WO2016135858A1 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
WO2016135858A1
WO2016135858A1 PCT/JP2015/055243 JP2015055243W WO2016135858A1 WO 2016135858 A1 WO2016135858 A1 WO 2016135858A1 JP 2015055243 W JP2015055243 W JP 2015055243W WO 2016135858 A1 WO2016135858 A1 WO 2016135858A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
determination value
unit
speed
vehicle speed
Prior art date
Application number
PCT/JP2015/055243
Other languages
French (fr)
Japanese (ja)
Inventor
晃大 寺本
良範 山下
将 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/055243 priority Critical patent/WO2016135858A1/en
Priority to JP2017501605A priority patent/JP6214814B2/en
Priority to DE112015006217.3T priority patent/DE112015006217B4/en
Publication of WO2016135858A1 publication Critical patent/WO2016135858A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for an electric vehicle including a plurality of power conversion devices that drive a synchronous motor by sensorless control.
  • the sensorless control of the synchronous motor estimates the rotor rotational speed or the rotor magnetic pole position and controls the synchronous motor in order to control the synchronous motor with a desired torque and a desired rotational speed without using a position sensor or a speed sensor.
  • the rotation speed of the rotor or the magnetic pole position of the rotor can be detected when the power converter is operating and when the power converter is stopped. Does not know the rotation speed or magnetic pole position.
  • the electric vehicle may not be stopped even when the power conversion device is stopped.
  • the so-called coasting state corresponds to these.
  • the speed of the electric vehicle itself also changes, and it becomes impossible to specify the rotation speed of the rotor or the magnetic pole position of the rotor.
  • an initial value for detecting the rotor rotation speed or the rotor magnetic pole position is instantaneously set.
  • Patent Document 1 discloses a method for estimating the initial magnetic pole position using magnetic saturation when the rotor is stopped.
  • Patent Document 2 discloses a method for estimating an initial speed and an initial magnetic pole position using an induced voltage generated in a winding when the rotor is rotating.
  • Patent Document 3 discloses a technique in which an initial speed and an initial magnetic pole position are set as initial values and a synchronous motor is controlled based on an operation command value.
  • each power conversion device when each power converter receives a repowering command or a brake command from the coasting state, there is a deviation in the timing of acceleration or a deviation in the timing of deceleration for each vehicle. As a result, there is a problem that the vehicle is in a ball-throwing state in which vehicles approach and leave each other repeatedly, which deteriorates the ride comfort.
  • the present invention has been made in view of the above, and in a control device for an electric vehicle provided with a plurality of power conversion devices that drive a synchronous motor by sensorless control, it suppresses a ball hitting state and improves riding comfort.
  • An object of the present invention is to provide an electric vehicle control device that can be realized.
  • the present invention is a control device for an electric vehicle including a plurality of power conversion devices that drive a synchronous motor by sensorless control, and the vehicle obtained from a vehicle speed sensor An activation selection unit that selects which control system to activate the power conversion device based on speed information is provided, and each of the power conversion devices starts operation in the same control system based on the vehicle speed.
  • a control device for an electric vehicle provided with a plurality of power converters that drive a synchronous motor by sensorless control, it is possible to suppress a situation where the electric vehicle is in a ball-thrust state and improve riding comfort. There is an effect that it is possible.
  • FIG. 1 Whole system block diagram including the control apparatus of the electric vehicle which concerns on Embodiment 1
  • FIG. The flowchart which shows the flow of a process of the signal selection part which concerns on Embodiment 1.
  • FIG. Whole system block diagram including the control apparatus of the electric vehicle which concerns on Embodiment 2 The block diagram which shows the detailed structure of the power converter device which concerns on Embodiment 2.
  • FIG. 1 is an overall system configuration diagram including an electric vehicle control device according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the power conversion device 1 according to the first embodiment.
  • each vehicle 40 (No. 1 car: 40 1 , No. 2 car: 40 2 ,..., No. N car: 40 N ) constituting the train 50 has an electric motor 2 (2 1 , 2, 2 2 ,..., 2 N ) and a power conversion device 1 (1 1 , 1 2 ,..., 1 N ) that rotationally drives the electric motor 2 are mounted.
  • the electric motor 2 is a synchronous motor driven by sensorless control.
  • a driving support system 22 and a train information management system 26 are shown as systems that support the operation of the train 50.
  • the driving support system 22 includes a control start operation unit 13, a train safety device 14, a handle 15, a kilometer management device 16, a speed generator 17 that is a vehicle speed sensor, and a driving support device 23 as main components. ing.
  • the electric vehicle control device includes a power conversion device 1 (1 1 , 1 2 , 1) that drives a plurality of motors 2 mounted on a train 50 by sensorless control. ..., 1 N ).
  • FIG. 1 illustrates the case where the power conversion device 1 and the electric motor 2 are mounted on all of the illustrated vehicles, it goes without saying that there are vehicles on which the power conversion device 1 and the electric motor 2 are not mounted.
  • the control start operation unit 13, the train security device 14, the handle 15, the kilometer management device 16, the speed generator 17, the driving support device 23, and the train information management device 26 are shown outside the train 50. Is mounted on any of the vehicles 40 (40 1 , 40 2 ,..., 40 N ) constituting the train 50.
  • the speed generator 17 is often installed so as to measure the rotational speed of the wheel shaft of a vehicle on which the power conversion device 1 and the electric motor 2 as described above are not mounted.
  • the power conversion device 1 takes in DC power or AC power supplied from the overhead line 51 via the current collector 52 and supplies AC power for driving to the motor 2.
  • the power conversion unit 3 includes a processing unit 4 that generates a switching signal SW for driving a switching element (not shown) and a storage unit 5 that stores an initial value generated by the processing unit 4. .
  • a current detection unit which is a current sensor for detecting a current flowing between the power conversion unit 3 and the electric motor 2 and an applied current from the power conversion unit 3 to the electric motor 2. 11 is provided.
  • the detection value of the current detection unit 11 is input to each of a first startup unit 6, a second startup unit 7 and an electric motor control unit 8 which will be described later.
  • the sensors are arranged in the U phase and the W phase among the UVW phase wirings, but may be arranged in the U phase and the V phase, or in the V phase and the W phase. May be.
  • the phase current that is not arranged can be obtained by calculation from the equilibrium condition of the phase current. Moreover, you may arrange
  • the power conversion unit 3 is provided with a voltage detector 3a for detecting the voltage of the intermediate link unit or the filter capacitor voltage.
  • a voltage (hereinafter referred to as “intermediate link voltage”) EFC detected by the voltage detector 3a is not shown in FIG. 1, but is applied to a first starter 6, a second starter 7, and an electric motor controller 8 described later. Input and used for modulation factor calculation.
  • the processing unit 4 includes, as functional components, a first starting unit 6 that performs an estimation process of the initial magnetic pole position ⁇ 01 using magnetic saturation, and an initial velocity ⁇ 02 and an initial magnetic pole position ⁇ 02 using an induced voltage.
  • the second starter 7 that performs the estimation process
  • the motor controller 8 that performs the process of driving the motor 2 with the torque control command generated using the initial speed and the initial magnetic pole position as initial values, the vehicle speed 14D, and the power running command 11D
  • a selection signal SF for selecting the switching signal SW generated by any one of the first starter 6, the second starter 7, and the motor controller 8 based on the operation command such as the brake command 12D.
  • any output of the first activation unit 6, the second activation unit 7, and the motor control unit 8 is actually selected.
  • These signal selector 9 and signal switcher 10 constitute an activation selector.
  • the signal switch 10 is provided with contacts 10a, 10b, 10c, 10d, and 10e.
  • the contact point 10a serves as an output terminal when the switching signal SW is output to the power conversion unit 3.
  • the output of the first starter 6 is connected to the contact 10b.
  • the output of the second starter 7 is connected to the contact 10c, and the output of the motor control unit 8 is connected to the contact 10d. Is done. In addition, nothing is connected to the contact 10e.
  • the switch of the signal switch 10 is connected to the contact 10d.
  • the switching signal SW output from the first starter 6 is applied to the power converter 3 via the contact 10a.
  • the switch of the signal switch 10 is connected to the contact 10c.
  • the switching signal SW output from the second activation unit 7 is applied to the power conversion unit 3 via the contact 10a.
  • the switch of the signal switch 10 is connected to the contact 10b.
  • the switching signal SW output from the motor control unit 8 is applied to the power conversion unit 3 through the contact 10a.
  • a selection signal SF that does not select any of the first starter 6, the second starter 7, and the motor controller 8 also makes sense. Specifically, it means an all gate off signal, that is, a switching signal that does not operate all the switching elements.
  • the selection signal SF is a full gate off signal
  • the changeover switch of the signal changer 10 is connected to the contact 10e.
  • none of the outputs of the first starter 6, the second starter 7, and the motor controller 8 is connected to the contact 10a, and the first starter 6 and the second starter 7 are connected.
  • the switching signal is not applied to the power conversion unit 3.
  • the processing unit 4 includes a microcomputer (hereinafter referred to as “microcomputer”) or a processor logically configured in a hardware circuit such as a DSP (Digital Signal Processor) and an FPGA.
  • microcomputer a microcomputer
  • the arithmetic processing in the first starting unit 6, the second starting unit 7, and the motor control unit 8 can be realized by the microcomputer executing a program stored in the storage unit 5. It is.
  • a plurality of processors and a plurality of memories may execute the above functions in cooperation.
  • the processing of the control system in the first starter 6, the second starter 7, and the motor controller 8 May be realized by the processor.
  • the arithmetic processing portion may be processed by software by a microcomputer.
  • the storage unit 5 stores the initial magnetic pole position ⁇ 01 estimated by the first activation unit 6, the initial velocity ⁇ 02 and the initial magnetic pole position ⁇ 02 estimated by the second activation unit 7.
  • the storage unit 5 also stores electric circuit constants of the electric motor 2, parameters necessary for control, and the like.
  • the first activation unit 6 is a functional unit having a control system that performs processing for estimating the initial magnetic pole position ⁇ 01 using magnetic saturation as described above, and is disclosed in Patent Document 1 described above in the present embodiment. Use this technique. Since details of the processing are disclosed in detail in Patent Document 1, detailed description thereof is omitted here. In addition, all the content described in patent document 1, or the content of one part is incorporated in this specification, and comprises a part of this specification.
  • the second starting unit 7 is a functional unit having a control system that performs processing for estimating the initial velocity ⁇ 02 and the initial magnetic pole position ⁇ 02 using the induced voltage as described above.
  • the above-described patent document 2 is used. Since details of the processing are disclosed in detail in Patent Document 2, detailed description thereof is omitted here.
  • all the content described in patent document 2, or the one part content is integrated in this specification, and comprises a part of this specification.
  • the electric motor control unit 8 uses either the initial magnetic pole position ⁇ 01 estimated by the first activation unit 6 or the initial velocity ⁇ 02 and the initial magnetic pole position ⁇ 02 estimated by the second activation unit 7 as initial values.
  • a functional unit having a control system that performs a process of driving the electric motor 2 with a torque control command generated using the initial value, and the method disclosed in Patent Document 3 described above is used in the present embodiment.
  • the process which operates the motor control part 8 after starting of the 1st starting part 6 is a case where the electric motor 2 has stopped or it is considered that it has stopped, and processes it as an initial speed being zero. It is possible. Since details of the processing are disclosed in detail in Patent Document 3, detailed description thereof is omitted here. All the contents described in Patent Document 3 or a part of the contents are incorporated in the present specification and constitute a part of the present specification.
  • control start operation unit 13 is used when starting constant speed operation. By operating the control start operation unit 13 by the crew, it is possible to output a control start command 1D indicating the start of constant speed operation.
  • the train security device 14 can receive speed limit information 2D indicating an ATC speed limit from an ATC (Automatic Train Control) device (not shown).
  • the steering wheel 15 can output steering wheel operation information 3D when an accelerator or a brake operation is performed by a crew member.
  • ATC apparatus was illustrated as the train security apparatus 14, it is not limited to this, Operation
  • the kilometer management device 16 can manage which kilometer the train is in, and can output the kilometer information 4D, and is used when performing a scheduled operation with respect to a travel reference time between stations.
  • the speed generator 17 is a vehicle speed sensor and can output the detected speed as a speed signal 5D.
  • the speed generator 17 usually has different values for each axle or for each vehicle due to a difference in wheel diameter. Therefore, the average value obtained from the speed generator 17 is managed as the speed signal 5D, or the value obtained from the speed generator 17 provided on the axle having the smallest wheel diameter is managed as the speed signal 5D. Alternatively, it is preferable to receive and manage only the speed signal 5D of the leading vehicle. If it does in this way, the speed signal 5D which the train information management apparatus 26 manages will become a unique value, and it can avoid that operation
  • the wheel shaft on which the electric motor 2 is mounted accelerates or decelerates the vehicle by transmitting the rotational force of the electric motor 2 to the rail via the wheel, but the wheel idles / slides when the rail is wet on a rainy day. It may be easy to (slip / slide). When such idling / sliding occurs, the vehicle speed cannot be detected correctly. Therefore, it is preferable to receive and manage only the speed signal 5D of the wheel shaft on which the electric motor 2 is not mounted.
  • the driving support device 23 includes a travel management unit 25 and a speed regulation section storage unit 24.
  • the driving support device 23 is usually mounted on the leading vehicle or the like, but is not limited to this.
  • regulation speed information 17D in the speed regulation section is stored in advance.
  • the information stored in the speed regulation section storage unit 24 is not limited to this.
  • the arrival prediction time for each kilometer is calculated in advance based on the train speed, the remaining distance based on the travel distance, the route gradient, etc., and this arrival prediction time is stored in the speed regulation section storage unit 24 before the operation starts. It may be configured to be used for constant speed operation.
  • the travel management unit 25 sets a target speed necessary for performing constant speed operation in accordance with the regulated speed information 17D or the speed limit information 2D.
  • the target speed is indicated by a value obtained by subtracting about 3 km / h from the speed limit information 2D or the regulation speed information 17D, but is not limited to this.
  • This constant speed operation control is realized by adjusting the notch so that the train speed follows the target speed described above. Since the information related to the notch is recorded as notch information that can travel about a kilometer at a constant speed in the travel management unit 25, the notch corresponding to the kilometer information is derived from the travel distance and the train speed is set as the target.
  • the constant speed operation is realized by finely adjusting the operation speed while raising or lowering the notch around the following speed so as to follow the speed.
  • regulation speed information 17D may be recorded in a portable storage medium in advance, delivered before train operation, and externally connected to the driving support device 23.
  • the traveling management unit 25 can output a power running command 6D or a brake command 7D to bring the current train speed close to the target speed based on the speed signal 5D.
  • the travel management unit 25 can output a constant speed operation command 8D and switch to constant speed operation.
  • working management part 25 can interrupt the output of the constant-speed driving
  • the train information management device 26 can collectively manage the information transmitted from the travel management unit 25.
  • FIG. 1 only one train information management device 26 is described.
  • the present invention is not limited to this, and the train information management device 26 is mounted on each vehicle and installed on a transmission line laid between the vehicles.
  • information such as a power running command 11D, a brake command 12D, a constant speed operation command 13D, a vehicle speed 14D, and a target speed 15D is mounted on a vehicle other than the head vehicle from the train information management device 26 of the head vehicle, for example. It is possible to relay to the train information management device 26.
  • the train information management device 26 of each vehicle receives information such as a power running command 11D, a brake command 12D, a constant speed operation command 13D, a vehicle speed 14D, and a target speed 15D from the power conversion device 1 (1 1 , 1 2 ,... 1 N ).
  • a transmission form is an example and you may employ
  • the information is directly transmitted from the train information management device 26 of the leading vehicle to the power conversion device 1 (1 1 , 1 2 ,..., 1 N ) of each vehicle. May be.
  • the power conversion device 1 When accelerating the train, the power conversion device 1 (1 1 , 1 2 ,..., 1 N ) uses the electric motor based on the target speed 15D, the vehicle speed 14D, and the power running command 11D transmitted from the train information management device 26. 2 (2 1 , 2 2 ,..., 2 N ) is controlled.
  • the power conversion device 1 (1 1 , 1 2 ,..., 1 N ) is switched to the constant speed operation, and the electric motor 2 (2 1 , 2 2 ,..., 2 N ) are controlled. Further, when the train is decelerated, the rotation of the electric motor 2 (2 1 , 2 2 ,..., 2 N ) is controlled based on the brake command 12D, and a braking device (not shown) is controlled.
  • FIG. 3 is a flowchart showing a processing flow of the signal selection unit 9 that changes according to the driving command and the vehicle speed.
  • the operation command includes a constant speed operation command, a power running command, and a brake command.
  • the three members of the constant speed operation command, the power running command, and the brake command are collectively referred to as an operation command.
  • step S101 it is determined whether or not there is an operation command. If the operation command is input, the process proceeds to step S102. If the operation command is not input, the process proceeds to step S111. In step S102, it is determined whether or not the vehicle speed is equal to or higher than the first determination value. If the vehicle speed is lower than the first determination value, the changeover switch of the signal switcher 10 is connected to the contact 10d, and step S103. Then, the first activation unit is operated. In step S ⁇ b> 104, the end of the process of the first activation unit 6 is determined. When the processing of the first starter 6 is finished, that is, when the estimation processing of the initial magnetic pole position ⁇ 01 is finished, the changeover switch of the signal switcher 10 is connected to the contact 10b, and the process proceeds to step S107. .
  • step S102 if the vehicle speed is equal to or higher than the first determination value, the changeover switch of the signal switcher 10 is connected to the contact 10c, and the process proceeds to step S105 to operate the second starter 7.
  • step S ⁇ b> 106 the end of the process of the second activation unit 7 is determined.
  • the changeover switch of the signal switcher 10 is connected to the contact 10b, and the step The process proceeds to S107.
  • step S107 the motor control unit 8 is operated, and in step S108, it is determined whether or not there is an operation command. If there is an operation command, that is, if an operation command is input, the operation in step S107 and the determination process in step S108 are repeated. On the other hand, if there is no driving command, it is further determined in step S109 whether or not the vehicle speed is equal to or higher than the second determination value. If the vehicle speed is equal to or higher than the second determination value, the process returns to step S107. Thereafter, the operation in step S107 and the determination processes in steps S108 and S109 are executed. The second determination value is larger than the first determination value.
  • step S109 if the vehicle speed is less than the second determination value, the process proceeds to step S110, where all the gates are turned off, that is, the switching control for the power conversion unit 3 is stopped, and the process returns to step S101. Thereafter, the processing from step S101 is repeated.
  • step S111 it is determined whether or not the vehicle speed is equal to or higher than the second determination value. Make it work. Thereafter, the processing after step S106 is executed.
  • step S111 if the vehicle speed is less than the second determination value, the process proceeds to step S112 to perform a full gate-off operation for stopping the switching control for the power converter 3, and the process returns to step S101. Thereafter, the processing from step S101 is repeated.
  • step S102 the vehicle speed is compared with the first determination value.
  • the first determination value is a vehicle speed at which it can be determined that the electric motor 2 has stopped rotating. If it can be determined that the electric motor 2 has stopped rotating, processing using magnetic saturation is possible, and the electric motor control unit 8 can be activated after the first activation unit 6 is activated. Moreover, if it can be determined from the first determination value that the motor 2 has not stopped rotating, the motor control unit 8 can be started after the second starter 7 is started. With these controls, it is possible to unify the determination as to whether or not to start sensorless control in each power conversion device 1 (1 1 , 1 2 ,..., 1 N ).
  • the timing of outputting torque from the electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be adjusted, so that the ball crush phenomenon between the vehicles can be suppressed and the riding comfort of the electric vehicle is improved. It becomes possible to do.
  • the vehicle speed is compared with the second determination value.
  • the second determination value is a vehicle speed at which it can be determined whether or not the electric motor 2 is rotating at high speed.
  • the case where the electric motor 2 is a permanent magnet type electric motor and the electric motor 2 is rotating at high speed is considered. Under such circumstances, a case is assumed where the induced voltage of the electric motor 2 (specifically, the voltage across the terminals of the electric motor 2) generated by the rotation of the permanent magnet exceeds the filter capacitor voltage. In such a case, if the power converter 3 does not operate with all gates off, the motor 2 becomes a generator when the induced voltage of the motor 2 exceeds the filter capacitor voltage. Electricity is supplied to the overhead wire 51 through the diode 3.
  • coasting control is performed. Called. Note that the torque command during coasting control is zero. Even in such coasting control, the vehicle speed at which coasting control is required differs for each power converter 1 (1 1 , 1 2 ,..., 1 N ) due to the influence of the wheel diameter difference as described above. Needless to say.
  • steps S111 and S109 determine whether or not to perform the coasting control described above by comparing the vehicle speed with the second determination value. become.
  • each power conversion device 1 (1 1 , 1 2 ,..., 1 N ) starts coasting control simultaneously, and each power conversion device 1 (1 1 , 1 2). ,..., 1 N ) can be eliminated, and an increase in the induced voltage of the electric motor 2 can be suppressed.
  • the timing of outputting torque from the electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be adjusted. As a result, it is possible to suppress the crushing phenomenon between the vehicles and to improve the riding comfort of the electric vehicle.
  • the power conversion device 1 is operated while the power conversion device 1 is stopped (all gates are off, corresponding to steps S112 and S110 in FIG. 3), and the motor is sensorlessly controlled.
  • the power conversion apparatus 1 is operated in a state of waiting in a loop that returns to the process of step S101 through step S101 ⁇ step S111 ⁇ step S112.
  • the coasting control is a state in which the motor is controlled in a loop that returns from step S107 to step S108 to step S107.
  • the state of controlling the electric motor based on the operation command is a loop that returns to step S107 through the process of step S107 ⁇ step S108.
  • a repowering command or a brake command is input from the coasting state as described above, in order to shift to a state in which the motor is controlled based on the operation command, “the operation of the power conversion device 1 is stopped.
  • the process required for the transition differs between “in coasting” and “coasting control in which the power conversion device 1 is operated”, and the timing at which the motor 2 outputs torque is different.
  • the present invention solves such a problem, and is configured to determine whether or not to perform coasting control by comparing the vehicle speed and the second determination value, so that each power The converter 1 (1 1 , 1 2 ,..., 1 N ) starts coasting control at the same time, and the operation variation of each power converter 1 (1 1 , 1 2 ,..., 1 N ) The timing of outputting torque from the electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be matched.
  • FIG. 4 is an overall system configuration diagram including the control device for an electric vehicle according to the second embodiment
  • FIG. 5 is a block diagram illustrating a detailed configuration of the power conversion device according to the second embodiment.
  • the difference in configuration from the power conversion device 1 according to the first embodiment shown in FIG. 1 and FIG. 2 is that the second embodiment does not include the signal selection unit 9, and the detection voltage of the voltage detector 3a.
  • the second determination value is variable by the intermediate link voltage EFC, and the train information management device 26 includes a calculation unit 26a.
  • it is the same or equivalent structure as Embodiment 1, and it attaches
  • the intermediate link voltage EFC detected by each power conversion device 1 (1 1 , 1 2 ,..., 1 N ) is input to the train information management device 26. . Since the intermediate link voltage EFC is detected by the voltage detector 3a provided in each power converter 1 (1 1 , 1 2 ,..., 1 N ), it is not necessarily the same because of the tolerance of the voltage detector 3a. Not necessarily a value. Therefore, in the second embodiment, the intermediate link voltage EFC is collected and collected in the train information management device 26, and the average value EFCmean or the minimum value EFCmin of the intermediate link voltage EFC is calculated by the arithmetic unit 26a of the train information management device 26. The same value is used for the entire organization.
  • the selection signal SF generated by the signal selection unit 9 of FIG. 2 is placed on the transmission line and transmitted to each power conversion device 1 (1 1 , 1 2 ,..., 1 N ). To do.
  • the processing executed in each power conversion device 1 (1 1 , 1 2 ,..., 1 N ) is reduced, which can contribute to cost reduction of the power conversion device 1.
  • the information of the intermediate link voltage EFC and the selection signal SF is transmitted through the transmission path of the train information management device 26, but may be realized using another transmission path, or the signal selection unit Ninth processing is not limited to that executed by the calculation unit 26a.
  • the signal switching operation is executed according to the flowchart of FIG.
  • the second determination value when executing the flowchart of FIG. 3 is changed according to the intermediate link voltage EFC.
  • the intermediate link voltage EFC used in the following description is the average value EFCmean or the minimum value EFCmin of the intermediate link voltage EFC detected by each power converter 1 (11, 12,..., 1N). Hereinafter, this point will be described.
  • the second judgment value can be formulated by the following equation.
  • the electric motor voltage with the smallest wheel diameter (hereinafter referred to as “the electric motor voltage with the smallest wheel diameter” for convenience) and the vehicle speed are proportional to each other. Therefore, the value is uniquely determined and can be expressed by the following equation.
  • Proportional coefficient K Vehicle speed V ⁇ Motor voltage by minimum wheel diameter (2)
  • the control margin G shown in the above equation (1) is a design value that is adjusted so that the second determination value is lower than the value determined by the intermediate link voltage EFC ⁇ proportional coefficient K.
  • the purpose of providing the control margin G is to prevent the intermediate link voltage EFC from becoming smaller than the inter-terminal voltage of the electric motor 2 due to a change in the proportional coefficient K and a steep change in the intermediate link voltage EFC.
  • FIG. 6 is a diagram for explaining the setting concept of the second determination value.
  • the horizontal axis represents the vehicle speed
  • the vertical axis represents the relationship between the intermediate link voltage and the terminal voltage of the electric motor 2.
  • the straight line Ka represents the voltage between the terminals of the electric motor a
  • the straight line Kb represents the voltage between the terminals of the electric motor b.
  • the electric motor a means an electric motor connected to an axle having a wheel diameter a
  • the electric motor b means an electric motor connected to an axle having a wheel diameter b.
  • wheel diameter a is the smallest wheel diameter in the knitting. That is, the electric motor a is an electric motor connected to the axle having the smallest wheel diameter in the train, and the electric motor b means one of electric motors connected to the axle having the smallest wheel diameter.
  • the second determination value may be made variable based on the motor voltage based on the minimum wheel diameter. Therefore, the second determination value shown in FIG. 6 is made variable according to the intermediate link voltage based on the straight line Ka that is the motor voltage based on the minimum wheel diameter.
  • the DC voltage value of the intermediate link may fluctuate greatly. Therefore, as shown in the above equation (1), the control margin G is added to the intermediate link in consideration of these conditions. If the second predetermined value is adjusted to be lower than the link DC voltage value ⁇ proportional constant, the intermediate link voltage EFC becomes smaller than the voltage between the terminals of the motor, that is, the motor 2 is in a regenerative state. Therefore, the torque generated by each electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be surely aligned, and the ball collision phenomenon between the vehicles can be suppressed and the electric vehicle can be prevented. It is possible to improve the ride comfort.
  • the proportionality coefficient K may slightly vary depending on the magnet temperature of the electric motor 2. Therefore, when the influence of the magnet temperature of the electric motor 2 is large, a temperature sensor may be provided in the electric motor 2 and the proportionality coefficient K may be varied according to detection information of the temperature sensor. Further, the magnet temperature may be estimated from the current flowing through the electric motor 2 and the proportionality coefficient K may be varied according to the estimation result, or the control margin G may be adjusted in consideration of these effects.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

