JP6643030B2 - Regenerative energy estimation device, brake planning device, and regenerative energy estimation method - Google Patents

Regenerative energy estimation device, brake planning device, and regenerative energy estimation method Download PDF

Info

Publication number
JP6643030B2
JP6643030B2 JP2015198458A JP2015198458A JP6643030B2 JP 6643030 B2 JP6643030 B2 JP 6643030B2 JP 2015198458 A JP2015198458 A JP 2015198458A JP 2015198458 A JP2015198458 A JP 2015198458A JP 6643030 B2 JP6643030 B2 JP 6643030B2
Authority
JP
Japan
Prior art keywords
brake
electric energy
plan
regenerative electric
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015198458A
Other languages
Japanese (ja)
Other versions
JP2017073869A (en
Inventor
徹 江澤
徹 江澤
板倉 昭宏
昭宏 板倉
孝浩 西沢
孝浩 西沢
幸造 伴野
幸造 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015198458A priority Critical patent/JP6643030B2/en
Priority to US15/265,310 priority patent/US20170096153A1/en
Publication of JP2017073869A publication Critical patent/JP2017073869A/en
Application granted granted Critical
Publication of JP6643030B2 publication Critical patent/JP6643030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes
    • B61H13/34Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/667Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/009On-board display devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明の実施形態は、回生電力量推定装置およびブレーキ計画立案装置に関する。 An embodiment of the present invention relates to a regenerative electric energy estimation device and a brake planning device.

鉄道車両の運行において、運転士は運転台に設けられた主幹制御器のブレーキノッチを操作することによって、列車を目的位置へ停止させる。主幹制御器の指令は車両制御装置に伝送され、車両制御装置は、ブレーキノッチ操作に対応した、列車が減速・停止するために必要なブレーキ力を演算する。ブレーキは電気ブレーキと摩擦ブレーキで構成される。基本的には電気ブレーキが優先され、必要なブレーキ力が得られない場合に摩擦ブレーキで補助する。電気ブレーキは、通常は回転力を出力するモータに対して逆軸回転をさせることにより発電機として作動(回生)させて制動する方式であるため、可能な限り電気ブレーキを利用した方が、回生電力量が多くなり、省エネルギーな運行に貢献できる。 In operation of a railway vehicle, a driver stops a train at a target position by operating a brake notch of a master controller provided in a cab. The command of the master controller is transmitted to the vehicle control device, and the vehicle control device calculates a braking force necessary for the train to decelerate and stop corresponding to the brake notch operation. The brake consists of an electric brake and a friction brake. Basically, the electric brake is given priority, and when the required braking force cannot be obtained, the friction brake assists. The electric brake is a method of operating (regenerating) as a generator by applying a reverse rotation to a motor that normally outputs a rotational force to brake the electric motor. The amount of electric power increases, which can contribute to energy-saving operation.

従来、できるだけ多くの回生電力量を得るために、電気ブレーキを最大限に活用するようなブレーキノッチの切替え判断を行い、その判断結果を運転台へ表示もしくは運転制御に適用する方式が提案されている。しかし、ブレーキノッチの切替え操作に対する電気ブレーキの応答は、回路形成や伝送遅延などにより異なる時間遅れ(過渡応答)がある。従来の手法では、この過渡応答の時間についてはタイマーにより処理が省略されているため、過渡応答を含めた回生電力量の推定及びブレーキノッチの切替え判断ができない。 Conventionally, in order to obtain as much regenerative electric energy as possible, a method has been proposed in which a brake notch switching judgment that maximizes the use of the electric brake is performed, and the judgment result is displayed on a cab or applied to operation control. I have. However, the response of the electric brake to the switching operation of the brake notch has a different time delay (transient response) due to circuit formation, transmission delay, and the like. In the conventional method, the processing of the time of the transient response is omitted by the timer, so that it is not possible to estimate the regenerative electric energy including the transient response and determine the switching of the brake notch.

特開2013−207992号公報JP 2013-207992 A 特開2008−301702号公報JP 2008-301702 A 特開2003−274516号公報JP 2003-274516 A

本発明が解決しようとする課題は、精度良く回生電力量を推定し、省エネルギーな運行に貢献できる回生電力量推定装置およびブレーキ計画立案装置を提供することである。 The problem to be solved by the present invention is to provide a regenerative electric energy estimating device and a brake planning device that can accurately estimate a regenerative electric energy and contribute to energy-saving operation.

一実施形態に係る回生電力推定装置は、鉄道車両の運行において、ブレーキノッチの切替え操作毎に当該ブレーキノッチの切替え操作に対応する電気ブレーキの過渡応答を含んで構成されるブレーキノッチ切替え別回生電力量推定モデルと、前記ブレーキノッチ切替え別回生電力量推定モデルに基づいて、前記ブレーキノッチの時間推移データであるブレーキ計画について得られる期待回生電力量を推定する回生電力量推定手段とを有する。 A regenerative power estimating apparatus according to one embodiment is configured such that, in the operation of a railway vehicle, each regenerative power for brake notch switching configured to include a transient response of an electric brake corresponding to the switching operation of the brake notch for each switching operation of the brake notch. And a regenerative power amount estimating means for estimating an expected regenerative power amount obtained for a brake plan, which is a time transition data of the brake notch, based on the amount estimating model and the regenerative power amount estimating model for each brake notch switching.

