JP2017073307A - Electrode sheet for nonaqueous electrolyte secondary battery - Google Patents

Electrode sheet for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017073307A
JP2017073307A JP2015200104A JP2015200104A JP2017073307A JP 2017073307 A JP2017073307 A JP 2017073307A JP 2015200104 A JP2015200104 A JP 2015200104A JP 2015200104 A JP2015200104 A JP 2015200104A JP 2017073307 A JP2017073307 A JP 2017073307A
Authority
JP
Japan
Prior art keywords
electrode
electrode mixture
mixture layer
electrode sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015200104A
Other languages
Japanese (ja)
Inventor
浩哉 梅山
Hiroya Umeyama
浩哉 梅山
友嗣 横山
Yuji Yokoyama
友嗣 横山
福本 友祐
Yusuke Fukumoto
友祐 福本
橋本 達也
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015200104A priority Critical patent/JP2017073307A/en
Publication of JP2017073307A publication Critical patent/JP2017073307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the worsening of a performance accompanying the high-rate cycle of an electrode sheet.SOLUTION: An electrode sheet for a nonaqueous electrolyte secondary battery comprises: an electrode collector plate; a first electrode mixture material layer disposed on one face of the electrode collector plate; and a second electrode mixture material layer disposed on the other face of the electrode collector plate. At one end in a widthwise direction of the electrode sheet, the first electrode mixture material layer has a plurality of first non-opposing parts along an edge face extending in a longitudinal direction, which are not opposed to the second electrode mixture material layer in its thickness direction, and the second electrode mixture material layer has a plurality of second non-opposing parts along the edge face extending the longitudinal direction, which are not opposed to the first electrode mixture material layer in its thickness direction. The ratio of a total area of the plurality of first non-opposing parts to a total area of the plurality of second non-opposing parts is 0.2 to 5. The sum total of the area of the area of the plurality of first non-opposing parts and the area of the plurality of second non-opposing parts is 100-1009 mmper one meter of the electrode sheet in the longitudinal direction.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解液二次電池用の電極シートに関する。   The present invention relates to an electrode sheet for a non-aqueous electrolyte secondary battery.

特開平10−228930号公報(特許文献1)には、両面の電極合材層を電極シートの長手方向にずらすことが記載されているが、電極合材層を電極シートの幅方向にずらすことは記載されていない。   JP-A-10-228930 (Patent Document 1) describes that the electrode mixture layers on both sides are shifted in the longitudinal direction of the electrode sheet, but the electrode mixture layers are shifted in the width direction of the electrode sheet. Is not listed.

特開平10−228930号公報Japanese Patent Laid-Open No. 10-228930

特許文献1に記載される電極シートでは、両面の電極合材層が電極シートの幅方向においてズレがないため、両面に配置された電極合材層全体の密度は、長手方向に延びる端面付近において、幅方向の中央部と同様に高い。したがって、端面付近での電極合材層内の空隙容積が小さいので、ハイレートサイクル時に一旦押し出された電解液を端面付近に保持することができず、電解液が電極合材層内に戻り難い。このため、電解液の保持性が低く、ハイレートサイクルに伴う性能低下が生じ易い。   In the electrode sheet described in Patent Document 1, since the electrode mixture layers on both sides are not misaligned in the width direction of the electrode sheet, the density of the entire electrode mixture layer arranged on both surfaces is near the end surface extending in the longitudinal direction. As high as the central part in the width direction. Therefore, since the void volume in the electrode mixture layer in the vicinity of the end face is small, the electrolyte solution once extruded during the high-rate cycle cannot be held in the vicinity of the end face, and the electrolyte solution is difficult to return into the electrode mixture layer. For this reason, the holding | maintenance of electrolyte solution is low and the performance fall accompanying a high-rate cycle tends to arise.

本発明は、このような電極シートのハイレートサイクルに伴う性能低下を抑制することを目的とする。   An object of this invention is to suppress the performance fall accompanying the high-rate cycle of such an electrode sheet.

非水電解液二次電池用の電極シートは、電極集電板と、電極集電板の一方の面に配置された第1電極合材層と、電極集電板の他方の面に配置された第2電極合材層と、を備える。電極シートの幅方向の一方端において、第1電極合材層は、厚み方向において第2電極合材層と対向しない複数の第1非対向部を長手方向に延びる端面に沿って有し、かつ、第2電極合材層は、厚み方向において第1電極合材層と対向しない複数の第2非対向部を長手方向に延びる端面に沿って有する。複数の第2非対向部の合計面積に対する複数の第1非対向部の合計面積の比率が0.2以上5以下である。複数の第1非対向部の面積および複数の第2非対向部の面積の合計が、電極シートの長手方向1m当たり100mm以上1009mm以下である。 An electrode sheet for a non-aqueous electrolyte secondary battery is disposed on an electrode current collector plate, a first electrode mixture layer disposed on one surface of the electrode current collector plate, and the other surface of the electrode current collector plate. And a second electrode composite material layer. At one end in the width direction of the electrode sheet, the first electrode mixture layer has a plurality of first non-opposing portions that do not face the second electrode mixture layer in the thickness direction along the end surface extending in the longitudinal direction, and The second electrode mixture layer has a plurality of second non-opposing portions that do not face the first electrode mixture layer in the thickness direction along the end surface extending in the longitudinal direction. The ratio of the total area of the plurality of first non-opposing parts to the total area of the plurality of second non-opposing parts is 0.2 or more and 5 or less. Total area of the second non-facing portion area and the plurality of plurality of first non-facing portion, longitudinal 1m per 100 mm 2 or more electrode sheets 1009mm 2 or less.

上記によれば、電極シートのハイレートサイクルに伴う性能低下を抑制することができる。その理由は次のように考えられる。   According to the above, it is possible to suppress the performance degradation associated with the high rate cycle of the electrode sheet. The reason is considered as follows.

従来の電極シートの一例においては、図10(a)および図10(b)に示すように、電極集電板11の一方の面(第1面11a)に第1電極合材層121が配置され、他方の面(第2面11b)に第2電極合材層122が配置されている。そして、図10(b)に示すように、両面の電極合材層121,122が電極シートの幅方向にズレていない(端面121bと端面122bが揃っている)。   In an example of a conventional electrode sheet, as shown in FIGS. 10A and 10B, the first electrode mixture layer 121 is disposed on one surface (first surface 11a) of the electrode current collector plate 11. The second electrode mixture layer 122 is arranged on the other surface (second surface 11b). And as shown in FIG.10 (b), the electrode compound-material layers 121 and 122 of both surfaces are not shifted in the width direction of an electrode sheet (the end surface 121b and the end surface 122b are aligning).

この場合、両面に配置された電極合材層121,122全体の密度は、長手方向に延びる端面121b、122b付近において、幅方向の中央部と同様に高い。すなわち、端面付近での電極合材層内の空隙容積が小さいため、ハイレートサイクル時に一旦押し出された電解液を端面付近に保持することができず、電解液が電極合材層内に戻り難い。このため、電解液の保持性が低く、ハイレートサイクルに伴う性能低下が生じ易い。   In this case, the overall density of the electrode mixture layers 121 and 122 arranged on both surfaces is high in the vicinity of the end surfaces 121b and 122b extending in the longitudinal direction, similarly to the central portion in the width direction. That is, since the void volume in the electrode mixture layer in the vicinity of the end face is small, the electrolyte solution once extruded during the high-rate cycle cannot be held in the vicinity of the end face, and the electrolyte solution is difficult to return into the electrode mixture layer. For this reason, the holding | maintenance of electrolyte solution is low and the performance fall accompanying a high-rate cycle tends to arise.

なお、図10(b)の変形例として、図10(c)に示すように、両面の電極合材層121,122を電極シートの幅方向にズレさせることも考えられる。この場合は、端面121bに沿って、電極合材層が電極集電板の片側のみに存在する部分(非対向部121c)が存在するため、両面での電極合材層の合計量が低下する。このため、両面の電極合材層をロール等で圧縮する際に、非対向部121cに加えられる圧縮力が小さくなり、非対向部121cの空隙容積は他の部分より大きくなる。   As a modification of FIG. 10B, as shown in FIG. 10C, it is conceivable that the electrode mixture layers 121 and 122 on both sides are shifted in the width direction of the electrode sheet. In this case, since there is a portion (non-opposing portion 121c) in which the electrode mixture layer exists only on one side of the electrode current collector plate along the end surface 121b, the total amount of the electrode mixture layer on both surfaces decreases. . For this reason, when compressing the electrode mixture layers on both sides with a roll or the like, the compressive force applied to the non-opposing portion 121c becomes small, and the void volume of the non-opposing portion 121c becomes larger than other portions.

したがって、第1電極合材層121については、ハイレートサイクル時に一旦押し出された電解液が端面121b付近に保持され、電解液が電極合材層内に戻り易くなる。これにより、電解液の保持性が高められ、第1電極合材層121のハイレートサイクルに伴う性能低下が抑制される。   Accordingly, with respect to the first electrode mixture layer 121, the electrolyte solution once extruded during the high rate cycle is held in the vicinity of the end surface 121b, and the electrolyte solution easily returns into the electrode mixture layer. Thereby, the retainability of electrolyte solution is improved and the performance fall accompanying the high-rate cycle of the 1st electrode compound-material layer 121 is suppressed.

しかし、他方の面に配置された第2電極合材層122については、図10(b)に示す場合と同様に電解液の保持性が低く、ハイレートサイクルに伴う性能低下が生じ易い。このため、電極シート全体としてはハイレートサイクルに伴う性能低下を抑制することができない。   However, about the 2nd electrode compound-material layer 122 arrange | positioned at the other surface, the retainability of electrolyte solution is low similarly to the case shown in FIG.10 (b), and the performance fall accompanying a high-rate cycle tends to arise. For this reason, as a whole electrode sheet, the performance degradation accompanying a high rate cycle cannot be controlled.