An electric vehicle control device is equipped with a plurality of power conversion devices for driving an electric motor in a sensorless control scheme and is provided with a signal selection unit 9 and a signal switch 10 for selecting, according to vehicle speed information, which control system is used to start up the power conversion devices 1, wherein, according to the vehicle speed, the power conversion devices 1 (11, 12, …, 1N) start to operate through the same control system.

Description

電気車の制御装置Electric vehicle control device
 本発明は、同期電動機をセンサレス制御で駆動する電力変換装置を複数台備えた電気車の制御装置に関する。 The present invention relates to a control device for an electric vehicle including a plurality of power conversion devices that drive a synchronous motor by sensorless control.
 同期電動機のセンサレス制御は、位置センサまたは速度センサを用いずに、同期電動機を所望のトルクおよび所望の回転速度で制御するため、回転子の回転速度または回転子の磁極位置を推定し、磁極位置に対応した位相で電力変換装置から同期電動機に電流を供給することで、同期電動機を制御する技術である。 The sensorless control of the synchronous motor estimates the rotor rotational speed or the rotor magnetic pole position and controls the synchronous motor in order to control the synchronous motor with a desired torque and a desired rotational speed without using a position sensor or a speed sensor. Is a technique for controlling a synchronous motor by supplying a current from the power converter to the synchronous motor with a phase corresponding to the above.
 このようなセンサレス制御を電力変換装置に適用した場合、回転子の回転速度または回転子の磁極位置を検出できるのは、電力変換装置が動作中の場合であり、電力変換装置が停止中の場合は、回転速度または磁極位置が分からなくなる。 When such sensorless control is applied to a power converter, the rotation speed of the rotor or the magnetic pole position of the rotor can be detected when the power converter is operating and when the power converter is stopped. Does not know the rotation speed or magnetic pole position.
 このような同期電動機をセンサレス制御で駆動する電力変換装置を搭載した電気車では、電力変換装置が停止中であっても、電気車は停止中でない場合がある。例えば上り坂で減速する場合、下り坂で加速する場合、電気車の慣性エネルギーにより惰性で走行する、いわゆる惰行状態の場合がこれらに該当する。これらの運転状態では、電気車自体の速度も変化するため、回転子の回転速度または回転子の磁極位置を特定することができなくなる。 In an electric vehicle equipped with a power conversion device that drives such a synchronous motor by sensorless control, the electric vehicle may not be stopped even when the power conversion device is stopped. For example, when decelerating on an uphill, accelerating on a downhill, or traveling in inertia by the inertia energy of an electric vehicle, the so-called coasting state corresponds to these. In these operating states, the speed of the electric vehicle itself also changes, and it becomes impossible to specify the rotation speed of the rotor or the magnetic pole position of the rotor.
 したがって、電力変換装置が停止中の状態であるときに、センサレス制御によって電力変換装置の動作を開始するためには、回転子の回転速度または回転子の磁極位置を検出するための初期値を瞬時に設定する必要がある。 Therefore, in order to start the operation of the power converter by sensorless control when the power converter is in a stopped state, an initial value for detecting the rotor rotation speed or the rotor magnetic pole position is instantaneously set. Must be set to
 ここで、下記特許文献1には、回転子が回転停止している場合に、磁気的飽和を利用して初期磁極位置を推定する手法が開示されている。また、下記特許文献2には、回転子が回転している場合に、巻線に発生する誘起電圧を利用して初期速度および初期磁極位置を推定する手法が開示されている。 Here, the following Patent Document 1 discloses a method for estimating the initial magnetic pole position using magnetic saturation when the rotor is stopped. Patent Document 2 below discloses a method for estimating an initial speed and an initial magnetic pole position using an induced voltage generated in a winding when the rotor is rotating.
 同期電動機のセンサレス制御を電気車の制御装置に適用する場合、回転速度または磁極位置を精度良く検出する必要があり、複数の推定手法が併用して用いられることが多い。例えば、下記特許文献3には、初期速度および初期磁極位置を初期値とし、運転指令値に基づいて同期電動機を制御する技術が開示されている。 When applying sensorless control of a synchronous motor to a control device for an electric vehicle, it is necessary to accurately detect the rotation speed or the magnetic pole position, and a plurality of estimation methods are often used in combination. For example, Patent Document 3 below discloses a technique in which an initial speed and an initial magnetic pole position are set as initial values and a synchronous motor is controlled based on an operation command value.
特許第4271397号公報Japanese Patent No. 4271397 特許第5318286号公報Japanese Patent No. 5318286 特許第5291184号公報Japanese Patent No. 5291184
 しかしながら、電力変換装置を複数台備えた電気車の場合、個々の同期電動機が機械的に接続されている車輪の車輪径が、電気車内ですべて同じとは限らないため、同期電動機の回転子の回転速度も同じとは限らない。このような状態で、従来技術のセンサレス制御を適用した場合、個々の電力変換装置の動作にばらつきが生じてしまうことになる。例えば、個々の電力変換装置が惰行状態から、再力行指令もしくはブレーキ指令を受信した場合、各車両ごとに、加速しようとするタイミングにずれが生じたり、減速しようとするタイミングにずれが生じたりして、車両同士が接近と離反とを繰り返す玉突き状態となり、乗り心地を悪化させるという課題があった。 However, in the case of an electric vehicle having a plurality of power converters, the wheel diameters of the wheels to which the individual synchronous motors are mechanically connected are not necessarily the same in the electric vehicle. The rotational speed is not always the same. In such a state, when the sensorless control of the prior art is applied, the operation of each power conversion device will vary. For example, when each power converter receives a repowering command or a brake command from the coasting state, there is a deviation in the timing of acceleration or a deviation in the timing of deceleration for each vehicle. As a result, there is a problem that the vehicle is in a ball-throwing state in which vehicles approach and leave each other repeatedly, which deteriorates the ride comfort.
 本発明は、上記に鑑みてなされたものであって、同期電動機をセンサレス制御で駆動する電力変換装置を複数台備えた電気車の制御装置において、玉突き状態を抑止して、乗り心地の改善を図ることができる電気車の制御装置を提供することを目的とする。 The present invention has been made in view of the above, and in a control device for an electric vehicle provided with a plurality of power conversion devices that drive a synchronous motor by sensorless control, it suppresses a ball hitting state and improves riding comfort. An object of the present invention is to provide an electric vehicle control device that can be realized.
 上述した課題を解決し、目的を達成するために、本発明は、同期電動機をセンサレス制御で駆動する電力変換装置を複数台備えた電気車の制御装置であって、車速センサから得られた車両速度の情報に基づいて前記電力変換装置を何れの制御系で起動するか選択する起動選択部を備え、前記車両速度に基づき各前記電力変換装置が同一の制御系で動作を開始することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a control device for an electric vehicle including a plurality of power conversion devices that drive a synchronous motor by sensorless control, and the vehicle obtained from a vehicle speed sensor An activation selection unit that selects which control system to activate the power conversion device based on speed information is provided, and each of the power conversion devices starts operation in the same control system based on the vehicle speed. And
 本発明によれば、同期電動機をセンサレス制御で駆動する電力変換装置を複数台備えた電気車の制御装置において、電気車が玉突き状態となる状況を抑止して、乗り心地の改善を図ることができる、という効果を奏する。 According to the present invention, in a control device for an electric vehicle provided with a plurality of power converters that drive a synchronous motor by sensorless control, it is possible to suppress a situation where the electric vehicle is in a ball-thrust state and improve riding comfort. There is an effect that it is possible.
実施の形態1に係る電気車の制御装置を含む全体のシステム構成図Whole system block diagram including the control apparatus of the electric vehicle which concerns on Embodiment 1 実施の形態1に係る電力変換装置の細部構成を示すブロック図The block diagram which shows the detailed structure of the power converter device which concerns on Embodiment 1. FIG. 実施の形態1に係る信号選択部の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the signal selection part which concerns on Embodiment 1. FIG. 実施の形態2に係る電気車の制御装置を含む全体のシステム構成図Whole system block diagram including the control apparatus of the electric vehicle which concerns on Embodiment 2 実施の形態2に係る電力変換装置の細部構成を示すブロック図The block diagram which shows the detailed structure of the power converter device which concerns on Embodiment 2. FIG. 第2の判定値の設定概念の説明に供する図The figure which uses for description of the setting concept of the 2nd judgment value
 以下に添付図面を参照し、本発明の実施の形態に係る電気車の制御装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 Hereinafter, a control device for an electric vehicle according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
実施の形態1.
 図1は、実施の形態1に係る電気車の制御装置を含む全体のシステム構成図である。また、図2は、実施の形態1に係る電力変換装置1の細部構成を示すブロック図である。
Embodiment 1 FIG.
1 is an overall system configuration diagram including an electric vehicle control device according to Embodiment 1. FIG. FIG. 2 is a block diagram illustrating a detailed configuration of the power conversion device 1 according to the first embodiment.
 まず、図1において、列車50を構成する各車両40(1号車:40,2号車:40,……,N号車:40)には、列車50を駆動する電動機2(2,2,……,2)および、電動機2を回転駆動する電力変換装置1(1,1,……,1)が搭載されている。なお、電動機2は、センサレス制御で駆動される同期電動機である。 First, in FIG. 1, each vehicle 40 (No. 1 car: 40 1 , No. 2 car: 40 2 ,..., No. N car: 40 N ) constituting the train 50 has an electric motor 2 (2 1 , 2, 2 2 ,..., 2 N ) and a power conversion device 1 (1 1 , 1 2 ,..., 1 N ) that rotationally drives the electric motor 2 are mounted. The electric motor 2 is a synchronous motor driven by sensorless control.
 また、図1では、列車50の運行を支援するシステムとして、運転支援システム22および列車情報管理装置(Train Information Management System)26が示されている。運転支援システム22は、主たる構成部として、制御開始操作部13、列車保安装置14、ハンドル15、キロ程管理装置16、車速センサである速度発電機17および運転支援装置23を有して構成されている。 In FIG. 1, a driving support system 22 and a train information management system 26 are shown as systems that support the operation of the train 50. The driving support system 22 includes a control start operation unit 13, a train safety device 14, a handle 15, a kilometer management device 16, a speed generator 17 that is a vehicle speed sensor, and a driving support device 23 as main components. ing.
 図1の構成要素の中で、実施の形態1に係る電気車の制御装置は、列車50に搭載される複数台の電動機2をセンサレス制御で駆動する電力変換装置1(1,1,……,1)によって構成される。なお、図1では、図示した車両の全てに電力変換装置1と電動機2とが搭載される場合を例示しているが、電力変換装置1および電動機2が搭載されない車両があることは言うまでもない。また、図1では、制御開始操作部13、列車保安装置14、ハンドル15、キロ程管理装置16、速度発電機17、運転支援装置23および列車情報管理装置26を列車50の外部に示しているが、列車50を構成する各車両40(40,40,……,40)の何れかに搭載されて構成される。特に、速度発電機17に関しては、前述のような電力変換装置1および電動機2が搭載されない車両の車輪軸の回転速度を計測するように設置される場合が多い。 1, the electric vehicle control device according to the first embodiment includes a power conversion device 1 (1 1 , 1 2 , 1) that drives a plurality of motors 2 mounted on a train 50 by sensorless control. ..., 1 N ). Although FIG. 1 illustrates the case where the power conversion device 1 and the electric motor 2 are mounted on all of the illustrated vehicles, it goes without saying that there are vehicles on which the power conversion device 1 and the electric motor 2 are not mounted. In FIG. 1, the control start operation unit 13, the train security device 14, the handle 15, the kilometer management device 16, the speed generator 17, the driving support device 23, and the train information management device 26 are shown outside the train 50. Is mounted on any of the vehicles 40 (40 1 , 40 2 ,..., 40 N ) constituting the train 50. In particular, the speed generator 17 is often installed so as to measure the rotational speed of the wheel shaft of a vehicle on which the power conversion device 1 and the electric motor 2 as described above are not mounted.
 また、電力変換装置1は、図2に示すように、架線51から集電装置52を介して供給される直流電力もしくは交流電力を取り込んで電動機2に駆動用の交流電力を供給する電力変換部3、電力変換部3を構成する図示しないスイッチング素子を駆動するためのスイッチング信号SWを生成する処理部4および、処理部4が生成した初期値を記憶する記憶部5を有して構成される。 In addition, as shown in FIG. 2, the power conversion device 1 takes in DC power or AC power supplied from the overhead line 51 via the current collector 52 and supplies AC power for driving to the motor 2. 3. The power conversion unit 3 includes a processing unit 4 that generates a switching signal SW for driving a switching element (not shown) and a storage unit 5 that stores an initial value generated by the processing unit 4. .