ブレーキノッチと期待回生電力の関係の例を示す表。7 is a table showing an example of a relationship between a brake notch and expected regenerative electric power. ブレーキノッチと回生電力の時間推移の例を示す図。The figure which shows the example of a time transition of a brake notch and regenerative electric power. 実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと期待回生電力の関係の例を示す表。9 is a table showing an example of a relationship between a brake notch before switching and a brake notch after switching and expected regenerative power in the embodiment. ブレーキノッチと回生電力の時間推移と過渡応答区間の区別の例を示す図。The figure which shows the example of a time transition of a brake notch and regenerative electric power, and the distinction of a transient response area. 実施形態における回生電力量推定装置のブロック図。FIG. 2 is a block diagram of a regenerative electric energy estimation device according to the embodiment. 実施形態における回生電力量推定装置のフローチャート。4 is a flowchart of a regenerative electric energy estimation device according to the embodiment. 実施形態における各種情報の取得部を有する回生電力量推定装置のブロック図。FIG. 2 is a block diagram of a regenerative electric energy estimation device having an acquisition unit for various information according to the embodiment. 実施形態における各種情報の取得部を有する回生電力量推定装置のフローチャート。5 is a flowchart of a regenerative electric energy estimation device having an acquisition unit for various information according to the embodiment. 車両速度と期待回生電力の関係の例を示す図。The figure which shows the example of the relationship between a vehicle speed and expected regenerative electric power. 実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと車両速度と期待回生電力の関係の例を示す図。The figure which shows the example of the brake notch before a switch in the embodiment, the brake notch after a switch, the vehicle speed, and the expected regenerative electric power. 車両速度と天候と期待回生電力の関係の例を示す図。The figure which shows the example of the relationship between vehicle speed, weather, and expected regenerative electric power. 実施形態における回生電力量推定装置を有するブレーキ計画立案装置のブロック図。FIG. 1 is a block diagram of a brake planning device having a regenerative electric energy estimating device according to an embodiment. 実施形態における回生電力量推定装置を有するブレーキ計画立案装置のフローチャート。4 is a flowchart of a brake planning device having a regenerative electric energy estimating device according to the embodiment. 実施形態におけるブレーキ計画生成部で生成されるブレーキ計画案の例を示す図。FIG. 4 is a diagram illustrating an example of a brake plan draft generated by a brake plan generation unit according to the embodiment. 実施形態におけるブレーキ計画選択部で利用される選択条件の例を示す図。FIG. 4 is a diagram illustrating an example of selection conditions used by a brake plan selection unit according to the embodiment. 実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のブロック図。1 is a block diagram of a regenerative electric energy estimating device and a brake planning device having an acquisition unit of various information according to an embodiment. 実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のフローチャート。4 is a flowchart of a regenerative electric energy estimation device and a brake planning device having an acquisition unit for various information according to the embodiment. 実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のブロック図。FIG. 1 is a block diagram of a brake planning device having a regenerative electric energy estimation device according to an embodiment and capable of inputting selection conditions. 実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のフローチャート。4 is a flowchart of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of inputting selection conditions. 実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のブロック図。FIG. 1 is a block diagram of a brake planning device having a regenerative electric energy estimating device according to an embodiment and capable of outputting to a vehicle control. 実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のフローチャート。3 is a flowchart of a brake planning device having the regenerative electric energy estimation device according to the embodiment and capable of outputting to vehicle control. 実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のブロック図。FIG. 2 is a block diagram of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of outputting to a vehicle control via an execution instruction. 実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のフローチャート。4 is a flowchart of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of outputting to a vehicle control via an execution instruction. 実施形態における実行指示を入力するGUIの例を示す図。FIG. 4 is an exemplary view showing an example of a GUI for inputting an execution instruction in the embodiment. 実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のブロック図。FIG. 2 is a block diagram of a regenerative electric energy estimation device and a brake planning device having the respective additional functions according to the embodiment. 実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のフローチャート。5 is a flowchart of a regenerative electric energy estimation device and a brake planning device having the additional functions according to the embodiment.

以下、図面を参照しながら実施形態を説明する。以下の実施形態では、同一の構成要素に同一の参照符号を付して、重ねての説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same components are denoted by the same reference numerals, and overlapping description will be omitted.

実施例1において、回生電力量推定装置について説明する。 First Embodiment In a first embodiment, a regenerative power amount estimation device will be described.

図1は、ブレーキノッチと期待回生電力の関係の例を示す表である。図1のように、ブレーキノッチに対して、得られるであろう回生電力(期待回生電力[kW])を予め把握しておくことにより、任意の運行区間におけるブレーキノッチの時間推移から期待回生電力の時間積分値である期待回生電力量を算出することができる。これは最も単純な方法であり、ブレーキノッチ以外の情報による影響は考慮しない。なお、図1の例ではブレーキノッチの段数は0から3の4段階をとっているが、実際には何段階でも構わない。 FIG. 1 is a table showing an example of a relationship between a brake notch and expected regenerative power. As shown in FIG. 1, by knowing in advance the regenerative power (expected regenerative power [kW]) that can be obtained for the brake notch, the expected regenerative power can be calculated from the time transition of the brake notch in any operation section. The expected regenerative electric energy, which is the time integrated value of the above, can be calculated. This is the simplest method and does not take into account the effects of information other than the brake notch. In the example shown in FIG. 1, the number of brake notches is four from 0 to 3, but may be any number.

図2は、ブレーキノッチと回生電力の時間推移の例を示す図である。横軸が時間、縦軸がブレーキノッチ及び回生電力[kW]であり、実線がブレーキノッチ、破線が回生電力を示す。図2のように、ブレーキノッチの切替え操作に対する回生電力は、ブレーキノッチを切替えた瞬間の時刻に対して回路形成や伝送遅延などに起因する時間遅れ(過渡応答)がある。図1で示した関係だけを利用した場合は、この過渡応答を考慮することができないため、実際の回生電力量に対する期待回生電力量の推定精度が悪化してしまう。 FIG. 2 is a diagram illustrating an example of a time transition of the brake notch and the regenerative electric power. The horizontal axis indicates time, the vertical axis indicates brake notch and regenerative power [kW], the solid line indicates brake notch, and the broken line indicates regenerative power. As shown in FIG. 2, the regenerative power for the switching operation of the brake notch has a time delay (transient response) due to circuit formation, transmission delay, and the like with respect to the time at the moment of switching the brake notch. When only the relationship shown in FIG. 1 is used, the transient response cannot be taken into consideration, so that the accuracy of estimating the expected regenerative power with respect to the actual regenerative power is deteriorated.

そこで、本実施形態では、ブレーキノッチの切替えによって発生すること、また、ブレーキノッチの切替え操作において切替える前のブレーキノッチと切替えた後のブレーキノッチの組み合わせで過渡応答の特性が変化することに着目し、ブレーキノッチの切替え操作ごとに回生電力を推定するモデルを構築する。 Therefore, in the present embodiment, attention is paid to the fact that the transient response characteristic changes due to the combination of the brake notch before switching and the brake notch after switching in the switching operation of the brake notch. A model for estimating the regenerative power for each brake notch switching operation is constructed.

図3は、実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと期待回生電力の関係の例を示す表である。行が切替え前のブレーキノッチ(0〜3)、列が切替え後のブレーキノッチ(0〜3)を示し、各数値は期待回生電力[kW]を示している。例えば、ある推定対象時刻におけるブレーキノッチが2であるとする。図1の関係を利用すると、期待回生電力は1000[kW]となる。ここで、図3の関係を利用すると、当該時刻すなわち切替え後のブレーキノッチが2であるときの期待回生電力は、当該時刻の直前のブレーキノッチによって異なる。0の場合は800[kW]、1の場合は900[kW]、2の場合は切替えなしのため1000[kW]のまま(図3では規定されず、図1に基づく。)、3の場合は1100[kW]であり、まとめると、800〜1100[kW]の範囲の期待回生電力となる。 FIG. 3 is a table illustrating an example of a relationship between a brake notch before switching and a brake notch after switching and expected regenerative power in the embodiment. The row indicates the brake notch (0-3) before switching, the column indicates the brake notch (0-3) after switching, and each numerical value indicates the expected regenerative power [kW]. For example, it is assumed that the brake notch at a certain estimation target time is 2. Using the relationship in FIG. 1, the expected regenerative power is 1000 [kW]. Here, using the relationship in FIG. 3, the expected regenerative power at the time, that is, when the brake notch after switching is 2, differs depending on the brake notch immediately before the time. In the case of 0, it is 800 [kW], in the case of 1, 900 [kW], in the case of 2, there is no switching, so it remains 1000 [kW] (not specified in FIG. 3 and based on FIG. 1). Is 1100 [kW], which is an expected regenerative power in the range of 800 to 1100 [kW].