ここで、本発明者らは、ペースト法とは異なる非水電解液二次電池用の電極シートの製造方法として、造粒体成形法を提案している。造粒体成形法とは、造粒体を作製し、該造粒体を成形して、電極集電板上にシート状の電極合材層を配置する方法である。造粒体とは、電極活物質、結着材および少量の溶媒等を含む造粒粒子(複合粒子)の集合体である。造粒体は、たとえばロール成形によりシート状の電極合材層となって、電極集電板上に配置される。   Here, the present inventors have proposed a granule forming method as a method for producing an electrode sheet for a non-aqueous electrolyte secondary battery different from the paste method. The granulated body forming method is a method in which a granulated body is prepared, the granulated body is formed, and a sheet-like electrode mixture layer is disposed on an electrode current collector plate. The granulated body is an aggregate of granulated particles (composite particles) containing an electrode active material, a binder, a small amount of solvent, and the like. The granulated body becomes a sheet-like electrode mixture layer by, for example, roll forming and is disposed on the electrode current collector plate.

造粒体成形法により電極シートを製造する場合、特に長手方向に延びる端面を平坦化するような処理をしなければ、造粒粒子がロール成形等により圧縮されることで、電極合材層の端面には造粒粒子の大きさに応じた凹凸が形成される。   When producing an electrode sheet by the granulated body forming method, the granulated particles are compressed by roll molding or the like unless the end surface extending in the longitudinal direction is particularly flattened. Concavities and convexities corresponding to the size of the granulated particles are formed on the end face.

この場合、両面の電極合材層が長手方向の端面に凹凸を有することとなるため、端面付近における合材密度は低下する。しかし、本発明者らの検討により、これだけでは、ハイレートサイクルに伴う性能低下を抑制することができないことが判明した。この原因は、以下のように考えられる。電極合材層の端面が凹凸を有していても、該凹凸が表裏で同様の形状で厚み方向に重なるように配列している場合、厚み方向の合材量は、図10(b)と同様に、幅方向の中央部と同様に多いままである。このため、成形時の圧縮により、端面においても幅方向の中央部と同様に強い圧縮力が加えられ、造粒粒子の空隙容積が小さくなるため、電極合材層の端面における電解液保持性が高められず、ハイレートサイクルに伴う性能低下を抑制することができなかったと考えられる。   In this case, since the electrode mixture layers on both sides have irregularities on the end faces in the longitudinal direction, the mixture density in the vicinity of the end faces decreases. However, as a result of the study by the present inventors, it has been found that this alone cannot suppress the performance degradation associated with the high rate cycle. The cause is considered as follows. Even if the end surface of the electrode mixture layer has irregularities, when the irregularities are arranged in the same shape on the front and back so as to overlap in the thickness direction, the amount of the mixture in the thickness direction is as shown in FIG. Similarly, it remains as high as the central portion in the width direction. For this reason, compression at the time of molding applies a strong compressive force on the end surface as well as the central portion in the width direction, and the void volume of the granulated particles is reduced, so that the electrolyte solution retainability on the end surface of the electrode mixture layer is reduced. It is considered that the deterioration in performance due to the high rate cycle could not be suppressed.

これに対して、図1(a)に示されるように、本発明の電極シート10は、電極シート10の幅方向の一方端において、両側(第1面11a側および第2面11b側)の電極合材層の各々が反対側の電極合材層と対向しない部分(非対向部)を長手方向の端面に沿って複数有している。すなわち、第1電極合材層121は、厚み方向において第2電極合材層122と対向しない複数の第1非対向部121aを端面121bに沿って有し、かつ、第2電極合材層122は、厚み方向において第1電極合材層121と対向しない複数の第2非対向部122aを端面122bに沿って有する。   On the other hand, as shown in FIG. 1A, the electrode sheet 10 of the present invention has both sides (first surface 11 a side and second surface 11 b side) at one end in the width direction of the electrode sheet 10. Each of the electrode mixture layers has a plurality of portions (non-opposing portions) that do not face the opposite electrode mixture layer along the end face in the longitudinal direction. That is, the first electrode mixture layer 121 has a plurality of first non-facing portions 121a that do not face the second electrode mixture layer 122 in the thickness direction along the end surface 121b, and the second electrode mixture layer 122. Has a plurality of second non-facing portions 122a that do not face the first electrode mixture layer 121 in the thickness direction along the end surface 122b.

なお、図1(a)は、図8に示す電極シート10の領域Aに相当する部分の上面模式図である。図1(a)において端面122bを点線で示しているのは、実際には第2非対向部122aは電極集電板の裏側にあって上面図では見えないことを意味する。また、図1(b)は、図1(a)の複数の第1非対向部121aを含む幅方向の断面(A−A’断面)での断面図である。図1(c)は、図1(a)の幅方向の第2非対向部122aを含む幅方向の断面(B−B’断面)での断面図である。なお、図1(b)および(c)に示す矢印は、電解液の出入りの量の大小を概念的に示している。左向きの矢印は電極合材層に入る電解液の量を示し、右向きの矢印は電極合材層から出る電解液の量を示し、左向きの矢印が右向きの矢印より長い場合は、電解液の保持性が高いことを意味している。   1A is a schematic top view of a portion corresponding to the region A of the electrode sheet 10 shown in FIG. In FIG. 1A, the end surface 122b is indicated by a dotted line, which means that the second non-facing portion 122a is actually on the back side of the electrode current collector plate and cannot be seen in the top view. FIG. 1B is a cross-sectional view in the cross-section (A-A ′ cross section) in the width direction including the plurality of first non-opposing portions 121 a in FIG. FIG. 1C is a cross-sectional view in a cross section (B-B ′ cross section) in the width direction including the second non-facing portion 122 a in the width direction of FIG. In addition, the arrows shown in FIGS. 1B and 1C conceptually indicate the magnitude of the amount of electrolyte flowing in and out. The left arrow indicates the amount of electrolyte entering the electrode mixture layer, the right arrow indicates the amount of electrolyte exiting the electrode mixture layer, and if the left arrow is longer than the right arrow, the electrolyte is retained. It means that the nature is high.

このように、両面の電極合材層の各々が非対向部(表裏ズレ)を有している場合、電極合材層が片面のみに存在する非対向部では、図10(c)に示す第1電極合材層121と同様に電解液の保持性が向上する。一方、非対向部121a,122aの反対側では電解液の保持性は悪い。ただし、図1(b)および図1(c)に示すように電解液保持性が表裏で逆になる部分を必ず有しているため、両面の電極合材層において、電解液保持性を高められる。このため、両面の電極合材層に対して、ハイレートサイクルに伴う性能低下を抑制することができる。したがって、電極シート全体としても、ハイレートサイクルに伴う性能低下を抑制することが可能となる。   Thus, when each of the electrode mixture layers on both sides has a non-facing portion (front and back misalignment), the non-facing portion where the electrode mixture layer exists only on one side is shown in FIG. Similar to the one-electrode mixture layer 121, the electrolyte retention is improved. On the other hand, on the opposite side of the non-opposing portions 121a and 122a, the electrolyte retention is poor. However, as shown in FIG. 1 (b) and FIG. 1 (c), there is always a portion where the electrolyte solution retainability is reversed, so that the electrolyte solution retainability is improved in the electrode mixture layers on both sides. It is done. For this reason, the performance degradation accompanying a high-rate cycle can be suppressed with respect to the electrode mixture layers on both sides. Therefore, it becomes possible to suppress the performance deterioration accompanying the high-rate cycle as the whole electrode sheet.

ただし、一方の面の電極合材層のみに非対向部が多く、他方の面の電極合材層の非対向部が僅かである場合は、実質的に図10(c)と同様に、電極シート全体としてはハイレートサイクルに伴う性能低下を抑制することができない。このため、複数の第2非対向部の合計面積に対する複数の第1非対向部の合計面積の比率が0.2以上5以下である場合に、電極シート全体としてハイレートサイクルに伴う性能低下を抑制することが可能となる。   However, when there are many non-opposing portions only on the electrode mixture layer on one surface and there are few non-opposing portions on the electrode mixture layer on the other surface, the electrode is substantially the same as in FIG. As a whole sheet, it is not possible to suppress a decrease in performance associated with a high rate cycle. For this reason, when the ratio of the total area of the plurality of first non-opposing portions to the total area of the plurality of second non-opposing portions is 0.2 or more and 5 or less, the electrode sheet as a whole suppresses the performance degradation associated with the high rate cycle. It becomes possible to do.

また、両面の電極合材層が複数の非対向部を有していたとしても、非対向部の面積が僅かしかない場合は、実質的に図10(b)と同様であり、電極合材層の電解液保持性を高めることはできない。一方、非対向部の面積が多すぎると、電極集電板に配置される有効な電極合材層の面積が減り、もともとの電極シートの抵抗が高くなってしまう。このため、複数の第1非対向部の面積および複数の第2非対向部の面積の合計が、電極シートの長手方向1m当たり100mm以上1009mm以下である場合に、電極合材層の電解液保持性を高め、ハイレートサイクルに伴う性能低下を抑制することが可能となる。 In addition, even if the electrode mixture layers on both sides have a plurality of non-opposing portions, when the area of the non-opposing portions is very small, it is substantially the same as FIG. It is not possible to increase the electrolyte retention of the layer. On the other hand, when the area of the non-opposing portion is too large, the area of the effective electrode mixture layer disposed on the electrode current collector plate is reduced, and the resistance of the original electrode sheet is increased. Therefore, the total area of the second non-facing portion area and the plurality of plurality of first non-facing portion, when the longitudinal 1m per 100 mm 2 or more electrode sheets 1009mm 2 or less, the electrolyte of the electrode mixture layer It becomes possible to improve the liquid retention and to suppress the performance degradation accompanying the high rate cycle.

上記によれば、電極シートのハイレートサイクルに伴う性能低下を抑制することができる。   According to the above, it is possible to suppress the performance degradation associated with the high rate cycle of the electrode sheet.