 電力変換部3と電動機2との間には、電力変換部3と電動機2との間に流れる電流、電力変換部3から電動機2への印加電流を検出するための電流センサである電流検出部11が設けられている。電流検出部11の検出値は、後述する第1の起動部6、第2の起動部7および電動機制御部8の各々に入力される。なお、図示の例では、UVW相の各配線のうち、U相およびW相にセンサを配置しているが、U相およびV相に配置してもよいし、V相およびW相に配置してもよい。配置していない相の電流は、相電流の平衡条件から演算で求めることができる。また、何れかの2相ではなく、3相の全てに配置してもよい。なお、3相の全てに配置すれば、全ての相電流を検出できるので、演算処理は不要である。 Between the power conversion unit 3 and the electric motor 2, a current detection unit which is a current sensor for detecting a current flowing between the power conversion unit 3 and the electric motor 2 and an applied current from the power conversion unit 3 to the electric motor 2. 11 is provided. The detection value of the current detection unit 11 is input to each of a first startup unit 6, a second startup unit 7 and an electric motor control unit 8 which will be described later. In the example shown in the drawing, the sensors are arranged in the U phase and the W phase among the UVW phase wirings, but may be arranged in the U phase and the V phase, or in the V phase and the W phase. May be. The phase current that is not arranged can be obtained by calculation from the equilibrium condition of the phase current. Moreover, you may arrange | position to all three phases instead of any two phases. Note that if all three phases are arranged, all phase currents can be detected, so that no arithmetic processing is required.
 また、電力変換部3には、中間リンク部の電圧もしくはフィルタコンデンサ電圧を検出するための電圧検出器3aが設けられている。電圧検出器3aが検出した電圧(以下「中間リンク電圧」という)EFCは、図1では図示していないが、後述する第1の起動部6、第2の起動部7および電動機制御部8に入力され、変調率演算に用いられる。 In addition, the power conversion unit 3 is provided with a voltage detector 3a for detecting the voltage of the intermediate link unit or the filter capacitor voltage. A voltage (hereinafter referred to as “intermediate link voltage”) EFC detected by the voltage detector 3a is not shown in FIG. 1, but is applied to a first starter 6, a second starter 7, and an electric motor controller 8 described later. Input and used for modulation factor calculation.
 処理部4は、機能的な構成要素として、磁気飽和を利用して初期磁極位置θ01の推定処理を行う第1の起動部6と、誘起電圧を利用して初期速度ω02および初期磁極位置θ02の推定処理を行う第2の起動部7と、初期速度および初期磁極位置を初期値として生成したトルク制御指令で電動機2を駆動する処理を行う電動機制御部8と、車両速度14Dならびに、力行指令11Dおよびブレーキ指令12Dなどの運転指令に基づいて、第1の起動部6、第2の起動部7および電動機制御部8のうちの何れかが生成したスイッチング信号SWを選択するための選択信号SFを生成する信号選択部9と、信号選択部9が出力する選択信号SFに従って、実際に、第1の起動部6、第2の起動部7および電動機制御部8のうちの何れの出力を選択する信号切替器10と、を備えて構成される。これら信号選択部9および信号切替器10は、起動選択部を構成する。 The processing unit 4 includes, as functional components, a first starting unit 6 that performs an estimation process of the initial magnetic pole position θ01 using magnetic saturation, and an initial velocity ω02 and an initial magnetic pole position θ02 using an induced voltage. The second starter 7 that performs the estimation process, the motor controller 8 that performs the process of driving the motor 2 with the torque control command generated using the initial speed and the initial magnetic pole position as initial values, the vehicle speed 14D, and the power running command 11D And a selection signal SF for selecting the switching signal SW generated by any one of the first starter 6, the second starter 7, and the motor controller 8 based on the operation command such as the brake command 12D. In accordance with the signal selection unit 9 to be generated and the selection signal SF output from the signal selection unit 9, any output of the first activation unit 6, the second activation unit 7, and the motor control unit 8 is actually selected. Trust Configured to include a switch 10, a. These signal selector 9 and signal switcher 10 constitute an activation selector.
 信号切替器10には、接点10a,10b,10c,10d,10eが設けられている。接点10aは、電力変換部3にスイッチング信号SWを出力するときの出力端となる。また、接点10bには第1の起動部6の出力が接続され、以下同様に、接点10cには第2の起動部7の出力が接続され、接点10dには電動機制御部8の出力が接続される。また、接点10eには何も接続されていない。このように接続された信号切替器10に対し、信号選択部9から選択信号SFが入力されると、以下のように動作する。 The signal switch 10 is provided with contacts 10a, 10b, 10c, 10d, and 10e. The contact point 10a serves as an output terminal when the switching signal SW is output to the power conversion unit 3. The output of the first starter 6 is connected to the contact 10b. Similarly, the output of the second starter 7 is connected to the contact 10c, and the output of the motor control unit 8 is connected to the contact 10d. Is done. In addition, nothing is connected to the contact 10e. When the selection signal SF is input from the signal selection unit 9 to the signal switcher 10 connected in this manner, the following operation is performed.
 まず、第1の起動部6を選択する選択信号SFが信号切替器10に入力されると、信号切替器10の切替スイッチは接点10dに接続される。その結果、第1の起動部6が出力するスイッチング信号SWが接点10aを介して電力変換部3に印加される。 First, when the selection signal SF for selecting the first activation unit 6 is input to the signal switch 10, the switch of the signal switch 10 is connected to the contact 10d. As a result, the switching signal SW output from the first starter 6 is applied to the power converter 3 via the contact 10a.
 第2の起動部7を選択する選択信号SFが信号切替器10に入力されると、信号切替器10の切替スイッチは接点10cに接続される。その結果、第2の起動部7が出力するスイッチング信号SWが接点10aを介して電力変換部3に印加される。 When the selection signal SF for selecting the second activation unit 7 is input to the signal switch 10, the switch of the signal switch 10 is connected to the contact 10c. As a result, the switching signal SW output from the second activation unit 7 is applied to the power conversion unit 3 via the contact 10a.
 電動機制御部8を選択する選択信号SFが信号切替器10に入力されると、信号切替器10の切替スイッチは接点10bに接続される。その結果、電動機制御部8が出力するスイッチング信号SWが接点10aを介して電力変換部3に印加される。 When the selection signal SF for selecting the motor control unit 8 is input to the signal switch 10, the switch of the signal switch 10 is connected to the contact 10b. As a result, the switching signal SW output from the motor control unit 8 is applied to the power conversion unit 3 through the contact 10a.
 なお、第1の起動部6、第2の起動部7および電動機制御部8のうちの何れも選択しない選択信号SFも意味をなす。具体的には、全ゲートオフ信号、すなわち全てのスイッチング素子を動作させないスイッチング信号を意味する。選択信号SFが全ゲートオフ信号である場合、信号切替器10の切替スイッチは接点10eに接続される。その結果、接点10aには、第1の起動部6、第2の起動部7および電動機制御部8のうちの何れの出力も接続されず、第1の起動部6、第2の起動部7または電動機制御部8が動作していても、電力変換部3にはスイッチング信号が印加されない。 Note that a selection signal SF that does not select any of the first starter 6, the second starter 7, and the motor controller 8 also makes sense. Specifically, it means an all gate off signal, that is, a switching signal that does not operate all the switching elements. When the selection signal SF is a full gate off signal, the changeover switch of the signal changer 10 is connected to the contact 10e. As a result, none of the outputs of the first starter 6, the second starter 7, and the motor controller 8 is connected to the contact 10a, and the first starter 6 and the second starter 7 are connected. Alternatively, even if the motor control unit 8 is operating, the switching signal is not applied to the power conversion unit 3.
 処理部4は、ハードウェア的には、マイクロコンピュータ(以下「マイコン」と表記)または、DSP(Digital Signal Processor)およびFPGAなどのハードウェア回路に論理構成されたプロセッサを有して構成される。処理部4がマイコンを有する場合、第1の起動部6、第2の起動部7および電動機制御部8における演算処理は、マイコンが記憶部5に記憶されたプログラムを実行することにより、実現可能である。なお、複数のプロセッサおよび複数のメモリが連携して上記機能を実行してもよい。また、DSPおよびFPGAのうちの少なくとも1つがハードウェア回路に論理構成されたプロセッサを有する場合であれば、第1の起動部6、第2の起動部7および電動機制御部8における制御系の処理を当該プロセッサにて実現してもよい。その際、演算処理の部分は、マイコンにてソフトウェア的に処理してもよい。記憶部5には、プログラムが記憶される他、第1の起動部6が推定した初期磁極位置θ01、第2の起動部7が推定した初期速度ω02および初期磁極位置θ02が記憶される。また、記憶部5には、電動機2の電気回路定数、制御に必要なパラメータなども記憶される。 In terms of hardware, the processing unit 4 includes a microcomputer (hereinafter referred to as “microcomputer”) or a processor logically configured in a hardware circuit such as a DSP (Digital Signal Processor) and an FPGA. When the processing unit 4 includes a microcomputer, the arithmetic processing in the first starting unit 6, the second starting unit 7, and the motor control unit 8 can be realized by the microcomputer executing a program stored in the storage unit 5. It is. A plurality of processors and a plurality of memories may execute the above functions in cooperation. Further, if at least one of the DSP and the FPGA has a processor logically configured in a hardware circuit, the processing of the control system in the first starter 6, the second starter 7, and the motor controller 8 May be realized by the processor. At that time, the arithmetic processing portion may be processed by software by a microcomputer. In addition to storing the program, the storage unit 5 stores the initial magnetic pole position θ01 estimated by the first activation unit 6, the initial velocity ω02 and the initial magnetic pole position θ02 estimated by the second activation unit 7. The storage unit 5 also stores electric circuit constants of the electric motor 2, parameters necessary for control, and the like.
 つぎに、第1の起動部6、第2の起動部7および電動機制御部8が実行する処理について説明する。 Next, processing executed by the first starter 6, the second starter 7, and the motor controller 8 will be described.
(第1の起動部6について)
 第1の起動部6は、上述のように磁気飽和を利用して初期磁極位置θ01を推定する処理を行う制御系を有する機能部であり、本実施の形態では上述した特許文献1に開示された手法を用いる。処理の細部は、特許文献1に詳細に開示されているため、ここでの詳細な説明は省略する。なお、特許文献1に記載された全ての内容もしくはその一部の内容は、本明細書に組み込まれて、本明細書の一部を構成する。
(About the 1st starting part 6)
The first activation unit 6 is a functional unit having a control system that performs processing for estimating the initial magnetic pole position θ01 using magnetic saturation as described above, and is disclosed in Patent Document 1 described above in the present embodiment. Use this technique. Since details of the processing are disclosed in detail in Patent Document 1, detailed description thereof is omitted here. In addition, all the content described in patent document 1, or the content of one part is incorporated in this specification, and comprises a part of this specification.
(第2の起動部7について)
 第2の起動部7は、上述のように誘起電圧を利用して初期速度ω02および初期磁極位置θ02を推定する処理を行う制御系を有する機能部であり、本実施の形態では上述した特許文献2に開示された手法を用いる。処理の細部は、特許文献2に詳細に開示されているため、ここでの詳細な説明は省略する。なお、特許文献2に記載された全ての内容もしくはその一部の内容は、本明細書に組み込まれて、本明細書の一部を構成する。
(About the 2nd starting part 7)
The second starting unit 7 is a functional unit having a control system that performs processing for estimating the initial velocity ω02 and the initial magnetic pole position θ02 using the induced voltage as described above. In the present embodiment, the above-described patent document 2 is used. Since details of the processing are disclosed in detail in Patent Document 2, detailed description thereof is omitted here. In addition, all the content described in patent document 2, or the one part content is integrated in this specification, and comprises a part of this specification.
(電動機制御部8について)
 電動機制御部8は、第1の起動部6が推定した初期磁極位置θ01または、第2の起動部7が推定した初期速度ω02および初期磁極位置θ02のうちの何れか一方を初期値として使用し、当該初期値を使用して生成したトルク制御指令で電動機2を駆動する処理を行う制御系を有する機能部であり、本実施の形態では上述した特許文献3に開示された手法を用いる。なお、第1の起動部6の起動後に電動機制御部8を動作させる処理は、電動機2が停止している場合、もしくは、停止していると見なされる場合であり、初期速度はゼロとして処理することが可能である。なお、処理の細部は、特許文献3に詳細に開示されているため、ここでの詳細な説明は省略する。特許文献3に記載された全ての内容もしくはその一部の内容は、本明細書に組み込まれて、本明細書の一部を構成する。
(About the motor control unit 8)
The electric motor control unit 8 uses either the initial magnetic pole position θ01 estimated by the first activation unit 6 or the initial velocity ω02 and the initial magnetic pole position θ02 estimated by the second activation unit 7 as initial values. A functional unit having a control system that performs a process of driving the electric motor 2 with a torque control command generated using the initial value, and the method disclosed in Patent Document 3 described above is used in the present embodiment. In addition, the process which operates the motor control part 8 after starting of the 1st starting part 6 is a case where the electric motor 2 has stopped or it is considered that it has stopped, and processes it as an initial speed being zero. It is possible. Since details of the processing are disclosed in detail in Patent Document 3, detailed description thereof is omitted here. All the contents described in Patent Document 3 or a part of the contents are incorporated in the present specification and constitute a part of the present specification.
 つぎに、図1に戻り、運転支援システム22を構成する各要素の機能および役割ならびに列車情報管理装置26を経由する各種情報の流れについて説明する。 Next, returning to FIG. 1, the function and role of each element constituting the driving support system 22 and the flow of various information via the train information management device 26 will be described.
 まず、制御開始操作部13は、定速運転を開始するときに使用するものである。乗務員が当該制御開始操作部13を操作することにより、定速運転の開始を示す制御開始指令1Dを出力することが可能である。 First, the control start operation unit 13 is used when starting constant speed operation. By operating the control start operation unit 13 by the crew, it is possible to output a control start command 1D indicating the start of constant speed operation.