図4は、ブレーキノッチと回生電力の時間推移と過渡応答区間の区別の例を示す図である。過渡応答は時間の経過に応じて徐々に定常状態に収束していく。そこで、図4に示すように、Aを過渡応答区間、Bを過渡応答以外の区間と定義し、Aの範囲については図3の関係を利用し、Bの範囲については図1の関係を利用しても良い。 FIG. 4 is a diagram illustrating an example of the distinction between the time transition of the brake notch and the regenerative power and the transient response section. The transient response gradually converges to a steady state over time. Therefore, as shown in FIG. 4, A is defined as a transient response section, B is defined as a section other than the transient response, and the relationship of FIG. 3 is used for the range of A, and the relationship of FIG. You may.

このように、図3の関係、または、図3および図1の両方の関係を利用することで、任意の運行区間におけるブレーキノッチの時間推移から、回生電力の過渡応答を考慮しながら期待回生電力量を算出することができる。したがって、図1で示した関係だけを利用した場合に比べて、過渡応答を考慮する分、実際の回生電力量に対する期待回生電力量の推定精度を改善できる。 As described above, by utilizing the relationship in FIG. 3 or both the relationship in FIG. 3 and FIG. 1, from the time transition of the brake notch in an arbitrary operation section, the expected regenerative power is considered while considering the transient response of the regenerative power. The amount can be calculated. Therefore, compared with the case where only the relationship shown in FIG. 1 is used, the accuracy of estimating the expected regenerative electric energy with respect to the actual regenerative electric energy can be improved by considering the transient response.

図5は、実施形態における回生電力量推定装置のブロック図である。回生電力量推定装置500は、回生電力量推定部501、ブレーキノッチ切替え別回生電力推定モデル502を備える。ブレーキ計画503を入力とし、表示部504に推定結果を出力する。図5は、上記で説明した各機能の構成に対応する。 FIG. 5 is a block diagram of the regenerative electric energy estimation device according to the embodiment. The regenerative electric energy estimating apparatus 500 includes a regenerative electric energy estimating unit 501 and a regenerative electric power estimation model 502 for each brake notch switching. The brake plan 503 is input, and the estimation result is output to the display unit 504. FIG. 5 corresponds to the configuration of each function described above.

図6は、実施形態における回生電力量推定装置のフローチャートである。図6は、上記で説明した各機能の処理の流れに対応する。本実施形態においては、あらかじめブレーキノッチ切替え別回生電力量推定モデル502を構築しておく必要がある。このモデルとは、具体的には、図3で示した表(切替え前のブレーキノッチ及び切替え後のブレーキノッチと期待回生電力の関係)や、後で説明する図10で示す表(切替え前のブレーキノッチ及び切替え後のブレーキノッチと車両速度と期待回生電力の関係)である。例えば、鉄道車両の運行データを取得し、ブレーキノッチの切替え操作ごとにデータを集計することにより、モデル502を構築する。このモデルは、記憶装置に記憶しておくことができる。 FIG. 6 is a flowchart of the regenerative electric energy estimation device according to the embodiment. FIG. 6 corresponds to the processing flow of each function described above. In the present embodiment, it is necessary to construct a model for estimating the regenerative electric energy for each brake notch switching 502 in advance. Specifically, this model includes the table shown in FIG. 3 (the relationship between the brake notch before switching and the brake notch after switching and the expected regenerative power) and the table shown in FIG. Relationship between the brake notch, the brake notch after switching, the vehicle speed, and the expected regenerative electric power). For example, the model 502 is constructed by acquiring operation data of a railway vehicle and totalizing the data for each switching operation of the brake notch. This model can be stored in a storage device.

処理を開始する(S601)。はじめに回生電力量推定装置500は、回生電力量を推定したいブレーキノッチの時間推移データ(ブレーキ計画503)を取得する(S602)。回生電力量推定部501は、ブレーキノッチ切替え別回生電力量推定モデル502に基づいて、入力されたブレーキ計画503で得られるであろう期待回生電力量を推定する(S603)。そして、ブレーキ計画とともに推定した期待回生電力量を表示部504へ出力する(S604)。以上で処理を終了する(S605)。 The process starts (S601). First, the regenerative electric energy estimating apparatus 500 acquires the time transition data (brake plan 503) of the brake notch for which the regenerative electric energy is to be estimated (S602). The regenerative electric energy estimating unit 501 estimates an expected regenerative electric energy that will be obtained in the input brake plan 503 based on the brake notch switching-specific regenerative electric energy estimation model 502 (S603). Then, the estimated regenerative electric energy estimated together with the brake plan is output to the display unit 504 (S604). Thus, the process ends (S605).

実施例1で説明した構成では、ブレーキノッチの切替え操作ごとに回生電力量推定モデルを持つことにより、過渡応答を考慮しながら期待回生電力量を高精度に推定することができる。 In the configuration described in the first embodiment, by having a regenerative power amount estimation model for each switching operation of the brake notch, the expected regenerative power amount can be estimated with high accuracy while considering the transient response.

実施例2では、各種情報の取得部を有する回生電力量推定装置について説明する。 In a second embodiment, a description will be given of a regenerative electric energy estimating apparatus having an acquisition unit for various information.

図7は、実施形態における各種情報の取得部を有する回生電力量推定装置のブロック図である。実施例1で説明した構成に対して、回生電力量推定部の入力として、勾配・カーブ情報701、車両速度、車両重量、天候、架線電圧、滑走状態、車両併結状態の各取得部702〜707が追加された構成である。 FIG. 7 is a block diagram of a regenerative electric energy estimating apparatus having an acquisition unit for various information according to the embodiment. With respect to the configuration described in the first embodiment, the input units of the regenerative electric energy estimating unit include the acquisition units 702 to 707 of the slope / curve information 701, the vehicle speed, the vehicle weight, the weather, the overhead line voltage, the sliding state, and the vehicle combined state. Is added.

勾配・カーブ情報は、軌道に関わる固有の勾配及びカーブの情報である。車両速度は、車両の運行速度であり、普通は号車別ではなく編成で同一の値をもつ。車両重量は、乗客やその他設備を含む車両の重量であり、号車別に異なる値をもつ。天候は、運行場所の雨や雪などの情報である。架線電圧は、架線からパンタグラフを通じてモータにかかる電圧であり、モータの特性などに応じて号車別に異なる値をもつ。滑走状態は、車両の車輪のレールに対する粘着力が弱くなることにより発生する滑りの現象を滑走と言い、その発生の有無や発生予兆などの情報である。車両制御においては、滑走が発生しないようにブレーキ力を制御している。車両併結状態は、異なる系の編成が連結されているかどうかの情報である。 The gradient / curve information is information on a specific gradient and curve related to the trajectory. The vehicle speed is the operating speed of the vehicle, and usually has the same value for each train, not for each car. The vehicle weight is the weight of a vehicle including passengers and other facilities, and has a different value for each car. The weather is information such as rain or snow at the service location. The overhead line voltage is a voltage applied to the motor from the overhead line through the pantograph, and has a different value for each car according to the characteristics of the motor and the like. The sliding state refers to a sliding phenomenon that occurs when the adhesion of the wheels of the vehicle to the rails is weakened, and is information such as the presence / absence of the occurrence and a sign of occurrence. In the vehicle control, the braking force is controlled so that no gliding occurs. The vehicle combination state is information on whether or not formations of different systems are connected.