本発明の実施形態に係る電極シートの一例を示す概念図である。(a)は上面模式図、(b)は(a)の幅方向の断面図、(c)は(a)の幅方向の別の断面での断面図である。It is a conceptual diagram which shows an example of the electrode sheet which concerns on embodiment of this invention. (A) is a schematic top view, (b) is a sectional view in the width direction of (a), and (c) is a sectional view in another section in the width direction of (a). (a)は、本発明の実施形態に係る電極シートの変形例を示す上面模式図である。(b)は、本発明の実施形態に係る電極シートの別の変形例を示す上面模式図である。(A) is an upper surface schematic diagram which shows the modification of the electrode sheet which concerns on embodiment of this invention. (B) is an upper surface schematic diagram which shows another modification of the electrode sheet which concerns on embodiment of this invention. 電極シートの一例の写真である。(a)は第1面の写真であり、(b)は第2面の写真である。It is a photograph of an example of an electrode sheet. (A) is a photograph of the first surface, and (b) is a photograph of the second surface. 本発明の実施形態に係る電極シートの製造方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the manufacturing method of the electrode sheet which concerns on embodiment of this invention. 電極シートの製造における配置工程を図解する概略図である。It is the schematic which illustrates the arrangement | positioning process in manufacture of an electrode sheet. 電極シートの一例を示す概略図である。It is the schematic which shows an example of an electrode sheet. 電極シートの他の一例を示す概略図である。It is the schematic which shows another example of an electrode sheet. 電極群の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of an electrode group. 非水電解液二次電池の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of a nonaqueous electrolyte secondary battery. (a)は、従来の電極シートの一例を示す上面模式図である。(b)は、(a)の縦断面模式図である。(c)は(b)の変形例の縦断面模式図である。(A) is an upper surface schematic diagram which shows an example of the conventional electrode sheet. (B) is a longitudinal cross-sectional schematic diagram of (a). (C) is a longitudinal cross-sectional schematic diagram of the modification of (b). 比較例2の配置工程を図解する概略図である。10 is a schematic diagram illustrating an arrangement process of Comparative Example 2. FIG.

以下、本発明の実施形態(以下「本実施形態」とも記す。)の一例を説明する。ただし、本実施形態はこれらに限定されるものではない。本明細書では、すなわち「電極シート」は、「負極シート」または「正極シート」の少なくともいずれかを示し、「電極合材層」は、「負極合材層」または「正極合材層」の少なくともいずれかを示し、「電極活物質」は、「負極活物質」または「正極活物質」の少なくともいずれかを示し、「電極集電板」は、「負極集電板」または「正極集電板」の少なくともいずれかを示す。   Hereinafter, an example of an embodiment of the present invention (hereinafter also referred to as “this embodiment”) will be described. However, this embodiment is not limited to these. In this specification, that is, the “electrode sheet” indicates at least one of the “negative electrode sheet” or the “positive electrode sheet”, and the “electrode mixture layer” is the “negative electrode mixture layer” or the “positive electrode mixture layer”. “Electrode active material” indicates at least one of “negative electrode active material” or “positive electrode active material”, and “electrode current collector plate” indicates “negative electrode current collector plate” or “positive electrode current collector”. At least one of “plate” is shown.

<電極シート>
図1を参照して、非水電解液二次電池用の電極シート10は、電極集電板11と、その両面に配置された電極合材層(すなわち、電極集電板11の一方の面に配置された第1電極合材層121、および、電極集電板11の他方の面に配置された第2電極合材層122)を備える。
<Electrode sheet>
Referring to FIG. 1, an electrode sheet 10 for a non-aqueous electrolyte secondary battery includes an electrode current collector plate 11 and electrode mixture layers disposed on both surfaces thereof (that is, one surface of the electrode current collector plate 11). The first electrode mixture layer 121 and the second electrode mixture layer 122 arranged on the other surface of the electrode current collector plate 11 are provided.

電極シート10の幅方向の一方端において、第1電極合材層121は、厚み方向において第2電極合材層122と対向しない複数の第1非対向部121aを長手方向に延びる端面121bに沿って有する。かつ、上記一方端において、第2電極合材層122は、厚み方向において第1電極合材層121と対向しない複数の第2非対向部122aを長手方向に延びる端面に沿って有する。なお、「幅方向」とは電極シート10の短辺方向であり、「長手方向」とは電極シート10の長辺方向である(図6参照)。電極シート10は長辺方向に巻回されて巻回式の電極群となる。   At one end of the electrode sheet 10 in the width direction, the first electrode mixture layer 121 extends along the end surface 121b extending in the longitudinal direction of the plurality of first non-facing portions 121a that do not face the second electrode mixture layer 122 in the thickness direction. Have. And in the said one end, the 2nd electrode compound-material layer 122 has the some 2nd non-opposing part 122a which does not oppose the 1st electrode compound-material layer 121 in the thickness direction along the end surface extended in a longitudinal direction. The “width direction” is the short side direction of the electrode sheet 10, and the “longitudinal direction” is the long side direction of the electrode sheet 10 (see FIG. 6). The electrode sheet 10 is wound in the long side direction to form a wound electrode group.

両面の電極合材層が複数の非対向部を有する具体的態様として、図1(a)では、電極合材層121,122の長手方向に延びる端面121b,122b(複数の非対向部121a,122a)の凹凸の周期が表裏で異なる例を示している。ただし、このような態様に限られず、図2(a)に示すように、端面(複数の非対向部121a,122a)の凹凸の大きさ(高さ:幅方向の長さ)が表裏で異なるようにしてもよく、図2(b)に示すように、端面の凹凸の幅(長手方向の長さ)が表裏で異なるようにしてもよい。   As a specific aspect in which the electrode mixture layers on both sides have a plurality of non-opposing portions, in FIG. 1A, end surfaces 121b and 122b (a plurality of non-opposing portions 121a, 122a) shows an example in which the unevenness period differs between the front and back sides. However, the present invention is not limited to such a mode, and as shown in FIG. 2A, the size of the unevenness (height: length in the width direction) of the end surfaces (the plurality of non-opposing portions 121a and 122a) is different between the front and back sides. Alternatively, as shown in FIG. 2B, the unevenness width (length in the longitudinal direction) of the end face may be different between the front and back sides.

本実施形態において、複数の第2非対向部の合計面積に対する複数の第1非対向部の合計面積の比率(以下、「非対向部面積の表裏比」と記す場合がある。)は、0.2以上5以下である。また、複数の第1非対向部の面積および複数の第2非対向部の面積の合計(以下、「非対向部合計面積」と記す場合がある。)は、電極シートの長手方向1m当たり100mm以上1009mm以下である。なお、ここでいう「面積」とは、図1(a)に示すような平面視における面積を意味する。 In the present embodiment, the ratio of the total area of the plurality of first non-facing portions to the total area of the plurality of second non-facing portions (hereinafter, sometimes referred to as “the front-back ratio of the non-facing portion area”) is 0. .2 or more and 5 or less. Further, the sum of the areas of the plurality of first non-opposing portions and the areas of the plurality of second non-opposing portions (hereinafter sometimes referred to as “non-opposing portion total area”) is 100 mm per 1 m in the longitudinal direction of the electrode sheet. 2 or more and 1009 mm 2 or less. Here, “area” means an area in a plan view as shown in FIG.

〔電極集電板〕
電極集電板は、たとえば銅箔、アルミニウム箔などでよい。電極集電板の厚さは、5〜30μm程度でよい。
[Electrode current collector]
The electrode current collector plate may be, for example, a copper foil or an aluminum foil. The thickness of the electrode current collector plate may be about 5 to 30 μm.

〔電極合材層〕
電極合材層は、たとえば電極活物質および結着材等を含有する電極合材を電極集電板上に配置してなる。電極合材層の厚さは、たとえば10〜150μm程度でよい。
(Electrode compound layer)
The electrode mixture layer is formed, for example, by placing an electrode mixture containing an electrode active material and a binder on an electrode current collector plate. The thickness of the electrode mixture layer may be, for example, about 10 to 150 μm.

(電極活物質)
電極活物質は、負極活物質でもよいし、正極活物質でもよい。なお、本実施形態は、特にハイレートサイクル時の体積変動が激しい負極活物質(負極シート)に適用すると、より効果的である。
(Electrode active material)
The electrode active material may be a negative electrode active material or a positive electrode active material. In addition, this embodiment is more effective when applied to a negative electrode active material (negative electrode sheet) that has a large volume fluctuation especially during a high-rate cycle.

負極活物質は、たとえば黒鉛、易黒鉛化性炭素、難黒鉛化性炭素等の炭素系負極活物質でもよいし、珪素(Si)、錫(Sn)等を含有する合金系負極活物質でもよい。負極活物質の平均粒径は、たとえば5〜25μm程度でよい。   The negative electrode active material may be a carbon-based negative electrode active material such as graphite, graphitizable carbon, and non-graphitizable carbon, or may be an alloy-based negative electrode active material containing silicon (Si), tin (Sn), or the like. . The average particle diameter of the negative electrode active material may be about 5 to 25 μm, for example.

正極活物質は、たとえばLiNi1/3Co1/3Mn1/32等のリチウム(Li)含有金属酸化物でよい。正極活物質の平均粒径は、たとえば5〜25μm程度でよい。 The positive electrode active material may be a lithium (Li) -containing metal oxide such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 . The average particle diameter of the positive electrode active material may be about 5 to 25 μm, for example.

なお、本明細書において、「平均粒径」は、レーザ回折・散乱法によって測定された体積基準の粒度分布において、積算値50%での粒径(「d50」、「メジアン径」とも称される。)を示すものとする。   In the present specification, the “average particle diameter” is also referred to as a particle diameter (“d50”, “median diameter”) at an integrated value of 50% in a volume-based particle size distribution measured by a laser diffraction / scattering method. ).