 列車保安装置14は、図示しないATC(Automatic Train Control)装置からATC制限速度を示す制限速度情報2Dを受信することが可能である。ハンドル15は、乗務員によってアクセルまたはブレーキ操作が行われたときに、ハンドル操作情報3Dを出力することが可能である。なお、列車保安装置14としてATC装置を例示したが、これに限定されるものではなく、ATS(Automatic Train Stop)などの運転保安装置を使用することも可能である。 The train security device 14 can receive speed limit information 2D indicating an ATC speed limit from an ATC (Automatic Train Control) device (not shown). The steering wheel 15 can output steering wheel operation information 3D when an accelerator or a brake operation is performed by a crew member. In addition, although the ATC apparatus was illustrated as the train security apparatus 14, it is not limited to this, Operation | movement security apparatuses, such as ATS (Automatic Train Stop), can also be used.
 キロ程管理装置16は、列車がどのキロ程にいるのかを管理し、キロ程情報4Dを出力することが可能であり、駅間の走行基準時間に対する定時運転を行うときなどに用いられる。 The kilometer management device 16 can manage which kilometer the train is in, and can output the kilometer information 4D, and is used when performing a scheduled operation with respect to a travel reference time between stations.
 速度発電機17は、車両の速度センサであり、検出した速度を速度信号5Dとして出力することが可能である。なお、速度発電機17は、車輪径の違いにより、車軸ごともしくは車両ごとに値が異なっていることが通常である。このため、速度発電機17から得られる値の平均値を速度信号5Dとして管理し、もしくは、車輪径の最も小さな車軸に設けられた速度発電機17から得られた値を速度信号5Dとして管理し、もしくは、先頭車両の速度信号5Dのみ受信して管理することが好ましい。このようにすれば、列車情報管理装置26が管理する速度信号5Dはユニークな値となり、電力変換装置1の動作がばらつくのを回避することができる。また、前述のように電力変換装置1および電動機2が搭載されない車両の車輪軸の回転速度を計測するように設置する。電動機2が搭載されている車輪軸は電動機2の回転力を車輪を介してレールに伝達することで車両を加減速させるが、雨の日などでレールが濡れている場合など車輪が空転/滑走(スリップ/スライド)しやすい場合がある。このような空転/滑走が発生すると正しく車両速度を検出できなくなる。したがって、電動機2が搭載されない車輪軸の速度信号5Dのみ受信して管理することが好ましい。 The speed generator 17 is a vehicle speed sensor and can output the detected speed as a speed signal 5D. The speed generator 17 usually has different values for each axle or for each vehicle due to a difference in wheel diameter. Therefore, the average value obtained from the speed generator 17 is managed as the speed signal 5D, or the value obtained from the speed generator 17 provided on the axle having the smallest wheel diameter is managed as the speed signal 5D. Alternatively, it is preferable to receive and manage only the speed signal 5D of the leading vehicle. If it does in this way, the speed signal 5D which the train information management apparatus 26 manages will become a unique value, and it can avoid that operation | movement of the power converter device 1 varies. Moreover, it installs so that the rotational speed of the wheel shaft of a vehicle in which the power converter device 1 and the electric motor 2 are not mounted as mentioned above may be measured. The wheel shaft on which the electric motor 2 is mounted accelerates or decelerates the vehicle by transmitting the rotational force of the electric motor 2 to the rail via the wheel, but the wheel idles / slides when the rail is wet on a rainy day. It may be easy to (slip / slide). When such idling / sliding occurs, the vehicle speed cannot be detected correctly. Therefore, it is preferable to receive and manage only the speed signal 5D of the wheel shaft on which the electric motor 2 is not mounted.
 運転支援装置23は、走行管理部25および速度規制区間記憶部24を有して構成されている。運転支援装置23は、通常、先頭車両などに搭載されるが、これに限定されるものではない。 The driving support device 23 includes a travel management unit 25 and a speed regulation section storage unit 24. The driving support device 23 is usually mounted on the leading vehicle or the like, but is not limited to this.
 速度規制区間記憶部24には、速度規制区間における規制速度情報17Dなどが予め格納されている。なお、速度規制区間記憶部24に格納される情報は、これに限定されるものではない。例えば、列車速度、走行距離に基づく残走距離、路線勾配などにより、予めキロ程毎の到達予測時間を演算しておき、この到達予測時間を運行開始前に速度規制区間記憶部24に格納しておき、定速運転に使用するように構成してもよい。 In the speed regulation section storage unit 24, regulation speed information 17D in the speed regulation section is stored in advance. The information stored in the speed regulation section storage unit 24 is not limited to this. For example, the arrival prediction time for each kilometer is calculated in advance based on the train speed, the remaining distance based on the travel distance, the route gradient, etc., and this arrival prediction time is stored in the speed regulation section storage unit 24 before the operation starts. It may be configured to be used for constant speed operation.
 走行管理部25は、制御開始指令1Dを受信したとき、規制速度情報17Dまたは制限速度情報2Dに従い、定速運転を行うために必要な目標速度を設定する。目標速度は、制限速度情報2Dまたは規制速度情報17Dから約3km/h減じた値で示されるが、これに限定されるものではない。この定速運転制御は、列車の速度を上述した目標速度に追従するようにノッチを調整して実現している。このノッチに関する情報は、走行管理部25において、キロ程を一定速度で走行できるノッチ情報として記録されているので、走行距離などから、当該キロ程情報に対応するノッチを導き出し、列車の速度が目標速度に追従するように、追従する速度を中心にして、ノッチを上げたり、または下げたりしながら運転速度を微調整することで定速運転を実現している。なお、ここでは、規制速度情報17Dを速度規制区間記憶部24から読み出して使用する態様となっているが、これに限定されるものではなく、例えば、規制速度情報17Dやキロ程情報などを、予め持ち運び可能な記憶媒体などに記録し、列車運行前に受け渡し、運転支援装置23に外部接続する態様であってもよい。 When the control start command 1D is received, the travel management unit 25 sets a target speed necessary for performing constant speed operation in accordance with the regulated speed information 17D or the speed limit information 2D. The target speed is indicated by a value obtained by subtracting about 3 km / h from the speed limit information 2D or the regulation speed information 17D, but is not limited to this. This constant speed operation control is realized by adjusting the notch so that the train speed follows the target speed described above. Since the information related to the notch is recorded as notch information that can travel about a kilometer at a constant speed in the travel management unit 25, the notch corresponding to the kilometer information is derived from the travel distance and the train speed is set as the target. The constant speed operation is realized by finely adjusting the operation speed while raising or lowering the notch around the following speed so as to follow the speed. In addition, although it is the aspect which reads and uses the regulation speed information 17D from the speed regulation area memory | storage part 24 here, it is not limited to this, For example, regulation speed information 17D, kilometer information, etc. It may be recorded in a portable storage medium in advance, delivered before train operation, and externally connected to the driving support device 23.
 走行管理部25は、速度信号5Dに基づいて現在の列車速度を目標速度に近づけるため、力行指令6Dまたはブレーキ指令7Dを出力することが可能である。車両速度9Dが目標速度10Dに近づくと、走行管理部25は定速運転指令8Dを出力し、定速運転に切り替えることが可能である。また、走行管理部25は、定速運転中にハンドル操作情報3Dを受信した場合、定速運転指令8Dの出力を中断し、手動運転に切り替えることが可能である。また、手動運転に切り替えた後に、制御開始指令1Dを受信した場合、定速運転指令8Dを出力し再び定速運転に切り替えることが可能である。 The traveling management unit 25 can output a power running command 6D or a brake command 7D to bring the current train speed close to the target speed based on the speed signal 5D. When the vehicle speed 9D approaches the target speed 10D, the travel management unit 25 can output a constant speed operation command 8D and switch to constant speed operation. Moreover, the driving | running | working management part 25 can interrupt the output of the constant-speed driving | operation command 8D, and can switch to manual driving | operation, when steering wheel operation information 3D is received during constant-speed driving | operation. Further, when the control start command 1D is received after switching to the manual operation, it is possible to output the constant speed operation command 8D and switch to the constant speed operation again.
 列車情報管理装置26は、走行管理部25から送信された情報を一括管理することが可能である。図1において、列車情報管理装置26は1台のみ記載されているが、これに限定されるものではなく、列車情報管理装置26を各車両に搭載し、車両間に敷設されている伝送路に接続することにより、力行指令11D、ブレーキ指令12D、定速運転指令13D、車両速度14D、および目標速度15Dなどの情報を、例えば先頭車両の列車情報管理装置26から先頭車両以外の車両に搭載されている列車情報管理装置26に中継することが可能である。各車両の列車情報管理装置26は、力行指令11D、ブレーキ指令12D、定速運転指令13D、車両速度14D、および目標速度15Dなどの情報を電力変換装置1(1,1,……,1)に伝達する。なお、このような伝送形態は一例であり、他の伝送形態を採用してもよい。例えば、各車両の列車情報管理装置26を使用せずに、先頭車両の列車情報管理装置26から直接、各車両の電力変換装置1(1,1,……,1)に情報伝達してもよい。 The train information management device 26 can collectively manage the information transmitted from the travel management unit 25. In FIG. 1, only one train information management device 26 is described. However, the present invention is not limited to this, and the train information management device 26 is mounted on each vehicle and installed on a transmission line laid between the vehicles. By connecting, information such as a power running command 11D, a brake command 12D, a constant speed operation command 13D, a vehicle speed 14D, and a target speed 15D is mounted on a vehicle other than the head vehicle from the train information management device 26 of the head vehicle, for example. It is possible to relay to the train information management device 26. The train information management device 26 of each vehicle receives information such as a power running command 11D, a brake command 12D, a constant speed operation command 13D, a vehicle speed 14D, and a target speed 15D from the power conversion device 1 (1 1 , 1 2 ,... 1 N ). In addition, such a transmission form is an example and you may employ | adopt another transmission form. For example, without using the train information management device 26 of each vehicle, the information is directly transmitted from the train information management device 26 of the leading vehicle to the power conversion device 1 (1 1 , 1 2 ,..., 1 N ) of each vehicle. May be.
 列車を加速する場合、電力変換装置1(1,1,……,1)は、列車情報管理装置26から送信された目標速度15D、車両速度14Dおよび力行指令11Dに基づいて、電動機2(2,2,……,2)の回転を制御する。 When accelerating the train, the power conversion device 1 (1 1 , 1 2 ,..., 1 N ) uses the electric motor based on the target speed 15D, the vehicle speed 14D, and the power running command 11D transmitted from the train information management device 26. 2 (2 1 , 2 2 ,..., 2 N ) is controlled.
 車両速度14Dが目標速度15Dに近づいた場合、定速運転に切り替えるため、電力変換装置1(1,1,……,1)は、定速運転指令13Dに基づいて電動機2(2,2,……,2)の回転を制御する。また、列車を減速する場合、ブレーキ指令12Dに基づいて、電動機2(2,2,……,2)の回転を制御し、また、図示しない制動装置を制御する。 When the vehicle speed 14D approaches the target speed 15D, the power conversion device 1 (1 1 , 1 2 ,..., 1 N ) is switched to the constant speed operation, and the electric motor 2 (2 1 , 2 2 ,..., 2 N ) are controlled. Further, when the train is decelerated, the rotation of the electric motor 2 (2 1 , 2 2 ,..., 2 N ) is controlled based on the brake command 12D, and a braking device (not shown) is controlled.
 つぎに、図3の図面を基本として、信号選択部9の動作について説明する。図3は、運転指令および車両速度に応じて変化する信号選択部9の処理の流れを示すフローチャートである。なお、図3において、運転指令には、定速運転指令、力行指令およびブレーキ指令が含まれる。以下、定速運転指令、力行指令およびブレーキ指令の3者を総称して、運転指令と称する。 Next, the operation of the signal selection unit 9 will be described based on the drawing of FIG. FIG. 3 is a flowchart showing a processing flow of the signal selection unit 9 that changes according to the driving command and the vehicle speed. In FIG. 3, the operation command includes a constant speed operation command, a power running command, and a brake command. Hereinafter, the three members of the constant speed operation command, the power running command, and the brake command are collectively referred to as an operation command.
 まず、ステップS101では、運転指令の有無が判別される。ここで、運転指令が入力されていればステップS102に移行し、運転指令が入力されていなければステップS111に移行する。ステップS102では、車両速度が第1の判定値以上であるか否かが判別され、車両速度が第1の判定値未満であれば、信号切替器10の切替スイッチを接点10dに接続しステップS103に移行して第1の起動部を動作させる。ステップS104では、第1の起動部6の処理の終了を判定する。第1の起動部6の処理が終了している場合、すなわち初期磁極位置θ01の推定処理が終了している場合には信号切替器10の切替スイッチを接点10bに接続し、ステップS107に移行する。 First, in step S101, it is determined whether or not there is an operation command. If the operation command is input, the process proceeds to step S102. If the operation command is not input, the process proceeds to step S111. In step S102, it is determined whether or not the vehicle speed is equal to or higher than the first determination value. If the vehicle speed is lower than the first determination value, the changeover switch of the signal switcher 10 is connected to the contact 10d, and step S103. Then, the first activation unit is operated. In step S <b> 104, the end of the process of the first activation unit 6 is determined. When the processing of the first starter 6 is finished, that is, when the estimation processing of the initial magnetic pole position θ01 is finished, the changeover switch of the signal switcher 10 is connected to the contact 10b, and the process proceeds to step S107. .