実施例2では、回生電力量推定部において、これらの情報を併用して期待回生電力量を推定する。 In the second embodiment, the regenerative power amount estimating unit estimates the expected regenerative power amount using these pieces of information.

図8は、実施形態における各種情報の取得部を有する回生電力量推定装置のフローチャートである。 FIG. 8 is a flowchart of the regenerative electric energy estimating apparatus having the various information acquiring units according to the embodiment.

処理を開始する(S801)。はじめに回生電力量推定装置は、回生電力量を推定したいブレーキノッチの時間推移データ(ブレーキ計画)を取得する(S802)。回生電力量推定部は、勾配・カーブ・車両速度・車両重量・天候・架線電圧・滑走状態・車両併結状態を、各取得部から取得する(S803)。回生電力量推定部は、これら取得した情報と、ブレーキノッチ切替え別回生電力量推定モデルに基づいて、入力されたブレーキ計画で得られるであろう期待回生電力量を推定する(S804)。そして、ブレーキ計画とともに推定した期待回生電力量を表示部へ表示する(S804)。以上で処理を終了する(S806)。 The process starts (S801). First, the regenerative electric energy estimating apparatus obtains time transition data (brake plan) of a brake notch whose regenerative electric energy is to be estimated (S802). The regenerative electric energy estimating unit acquires the gradient, curve, vehicle speed, vehicle weight, weather, overhead wire voltage, sliding state, and vehicle combined state from each acquiring unit (S803). The regenerative electric energy estimating unit estimates an expected regenerative electric energy that would be obtained by the input brake plan based on the acquired information and the regenerative electric energy estimation model for each brake notch switching (S804). Then, the estimated regenerative electric energy estimated together with the brake plan is displayed on the display unit (S804). Thus, the process ends (S806).

図9は、車両速度と期待回生電力の関係の例を示す図である。例えば車両速度については、車両速度が上がれば上がるほど期待回生電力が大きくなることが分かっているため、図9のような関係を線形式などでモデル化することができる。したがって、期待回生電力の推定に車両速度を考慮することにより、より精度の高い期待回生電力の推定が可能になる。 FIG. 9 is a diagram illustrating an example of the relationship between the vehicle speed and the expected regenerative power. For example, regarding the vehicle speed, it is known that the expected regenerative electric power increases as the vehicle speed increases. Therefore, the relationship as shown in FIG. 9 can be modeled in a linear form or the like. Therefore, by considering the vehicle speed in estimating the expected regenerative power, it is possible to more accurately estimate the expected regenerative power.

図10は、実施形態における切替え前のブレーキノッチ及び切替え後のブレーキノッチと車両速度と期待回生電力の関係の例を示す図である。図9で示したように車両速度を考慮する場合、図10のようにブレーキノッチの切替え操作ごとに車両速度を変数とした関係式でモデル化することができる。 FIG. 10 is a diagram illustrating an example of a relationship between the vehicle speed and the expected regenerative electric power, the brake notch before and after the switching, the vehicle speed, and the switching power in the embodiment. When the vehicle speed is taken into consideration as shown in FIG. 9, it can be modeled by a relational expression using the vehicle speed as a variable for each switching operation of the brake notch as shown in FIG.

図11は、車両速度と天候と期待回生電力の関係の例を示す図である。図9の関係に対して、さらに天候情報を加えたものであり、例えば晴れ、雨、雪といった天候別に、図9の関係のモデルを切替えることができる。 FIG. 11 is a diagram illustrating an example of the relationship between vehicle speed, weather, and expected regenerative power. Weather information is further added to the relationship of FIG. 9, and the model of the relationship of FIG. 9 can be switched for each weather such as sunny, rain, and snow.

その他の情報についても、関係式の変数として考慮、関係式を切替えて考慮するなど、考慮の具体的な方法は問わない。 Regarding other information, a specific method of consideration is not considered, such as consideration as a variable of the relational expression or switching and considering the relational expression.

実施例2で説明した構成においては、期待回生電力の推定に、勾配・カーブ情報、車両速度、車両重量、天候、架線電圧、滑走状態、車両併結状態を考慮することにより、より精度の高い期待回生電力の推定が可能になる。 In the configuration described in the second embodiment, the estimation of the expected regenerative electric power takes into account the gradient / curve information, the vehicle speed, the vehicle weight, the weather, the overhead wire voltage, the sliding state, and the vehicle combined state, so that a more accurate expectation can be obtained. The regenerative power can be estimated.

実施例3では、ブレーキ計画立案装置について説明する。   Third Embodiment In a third embodiment, a brake planning device will be described.

図12は、実施形態における回生電力量推定装置を有するブレーキ計画立案装置のブロック図である。実施例1で説明した構成に対して、ブレーキ計画を単数ではなく複数生成することで保持し、全てのブレーキ計画における期待回生電力量を推定し、選択条件に適合するブレーキ計画を選択する構成である。 FIG. 12 is a block diagram of a brake planning device having the regenerative electric energy estimation device according to the embodiment. In contrast to the configuration described in the first embodiment, a configuration is adopted in which a plurality of brake plans are generated instead of a single brake plan and held, the expected regenerative electric energy in all the brake plans is estimated, and a brake plan that meets the selection conditions is selected. is there.

ブレーキ計画立案装置1200において、ブレーキ計画生成部1201は、時刻取得部1202で得られる時刻、ダイヤ情報1203、および位置情報1204に基づいて、複数のブレーキ計画を生成する。 In the brake plan formulation device 1200, the brake plan generation unit 1201 generates a plurality of brake plans based on the time obtained by the time acquisition unit 1202, the schedule information 1203, and the position information 1204.

回生電力量推定装置は、全てのブレーキ計画における期待回生電力量を、回生電力量推定部において、ブレーキノッチ切替え別回生電力量推定モデルに基づいて推定する。選択条件に適合するブレーキ計画をブレーキ計画選択部1205が選択する構成である。各種の結果は表示部に出力される。 The regenerative electric energy estimating device estimates an expected regenerative electric energy in all the brake plans in a regenerative electric energy estimating unit based on a regenerative electric energy estimation model for each brake notch switching. In this configuration, a brake plan selection unit 1205 selects a brake plan that meets the selection conditions. Various results are output to the display unit.

図13は、実施形態における回生電力量推定装置を有するブレーキ計画立案装置のフローチャートである。 FIG. 13 is a flowchart of the brake planning device having the regenerative electric energy estimating device in the embodiment.