(結着材)
結着材は、たとえばカルボキシメチルセルロースのナトリウム塩(CMC−Na)、スチレンブタジエンゴム(SBR)、ポリアクリル酸Li等でよい。負極合材層の結着材含有量は、たとえば1〜10質量%程度でよい。
(Binder)
The binder may be, for example, sodium salt of carboxymethyl cellulose (CMC-Na), styrene butadiene rubber (SBR), polyacrylic acid Li, or the like. The binder content of the negative electrode mixture layer may be, for example, about 1 to 10% by mass.

(その他の成分)
電極合材層は、導電材等を含んでいてもよい。導電材としては、たとえばアセチレンブラック、サーマルブラック等のカーボンブラック類でよい。
(Other ingredients)
The electrode mixture layer may contain a conductive material or the like. As the conductive material, for example, carbon blacks such as acetylene black and thermal black may be used.

〔電極合材層の組成〕
電極合材層の組成は、たとえば次のとおりである
電極活物質:90〜99質量%程度
結着材 :1〜5質量%程度
導電材 :0〜5質量%程度。
[Composition of electrode mixture layer]
The composition of the electrode mixture layer is, for example, as follows: Electrode active material: about 90 to 99% by mass Binder: about 1 to 5% by mass Conductive material: about 0 to 5% by mass.

<電極シートの製造>
図4は、本実施形態に係る電極シートの製造方法の概略を示すフローチャートである。図4に示すように、当該製造方法は、造粒体形成工程(S10)および配置工程(S20)を含む。
<Manufacture of electrode sheet>
FIG. 4 is a flowchart showing an outline of a method for producing an electrode sheet according to the present embodiment. As shown in FIG. 4, the manufacturing method includes a granule forming step (S10) and an arrangement step (S20).

〔造粒体形成工程(S10)〕
この工程では、上記の電極活物質および結着材等と、溶媒とからなる造粒体を形成する。
[Granulated body forming step (S10)]
In this step, a granulated body made of the electrode active material, the binder and the like and a solvent is formed.

溶媒は、たとえば水、N−メチルピロリドン(NMP)等でよい。溶媒の使用量は、たとえば造粒体の固形分比率が60〜90質量%程度となるように調整すればよい。ここで「固形分比率」とは、溶媒を含む全ての原材料の質量合計に対する溶媒以外の成分(不揮発成分)の質量の比率を示す。   The solvent may be, for example, water, N-methylpyrrolidone (NMP) or the like. What is necessary is just to adjust the usage-amount of a solvent, for example so that the solid content ratio of a granule may be about 60-90 mass%. Here, the “solid content ratio” indicates the ratio of the mass of components (nonvolatile components) other than the solvent to the total mass of all raw materials including the solvent.

造粒体は、たとえば、上記の電極活物質および結着材等と、溶媒とを混合することにより、作製することができる。造粒体の作製に用いられる各種造粒操作としては、たとえば、攪拌造粒、流動層造粒、転動造粒等が挙げられる。また、押出造粒により造粒粒子を所定の形状(たとえば、円柱形)に成形することで、造粒体を作製してもよい。造粒体の平均粒径は、0.1〜5mm程度である。   The granulated body can be produced, for example, by mixing the above-mentioned electrode active material, binder and the like with a solvent. Examples of various granulation operations used for producing the granulated body include stirring granulation, fluidized bed granulation, rolling granulation and the like. Moreover, you may produce a granulated body by shape | molding granulated particles by a predetermined | prescribed shape (for example, cylindrical shape) by extrusion granulation. The average particle diameter of the granulated body is about 0.1 to 5 mm.

〔配置工程(S20)〕
配置工程(S20)では、造粒体をシート状に電極集電板上に配置する。これにより造粒体は、電極合材層となる。図5は、配置工程(S20)を図解する概略図である。以下、図5を参照しつつ、配置工程を説明する。
[Arrangement Step (S20)]
In the arranging step (S20), the granulated body is arranged in a sheet shape on the electrode current collector plate. Thereby, a granulation body turns into an electrode compound-material layer. FIG. 5 is a schematic view illustrating the arrangement step (S20). Hereinafter, the placement process will be described with reference to FIG.

まず、図5に示す電極製造装置90を準備した。図5に示す電極製造装置90は、フィーダ95と、3本のロール(Aロール91、Bロール92およびCロール93)とから構成される。各ロールに描かれた曲線矢印は、各ロールの回転方向を示している。造粒体は、フィーダ95に供給される。フィーダ95は、造粒体8をAロール91とBロール92との間に供給する。造粒体8は、Aロール91またはBロール92上を搬送され、Aロール91とBロール92とのギャップに供給される。Aロール91には所定の荷重が印加される。Aロール91とBロール92とのギャップでは、造粒体が圧密され、シート状に成形される。シート状となった造粒体の目付量(単位面積当たりの質量)は、ギャップによって調整可能である。   First, an electrode manufacturing apparatus 90 shown in FIG. 5 was prepared. An electrode manufacturing apparatus 90 shown in FIG. 5 includes a feeder 95 and three rolls (A roll 91, B roll 92, and C roll 93). The curved arrows drawn on each roll indicate the rotation direction of each roll. The granulated body is supplied to the feeder 95. The feeder 95 supplies the granulated body 8 between the A roll 91 and the B roll 92. The granulated body 8 is conveyed on the A roll 91 or the B roll 92 and supplied to the gap between the A roll 91 and the B roll 92. A predetermined load is applied to the A roll 91. In the gap between the A roll 91 and the B roll 92, the granulated body is consolidated and formed into a sheet shape. The basis weight (mass per unit area) of the granulated material in sheet form can be adjusted by the gap.

次いで、シート状となった造粒体8aを電極集電板上に配置する。
図5に示すように、電極集電板11はCロール93上を搬送され、Bロール92とCロール93とのギャップに供給される。造粒体8aは、Aロール91とBロール92とのギャップを出た後、Bロール92上を搬送され、Bロール92とCロール93とのギャップに供給される。
Next, the granulated body 8a in the form of a sheet is placed on the electrode current collector plate.
As shown in FIG. 5, the electrode current collector 11 is conveyed on the C roll 93 and supplied to the gap between the B roll 92 and the C roll 93. After leaving the gap between the A roll 91 and the B roll 92, the granulated body 8 a is conveyed on the B roll 92 and supplied to the gap between the B roll 92 and the C roll 93.

Bロール92とCロール93とのギャップでは、造粒体8aが電極集電板11に押しつけられ、造粒体8aはBロール92から離れて、電極集電板11に圧着される。すなわち、造粒体8aがBロール92から電極集電板11に転写(配置)される。   In the gap between the B roll 92 and the C roll 93, the granulated body 8 a is pressed against the electrode current collector plate 11, and the granulated body 8 a is separated from the B roll 92 and pressed onto the electrode current collector plate 11. That is, the granulated body 8 a is transferred (arranged) from the B roll 92 to the electrode current collector plate 11.

ここで、図11に示す装置とは異なり、電極合材層121の凹凸を形成したい端面側において、Bロール92とCロール93の間の規制板94bは使用しなかった。このようにすることで、電極合材層121の長手方向に延びる端面121bには、造粒粒子の大きさに応じた凹凸が形成される。   Here, unlike the apparatus shown in FIG. 11, the regulating plate 94 b between the B roll 92 and the C roll 93 was not used on the end face side where the unevenness of the electrode mixture layer 121 was to be formed. By doing in this way, the unevenness | corrugation according to the magnitude | size of granulated particle is formed in the end surface 121b extended in the longitudinal direction of the electrode compound-material layer 121. FIG.

造粒体8aをシート状に電極集電板11上に配置した後、造粒体に残存する溶媒を揮発させるために、乾燥工程を行ってもよい。乾燥工程は、たとえばCロール93以降のパスライン上に設けられた熱風乾燥炉(図示せず)において行われ得る。   After arrange | positioning the granulated body 8a on the electrode current collecting plate 11 in a sheet form, in order to volatilize the solvent which remain | survives in a granulated body, you may perform a drying process. The drying step can be performed, for example, in a hot air drying furnace (not shown) provided on the pass line after the C roll 93.

さらに、一方の面に造粒体が配置された電極集電板を再度Cロール93に供給し、同様にして他方の面に造粒体を配置することにより、電極集電板の両面に造粒体を配置する。なお、電極集電板の両面に同時に造粒体を配置するようにしてもよい。   Further, the electrode current collector plate with the granule disposed on one surface is supplied again to the C roll 93, and the granule is disposed on the other surface in the same manner, whereby the electrode current collector plate is formed on both surfaces of the electrode current collector plate. Place the granules. In addition, you may make it arrange | position a granulated body simultaneously on both surfaces of an electrode current collecting plate.

ここで、一方の面の電極合材層の端面凹凸の位置(周期)をセンサーで読み取りながら、ロールの回転周期を制御することで、端部凹凸の周期を表裏でずらすことが可能である。   Here, by controlling the rotation cycle of the roll while reading the position (cycle) of the end surface unevenness of the electrode mixture layer on one surface with a sensor, the end unevenness cycle can be shifted on the front and back sides.

このようにして、造粒体は、電極集電板上の両面に配置された電極合材層となる。その後、電極合材層の厚さおよび密度を調整するために、圧縮工程を行ってもよい。圧縮工程は、たとえばロール圧延機を用いて行われ得る。最終的に得られる電極合材層の各層の厚さは、たとえば10〜150μm程度でもよい。   In this manner, the granulated body becomes an electrode mixture layer disposed on both surfaces of the electrode current collector plate. Thereafter, a compression step may be performed in order to adjust the thickness and density of the electrode mixture layer. The compression step can be performed using, for example, a roll mill. The thickness of each layer of the electrode mixture layer finally obtained may be about 10 to 150 μm, for example.