 ステップS102の処理に戻り、車両速度が第1の判定値以上であれば、信号切替器10の切替スイッチは接点10cに接続し、ステップS105に移行して第2の起動部7を動作させる。ステップS106では、第2の起動部7の処理の終了を判定する。第2の起動部7の処理が終了している場合、すなわち初期速度ω02および初期磁極位置θ02の推定処理が終了している場合には信号切替器10の切替スイッチを接点10bに接続し、ステップS107に移行する。 Returning to the process of step S102, if the vehicle speed is equal to or higher than the first determination value, the changeover switch of the signal switcher 10 is connected to the contact 10c, and the process proceeds to step S105 to operate the second starter 7. In step S <b> 106, the end of the process of the second activation unit 7 is determined. When the processing of the second starter 7 is finished, that is, when the estimation processing of the initial speed ω02 and the initial magnetic pole position θ02 is finished, the changeover switch of the signal switcher 10 is connected to the contact 10b, and the step The process proceeds to S107.
 ステップS107では電動機制御部8を動作させ、ステップS108では、運転指令の有無が判別される。運転指令が有れば、すなわち運転指令が入力されていればステップS107の動作およびステップS108での判定処理を繰り返す。一方、運転指令が無ければ、さらにステップS109にて、車両速度が第2の判定値以上であるか否かが判別され、車両速度が第2の判定値以上であれば、ステップS107に戻る。以後、ステップS107の動作ならびに、ステップS108およびステップS109による各判定処理を実行する。なお、第2の判定値は第1の判定値よりも大きい。 In step S107, the motor control unit 8 is operated, and in step S108, it is determined whether or not there is an operation command. If there is an operation command, that is, if an operation command is input, the operation in step S107 and the determination process in step S108 are repeated. On the other hand, if there is no driving command, it is further determined in step S109 whether or not the vehicle speed is equal to or higher than the second determination value. If the vehicle speed is equal to or higher than the second determination value, the process returns to step S107. Thereafter, the operation in step S107 and the determination processes in steps S108 and S109 are executed. The second determination value is larger than the first determination value.
 また、ステップS109において、車両速度が第2の判定値未満であれば、ステップS110に移行して、全ゲートオフ、すなわち電力変換部3に対するスイッチング制御を停止して、ステップS101の処理に戻る。以後、ステップS101からの処理を繰り返す。 In step S109, if the vehicle speed is less than the second determination value, the process proceeds to step S110, where all the gates are turned off, that is, the switching control for the power conversion unit 3 is stopped, and the process returns to step S101. Thereafter, the processing from step S101 is repeated.
 ステップS111の処理に戻り、車両速度が第2の判定値以上であるか否かを判別し、第2の判定値以上であれば、ステップS105の処理に移行して第2の起動部7を動作させる。以後、ステップS106以降の処理を実行する。 Returning to the process of step S111, it is determined whether or not the vehicle speed is equal to or higher than the second determination value. Make it work. Thereafter, the processing after step S106 is executed.
 また、ステップS111において、車両速度が第2の判定値未満であれば、ステップS112に移行して、電力変換部3に対するスイッチング制御を停止する全ゲートオフ動作を行って、ステップS101の処理に戻る。以後、ステップS101からの処理を繰り返す。 In step S111, if the vehicle speed is less than the second determination value, the process proceeds to step S112 to perform a full gate-off operation for stopping the switching control for the power converter 3, and the process returns to step S101. Thereafter, the processing from step S101 is repeated.
 ここで、上記の処理について補足する。ステップS102では、車両速度を第1の判定値と比較しているが、第1の判定値は、電動機2が回転停止していると判断できる車両速度である。電動機2が回転停止していると判断できれば、磁気飽和を利用する処理が可能であり、第1の起動部6を起動してから電動機制御部8を起動することができる。また、第1の判定値によって、電動機2が回転停止していないと判定できれば、第2の起動部7を起動してから電動機制御部8を起動することができる。これらの制御により、センサレス制御を開始するか否かの判断を各々の電力変換装置1(1,1,……,1)で統一することができる。その結果、電動機2(2,2,……,2)からトルクを出力するタイミングを合わせることができるので、車両間の玉突き現象を抑止することができ、電気車の乗り心地を改善することが可能となる。 Here, it supplements about said process. In step S102, the vehicle speed is compared with the first determination value. The first determination value is a vehicle speed at which it can be determined that the electric motor 2 has stopped rotating. If it can be determined that the electric motor 2 has stopped rotating, processing using magnetic saturation is possible, and the electric motor control unit 8 can be activated after the first activation unit 6 is activated. Moreover, if it can be determined from the first determination value that the motor 2 has not stopped rotating, the motor control unit 8 can be started after the second starter 7 is started. With these controls, it is possible to unify the determination as to whether or not to start sensorless control in each power conversion device 1 (1 1 , 1 2 ,..., 1 N ). As a result, the timing of outputting torque from the electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be adjusted, so that the ball crush phenomenon between the vehicles can be suppressed and the riding comfort of the electric vehicle is improved. It becomes possible to do.
 また、ステップS111とステップS109では、車両速度を第2の判定値と比較しているが、第2の判定値は、電動機2が高速回転しているかどうかを判断できる車両速度である。ここで、電動機2が永久磁石型の電動機であり、且つ、電動機2が高速回転している場合を考える。このような状況下では、永久磁石が回転することにより発生する電動機2の誘起電圧(詳しくは電動機2の端子間電圧)がフィルタコンデンサ電圧を越えるような場合が想定される。このような場合において、電力変換部3が全ゲートオフ状態で何も動作しなければ、電動機2の誘起電圧がフィルタコンデンサ電圧を越えると、電動機2が発電機となり、図示していないが電力変換部3のダイオードを介して架線51に電気を供給してしまう。したがって、このような高速回転域では電力変換部3を動作させ弱め界磁制御を実施することで電動機2の誘起電圧がフィルタコンデンサ電圧を越えないように制御する必要がある。また、上記のような制御は運転指令が入力されていない状態で車両の慣性エネルギーのみの惰性で走行している状態(惰行中と呼ぶ)でも実施する必要があることから、本発明では惰行制御と称する。なお、惰行制御中のトルク指令は零である。このような惰行制御においても上述のような車輪径差の影響により、惰行制御が必要となる車両速度が各々の電力変換装置1(1,1,……,1)ごとに異なることは言うまでもない。 Further, in step S111 and step S109, the vehicle speed is compared with the second determination value. The second determination value is a vehicle speed at which it can be determined whether or not the electric motor 2 is rotating at high speed. Here, the case where the electric motor 2 is a permanent magnet type electric motor and the electric motor 2 is rotating at high speed is considered. Under such circumstances, a case is assumed where the induced voltage of the electric motor 2 (specifically, the voltage across the terminals of the electric motor 2) generated by the rotation of the permanent magnet exceeds the filter capacitor voltage. In such a case, if the power converter 3 does not operate with all gates off, the motor 2 becomes a generator when the induced voltage of the motor 2 exceeds the filter capacitor voltage. Electricity is supplied to the overhead wire 51 through the diode 3. Therefore, in such a high-speed rotation region, it is necessary to control the induced voltage of the electric motor 2 so as not to exceed the filter capacitor voltage by operating the power conversion unit 3 and performing field weakening control. Further, since the control as described above needs to be performed even in a state where no driving command is input and the vehicle is traveling with inertia of only the inertia energy of the vehicle (referred to as coasting), in the present invention, coasting control is performed. Called. Note that the torque command during coasting control is zero. Even in such coasting control, the vehicle speed at which coasting control is required differs for each power converter 1 (1 1 , 1 2 ,..., 1 N ) due to the influence of the wheel diameter difference as described above. Needless to say.
 本発明である図3の説明に戻り、ステップS111とステップS109の処理は上述の惰行制御を実施するか否かの判断を車両速度と第2の判定値を比較することで判定していることになる。このように構成することで、各々の電力変換装置1(1,1,……,1)が同時に惰行制御を開始することになり、各々の電力変換装置1(1,1,……,1)の動作ばらつきをなくし、電動機2の誘起電圧が大きくなるのを抑制することが可能となる。 Returning to the description of FIG. 3 according to the present invention, the processes in steps S111 and S109 determine whether or not to perform the coasting control described above by comparing the vehicle speed with the second determination value. become. With this configuration, each power conversion device 1 (1 1 , 1 2 ,..., 1 N ) starts coasting control simultaneously, and each power conversion device 1 (1 1 , 1 2). ,..., 1 N ) can be eliminated, and an increase in the induced voltage of the electric motor 2 can be suppressed.
 さらに、このような惰行状態から再力行指令、もしくはブレーキ指令が入力された場合であっても、電動機2(2,2,……,2)からトルクを出力するタイミングを合わせることができるので、車両間の玉突き現象を抑止することができ、電気車の乗り心地を改善することが可能となる。 Further, even when a repowering command or a brake command is input from such a coasting state, the timing of outputting torque from the electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be adjusted. As a result, it is possible to suppress the crushing phenomenon between the vehicles and to improve the riding comfort of the electric vehicle.
 ここで、上記のトルクを出力するタイミングについて補足する。図3に示すように同期電動機のセンサレス制御では、電力変換装置1が停止中(全ゲートオフ状態、図3のステップS112,ステップS110に相当)から電力変換装置1を動作させ電動機をセンサレス制御する状態(図3のS107に相当)に移行させるためには図3に示すような処理を実行する必要がある。ここで、電力変換装置1の動作を停止させた惰行中はステップS101⇒ステップS111⇒ステップS112を経てステップS101の処理に戻るループで待機している状態であり、電力変換装置1を動作させた惰行制御はステップS107⇒ステップS108⇒ステップS109を経てステップS107に戻るループで電動機を制御している状態である。また、運転指令に基づき電動機を制御する状態はステップS107⇒ステップS108の処理を経てステップS107に戻るループである。ここで、上述のような惰行状態から再力行指令、もしくはブレーキ指令が入力された場合、運転指令に基づき電動機を制御する状態に移行するためには、「電力変換装置1の動作を停止させた惰行中」と「電力変換装置1を動作させた惰行制御」とでは移行に要する処理が異なり、電動機2がトルクを出力するタイミングが異なることになる。本発明はこのような課題を解決するものであり、惰行制御を実施するか否かの判断を車両速度と第2の判定値を比較することで判定するように構成することで、各々の電力変換装置1(1,1,……,1)が同時に惰行制御を開始することになり、各々の電力変換装置1(1,1,……,1)の動作ばらつきをなくし、電動機2(2,2,……,2)からトルクを出力するタイミングを合わせることができる。 Here, it supplements about the timing which outputs said torque. As shown in FIG. 3, in the sensorless control of the synchronous motor, the power conversion device 1 is operated while the power conversion device 1 is stopped (all gates are off, corresponding to steps S112 and S110 in FIG. 3), and the motor is sensorlessly controlled. In order to shift to (corresponding to S107 in FIG. 3), it is necessary to execute processing as shown in FIG. Here, during coasting in which the operation of the power conversion apparatus 1 is stopped, the power conversion apparatus 1 is operated in a state of waiting in a loop that returns to the process of step S101 through step S101 → step S111 → step S112. The coasting control is a state in which the motor is controlled in a loop that returns from step S107 to step S108 to step S107. Further, the state of controlling the electric motor based on the operation command is a loop that returns to step S107 through the process of step S107⇒step S108. Here, when a repowering command or a brake command is input from the coasting state as described above, in order to shift to a state in which the motor is controlled based on the operation command, “the operation of the power conversion device 1 is stopped. The process required for the transition differs between “in coasting” and “coasting control in which the power conversion device 1 is operated”, and the timing at which the motor 2 outputs torque is different. The present invention solves such a problem, and is configured to determine whether or not to perform coasting control by comparing the vehicle speed and the second determination value, so that each power The converter 1 (1 1 , 1 2 ,..., 1 N ) starts coasting control at the same time, and the operation variation of each power converter 1 (1 1 , 1 2 ,..., 1 N ) The timing of outputting torque from the electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be matched.
 また、上記のような車輪径差に起因する動作のばらつきに対して、車輪径差を積極的に管理し車輪径差に起因する動作のばらつきを軽減することも考えられる。しかしながら、本発明の課題に記載したような同期電動機のセンサレス制御の動作のばらつきを各々の電力変換装置1(1,1,……,1)で統一するためには、各々の電動機2が機械的に接続されている電気車の車輪の車輪径を数mm以下の公差で管理する必要が出てくるため、電気車のメンテナンスコストが増大する場合がある。これは同期電動機をセンサレス制御で駆動する電力変換装置を複数台備えた電気車の特有の課題である。本発明はこのようなメンテナンスコストの課題に対しても有効であることは言うまでもない。 It is also conceivable to actively manage the wheel diameter difference to reduce the operation variation caused by the wheel diameter difference with respect to the operation variation caused by the wheel diameter difference as described above. However, in order to unify the variations in the operation of the sensorless control of the synchronous motor as described in the subject of the present invention in each of the power converters 1 (1 1 , 1 2 ,..., 1 N ) Since it becomes necessary to manage the wheel diameter of the wheel of the electric vehicle to which 2 is mechanically connected with a tolerance of several millimeters or less, the maintenance cost of the electric vehicle may increase. This is a problem specific to an electric vehicle including a plurality of power conversion devices that drive a synchronous motor by sensorless control. It goes without saying that the present invention is also effective for such a problem of maintenance costs.