処理を開始する(S1301)。まず、時刻・ダイヤ・位置の情報を取得する(S1302)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S1303)。このとき、ブレーキ計画を生成する方法としては、ランダムにブレーキノッチを時間推移させて生成しても良いし、過去のブレーキ実績データに基づいて生成しても良く、その具体的方法は問わない。 The processing starts (S1301). First, information on time / diamond / position is obtained (S1302). Based on the acquired information, a plurality of brake plans capable of scheduled operation are generated (S1303). At this time, as a method of generating the brake plan, a brake notch may be generated by changing the time randomly, or may be generated based on past brake actual data, and a specific method is not limited.

図14は、実施形態におけるブレーキ計画生成部で生成されるブレーキ計画案の例を示す図である。図14においては、ブレーキ計画案1、ブレーキ計画案2、ブレーキ計画案3の3通りのブレーキ計画を生成している様子が示されている。実施例3のブレーキ計画立案装置は、このように複数のブレーキ計画を生成する。各ブレーキ計画案において、横軸は時間を、縦軸はブレーキノッチを示している。 FIG. 14 is a diagram illustrating an example of a brake plan draft generated by the brake plan generation unit according to the embodiment. FIG. 14 shows a situation in which three types of brake plans, brake plan 1, brake plan 2, and brake plan 3, are generated. The brake plan drafting apparatus according to the third embodiment generates a plurality of brake plans as described above. In each brake plan, the horizontal axis represents time, and the vertical axis represents brake notches.

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S1304)。推定した期待回生電力量はそれぞれ対応するブレーキ計画に紐付けられて保持される。 The expected regenerative electric energy of the generated plurality of brake plans is estimated based on the brake notch switching-specific regenerative electric energy estimation model (S1304). The estimated expected regenerative electric energy is held in association with the corresponding brake plan.

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S1305)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans linked with the estimated expected regenerative electric energy (S1305).

図15は、実施形態におけるブレーキ計画選択部で利用される選択条件の例である。ブレーキ計画を選択する選択条件として、図15のような条件を予め設定しておく。これらの選択条件は、定量的に評価可能な範囲内であれば、自由に切替えることができる。例えば、図15の選択条件4に示した「急ブレーキをしないで期待回生電力量が最大」という表現は、単位時間区間でブレーキノッチの操作上限を規定する、などで対応することができる。 FIG. 15 is an example of selection conditions used in the brake plan selection unit in the embodiment. Conditions as shown in FIG. 15 are set in advance as selection conditions for selecting a brake plan. These selection conditions can be freely switched within a range that can be quantitatively evaluated. For example, the expression “the expected regenerative electric energy is maximum without sudden braking” shown in the selection condition 4 in FIG. 15 can be dealt with by defining the upper limit of operation of the brake notch in a unit time section.

選択したブレーキ計画と推定した期待回生電力量を表示する(S1306)。以上で処理を終了する(S1307)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S1306). Thus, the process ends (S1307).

実施例3で説明した構成においては、取得した情報に基づいて複数のブレーキ計画を生成し、全てのブレーキ計画における期待回生電力量を推定し、選択条件に適合するブレーキ計画を選択することによって、単数のブレーキ計画を入力して期待回生電力量を推定するだけでなく、期待回生電力量が更に多くなるブレーキ計画を立案することが可能になる。 In the configuration described in the third embodiment, by generating a plurality of brake plans based on the acquired information, estimating the expected regenerative electric energy in all the brake plans, and selecting a brake plan that meets the selection conditions, In addition to estimating the expected regenerative electric energy by inputting a single brake plan, it is possible to formulate a brake plan that further increases the expected regenerative electric energy.

実施例4では、各種情報の取得部を有するブレーキ計画立案装置について説明する。 Fourth Embodiment In a fourth embodiment, a description will be given of a brake planning device having an acquisition unit for various information.

図16は、実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のブロック図である。実施例3で説明した構成に対して、ブレーキ計画生成部の入力として、勾配・カーブ情報1601と、車両速度、車両重量、天候の各取得部1602〜1604が追加された構成である。ブレーキ計画を立案する際に、例えば車両重量が大きい場合にはより多くのブレーキ力が必要になるため、車両重量を考慮しながらブレーキ計画を生成する。その他の情報についても、関係式の変数として考慮、関係式を切替えて考慮するなど、考慮の具体的な方法は問わない。 FIG. 16 is a block diagram of a regenerative electric energy estimating device and a brake planning device having various information acquiring units according to the embodiment. This configuration is different from the configuration described in the third embodiment in that gradient / curve information 1601 and vehicle speed, vehicle weight, and weather acquisition units 1602 to 1604 are added as inputs to the brake plan generation unit. When drafting a brake plan, for example, when the vehicle weight is large, more braking force is required. Therefore, the brake plan is generated in consideration of the vehicle weight. Regarding other information, a specific method of consideration is not considered, such as consideration as a variable of the relational expression or switching and considering the relational expression.

図17は、実施形態における回生電力量推定装置及び各種情報の取得部を有するブレーキ計画立案装置のフローチャートである。 FIG. 17 is a flowchart of a regenerative electric energy estimation device and a brake planning device having an acquisition unit for various information according to the embodiment.

処理を開始する(S1701)。まず、時刻・ダイヤ・位置・勾配・カーブ・車両速度・車両重量・天候の情報を取得する(S1702)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S1703)。 The process starts (S1701). First, information on time, diagram, position, gradient, curve, vehicle speed, vehicle weight, and weather is acquired (S1702). Based on the acquired information, a plurality of brake plans capable of scheduled operation are generated (S1703).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S1704)。 The expected regenerative electric energy of the plurality of generated brake plans is estimated based on the model for estimating the regenerative electric energy for each brake notch switching (S1704).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S1705)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans linked to the estimated expected regenerative electric energy (S1705).

選択したブレーキ計画と推定した期待回生電力量を表示する(S1706)。以上で処理を終了する(S1707)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S1706). Thus, the process ends (S1707).

実施例4で説明した構成においては、ブレーキ計画の生成に、勾配・カーブ、車両速度、車両重量、天候を考慮することにより、より精度良く定時運行が可能なブレーキ計画を生成することが可能になる。 In the configuration described in the fourth embodiment, it is possible to generate a brake plan capable of more accurate scheduled operation by considering the slope / curve, the vehicle speed, the vehicle weight, and the weather in generating the brake plan. Become.

実施例5では、選択条件の入力が可能なブレーキ計画立案装置について説明する。 In a fifth embodiment, a description will be given of a brake planning apparatus capable of inputting selection conditions.

図18は、実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のブロック図である。実施例3で説明した構成に対して、ブレーキ計画選択部の入力として、選択条件入力部1801が追加された構成である。図15に示したような選択条件について、運用時の状況に応じて適宜切替えられるようになる。 FIG. 18 is a block diagram of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of inputting selection conditions. This configuration is different from the configuration described in the third embodiment in that a selection condition input unit 1801 is added as an input to the brake plan selection unit. The selection conditions as shown in FIG. 15 can be appropriately switched according to the situation at the time of operation.