最後に、たとえばスリッタ等を用いて所定のサイズに切断加工することにより、図6に示す電極シート10が完成する。図6において、造粒体は電極合材層12となっている。なお、切断加工を行うと切断面側の電極合材層の端面は平坦になるため、その反対側の端面にのみ凹凸が形成されることになる。ただし、予め電極集電板を所望の幅に切断しておき、電極合材層を形成した後に切断工程を行わないようにすれば、幅方向の両側の端面に凹凸を形成することができる。両側の端面に凹凸(非対向部)を形成したが方がより効果的であるが、一方の端面のみに凹凸(非対向部)を形成するだけでも十分な効果が得られる。   Finally, the electrode sheet 10 shown in FIG. 6 is completed by cutting into a predetermined size using, for example, a slitter. In FIG. 6, the granulated body is an electrode mixture layer 12. Note that, when the cutting process is performed, the end surface of the electrode mixture layer on the cut surface side becomes flat, so that irregularities are formed only on the opposite end surface. However, if the electrode current collector plate is cut to a desired width in advance and the cutting step is not performed after the electrode mixture layer is formed, irregularities can be formed on both end faces in the width direction. It is more effective to form irregularities (non-opposing portions) on both end surfaces, but a sufficient effect can be obtained by forming irregularities (non-opposing portions) only on one end surface.

図3は、本実施形態に係る電極シートの一例の写真である。(a)は第1面の写真であり、(b)は第2面の写真である。このように、凹凸の凸部の高さ(大きさ)および幅を表裏で変化させることができる。   FIG. 3 is a photograph of an example of the electrode sheet according to the present embodiment. (A) is a photograph of the first surface, and (b) is a photograph of the second surface. In this way, the height (size) and width of the convex and concave portions of the unevenness can be changed on the front and back sides.

非対向部合計面積の測定は、電極合材層の端面を含む所定の単位長さの範囲で、図3(a)に示すような第1面の写真と、図3(b)に示すような第2面の写真を撮影し、画像処理により、電極合材層の第1面と第2面で重なっていない部分の合計面積を複数の非対向部の合計面積として求めることが可能である。この複数の非対向部の表裏の面積(複数の第1非対向部の面積および複数の第2非対向部の面積)の和が、非対向部合計面積である。   The measurement of the total area of the non-opposing portion is within a predetermined unit length including the end face of the electrode mixture layer, as shown in FIG. 3 (b) and a photograph of the first surface as shown in FIG. It is possible to take a picture of the second surface and perform image processing to obtain the total area of the portions not overlapping the first surface and the second surface of the electrode mixture layer as the total area of the plurality of non-opposing portions. . The sum of the front and back areas (the areas of the plurality of first non-opposing parts and the areas of the plurality of second non-opposing parts) of the plurality of non-opposing parts is the non-opposing part total area.

また、非対向部面積の表裏比は、同様にして求めた複数の第1非対向部の合計面積を複数の第2非対向部の合計面積で除することにより求められる。   The front / back ratio of the non-opposing portion area is obtained by dividing the total area of the plurality of first non-opposing portions obtained in the same manner by the total area of the plurality of second non-opposing portions.

なお、図3(a)および(b)において、「幅」は、凹凸を形成する凸部の幅(電極シートの長手方向の長さ)を意味し、「高さ」は、凹凸を形成する凸部の高さ(電極シートの幅方向の長さ)を意味する。   In FIGS. 3A and 3B, “width” means the width of the protrusions forming the unevenness (length in the longitudinal direction of the electrode sheet), and “height” forms the unevenness. It means the height of the projection (length in the width direction of the electrode sheet).

上記実施形態において、凸部の「幅」は、0.1〜10mm程度である。凸部の幅は、塗工条件(特にロールの回転速度比)で制御可能である。なお、対向するロールの回転速度の差を大きくするほど、端面の凸部の幅が広くなるように塗り広げることができる。   In the said embodiment, the "width" of a convex part is about 0.1-10 mm. The width of the convex portion can be controlled by coating conditions (particularly, the rotation speed ratio of the roll). In addition, it can spread so that the width | variety of the convex part of an end surface may become large, so that the difference of the rotational speed of the opposing roll becomes large.

また、凸部の「高さ」は0.1〜2.0mm程度である。凸部の高さ(大きさ)は、造粒体の平均粒径と相関があり、造粒体の平均粒径が大きいほど、凸部の高さは高くなる。   The “height” of the convex portion is about 0.1 to 2.0 mm. The height (size) of the convex portion has a correlation with the average particle diameter of the granulated body, and the height of the convex portion increases as the average particle diameter of the granulated body increases.

以下、実施例を用いて本実施形態を説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, although this embodiment is described using an example, this embodiment is not limited to these.

<電極シートの製造>
以下のようにして、実施例1〜10および比較例1〜6の電極シート(負極シート)と、実施例11の電極シート(正極シート)とを製造した。
<Manufacture of electrode sheet>
The electrode sheets (negative electrode sheet) of Examples 1 to 10 and Comparative Examples 1 to 6 and the electrode sheet (positive electrode sheet) of Example 11 were produced as follows.

〔実施例1〕
1.造粒体形成工程(S10)
まず、以下の材料を準備した
負極活物質:天然黒鉛
結着材 :SBR、CMC−Na。
[Example 1]
1. Granule formation process (S10)
First, the following materials were prepared: Negative electrode active material: natural graphite binder: SBR, CMC-Na.

攪拌造粒装置の攪拌槽に、負極活物質(97質量部)、結着材(SBR:1質量部およびCMC−Na:2質量部)および溶媒(水)を投入し、混合することにより造粒体を形成した。溶媒の使用量は、造粒体の固形分濃度が70質量%となるように調整した。得られた造粒体の平均粒径(d50)は1mmであった。   A negative electrode active material (97 parts by mass), a binder (SBR: 1 part by mass and CMC-Na: 2 parts by mass) and a solvent (water) are charged into a stirring tank of a stirring granulator and mixed. Granules were formed. The amount of the solvent used was adjusted so that the solid content concentration of the granulated product was 70% by mass. The average particle diameter (d50) of the obtained granulated body was 1 mm.

2.配置工程(S20)
図5に示す電極製造装置を準備した。電極製造装置90を用いて、前述のようにして造粒体8を電極集電板11の両面にシート状に配置した。なお、図11に示す装置と同様に、Aロール91とBロール92の間の規制板94aを用いて露出部13を電極集電板の幅方向の一方端に設けた。ただし、図11に示す装置とは異なり、電極合材層121の露出部13側の端面121bに凹凸が形成されるように、Bロール92とCロール93の間の規制板94bは使用しなかった。
2. Arrangement process (S20)
An electrode manufacturing apparatus shown in FIG. 5 was prepared. Using the electrode manufacturing apparatus 90, the granulated body 8 was arranged in a sheet form on both surfaces of the electrode current collector plate 11 as described above. In addition, similarly to the apparatus shown in FIG. 11, the exposed portion 13 was provided at one end in the width direction of the electrode current collector plate using a regulating plate 94 a between the A roll 91 and the B roll 92. However, unlike the apparatus shown in FIG. 11, the regulating plate 94b between the B roll 92 and the C roll 93 is not used so that irregularities are formed on the end surface 121b on the exposed portion 13 side of the electrode mixture layer 121. It was.

負極集電板としてCu箔(厚み10μm、幅80.9mm)を準備した。図5に示す電極製造装置90に負極集電板11を供給し、負極集電板11の両面にシート状になった造粒体8aを配置した。なお、電極集電板11の第1面に造粒体を配置しない露出部13を幅方向の一方の端面に沿って幅20.5mmで設け、第2面にも同じ側の端面に沿って幅21mmの露出部13を設けた(図6)。   Cu foil (thickness 10 μm, width 80.9 mm) was prepared as a negative electrode current collector plate. The negative electrode current collector plate 11 was supplied to the electrode manufacturing apparatus 90 shown in FIG. 5, and a sheet-shaped granule 8 a was disposed on both surfaces of the negative electrode current collector plate 11. In addition, the exposed part 13 which does not arrange | position a granulated material on the 1st surface of the electrode current collecting plate 11 is provided in width 20.5mm along one end surface of the width direction, and the 2nd surface is also along the end surface of the same side. An exposed portion 13 having a width of 21 mm was provided (FIG. 6).

乾燥炉を用いて造粒体を乾燥させ、ロール圧延機を用いて造粒体を圧縮し、図6に示す負極シート10を製造した。図6において造粒体は、負極合材層121,122となっている。なお、負極合材層121,122の露出部13側の端面121b,122bは、簡略化のため平坦に描いているが、図1に示すように表裏で周期がズレた凹凸(非対向部121a,122a)を有している。   The granulated body was dried using a drying furnace, and the granulated body was compressed using a roll rolling machine to produce the negative electrode sheet 10 shown in FIG. In FIG. 6, the granulated body is the negative electrode mixture layers 121 and 122. Note that the end surfaces 121b and 122b on the exposed portion 13 side of the negative electrode mixture layers 121 and 122 are drawn flat for simplicity, but as shown in FIG. 122a).

なお、実施例1の負極シートについて、負極シートの長手方向1m当たりの非対向部合計面積を測定したところ、103mm2であった。また、非対向部面積の表裏比は共に約1であった。 In addition, about the negative electrode sheet of Example 1, when the total area of the non-facing part per 1 m of longitudinal directions of a negative electrode sheet was measured, it was 103 mm < 2 >. Further, the front / back ratio of the non-opposing portion area was both about 1.

本実施例における第1合材層および第2合材層について、前述の凸部の「幅」および「高さ」を表1に示す(以下の実施例および比較例においても同様)。   About the 1st composite material layer and the 2nd composite material layer in a present Example, the "width" and "height" of the above-mentioned convex part are shown in Table 1 (the same is true in the following examples and comparative examples).

〔実施例2および3〕
実施例1の塗工周期を制御して、表裏の塗工周期のズレを大きくし、電極シートの長手方向1m当たりの非対向部合計面積を489mm2(実施例2)、1009mm2(実施例3)としたこと以外は、実施例1と同様にして負極シートを製造した。
[Examples 2 and 3]
The coating cycle of Example 1 is controlled to increase the difference between the coating cycles of the front and back sides, and the total area of the non-opposing portion per 1 m in the longitudinal direction of the electrode sheet is 489 mm 2 (Example 2), 1009 mm 2 (Example) A negative electrode sheet was produced in the same manner as in Example 1 except that 3).