実施の形態2.
 図4は、実施の形態2に係る電気車の制御装置を含む全体のシステム構成図であり、図5は、実施の形態2に係る電力変換装置の細部構成を示すブロック図である。図1および図2に示す実施の形態1に係る電力変換装置1との構成上の相違点は、実施の形態2では、信号選択部9を備えていない点、電圧検出器3aの検出電圧である中間リンク電圧EFCを処理部4に入力するのに加えて、電力変換装置1の外部、より詳細には図5に示すように列車情報管理装置26に入力している点、図示していないが第2の判定値が中間リンク電圧EFCにより可変となる点、および、列車情報管理装置26に演算部26aを備えている点である。なお、その他の構成については、実施の形態1と同一または同等の構成であり、同一または同等の構成部には同一の符号を付して示すと共に、重複する説明は省略する。
Embodiment 2. FIG.
4 is an overall system configuration diagram including the control device for an electric vehicle according to the second embodiment, and FIG. 5 is a block diagram illustrating a detailed configuration of the power conversion device according to the second embodiment. The difference in configuration from the power conversion device 1 according to the first embodiment shown in FIG. 1 and FIG. 2 is that the second embodiment does not include the signal selection unit 9, and the detection voltage of the voltage detector 3a. In addition to inputting a certain intermediate link voltage EFC to the processing unit 4, it is not shown outside of the power conversion device 1, more specifically, being input to the train information management device 26 as shown in FIG. 5. The second determination value is variable by the intermediate link voltage EFC, and the train information management device 26 includes a calculation unit 26a. In addition, about another structure, it is the same or equivalent structure as Embodiment 1, and it attaches | subjects and shows the same code | symbol to the same or equivalent structure part, and the overlapping description is abbreviate | omitted.
 実施の形態2に係る電気車の制御装置では、実施の形態1において各々の電力変換装置1(11,12,……,1N)で実行されていた信号選択部9の処理を図4に図示する演算部26aで実行するように構成する。 In the electric vehicle control device according to the second embodiment, the processing of the signal selection unit 9 executed in each power conversion device 1 (11, 12,..., 1N) in the first embodiment is illustrated in FIG. It is comprised so that it may perform with the calculating part 26a.
 また、図4および図5に示すように、各々の電力変換装置1(1,1,……,1)で検出された中間リンク電圧EFCは、列車情報管理装置26に入力される。中間リンク電圧EFCは、各々の電力変換装置1(1,1,……,1)に設けられた電圧検出器3aで検出するため、電圧検出器3aの公差の関係で、必ずしも同じ値になるとは限らない。そこで、実施の形態2では、中間リンク電圧EFCを集約して列車情報管理装置26に集め、列車情報管理装置26の演算部26aで中間リンク電圧EFCの平均値EFCmeanもしくは最小値EFCminを算出し、編成全体で統一した値を用いることとする。なお、実施の形態2では、図2の信号選択部9が生成していた選択信号SFを伝送路に載せ、各々の電力変換装置1(1,1,……,1)に伝達する。このような構成とすることにより、各々の電力変換装置1(1,1,……,1)で実行する処理が少なくなり、電力変換装置1のコスト低減に寄与できる。なお、図4では、中間リンク電圧EFCおよび選択信号SFの情報を列車情報管理装置26の伝送路で伝送しているが、他の伝送路を使用して実現してもよいし、信号選択部9の処理も演算部26aで実行するものに限定するものではない。 Further, as shown in FIGS. 4 and 5, the intermediate link voltage EFC detected by each power conversion device 1 (1 1 , 1 2 ,..., 1 N ) is input to the train information management device 26. . Since the intermediate link voltage EFC is detected by the voltage detector 3a provided in each power converter 1 (1 1 , 1 2 ,..., 1 N ), it is not necessarily the same because of the tolerance of the voltage detector 3a. Not necessarily a value. Therefore, in the second embodiment, the intermediate link voltage EFC is collected and collected in the train information management device 26, and the average value EFCmean or the minimum value EFCmin of the intermediate link voltage EFC is calculated by the arithmetic unit 26a of the train information management device 26. The same value is used for the entire organization. In the second embodiment, the selection signal SF generated by the signal selection unit 9 of FIG. 2 is placed on the transmission line and transmitted to each power conversion device 1 (1 1 , 1 2 ,..., 1 N ). To do. By adopting such a configuration, the processing executed in each power conversion device 1 (1 1 , 1 2 ,..., 1 N ) is reduced, which can contribute to cost reduction of the power conversion device 1. In FIG. 4, the information of the intermediate link voltage EFC and the selection signal SF is transmitted through the transmission path of the train information management device 26, but may be realized using another transmission path, or the signal selection unit Ninth processing is not limited to that executed by the calculation unit 26a.
 つぎに、実施の形態2における信号切替器10での信号切替動作について説明する。実施の形態2でも、図3のフローチャートに従って信号切替動作が実行される。実施の形態2の処理において、図3のフローチャートを実行する際の第2の判定値を中間リンク電圧EFCに従って変更する。なお、以下の説明で使用する中間リンク電圧EFCは各々の電力変換装置1(11,12,……,1N)が検出した中間リンク電圧EFCの平均値EFCmeanもしくは最小値EFCminである。以下、この点について説明する。 Next, a signal switching operation in the signal switcher 10 according to the second embodiment will be described. Also in the second embodiment, the signal switching operation is executed according to the flowchart of FIG. In the processing of the second embodiment, the second determination value when executing the flowchart of FIG. 3 is changed according to the intermediate link voltage EFC. The intermediate link voltage EFC used in the following description is the average value EFCmean or the minimum value EFCmin of the intermediate link voltage EFC detected by each power converter 1 (11, 12,..., 1N). Hereinafter, this point will be described.
 まず、第2の判定値は、次式によって定式化することができる。 First, the second judgment value can be formulated by the following equation.
 第2の判定値=中間リンク電圧EFC×比例係数K-制御余裕G   ……(1) 2nd judgment value = Intermediate link voltage EFC x Proportional coefficient K-Control margin G ... (1)
 上記(1)式における比例係数Kは、最小車輪径の車軸に接続される電動機2の端子間電圧(以下、便宜的に「最小車輪径による電動機電圧」という)と、車両速度とが比例関係にあることから、一意に決まる値であり、次式で表すことができる。 In the proportional coefficient K in the above equation (1), the voltage between the terminals of the electric motor 2 connected to the axle with the smallest wheel diameter (hereinafter referred to as “the electric motor voltage with the smallest wheel diameter” for convenience) and the vehicle speed are proportional to each other. Therefore, the value is uniquely determined and can be expressed by the following equation.
 比例係数K=車両速度V÷最小車輪径による電動機電圧   ……(2) Proportional coefficient K = Vehicle speed V ÷ Motor voltage by minimum wheel diameter (2)
 上記(1)式に示される制御余裕Gは、第2の判定値が、中間リンク電圧EFC×比例係数Kによって決まる値よりも低い値となるように調整する設計値である。制御余裕Gを設ける意図は、比例係数Kの変動や、中間リンク電圧EFCの急峻な変動によって、中間リンク電圧EFCが電動機2の端子間電圧よりも小さくなるのを回避するためである。 The control margin G shown in the above equation (1) is a design value that is adjusted so that the second determination value is lower than the value determined by the intermediate link voltage EFC × proportional coefficient K. The purpose of providing the control margin G is to prevent the intermediate link voltage EFC from becoming smaller than the inter-terminal voltage of the electric motor 2 due to a change in the proportional coefficient K and a steep change in the intermediate link voltage EFC.
 図6は、第2の判定値の設定概念の説明に供する図である。図6において、横軸には車両速度をとり、縦軸には中間リンク電圧と電動機2の端子間電圧の関係を示している。また、直線Kaは電動機aの端子間電圧を表し、直線Kbは電動機bの端子間電圧を表している。ここで、電動機aは車輪径aの車軸に接続される電動機を意味し、電動機bは車輪径bの車軸に接続される電動機を意味している。なお、ここでは、車輪径a<車輪径bという関係があり、また、車輪径aは編成内で最小の車輪径であると仮定している。すなわち、電動機aは、編成内で最小の車輪径を有する車軸に接続された電動機であり、電動機bは最小の車輪径ではない車軸に接続された電動機の1つを意味している。 FIG. 6 is a diagram for explaining the setting concept of the second determination value. In FIG. 6, the horizontal axis represents the vehicle speed, and the vertical axis represents the relationship between the intermediate link voltage and the terminal voltage of the electric motor 2. The straight line Ka represents the voltage between the terminals of the electric motor a, and the straight line Kb represents the voltage between the terminals of the electric motor b. Here, the electric motor a means an electric motor connected to an axle having a wheel diameter a, and the electric motor b means an electric motor connected to an axle having a wheel diameter b. Here, there is a relationship of wheel diameter a <wheel diameter b, and it is assumed that the wheel diameter a is the smallest wheel diameter in the knitting. That is, the electric motor a is an electric motor connected to the axle having the smallest wheel diameter in the train, and the electric motor b means one of electric motors connected to the axle having the smallest wheel diameter.
 図6より、電動機の端子間電圧は車両速度が上昇するにつれて大きくなり、同じ車両速度では最小車輪径である電動機aの端子間電圧が最も電圧上昇する。したがって、最小車輪径による電動機電圧に基づき第2の判定値を可変にすればよいことが分かる。そこで、図6に示す第2の判定値は最小車輪径による電動機電圧である直線Kaに基づき中間リンク電圧に応じて可変となるようにしている。 From FIG. 6, the voltage between the terminals of the electric motor increases as the vehicle speed increases, and the voltage between the terminals of the electric motor a, which is the minimum wheel diameter, increases most at the same vehicle speed. Therefore, it is understood that the second determination value may be made variable based on the motor voltage based on the minimum wheel diameter. Therefore, the second determination value shown in FIG. 6 is made variable according to the intermediate link voltage based on the straight line Ka that is the motor voltage based on the minimum wheel diameter.
 更に、一般的な電気鉄道などの用途においては中間リンクの直流電圧値は大きく変動する場合があるため、上記(1)式に示されるように制御余裕Gを、これらの条件を加味して中間リンクの直流電圧値×比例定数よりも第2の所定値が低い値なるように調整すれば、中間リンク電圧EFCが電動機の端子間電圧よりも小さくなる状況、すなわち電動機2が回生状態となってしまう状況を確実に回避できるので、各々の電動機2(2,2,……,2)で発生するトルクを確実に揃えることができ、車両間の玉突き現象を抑止して、電気車の乗り心地の改善を図ることが可能となる。 Furthermore, in general applications such as electric railways, the DC voltage value of the intermediate link may fluctuate greatly. Therefore, as shown in the above equation (1), the control margin G is added to the intermediate link in consideration of these conditions. If the second predetermined value is adjusted to be lower than the link DC voltage value × proportional constant, the intermediate link voltage EFC becomes smaller than the voltage between the terminals of the motor, that is, the motor 2 is in a regenerative state. Therefore, the torque generated by each electric motor 2 (2 1 , 2 2 ,..., 2 N ) can be surely aligned, and the ball collision phenomenon between the vehicles can be suppressed and the electric vehicle can be prevented. It is possible to improve the ride comfort.
 なお、比例係数Kは、電動機2の磁石温度によって若干変動する場合がある。よって、電動機2の磁石温度の影響が大きい場合には、電動機2に温度センサを設け、温度センサの検出情報によって比例係数Kを可変にしてもよい。また、電動機2に流れる電流から磁石温度を推定し、その推定結果によって比例係数Kを可変にしてもよいし、これらの影響を加味して制御余裕Gを調整してもよい。 The proportionality coefficient K may slightly vary depending on the magnet temperature of the electric motor 2. Therefore, when the influence of the magnet temperature of the electric motor 2 is large, a temperature sensor may be provided in the electric motor 2 and the proportionality coefficient K may be varied according to detection information of the temperature sensor. Further, the magnet temperature may be estimated from the current flowing through the electric motor 2 and the proportionality coefficient K may be varied according to the estimation result, or the control margin G may be adjusted in consideration of these effects.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1(1,1,……,1) 電力変換装置、2(2,2,……,2) 電動機、3 電力変換部、3a 電圧検出器、4 処理部、5 記憶部、6 第1の起動部、7 第2の起動部、8 電動機制御部、9 信号選択部(起動選択部)、10 信号切替器(起動選択部)、11 電流検出部、13 制御開始操作部、14 列車保安装置、15 ハンドル、16 キロ程管理装置、17 速度発電機、22 運転支援システム、23 運転支援装置、24 速度規制区間記憶部、25 走行管理部、26 列車情報管理装置、26a 演算部、40 車両、50 列車、51 架線、52 集電装置。 1 (1 1 , 1 2 ,..., 1 N ) Power conversion device, 2 (2 1 , 2 2 ,..., 2 N ) motor, 3 power conversion unit, 3a voltage detector, 4 processing unit, 5 storage Unit, 6 first start unit, 7 second start unit, 8 motor control unit, 9 signal selection unit (start selection unit), 10 signal switcher (start selection unit), 11 current detection unit, 13 control start operation Part, 14 train security device, 15 steering wheel, 16 kilometer management device, 17 speed generator, 22 driving support system, 23 driving support device, 24 speed regulation section storage unit, 25 travel management unit, 26 train information management device, 26a Arithmetic unit, 40 vehicles, 50 trains, 51 overhead lines, 52 current collector.