図19は、実施形態における回生電力量推定装置を有し、選択条件の入力が可能なブレーキ計画立案装置のフローチャートである。 FIG. 19 is a flowchart of the brake planning apparatus having the regenerative electric energy estimating apparatus according to the embodiment and capable of inputting selection conditions.

処理を開始する(S1901)。まず、時刻・ダイヤ・位置の情報を取得する(S1902)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S1903)。 The processing starts (S1901). First, time, timetable, and position information is acquired (S1902). Based on the acquired information, a plurality of brake plans capable of scheduled operation are generated (S1903).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S1904)。選択条件を取得する(S1905)。 The expected regenerative electric energy of the plurality of generated brake plans is estimated based on the brake notch switching-specific regenerative electric energy estimation model (S1904). The selection condition is acquired (S1905).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、取得した選択条件を満足するブレーキ計画を選択する(S1906)。 A brake plan that satisfies the acquired selection condition is selected from a plurality of brake plans linked with the estimated expected regenerative electric energy (S1906).

選択したブレーキ計画と推定した期待回生電力量を表示する(S1907)。以上で処理を終了する(S1908)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S1907). Thus, the process ends (S1908).

実施例5で説明した構成においては、ブレーキ計画選択部の選択条件を外部から入力できるようにしておくことで、運用時の状況に応じて適宜切替えられるようになり、省エネルギー性重視や快適性重視などを考慮した適応的な運行が可能になる。 In the configuration described in the fifth embodiment, the selection condition of the brake plan selection unit can be input from the outside, so that it can be appropriately switched according to the situation at the time of operation, and the emphasis is on energy saving and comfort. Adaptive operation in consideration of such factors becomes possible.

実施例6では、車両制御への出力が可能なブレーキ計画立案装置について説明する。 Sixth Embodiment In a sixth embodiment, a description will be given of a brake planning device capable of outputting to vehicle control.

図20は、実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のブロック図である。実施例3で説明した構成に対して、ブレーキ計画選択部の出力先として、車両制御部2001が追加された構成である。選択したブレーキ計画に則って、実際に車両を制御できるようになる。 FIG. 20 is a block diagram of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of outputting to the vehicle control. This is a configuration in which a vehicle control unit 2001 is added as an output destination of the brake plan selection unit to the configuration described in the third embodiment. The vehicle can be actually controlled according to the selected braking plan.

図21は、実施形態における回生電力量推定装置を有し、車両制御への出力が可能なブレーキ計画立案装置のフローチャートである。 FIG. 21 is a flowchart of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of outputting to the vehicle control.

処理を開始する(S2101)。まず、時刻・ダイヤ・位置の情報を取得する(S2102)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S2103)。 The processing starts (S2101). First, time, timetable, and position information is acquired (S2102). Based on the acquired information, a plurality of brake plans capable of scheduled operation are generated (S2103).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S2104)。 The expected regenerative electric energy of the plurality of generated brake plans is estimated based on the brake notch switching-specific regenerative electric energy estimation model (S2104).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S2105)。 A brake plan that satisfies the selection conditions is selected from a plurality of brake plans linked with the estimated expected regenerative electric energy (S2105).

選択したブレーキ計画と推定した期待回生電力量を表示する(S2106)。選択したブレーキ計画に基づき車両を制御する(S2107)。以上で処理を終了する(S2108)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S2106). The vehicle is controlled based on the selected brake plan (S2107). Thus, the process ends (S2108).

実施例6で説明した構成においては、ブレーキ計画選択部で選択したブレーキ計画を外部に出力できるようにしておくことで、ブレーキ計画に則った車両制御ができるようになり、運転士の操作技量に依らない運行が可能になる。 In the configuration described in the sixth embodiment, by allowing the brake plan selected by the brake plan selection unit to be output to the outside, vehicle control according to the brake plan can be performed, and the operation skill of the driver can be reduced. Operation that does not depend on it becomes possible.

実施例7では、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置について説明する。   In a seventh embodiment, a description will be given of a brake planning device capable of outputting to a vehicle control via an execution instruction.

図22は、実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のブロック図である。実施例6で説明した構成に対して、ブレーキ計画選択部の出力と車両制御部の入力との間に実行指示入力部2201が追加された構成である。選択したブレーキ計画に則って実際に車両を制御する前に、運転士などに実行の意思確認ができるようになる。 FIG. 22 is a block diagram of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of outputting to the vehicle control via an execution instruction. This configuration is different from the configuration described in the sixth embodiment in that an execution instruction input unit 2201 is added between the output of the brake plan selection unit and the input of the vehicle control unit. Before actually controlling the vehicle according to the selected brake plan, the driver or the like can confirm the intention of execution.

図23は、実施形態における回生電力量推定装置を有し、実行指示を経て車両制御への出力が可能なブレーキ計画立案装置のフローチャートである。 FIG. 23 is a flowchart of a brake planning device having the regenerative electric energy estimating device according to the embodiment and capable of outputting to the vehicle control via an execution instruction.

処理を開始する(S2301)。まず、時刻・ダイヤ・位置の情報を取得する(S2302)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S2303)。 The processing starts (S2301). First, information on time, diagram, and position is obtained (S2302). Based on the acquired information, a plurality of brake plans capable of scheduled operation are generated (S2303).

ブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S2304)。 The expected regenerative electric energy of the generated plurality of brake plans is estimated based on the brake notch switching-specific regenerative electric energy estimation model (S2304).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S2305)。 A brake plan that satisfies the selection condition is selected from a plurality of brake plans linked with the estimated expected regenerative electric energy (S2305).

選択したブレーキ計画と推定した期待回生電力量を表示する(S2306)。 The selected brake plan and the estimated expected regenerative electric energy are displayed (S2306).

選択したブレーキ計画を実行するかどうかの実行指示を取得する(S2307)。実行指示である場合(S2308:Yes)、選択したブレーキ計画に基づき車両を制御し、(S2309)、処理を終了する(S2310)。実行指示でない場合(S2308:No)、処理を終了する(S2310)。 An execution instruction as to whether to execute the selected brake plan is obtained (S2307). If the instruction is an execution instruction (S2308: Yes), the vehicle is controlled based on the selected brake plan (S2309), and the process ends (S2310). If it is not an execution instruction (S2308: No), the process ends (S2310).

図24は、実施形態における実行指示を入力するGUIの例を示す図である。図の一番上は選択されたブレーキ計画の時間推移データ、真ん中の表は上記ブレーキ計画を実行したときの期待回生電力量と使用した選択条件、図の一番下は運転士などに実行の意思確認をするための質問内容および回答のためのボタン、を示している。これらの情報以外にも、車両状態や天候情報など、意思確認に必要なデータを併せて示しても良い。 FIG. 24 is a diagram illustrating an example of a GUI for inputting an execution instruction according to the embodiment. The top of the figure shows the time transition data of the selected brake plan, the middle table shows the expected regenerative electric energy and the selection conditions used when the above-mentioned brake plan was executed, and the bottom of the figure shows the execution It shows a question content for confirming intention and a button for answer. In addition to these pieces of information, data necessary for confirmation of intention, such as vehicle status and weather information, may also be shown.