〔実施例4および5〕
実施例1の表裏で配置する造粒体の平均粒径の差を大きくし、図2(a)に示すように表裏で凹凸の大きさ(高さ)を変えることで、電極シートの長手方向1m当たりの非対向部合計面積を521mm2、498mm2としたこと以外は、実施例1と同様にして負極シートを製造した。
Examples 4 and 5
The longitudinal direction of the electrode sheet is increased by increasing the difference in the average particle diameter of the granulates arranged on the front and back of Example 1 and changing the size (height) of the irregularities on the front and back as shown in FIG. except that the non-facing portions total area per 1m was 521 mm 2, 498 mm 2 is to prepare a negative electrode sheet in the same manner as in example 1.

〔実施例6および7〕
Aロール91、Bロール92およびCロール93の回転速度比を制御して、図2(b)に示すように表裏で凹凸の幅を変えることで、電極シートの長手方向1m当たりの非対向部合計面積を488mm2、470mm2としたこと以外は、実施例1と同様にして負極シートを製造した。
[Examples 6 and 7]
By controlling the rotation speed ratio of the A roll 91, the B roll 92, and the C roll 93, and changing the width of the unevenness on the front and back as shown in FIG. 2B, the non-opposing portion per 1 m in the longitudinal direction of the electrode sheet except that the total area was 488 mm 2, 470 mm 2 is to prepare a negative electrode sheet in the same manner as in example 1.

〔実施例8および9〕
実施例1の露出部の幅を第1面(実施例8)または第2面(実施例9)のいずれかで広くしたこと以外は、実施例1と同様にして負極シートを製造した。実施例8の負極シートの長手方向1m当たりの非対向部合計面積は509mm2であり、非対向部面積の表裏比(第1非対向部/第2非対向部)は約0.2であった。実施例9の負極シートの長手方向1m当たりの非対向部合計面積は500mm2であり、非対向部面積の表裏比は約5であった。
Examples 8 and 9
A negative electrode sheet was produced in the same manner as in Example 1 except that the width of the exposed portion in Example 1 was increased on either the first surface (Example 8) or the second surface (Example 9). The total area of the non-opposing portions per 1 m in the longitudinal direction of the negative electrode sheet of Example 8 was 509 mm 2 , and the front-back ratio (first non-opposing portion / second non-opposing portion) of the non-opposing portion area was about 0.2. It was. The total area of the non-opposing portions per 1 m in the longitudinal direction of the negative electrode sheet of Example 9 was 500 mm 2 , and the front / back ratio of the non-opposing portion area was about 5.

〔実施例10〕
露出部を電極集電板の幅方向の両側に設け、両側の露出部に沿って電極合材層の両側の端面に、凹凸を設けたこと以外は、実施例1と同様にして負極シートを製造した。なお、Aロール91とBロール92の間の2つの規制板94aを用いて、露出部を電極集電板の幅方向の両側に設けるようにした。一方、電極合材層の両側の端面に凹凸が形成されるように、Bロール92とCロール93の間の規制板94bは、両側共に設けなかった。
Example 10
The negative electrode sheet was formed in the same manner as in Example 1 except that the exposed portions were provided on both sides of the electrode current collector plate in the width direction, and the end surfaces on both sides of the electrode mixture layer were provided along the exposed portions on both sides. Manufactured. In addition, it was made for the exposed part to be provided in the both sides of the width direction of an electrode current collector plate using the two control boards 94a between the A roll 91 and the B roll 92. FIG. On the other hand, the regulating plate 94b between the B roll 92 and the C roll 93 was not provided on both sides so that irregularities were formed on the end faces on both sides of the electrode mixture layer.

〔実施例11〕
実施例1の負極シートと同様にして、以下の材料からなる正極シートを作製した
正極活物質:LiNi1/3Co1/3Mn1/32
結着材 :ポリフッ化ビニリデン(PVDF)
導電材 :アセチレンブラック
集電体 :アルミニウム箔
溶媒としてNMPを使用し、造粒体の固形分率は80質量%とした。造粒体の平均粒径(d50)は1mmであった。正極シートの長手方向1m当たりの非対向部合計面積は470mmであり、非対向部面積の表裏比は約1.2であった。
Example 11
A positive electrode sheet made of the following materials was produced in the same manner as the negative electrode sheet of Example 1. Positive electrode active material: LiNi 1/3 Co 1/3 Mn 1/3 O 2
Binder: Polyvinylidene fluoride (PVDF)
Conductive material: Acetylene black Current collector: Aluminum foil NMP was used as a solvent, and the solid content of the granulated body was 80% by mass. The average particle diameter (d50) of the granulated body was 1 mm. The total area of the non-opposing portions per 1 m in the longitudinal direction of the positive electrode sheet was 470 mm 2 , and the front / back ratio of the non-opposing portion area was about 1.2.

〔比較例1〕
ペースト法を用いて負極合材層を形成した点以外は、実施例1と同様の負極シートを製造した。
[Comparative Example 1]
A negative electrode sheet similar to that of Example 1 was manufactured except that the negative electrode mixture layer was formed using the paste method.

まず、実施例1と同様の負極活物質、結着材および増粘材を準備した。プラネタリミキサの攪拌槽に、負極活物質(97質量部)、結着材(1質量部)、増粘材(2質量部)および溶媒(水)を投入し、混合することにより塗料を形成した。なお、溶媒の使用量は、固形分濃度が50質量%となるように調整した。   First, the same negative electrode active material, binder and thickener as in Example 1 were prepared. A negative electrode active material (97 parts by mass), a binder (1 part by mass), a thickener (2 parts by mass) and a solvent (water) were charged into a stirring tank of a planetary mixer and mixed to form a paint. . In addition, the usage-amount of the solvent was adjusted so that solid content concentration might be 50 mass%.

ダイコータを用いて、実施例1と同様の負極集電板の両面に、塗料を塗工し、乾燥させることで、負極合材層を形成した。なお、塗料を塗布しない露出部を第1面に幅20.5mm、第2面に幅21mmで設けた。これにより、表裏で負極合材層の幅の差が0.5mmとなり、長手方向1m当たりの非対向部合計面積は500mmとなる。負極合材層をロールにて圧延して、負極シートを得た。両面の負極合材層の各々の厚みは、いずれも100μmであった。 Using a die coater, a coating material was applied to both surfaces of the same negative electrode current collector plate as in Example 1, and dried to form a negative electrode mixture layer. In addition, the exposed part which does not apply a coating material was provided with a width of 20.5 mm on the first surface and a width of 21 mm on the second surface. Thus, the difference is 0.5mm next width of the negative electrode mixture layers on the front and back, the non-opposing portions total area per longitudinal 1m becomes 500 mm 2. The negative electrode mixture layer was rolled with a roll to obtain a negative electrode sheet. The thickness of each of the negative electrode composite layers on both sides was 100 μm.

〔比較例2〕
配置工程において、図11に示す装置を用いて規制板94により負極合材層の幅方向の端面に凹凸が生じないようにした点以外は、実施例1と同様にして、負極シートを作製した。なお、比較例1と同様に、露出部を第1面に幅20.5mm、第2面に幅21mm設け、表裏で負極合材層の幅の差が0.5mmとなるようにした。
[Comparative Example 2]
A negative electrode sheet was produced in the same manner as in Example 1 except that in the arrangement step, the regulating plate 94 was used to prevent the unevenness from being generated on the end surface in the width direction of the negative electrode composite material layer using the apparatus shown in FIG. . As in Comparative Example 1, the exposed portion was provided with a width of 20.5 mm on the first surface and a width of 21 mm on the second surface, so that the difference in the width of the negative electrode mixture layer between the front and back surfaces was 0.5 mm.

〔比較例3〕
凹凸の周期を表裏で合わせるように、第1面と第2面の造粒体の塗工周期を制御したこと以外は、実施例1と同様にして、負極シートを製造した。負極シートの長手方向1m当たりの非対向部合計面積は56mmであった。
[Comparative Example 3]
A negative electrode sheet was produced in the same manner as in Example 1 except that the coating period of the granulated body on the first surface and the second surface was controlled so that the unevenness period was matched between the front and back surfaces. The total area of the non-opposing portions per 1 m in the longitudinal direction of the negative electrode sheet was 56 mm 2 .

〔比較例4〕
造粒体の平均粒径を大きくし、表裏で造粒体の塗工周期のずれを大きくすることで、非対向部合計面積をさらに大きくしたこと以外は、実施例1と同様にして、負極シートを製造した。負極シートの長手方向1m当たりの非対向部合計面積は1201mm2であった。
[Comparative Example 4]
In the same manner as in Example 1 except that the average particle size of the granulated body was increased and the difference in the coating period of the granulated body was increased between the front and back surfaces, so that the total area of the non-opposing portion was further increased. A sheet was produced. The total area of the non-opposing portions per 1 m in the longitudinal direction of the negative electrode sheet was 1201 mm 2 .

〔比較例5および6〕
比較例5では、第1面側の露出部の幅を広くし、比較例6では、同露出部の幅を狭くした。それ以外は、実施例1と同様にして、負極シートを製造した。非対向部面積の表裏比は、比較例5で約0.1、比較例6で約7であった。なお、負極シートの長手方向1m当たりの非対向部合計面積は、比較例5で490mm、比較例6で510mmであった。
[Comparative Examples 5 and 6]
In Comparative Example 5, the width of the exposed portion on the first surface side was widened, and in Comparative Example 6, the width of the exposed portion was narrowed. Other than that was carried out similarly to Example 1, and manufactured the negative electrode sheet. The front / back ratio of the non-opposing area was about 0.1 in Comparative Example 5 and about 7 in Comparative Example 6. The non-opposing portions total area per longitudinal 1m of the negative electrode sheet, 490 mm 2 in Comparative Example 5, was 510 mm 2 in Comparative Example 6.

