでブレーキ計画に則った車両制御ができるようになり、意図しないブレーキ計画を自動実行することによる不具合や故障・事故などを排除しながら、かつ、運転士の操作技量に依らない運行が可能になる。 In the configuration described in the seventh embodiment, it is possible to confirm whether or not to execute the brake plan selected by the brake plan selection unit by using the GUI. The vehicle can be controlled, and the operation without depending on the operation skill of the driver can be performed while eliminating the troubles, breakdowns and accidents caused by automatically executing an unintended brake plan.

実施例8では、前記各付加機能を有するブレーキ計画立案装置について説明する。   In the eighth embodiment, a brake planning apparatus having the additional functions will be described.

図25は、実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のブロック図である。図25に示した構成においては、前記各実施例を組み合わせた動作をする。 FIG. 25 is a block diagram of a regenerative electric energy estimation device and a brake plan planning device having the additional functions in the embodiment. In the structure shown in FIG. 25, the operation | movement combining the said each Example is carried out.

図26は、実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のフローチャートである。 FIG. 26 is a flowchart of the regenerative power amount estimation device and the brake plan planning device having the respective additional functions in the embodiment.

処理を開始する(S2601)。まず、時刻・ダイヤ・位置・勾配・カーブ・車両速度・車両重量・天候の情報を取得する(S2602)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S2603)。 Processing is started (S2601). First, information on time, diamond, position, gradient, curve, vehicle speed, vehicle weight, and weather is acquired (S2602). Based on the acquired information, a plurality of brake plans capable of regular operation are generated (S2603).

勾配・カーブ・車両速度・車両重量・天候・架線電圧・滑走状態・車両併結状態を取得する(S2604)。 The slope, curve, vehicle speed, vehicle weight, weather, overhead line voltage, sliding state, and vehicle combined state are acquired (S2604).

取得した情報とブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S2605)。 Based on the acquired information and the brake notch switching-specific regenerative electric energy estimation model, the expected regenerative electric energy of the generated plurality of brake plans is estimated (S2605).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S2605)。選択条件を取得する(S2606)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S2605). Selection conditions are acquired (S2606).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、取得した選択条件を満足するブレーキ計画を選択する(S2607)。選択したブレーキ計画と推定した期待回生電力量を表示する(S2608)。 A brake plan that satisfies the acquired selection condition is selected from a plurality of brake plans associated with the estimated expected regenerative electric energy (S2607). The selected brake plan and the estimated expected regenerative electric energy are displayed (S2608).

選択したブレーキ計画を実行するかどうかの実行指示を取得する(S2609)。実行指示である場合(S2610:Yes)、選択したブレーキ計画に基づき車両を制御し、(S2611)、処理を終了する(S2612)。実行指示でない場合(S2610:No)、処理を終了する(S2612)。 An execution instruction as to whether to execute the selected brake plan is acquired (S2609). If it is an execution instruction (S2610: Yes), the vehicle is controlled based on the selected brake plan (S2611), and the process is terminated (S2612). If it is not an execution instruction (S2610: No), the process is terminated (S2612).

実施例8で説明した構成においては、前記各実施例で説明した効果が複合的に得られる。 In the configuration described in the eighth embodiment, the effects described in the above embodiments can be obtained in combination.

以上、本実施形態では、鉄道車両の運行方法及び運行システムに関して、ブレーキノッチの切替え操作ごとに回生電力量推定モデルを保持し、各ブレーキノッチの切替え操作における過渡応答を考慮することで、精度良く回生電力量が推定でき、省エネルギーな運行に貢献できる。 As described above, in the present embodiment, with respect to the railway vehicle operation method and operation system, the regenerative electric energy estimation model is retained for each brake notch switching operation, and the transient response in each brake notch switching operation is taken into account, thereby achieving high accuracy. Regenerative power can be estimated, contributing to energy-saving operation.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

500…回生電力量推定装置、
501…回生電力量推定部、
502…ブレーキノッチ切替え別回生電力量推定モデル、
503…ブレーキ計画、
504…表示部、
1200…ブレーキ計画立案装置、
1201…ブレーキ計画生成部、
1202…時刻取得部、
1203…ダイヤ情報、
1204…位置情報、
1205…ブレーキ計画選択部
500 ... regenerative electric energy estimation device,
501... Regenerative electric energy estimation unit,
502 ... Regenerative electric energy estimation model for each brake notch switching,
503 ... Brake plan,
504 ... display section,
1200 ... Brake planning device,
1201 ... Brake plan generation unit,
1202 ... Time acquisition unit,
1203 ... Diamond information,
1204 ... location information,
1205 ... Brake plan selection unit