実施例7で説明した構成においては、ブレーキ計画選択部で選択したブレーキ計画を実行するかどうかをGUIで確認できるようにしておくことで、運転士などと合意を得たうえでブレーキ計画に則った車両制御ができるようになり、意図しないブレーキ計画を自動実行することによる不具合や故障・事故などを排除しながら、かつ、運転士の操作技量に依らない運行が可能になる。 In the configuration described in the seventh embodiment, whether or not to execute the brake plan selected by the brake plan selection unit can be confirmed on the GUI, so that the agreement with the driver or the like is obtained and the brake plan is followed. Vehicle control can be performed, and operation without depending on the driver's operation skill can be performed while eliminating troubles, breakdowns, accidents, and the like caused by automatically executing an unintended brake plan.

実施例8では、前記各付加機能を有するブレーキ計画立案装置について説明する。   In an eighth embodiment, a brake planning device having the above-described additional functions will be described.

図25は、実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のブロック図である。図25に示した構成においては、前記各実施例を組み合わせた動作をする。 FIG. 25 is a block diagram of a regenerative electric energy estimation device and a brake planning device having the additional functions according to the embodiment. In the configuration shown in FIG. 25, an operation combining the above embodiments is performed.

図26は、実施形態における前記各付加機能を有する回生電力量推定装置及びブレーキ計画立案装置のフローチャートである。 FIG. 26 is a flowchart of a regenerative electric energy estimation device and a brake planning device having the additional functions according to the embodiment.

処理を開始する(S2601)。まず、時刻・ダイヤ・位置・勾配・カーブ・車両速度・車両重量・天候の情報を取得する(S2602)。取得した情報に基づき、定時運行が可能な複数のブレーキ計画を生成する(S2603)。 The processing starts (S2601). First, information on time, diagram, position, gradient, curve, vehicle speed, vehicle weight, and weather is acquired (S2602). Based on the acquired information, a plurality of brake plans capable of scheduled operation are generated (S2603).

勾配・カーブ・車両速度・車両重量・天候・架線電圧・滑走状態・車両併結状態を取得する(S2604)。 The slope, curve, vehicle speed, vehicle weight, weather, overhead line voltage, sliding state, and vehicle combination state are acquired (S2604).

取得した情報とブレーキノッチ切替え別回生電力量推定モデルに基づき、生成した複数のブレーキ計画の期待回生電力量を推定する(S2605)。 Based on the obtained information and the model for estimating the regenerative electric energy for each brake notch switching, the expected regenerative electric energy of the plurality of generated brake plans is estimated (S2605).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、選択条件を満足するブレーキ計画を選択する(S2605)。選択条件を取得する(S2606)。 A brake plan that satisfies the selection conditions is selected from a plurality of brake plans linked with the estimated expected regenerative electric energy (S2605). The selection condition is acquired (S2606).

推定した期待回生電力量が紐付けられた複数のブレーキ計画から、取得した選択条件を満足するブレーキ計画を選択する(S2607)。選択したブレーキ計画と推定した期待回生電力量を表示する(S2608)。 A brake plan that satisfies the acquired selection condition is selected from a plurality of brake plans linked with the estimated expected regenerative electric energy (S2607). The selected brake plan and the estimated expected regenerative electric energy are displayed (S2608).

選択したブレーキ計画を実行するかどうかの実行指示を取得する(S2609)。実行指示である場合(S2610:Yes)、選択したブレーキ計画に基づき車両を制御し、(S2611)、処理を終了する(S2612)。実行指示でない場合(S2610:No)、処理を終了する(S2612)。 An execution instruction as to whether to execute the selected brake plan is obtained (S2609). If the instruction is an execution instruction (S2610: Yes), the vehicle is controlled based on the selected brake plan (S2611), and the process ends (S2612). If it is not an execution instruction (S2610: No), the process ends (S2612).

実施例8で説明した構成においては、前記各実施例で説明した効果が複合的に得られる。 In the configuration described in the eighth embodiment, the effects described in the above embodiments can be obtained in a combined manner.

以上、本実施形態では、鉄道車両の運行方法及び運行システムに関して、ブレーキノッチの切替え操作ごとに回生電力量推定モデルを保持し、各ブレーキノッチの切替え操作における過渡応答を考慮することで、精度良く回生電力量が推定でき、省エネルギーな運行に貢献できる。 As described above, in the present embodiment, with respect to the operation method and the operation system of the railway vehicle, the regenerative electric energy estimation model is held for each switching operation of the brake notch, and the transient response in the switching operation of each brake notch is considered, so that the accuracy is improved. The amount of regenerated electricity can be estimated, contributing to energy-saving operation.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are provided by way of example and are not intended to limit the scope of the invention. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

500…回生電力量推定装置、
501…回生電力量推定部、
502…ブレーキノッチ切替え別回生電力量推定モデル、
503…ブレーキ計画、
504…表示部、
1200…ブレーキ計画立案装置、
1201…ブレーキ計画生成部、
1202…時刻取得部、
1203…ダイヤ情報、
1204…位置情報、
1205…ブレーキ計画選択部
500 ... regenerative electric energy estimation device,
501 ... regenerative electric energy estimation unit,
502: model for estimating regenerative electric energy for each brake notch switching
503: brake plan,
504 ... display unit,
1200: brake planning device,
1201 ... brake plan generation unit
1202: time acquisition unit
1203 ... diamond information,
1204 ... location information,
1205: Brake plan selection section

Claims (9)