<非水電解液二次電池の製造>
上記で製造した実施例1〜10および比較例1〜6の負極シートを用いて、以下のようにして、定格容量25Ahの評価用の非水電解液二次電池(角形リチウムイオンニ次電池)を製造した。なお、以下では「非水電解液二次電池」を単に「電池」と記す場合がある。
<Manufacture of non-aqueous electrolyte secondary batteries>
Using the negative electrode sheets of Examples 1 to 10 and Comparative Examples 1 to 6 manufactured above, a non-aqueous electrolyte secondary battery (rectangular lithium ion secondary battery) for evaluation having a rated capacity of 25 Ah was obtained as follows. Manufactured. Hereinafter, the “nonaqueous electrolyte secondary battery” may be simply referred to as “battery”.

1.正極シート製造工程
図7に示す正極シート20を製造した。まず、次の材料を準備した。
1. Positive electrode sheet manufacturing process The positive electrode sheet 20 shown in FIG. 7 was manufactured. First, the following materials were prepared.

正極活物質:LiNi1/3Co1/3Mn1/32
導電材 :アセチレンブラック
結着材 :PVDF
溶媒 :NMP。
Cathode active material: LiNi 1/3 Co 1/3 Mn 1/3 O 2
Conductive material: Acetylene black Binder: PVDF
Solvent: NMP.

プラネタリミキサの攪拌槽に、正極活物質(90質量部)、導電材(8質量部)、結着材(2質量部)および溶媒を投入し、混合することにより塗料(正極ペースト)を形成した。溶媒の使用量は、造粒体の固形分濃度が50質量%となるように調整した。   A positive electrode active material (90 parts by mass), a conductive material (8 parts by mass), a binder (2 parts by mass) and a solvent were put into a stirring tank of a planetary mixer and mixed to form a paint (positive electrode paste). . The usage-amount of the solvent was adjusted so that the solid content concentration of a granulation body might be 50 mass%.

正極集電板として厚み20μm、幅78.0mmのAl箔を準備した。ダイコータを用いて、正極集電板の両面に正極ペーストを塗工し、乾燥させた。これにより正極合材層22を形成した。なお、正極集電板21の幅方向の一端側に、正極ペーストを塗布しない露出部23を20mmの幅で設けた。さらに、ロールにて正極合材層22を所定の厚みに圧延して、図7に示す正極シート20を製造した。   An Al foil having a thickness of 20 μm and a width of 78.0 mm was prepared as a positive electrode current collector plate. Using a die coater, the positive electrode paste was applied to both surfaces of the positive electrode current collector plate and dried. Thereby, the positive electrode mixture layer 22 was formed. In addition, the exposed part 23 which does not apply | coat a positive electrode paste was provided in the width direction of the width direction of the positive electrode current collecting plate 21 by 20 mm. Furthermore, the positive electrode mixture layer 22 was rolled to a predetermined thickness with a roll to produce the positive electrode sheet 20 shown in FIG.

2.電極群製造工程
幅63.0mmのポリエチレン製のセパレータを準備した。
2. Electrode group manufacturing process A polyethylene separator having a width of 63.0 mm was prepared.

図8に示すように、負極集電板の露出部13と正極集電板の露出部23とが反対の方向に配置されるように、セパレータ30を挟んで負極シート10と正極シート20とを積層し、これらを巻回することにより、巻回式の電極群を構成した。さらに平板プレス機を用いて、電極群を扁平状に成形した。   As shown in FIG. 8, the negative electrode sheet 10 and the positive electrode sheet 20 are sandwiched between the separators 30 so that the exposed portion 13 of the negative electrode current collector plate and the exposed portion 23 of the positive electrode current collector plate are arranged in opposite directions. By laminating and winding these, a wound electrode group was formed. Furthermore, the electrode group was formed into a flat shape using a flat plate press.

3.ケース収容工程
図9に示すように、電池ケース50(高さ75mm、幅120mm、厚さ15mm)に電極群80を収容した。
3. Case Housing Step As shown in FIG. 9, the electrode group 80 was housed in a battery case 50 (height 75 mm, width 120 mm, thickness 15 mm).

4.注液工程
電池ケース50の注液口から、以下の組成を有する電解液81を注入した。その後、注液口を封口し、電池ケース50を密閉した。
4). Liquid Injection Process An electrolytic solution 81 having the following composition was injected from the liquid injection port of the battery case 50. Thereafter, the liquid injection port was sealed, and the battery case 50 was sealed.

[電解液組成]
支持電解質:LiPF6(1.0mоl/L)
溶媒:エチレンカーポネート(EC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)からなる混合溶媒[EC:DMC:EMC=3:5:2(体積比)]。
[Electrolytic solution composition]
Supporting electrolyte: LiPF 6 (1.0 mol / L)
Solvent: Mixed solvent consisting of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) [EC: DMC: EMC = 3: 5: 2 (volume ratio)].

以上のようにして、定格容量25Ahの評価用の非水電解液二次電池100を製造した。   As described above, the nonaqueous electrolyte secondary battery 100 for evaluation having a rated capacity of 25 Ah was manufactured.

さらに、比較例1の負極シートを用い、上記の正極シートの代わりに実施例11の正極シートを用いて、同様の評価用の非水電解液二次電池を製造した。   Furthermore, using the negative electrode sheet of Comparative Example 1 and using the positive electrode sheet of Example 11 instead of the above positive electrode sheet, a similar non-aqueous electrolyte secondary battery for evaluation was manufactured.

<電池性能の評価:ハイレートサイクル試験>
以下のようにして上記で得た各電池を評価した。以下の説明において、電流値の単位「C」は、電池の定格容量を1時間で放電しきる電流値を示す。また、「SOC」(State Of Charge)は充電率を意味する。
<Evaluation of battery performance: High-rate cycle test>
Each battery obtained above was evaluated as follows. In the following description, the unit of current value “C” indicates a current value at which the rated capacity of the battery can be discharged in one hour. “SOC” (State Of Charge) means a charging rate.

1.初期抵抗の測定
まず、上記で製造した電池の初期抵抗を測定した。具体的には、25℃環境において、電池のSOCを60%に調整した。同温度において、10C×10秒のパルス放電を行って、電圧降下量を測定した。電圧降下量をパルス放電時の電流値で除することにより、IV抵抗を算出した。なお、上記各種の電池について各々10個の電池のIV抵抗を測定し、それらの平均値を初期抵抗とした。
1. Measurement of initial resistance First, the initial resistance of the battery produced above was measured. Specifically, the SOC of the battery was adjusted to 60% in a 25 ° C. environment. At the same temperature, a pulse discharge of 10 C × 10 seconds was performed, and the amount of voltage drop was measured. The IV resistance was calculated by dividing the amount of voltage drop by the current value during pulse discharge. In addition, about each said various battery, IV resistance of 10 batteries was measured, and those average values were made into initial stage resistance.

2.ハイレートパルスサイクル後の抵抗増加率の測定
25℃環境において、上記の初期抵抗を測定した電池のSOCを再び60%に調整した。次に、以下の「パルス充電→パルス放電」を1サイクルとするハイレートパルスサイクルを2500回繰り返した
パルス充電:4C×12秒間
パルス放電:2C×24秒間。
2. Measurement of rate of increase in resistance after high-rate pulse cycle In a 25 ° C environment, the SOC of the battery whose initial resistance was measured was adjusted to 60% again. Next, a high-rate pulse cycle in which the following “pulse charge → pulse discharge” is one cycle was repeated 2500 times. Pulse charge: 4C × 12 seconds Pulse discharge: 2C × 24 seconds.

2500サイクル実行後、上記「1.初期抵抗の測定」と同様にして、電池のIV抵抗の平均値を求めた。ハイレートサイクル後の抵抗を初期抵抗で除することにより、抵抗増加率(百分率)を求めた。結果を表1に示す。抵抗増加率が小さい程、ハイレートサイクルに伴う性能低下が抑制されている(ハイレートサイクル特性が良好である)といえる。   After executing 2500 cycles, the average value of the IV resistance of the battery was determined in the same manner as in “1. Measurement of initial resistance”. The resistance increase rate (percentage) was determined by dividing the resistance after the high rate cycle by the initial resistance. The results are shown in Table 1. It can be said that the smaller the resistance increase rate, the lower the performance degradation associated with the high-rate cycle (the better the high-rate cycle characteristics).

〔結果と考察〕
表1の結果から、比較例1および2の負極シートを用いた電池では、ハイレートサイクル特性が悪いことが分かる。これは、非対向部合計面積が500mmであったが、非対向部が第1面のみにしか存在しないため、第1面の負極合材層(第1電極合材層)の電解液保持性は高いものの、第2面の負極合材層(第2電極合材層)では電解液枯れが生じたためである。実際に、ハイレートサイクル後の負極シートを採取し、両面の負極合材層中のLiPF量を測定したところ、第1面の負極合材層中のLiPF量は第2面のそれよりも多かった。
〔Results and discussion〕
From the results in Table 1, it can be seen that the batteries using the negative electrode sheets of Comparative Examples 1 and 2 have poor high rate cycle characteristics. This is because the non-opposing part total area is 500 mm 2 , but the non-opposing part exists only on the first surface, so the electrolyte holding of the negative electrode mixture layer (first electrode mixture layer) on the first surface This is because the electrolyte solution withered in the negative electrode composite material layer (second electrode composite material layer) on the second surface, although the properties were high. Indeed, the negative electrode sheet was collected after high rate cycle, was measured LiPF 6 of the negative-electrode mixture layer of the double-sided, LiPF 6 of the negative electrode mixture layer in the first surface than the second surface There were many.