Claims (8)

鉄道車両の運行において、ブレーキノッチの切替え操作毎に当該ブレーキノッチの切替え操作に対応する電気ブレーキの過渡応答を含んで構成されるブレーキノッチ切替え別回生電力量推定モデルと、
前記ブレーキノッチ切替え別回生電力量推定モデルに基づいて、前記ブレーキノッチの時間推移データであるブレーキ計画について得られる期待回生電力量を推定する回生電力量推定手段と、
を有する回生電力量推定装置。
In the operation of a railway vehicle, for each brake notch switching operation, a regenerative electric energy estimation model for each brake notch switching configured to include a transient response of the electric brake corresponding to the switching operation of the brake notch,
Based on the regenerative power amount estimation model for each brake notch switching, regenerative power amount estimating means for estimating an expected regenerative power amount obtained for a brake plan that is time transition data of the brake notch,
A regenerative electric energy estimation device having
勾配・カーブ情報、車両速度、車両重量、天候、架線電圧、滑走状態、車両併結状態のうち少なくとも一つを前記回生電力量推定手段への入力とする、
請求項1記載の回生電力量推定装置。
At least one of gradient / curve information, vehicle speed, vehicle weight, weather, overhead line voltage, sliding state, and vehicle combined state is input to the regenerative electric energy estimating means.
The regenerative electric energy estimation device according to claim 1.
鉄道車両の運行において、時刻、ダイヤ情報、位置情報に基づいて定時運行が可能な複数のブレーキ計画を生成するブレーキ計画生成手段と、
前記複数のブレーキ計画について、請求項1記載の回生電力量推定手段で推定される期待回生電力量に基づいて、選択条件を満足するブレーキ計画を選択するブレーキ計画選択手段と、
を有するブレーキ計画立案装置。
In the operation of the railway vehicle, a brake plan generation means for generating a plurality of brake plans that can be operated on a regular basis based on time, time information, and position information;
A brake plan selection unit that selects a brake plan that satisfies a selection condition based on an expected regenerative power amount estimated by the regenerative power amount estimation unit according to claim 1 for the plurality of brake plans;
Brake planning device with
勾配・カーブ情報、車両速度、車両重量、天候のうち少なくとも一つを前記ブレーキ計画生成手段への入力とする、
請求項3記載のブレーキ計画立案装置。
At least one of gradient / curve information, vehicle speed, vehicle weight, and weather is input to the brake plan generation means.
The brake planning apparatus according to claim 3.
前記選択条件を前記ブレーキ計画選択手段に入力する選択条件入力手段、
を有する請求項3記載のブレーキ計画立案装置。
Selection condition input means for inputting the selection condition to the brake plan selection means;
The brake planning apparatus according to claim 3.
前記ブレーキ計画選択手段は、選択されたブレーキ計画を、当該ブレーキ計画に則って車両を制御する車両制御手段へ出力する、
請求項3記載のブレーキ計画立案装置。
The brake plan selection means outputs the selected brake plan to vehicle control means for controlling the vehicle according to the brake plan.
The brake planning apparatus according to claim 3.
前記ブレーキ計画選択手段により選択されたブレーキ計画に則って車両を制御するかどうかの実行指示を入力する実行指示入力手段、
を有する請求項6記載のブレーキ計画立案装置。
Execution instruction input means for inputting an execution instruction as to whether to control the vehicle in accordance with the brake plan selected by the brake plan selection means;
The brake planning apparatus according to claim 6.
請求項1または2記載の回生電力量推定装置を有する、
請求項3ないし7のいずれか1項に記載のブレーキ計画立案装置。
It has the regenerative electric energy estimating device according to claim 1 or 2.
The brake planning apparatus according to any one of claims 3 to 7.
JP2015198458A 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method Active JP6643030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015198458A JP6643030B2 (en) 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method
US15/265,310 US20170096153A1 (en) 2015-10-06 2016-09-14 Regenerative power-amount estimation device and brake plan plotting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198458A JP6643030B2 (en) 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method

Publications (2)

Publication Number Publication Date
JP2017073869A true JP2017073869A (en) 2017-04-13
JP6643030B2 JP6643030B2 (en) 2020-02-12

Family

ID=58446641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198458A Active JP6643030B2 (en) 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method

Country Status (2)