Claims (8)

  1.  同期電動機をセンサレス制御で駆動する電力変換装置を複数台備えた電気車の制御装置であって、
     車速センサから得られた車両速度の情報に基づいて前記電力変換装置を何れの制御系で起動するか選択する起動選択部を備え、
     前記車両速度に基づき各々の前記電力変換装置が同一の制御系で動作を開始する
     ことを特徴とする電気車の制御装置。
    A control device for an electric vehicle comprising a plurality of power conversion devices for driving a synchronous motor by sensorless control,
    An activation selection unit that selects which control system to activate the power conversion device based on vehicle speed information obtained from a vehicle speed sensor;
    Each electric power converter starts operation by the same control system based on the vehicle speed. An electric vehicle control device characterized by things.
  2.  前記車両速度の大小を判定する第1の判定値が設定され、
     各々の前記電力変換装置は、運転指令の有無および前記第1の判定値による前記車両速度の大小関係に従って、前記電力変換装置の制御系を切り替える
     ことを特徴とする請求項1に記載の電気車の制御装置。
    A first determination value for determining the magnitude of the vehicle speed is set,
    2. The electric vehicle according to claim 1, wherein each of the power conversion devices switches a control system of the power conversion device in accordance with the presence / absence of an operation command and the magnitude relationship of the vehicle speed based on the first determination value. Control device.
  3.  前記車両速度の大小を判定する第2の判定値が設定され、
     前記第2の判定値は、前記第1の判定値よりも値が大きく、
     各々の前記電力変換装置は、前記第2の判定値による前記車両速度の大小関係に従って、電力変換部に対するスイッチング制御を停止する
     ことを特徴とする請求項2に記載の電気車の制御装置。
    A second determination value for determining the magnitude of the vehicle speed is set,
    The second determination value is larger than the first determination value,
    3. The electric vehicle control device according to claim 2, wherein each of the power conversion devices stops switching control for the power conversion unit according to a magnitude relationship of the vehicle speed based on the second determination value.
  4.  各々の前記電力変換装置は、
     磁気飽和を利用して初期磁極位置の推定処理を行う第1の起動部と、
     誘起電圧を利用して初期速度および初期磁極位置の推定処理を行う第2の起動部と、
     前記第1の起動部が推定した初期磁極位置、または、前記第2の起動部が推定した初期速度および初期磁極位置のうちの何れか一方を初期値として生成したトルク制御指令で前記電動機を駆動する処理を行う電動機制御部と、
     を有して構成されることを特徴とする請求項3に記載の電気車の制御装置。
    Each of the power conversion devices
    A first activation unit that performs an estimation process of an initial magnetic pole position using magnetic saturation;
    A second activation unit that performs an estimation process of the initial velocity and the initial magnetic pole position using the induced voltage;
    The electric motor is driven by a torque control command generated by using one of the initial magnetic pole position estimated by the first starting unit or the initial speed and the initial magnetic pole position estimated by the second starting unit as an initial value. An electric motor controller that performs processing
    The control apparatus for an electric vehicle according to claim 3, comprising:
  5.  各々の前記電力変換装置は、
     運転指令が入力されている場合において、前記車両速度が前記第1の判定値未満の場合に前記第1の起動部を動作させ、前記車両速度が前記第1の判定値以上の場合に前記第2の起動部を動作させる
     ことを特徴とする請求項4に記載の電気車の制御装置。
    Each of the power conversion devices
    When a driving command is input, the first activation unit is operated when the vehicle speed is less than the first determination value, and the first activation unit is operated when the vehicle speed is equal to or higher than the first determination value. 5. The electric vehicle control device according to claim 4, wherein the starting unit is operated.
  6.  各々の前記電力変換装置は、
     運転指令が入力されていない場合において、前記車両速度が前記第2の判定値以上の場合に前記第2の起動部を動作させ、前記車両速度が前記第1の判定値未満の場合に、電力変換部に対するスイッチング制御を停止することを特徴とする請求項4に記載の電気車の制御装置。
    Each of the power conversion devices
    When no driving command is input, the second activation unit is operated when the vehicle speed is equal to or higher than the second determination value, and when the vehicle speed is lower than the first determination value, 5. The electric vehicle control device according to claim 4, wherein the switching control for the converter is stopped.
  7.  前記第2の判定値は、前記電力変換装置の中間リンク電圧によって調整されることを特徴とする請求項3に記載の電気車の制御装置。 4. The electric vehicle control device according to claim 3, wherein the second determination value is adjusted by an intermediate link voltage of the power conversion device.
  8.  前記第2の判定値は、前記同期電動機を構成する磁石の温度によって調整されることを特徴とする請求項3に記載の電気車の制御装置。 4. The electric vehicle control device according to claim 3, wherein the second determination value is adjusted by a temperature of a magnet constituting the synchronous motor.
PCT/JP2015/055243 2015-02-24 2015-02-24 Electric vehicle control device WO2016135858A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/055243 WO2016135858A1 (en) 2015-02-24 2015-02-24 Electric vehicle control device
JP2017501605A JP6214814B2 (en) 2015-02-24 2015-02-24 Electric vehicle control device
DE112015006217.3T DE112015006217B4 (en) 2015-02-24 2015-02-24 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055243 WO2016135858A1 (en) 2015-02-24 2015-02-24 Electric vehicle control device