鉄道車両の運行において、切替える前のブレーキノッチと切替えた後のブレーキノッチの組み合わせごとに異なる値の期待回生電力を設定するブレーキノッチ切替え別回生電力量推定モデルと、
前記ブレーキノッチ切替え別回生電力量推定モデルに基づいて、前記ブレーキノッチの時
間推移データであるブレーキ計画について得られる期待回生電力量を推定する回生電力量推定手段と、
を有する回生電力量推定装置。
In the operation of a railway vehicle, a regenerative power amount estimation model for different brake notch switching that sets an expected regenerative power of a different value for each combination of a brake notch before switching and a brake notch after switching,
Based on the brake notch switching-specific regenerative power amount estimation model, regenerative power amount estimating means for estimating an expected regenerative power amount obtained for a brake plan that is time transition data of the brake notch,
A regenerative electric energy estimating device having:
勾配・カーブ情報、車両速度、車両重量、天候、架線電圧、滑走状態、車両併結状態のうち少なくとも一つを前記回生電力量推定手段への入力とする、
請求項1記載の回生電力量推定装置。
Slope / curve information, vehicle speed, vehicle weight, weather, overhead wire voltage, sliding state, at least one of vehicle combined state is input to the regenerative power amount estimation means,
The regenerative electric energy estimation device according to claim 1.
鉄道車両の運行において、時刻、ダイヤ情報、位置情報に基づいて定時運行が可能な複数のブレーキ計画を生成するブレーキ計画生成手段と、
前記複数のブレーキ計画について、請求項1記載の回生電力量推定手段で推定される期待回生電力量に基づいて、選択条件を満足するブレーキ計画を選択するブレーキ計画選択手段と、
を有するブレーキ計画立案装置。
In the operation of the railway vehicle, time, timetable, timetable, brake plan generation means for generating a plurality of brake plans capable of scheduled operation based on position information,
Brake plan selecting means for selecting a brake plan that satisfies a selection condition based on the expected regenerative electric energy estimated by the regenerative electric energy estimating means according to claim 1 for the plurality of brake plans;
A brake planning device having a brake.
勾配・カーブ情報、車両速度、車両重量、天候のうち少なくとも一つを前記ブレーキ計画生成手段への入力とする、
請求項3記載のブレーキ計画立案装置。
Slope / curve information, vehicle speed, vehicle weight, at least one of weather is input to the brake plan generation means,
The brake planning device according to claim 3.
前記選択条件を前記ブレーキ計画選択手段に入力する選択条件入力手段、
を有する請求項3記載のブレーキ計画立案装置。
Selection condition input means for inputting the selection condition to the brake plan selection means,
The brake planning device according to claim 3, further comprising:
前記ブレーキ計画選択手段は、選択されたブレーキ計画を、当該ブレーキ計画に則って車両を制御する車両制御手段へ出力する、
請求項3記載のブレーキ計画立案装置。
The brake plan selection unit outputs the selected brake plan to a vehicle control unit that controls the vehicle according to the brake plan.
The brake planning device according to claim 3.
前記ブレーキ計画選択手段により選択されたブレーキ計画に則って車両を制御するかどうかの実行指示を入力する実行指示入力手段、
を有する請求項6記載のブレーキ計画立案装置。
Execution instruction input means for inputting an execution instruction of whether to control the vehicle according to the brake plan selected by the brake plan selection means,
The brake planning device according to claim 6, comprising:
請求項1または2記載の回生電力量推定装置を有する、
請求項3ないし7のいずれか1項に記載のブレーキ計画立案装置。
It has a regenerative electric energy estimation device according to claim 1 or 2,
A brake planning device according to any one of claims 3 to 7.
鉄道車両の運行において、切替える前のブレーキノッチと切替えた後のブレーキノッチの組み合わせごとに異なる値の期待回生電力を設定するブレーキノッチ切替え別回生電力量推定モデルに基づいて、前記ブレーキノッチの時間推移データであるブレーキ計画について得られる期待回生電力量を推定する工程を備える回生電力量推定方法。 In the operation of a railway vehicle, a time transition of the brake notch based on a brake notch switching-specific regenerative power amount estimation model that sets an expected regenerative power of a different value for each combination of a brake notch before switching and a brake notch after switching. regenerative electric power amount estimating method comprising about Engineering for estimating the expected regenerated electric energy obtained for brake plan is data.
JP2015198458A 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method Active JP6643030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015198458A JP6643030B2 (en) 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method
US15/265,310 US20170096153A1 (en) 2015-10-06 2016-09-14 Regenerative power-amount estimation device and brake plan plotting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198458A JP6643030B2 (en) 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method

Publications (2)

Publication Number Publication Date
JP2017073869A JP2017073869A (en) 2017-04-13
JP6643030B2 true JP6643030B2 (en) 2020-02-12

Family

ID=58446641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198458A Active JP6643030B2 (en) 2015-10-06 2015-10-06 Regenerative energy estimation device, brake planning device, and regenerative energy estimation method

Country Status (2)

Country Link
US (1) US20170096153A1 (en)
JP (1) JP6643030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
CN110395299B (en) * 2019-07-29 2021-08-06 交控科技股份有限公司 Train braking energy utilization method in urban rail transit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664730B2 (en) * 2005-05-10 2011-04-06 株式会社東芝 Vehicle fixed position stop automatic control device and vehicle driving support device.
JP4635778B2 (en) * 2005-08-12 2011-02-23 株式会社Ihi Hybrid drive device
JP2009254069A (en) * 2008-04-03 2009-10-29 Hitachi Ltd Method and device for controlling railway vehicle
JP2010063286A (en) * 2008-09-04 2010-03-18 Toshiba Corp Train control system
JP2010089737A (en) * 2008-10-10 2010-04-22 Toshiba Corp Stop control device
JP5836078B2 (en) * 2011-11-18 2015-12-24 三菱重工業株式会社 Operation management device, operation management method and program, and transportation system
JP5793458B2 (en) * 2012-03-29 2015-10-14 株式会社日立製作所 Railway vehicle driving support device
JP5968518B2 (en) * 2013-03-06 2016-08-10 三菱電機株式会社 Main converter for electric vehicles
JP6208559B2 (en) * 2013-11-22 2017-10-04 公益財団法人鉄道総合技術研究所 Program and operation curve creation device
CN105083338B (en) * 2015-08-25 2016-08-24 北京交通大学 Maximally utilize the operation control method for train of regenerated energy

Also Published As

Publication number Publication date
JP2017073869A (en) 2017-04-13
US20170096153A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP4642083B2 (en) Electric car brake control device
WO2014049893A1 (en) Railway power management device, railway power management method, and railway power management program
DE102014214806A1 (en) Charge to charging stations for range extension
CN106672029B (en) Control the method and device of train operation
JP6643030B2 (en) Regenerative energy estimation device, brake planning device, and regenerative energy estimation method
JP6047827B2 (en) Operation control device, operation control method, and control program
CN103587526A (en) Electrocar cruise control method
DE102008021045A1 (en) Energy managment system e.g. for vehicles with electro drive, integrates topological and other data for navigation system on route with prospective settlement of electrical energy in car made with mixed calculation
JP5869150B2 (en) Travel plan creation device, driving support device, and driving control device
JP2015138501A (en) Operation planning support apparatus
JP6547222B2 (en) Automatic train operation device, automatic train control method and program
Watanabe et al. Evaluation of Automatic Train Operation Design for Energy Saving Based on the Measured Efficiency of a Linear‐Motor Train
RU2666499C1 (en) Vehicle operation method
Baranov et al. Optimal control of a subway train with regard to the criteria of minimum energy consumption
Al Junaibi et al. Technical feasibility assessment of electric vehicles: an Abu Dhabi example
CN108778862B (en) Method for providing brake selection advice to train driver and train driver advisory system
EP3632758A3 (en) Actuator controller and vehicle-installed system
TWI505231B (en) Power simulation device
JP2014069621A (en) Power supply and demand system
JP5957331B2 (en) Electric vehicle control device and electric vehicle
Jiang et al. An approach to optimize the settings of actuated signals
CN106740126B (en) Method for controlling medium-voltage load of motor train unit
Liu et al. EV charging analysis based on the National Travel Surveys of the Nordic Area
KR101458456B1 (en) Device and method for analyzing traction power supply system using parallel process
KR20160083869A (en) Method of selecting a drivetrain and associated device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R151 Written notification of patent or utility model registration

Ref document number: 6643030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151