Country Link
US (1) US20170096153A1 (en)
JP (1) JP6643030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110395299A (en) * 2019-07-29 2019-11-01 交控科技股份有限公司 Train braking energy utilization method in urban track traffic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320037A (en) * 2005-05-10 2006-11-24 Toshiba Corp Automatic controller for stopping vehicle at fixed position and system for assisting operation of vehicle
JP2007049865A (en) * 2005-08-12 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd Hybrid driver
JP2009254069A (en) * 2008-04-03 2009-10-29 Hitachi Ltd Method and device for controlling railway vehicle
JP2010063286A (en) * 2008-09-04 2010-03-18 Toshiba Corp Train control system
JP2010089737A (en) * 2008-10-10 2010-04-22 Toshiba Corp Stop control device
JP2013107449A (en) * 2011-11-18 2013-06-06 Mitsubishi Heavy Ind Ltd Operation control device, operation control method, program, and traffic system
JP2013207992A (en) * 2012-03-29 2013-10-07 Hitachi Ltd Operation support device of railway vehicle
WO2014136220A1 (en) * 2013-03-06 2014-09-12 三菱電機株式会社 Main conversion device for electric vehicle
JP2015101149A (en) * 2013-11-22 2015-06-04 公益財団法人鉄道総合技術研究所 Program and running curve creation device
US20170057378A1 (en) * 2015-08-25 2017-03-02 Beijing Jiaotong University Train control method for maximizing utilization of regenerative energy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320037A (en) * 2005-05-10 2006-11-24 Toshiba Corp Automatic controller for stopping vehicle at fixed position and system for assisting operation of vehicle
JP2007049865A (en) * 2005-08-12 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd Hybrid driver
JP2009254069A (en) * 2008-04-03 2009-10-29 Hitachi Ltd Method and device for controlling railway vehicle
JP2010063286A (en) * 2008-09-04 2010-03-18 Toshiba Corp Train control system
JP2010089737A (en) * 2008-10-10 2010-04-22 Toshiba Corp Stop control device
JP2013107449A (en) * 2011-11-18 2013-06-06 Mitsubishi Heavy Ind Ltd Operation control device, operation control method, program, and traffic system
JP2013207992A (en) * 2012-03-29 2013-10-07 Hitachi Ltd Operation support device of railway vehicle
WO2014136220A1 (en) * 2013-03-06 2014-09-12 三菱電機株式会社 Main conversion device for electric vehicle
JP2015101149A (en) * 2013-11-22 2015-06-04 公益財団法人鉄道総合技術研究所 Program and running curve creation device
US20170057378A1 (en) * 2015-08-25 2017-03-02 Beijing Jiaotong University Train control method for maximizing utilization of regenerative energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110395299A (en) * 2019-07-29 2019-11-01 交控科技股份有限公司 Train braking energy utilization method in urban track traffic
CN110395299B (en) * 2019-07-29 2021-08-06 交控科技股份有限公司 Train braking energy utilization method in urban rail transit

Also Published As

Publication number Publication date
US20170096153A1 (en) 2017-04-06
JP6643030B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP4642083B2 (en) Electric car brake control device
US9067589B1 (en) Hybrid powertrain mode determination based on spatial domain route segmentation
JP5966962B2 (en) Hybrid vehicle travel control device
JP6018407B2 (en) Method for selecting vehicle driving type
JP6643030B2 (en) Regenerative energy estimation device, brake planning device, and regenerative energy estimation method
KR20160055635A (en) Driving control appratus for hybrid vehicle
JP5869150B2 (en) Travel plan creation device, driving support device, and driving control device
Liudvinavičius et al. Electrodynamic braking in high‐speed rail transport
RU2666499C1 (en) Vehicle operation method
KR20200075062A (en) Hybrid vehicle and method of driving control for the same
JP5395398B2 (en) Train control device
EP3632758A3 (en) Actuator controller and vehicle-installed system
DE102015112292A1 (en) System and method for controlling braking of an electric vehicle
JP2012214143A (en) Hybrid vehicle
JP5731365B2 (en) How to create a train curve
JP5957331B2 (en) Electric vehicle control device and electric vehicle
JP2016010167A (en) Operation curve generation device, operation support device, automatic operation device, operation support system, automatic operation system, operation curve generation method and program
US2318043A (en) Control system
CN111406006B (en) Method for controlling a brake system of at least one rail vehicle
WO2016135858A1 (en) Electric vehicle control device
KR101936989B1 (en) Controlled method of smart cruise control system for vehicles
RU2510342C2 (en) Locomotive electrodynamic brake controller
JP2020061870A (en) Electric power conversion device and control system
US2566898A (en) Traction vehicle control system
DE102007024207A1 (en) Vehicle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R151 Written notification of patent or utility model registration

Ref document number: 6643030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151