Publications (1)

Publication Number Publication Date
WO2016135858A1 true WO2016135858A1 (en) 2016-09-01

Family

ID=56787996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055243 WO2016135858A1 (en) 2015-02-24 2015-02-24 Electric vehicle control device

Country Status (3)

Country Link
JP (1) JP6214814B2 (en)
DE (1) DE112015006217B4 (en)
WO (1) WO2016135858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913136A (en) * 2018-11-02 2021-06-04 三菱电机株式会社 Motor control device
JP7463213B2 (en) 2020-06-29 2024-04-08 株式会社東芝 Inverter Device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268705A (en) * 2000-03-22 2001-09-28 Railway Technical Res Inst Control method and its device for brake
WO2009144957A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous electric motor drive system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271397B2 (en) 1999-09-20 2009-06-03 三菱電機株式会社 Magnetic pole position detector for synchronous motor
CA2409249C (en) 2001-10-25 2008-05-27 Honda Giken Kogyo Kabushiki Kaisha Electric vehicle
MX2011010055A (en) 2009-03-26 2012-01-12 Mitsubishi Electric Corp Alternating-current rotary machine controller.
US8816622B2 (en) 2010-07-27 2014-08-26 Mitsubishi Electric Corporation Control apparatus for rotating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268705A (en) * 2000-03-22 2001-09-28 Railway Technical Res Inst Control method and its device for brake
WO2009144957A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous electric motor drive system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913136A (en) * 2018-11-02 2021-06-04 三菱电机株式会社 Motor control device
CN112913136B (en) * 2018-11-02 2023-11-24 三菱电机株式会社 Motor control device
JP7463213B2 (en) 2020-06-29 2024-04-08 株式会社東芝 Inverter Device

Also Published As

Publication number Publication date
DE112015006217T5 (en) 2017-11-16
JP6214814B2 (en) 2017-10-18
DE112015006217B4 (en) 2023-12-28
JPWO2016135858A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
US8862303B2 (en) Industrial vehicle
JP6729142B2 (en) Driving force control method and driving force control device
JP2010183687A (en) Device and method for driving support of motor-driven truck
JPH0678416A (en) Equipment for generating pseudo-creep of electric automobile
CN105555590A (en) Control device for electric vehicle
GB2460528A (en) Fixed-position automatic stop control for an electric vehicle
JP6589492B2 (en) Inverter control device
WO2008035768A1 (en) Vehicle travel control system
JP6214814B2 (en) Electric vehicle control device
JP5395398B2 (en) Train control device
JP2013215063A (en) Creep control device of electric vehicle
JP4619908B2 (en) Electric vehicle control device
CN101337514B (en) Power inversion device for electric car
JP2014093844A (en) Electric-vehicle control device
JP2007104777A (en) Electric vehicle drive controller
KR101284334B1 (en) System and method for motor control of electric vehicle
JP2007006666A (en) Motor control unit
WO2017145829A1 (en) Vehicle control system
JP2009077572A (en) Electric vehicle controller
JP4955493B2 (en) Vehicle travel control system
JP4342878B2 (en) Electric vehicle control device
JP4594776B2 (en) Electric vehicle control device
JP7367601B2 (en) Vehicle control device, program
JP2000108864A (en) Brake controller
WO2020235316A1 (en) Control device and method for controlling electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501605

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015006217

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883155

Country of ref document: EP

Kind code of ref document: A1