それに対し、実施例1〜11では優れたハイレートサイクル特性を得ることができた。実施例1〜11は、造粒体成形法により製造された電極シートであり、第1電極合材層は幅方向の少なくとも一端において複数の第1非対向部(第2電極合材層と対向しない部分)を有し、かつ、第2電極合材層は幅方向の少なくとも一端において複数の第2非対向部(第1電極合材層と対向しない部分)を有している。そして、非対向部面積の表裏比は、0.2以上5以下である。また、非対向部合計面積は、長手方向1m当たり100mm以上1009mm2以下である。なお、この非対向部合計面積の範囲は、幅方向の一方の端面についての範囲であり、実施例10のように幅方向の両方の端面に複数の非対向部を有する場合、それぞれの端面についての範囲が上記範囲内であればよく、両方の端面についての複数の非対向部の合計面積は、この範囲を超えていてもよい。 On the other hand, in Examples 1 to 11, excellent high rate cycle characteristics could be obtained. Examples 1-11 are the electrode sheets manufactured by the granulation body shaping | molding method, and a 1st electrode compound-material layer is a several 1st non-opposing part (opposite to a 2nd electrode compound-material layer in at least one end of the width direction. And the second electrode mixture layer has a plurality of second non-opposing portions (portions not opposed to the first electrode mixture layer) at least at one end in the width direction. The front / back ratio of the non-opposing portion area is 0.2 or more and 5 or less. The non-opposing portions total area is 100 mm 2 or more 1009Mm 2 or less per longitudinal 1 m. In addition, the range of this non-opposing portion total area is a range for one end face in the width direction, and when there are a plurality of non-opposing portions on both end faces in the width direction as in Example 10, each end face is The total area of the plurality of non-opposing portions for both end faces may exceed this range.

上記実施例において、ハイレートサイクル特性が向上したのは、複数の非対向部が表裏(第1面および第2面)で交互に存在するため、極板の第1面と第2面の両方の電解液保持性が向上したためである。実際に、ハイレートサイクル後の負極シートを採取し、両面の負極合材層中のLiPF量を測定したところ、両面(第1面および第2面)の負極合材層中のLiPF量が共に、比較例1および2の第1面のそれと同等であった。これは、高い液保持性が得られたことを意味する。また、未塗工部が両方に存在する場合はより効果が得られ、正極に設けた場合でも、効果が得られた。 In the above embodiment, the high-rate cycle characteristics are improved because a plurality of non-opposing portions are alternately present on the front and back surfaces (first surface and second surface), so that both the first surface and the second surface of the electrode plate This is because the electrolytic solution retention was improved. Indeed, the negative electrode sheet was collected after high rate cycle, it was measured LiPF 6 of the negative-electrode mixture layer of the double-sided, LiPF 6 of the negative-electrode mixture layer of the double-sided (first surface and second surface) is Both were equivalent to those of the first surface of Comparative Examples 1 and 2. This means that high liquid retention was obtained. Moreover, when the uncoated part existed in both, the effect was acquired more, and even when it provided in the positive electrode, the effect was acquired.

一方、比較例3、4では、ハイレートサイクルにより抵抗が増加しており、ハイレートサイクル特性が悪かった。複数の非対向部の面積が小さい比較例3については、電解液保持性の向上効果が得られなかったためであると考えられる。また、複数の非対向部の面積が大きい比較例4については、巻回体(巻回式の電極群)を分解すると、正極シートと対向している部分に負極合材層が無い部分が存在した。このことから、比較例4では、そもそもの抵抗が高くなったためであると考えられる。なお、比較例4のように複数の非対向部の面積を大きくするために、端面の凹凸の大きさ(高さ)を大きくして、表裏で塗工周期の差を大きくすると、巻回体のサイズが大きくなるなどの電池設計上のデメリットがある。   On the other hand, in Comparative Examples 3 and 4, the resistance increased due to the high rate cycle, and the high rate cycle characteristics were poor. About the comparative example 3 with a small area of a some non-opposing part, it is thought that it is because the improvement effect of electrolyte solution retainability was not acquired. Moreover, about the comparative example 4 with a large area of a some non-opposing part, when a winding body (winding-type electrode group) is decomposed | disassembled, the part which does not have a negative electrode compound material layer will exist in the part facing the positive electrode sheet did. From this, it can be considered that in Comparative Example 4, the resistance was originally increased. In addition, in order to increase the area of a plurality of non-opposing portions as in Comparative Example 4, when the size (height) of the unevenness on the end surface is increased and the difference in the coating cycle between the front and back is increased, the wound body There are disadvantages in battery design, such as the size of the battery.

また、比較例5および6でも、ハイレートサイクル特性が悪かった。これは、表裏のどちらか一方の面の非対向部が多く、反対の面の非対向部が少なすぎるため、非対向部が少ない面の電極合材層の電解液保持性が悪いことが原因であると考えられる。   Also, in Comparative Examples 5 and 6, the high rate cycle characteristics were poor. This is because there are many non-opposing parts on either side of the front and back, and there are too few non-opposing parts on the opposite side, so the electrolyte solution retention of the electrode mixture layer on the side with few non-opposing parts is poor It is thought that.

本実施形態の電極シートを備える非水電解液二次電池は、ハイレートサイクル特性が重視される車載用電池として好適である。   The nonaqueous electrolyte secondary battery including the electrode sheet of the present embodiment is suitable as a vehicle-mounted battery in which high rate cycle characteristics are important.

今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 電極活物質、8,8a 造粒体、10 負極シート(電極シート)、11 負極集電板、11a 第1面、11b 第2面、12 負極合材層、121 電極合材層(第1電極合材層、負極合材層)、121a 非対向部(第1非対向部)、121b,122b 端面、121c 非対向部、122 電極合材層(第2電極合材層、負極合材層)、122b 非対向部(第2非対向部)、13 露出部、20 正極シート(電極シート)、21 正極集電板、22 正極合材層、23 露出部、30 セパレータ、50 電池ケース、71,72 外部端子、80 電極群、81 電解液、90 電極製造装置、91 Aロール、92 Bロール、93 Cロール、95 フィーダ、94 規制板、100 非水電解液二次電池。   DESCRIPTION OF SYMBOLS 1 Electrode active material, 8, 8a Granulated body, 10 Negative electrode sheet (electrode sheet), 11 Negative electrode current collector plate, 11a 1st surface, 11b 2nd surface, 12 Negative electrode compound material layer, 121 Electrode compound material layer (1st Electrode composite layer, negative electrode composite layer), 121a non-opposing portion (first non-opposing portion), 121b, 122b end face, 121c non-opposing portion, 122 electrode composite layer (second electrode composite layer, negative electrode composite layer) ), 122b Non-opposing portion (second non-opposing portion), 13 exposed portion, 20 positive electrode sheet (electrode sheet), 21 positive electrode current collector plate, 22 positive electrode composite material layer, 23 exposed portion, 30 separator, 50 battery case, 71 , 72 External terminal, 80 electrode group, 81 electrolyte, 90 electrode manufacturing apparatus, 91 A roll, 92 B roll, 93 C roll, 95 feeder, 94 regulating plate, 100 non-aqueous electrolyte secondary battery.

Claims (1)

電極集電板と、前記電極集電板の一方の面に配置された第1電極合材層と、前記電極集電板の他方の面に配置された第2電極合材層と、を備える、非水電解液二次電池用の電極シートであって、
前記電極シートの幅方向の一方端において、
前記第1電極合材層は、厚み方向において前記第2電極合材層と対向しない複数の第1非対向部を長手方向に延びる端面に沿って有し、かつ、前記第2電極合材層は、厚み方向において前記第1電極合材層と対向しない複数の第2非対向部を長手方向に延びる端面に沿って有し、
前記複数の第2非対向部の合計面積に対する前記複数の第1非対向部の合計面積の比率が0.2以上5以下であり、
前記複数の第1非対向部の面積および前記複数の第2非対向部の面積の合計が、前記電極シートの長手方向1m当たり100mm2以上1009mm2以下である、非水電解液二次電池用の電極シート。
An electrode current collector plate, a first electrode mixture layer disposed on one surface of the electrode current collector plate, and a second electrode mixture layer disposed on the other surface of the electrode current collector plate. An electrode sheet for a non-aqueous electrolyte secondary battery,
At one end in the width direction of the electrode sheet,
The first electrode mixture layer has a plurality of first non-facing portions that do not oppose the second electrode mixture layer in the thickness direction along an end surface extending in the longitudinal direction, and the second electrode mixture layer Has a plurality of second non-opposing portions that do not face the first electrode mixture layer in the thickness direction along the end surface extending in the longitudinal direction,
The ratio of the total area of the plurality of first non-opposing portions to the total area of the plurality of second non-opposing portions is 0.2 or more and 5 or less,
Total area of the second non-facing portion area and the plurality of the plurality of first non-facing portion is longitudinally 1m per 100 mm 2 or more 1009Mm 2 or less of the electrode sheet, the non-aqueous electrolyte solution for a secondary battery Electrode sheet.
JP2015200104A 2015-10-08 2015-10-08 Electrode sheet for nonaqueous electrolyte secondary battery Pending JP2017073307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015200104A JP2017073307A (en) 2015-10-08 2015-10-08 Electrode sheet for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200104A JP2017073307A (en) 2015-10-08 2015-10-08 Electrode sheet for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2017073307A true JP2017073307A (en) 2017-04-13

Family

ID=58537414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200104A Pending JP2017073307A (en) 2015-10-08 2015-10-08 Electrode sheet for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2017073307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075244A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Manufacturing method of electrode plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075244A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Manufacturing method of electrode plate

Similar Documents

Publication Publication Date Title
JP6007942B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6142884B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5561559B2 (en) Method for manufacturing lithium secondary battery
US20200321599A1 (en) Method for Manufacturing Electrode for Secondary Battery and Electrode Manufactured Thereby
JP4025094B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode
KR20150083025A (en) Non-aqueous electrolyte secondary battery
KR102100879B1 (en) Positive electrode for secondary battery, preparation method thereof, and lithium secondary battery comprising the same
WO2018051667A1 (en) Lithium ion secondary battery
JP6115361B2 (en) Nonaqueous electrolyte secondary battery
JP6057124B2 (en) Secondary battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
US10164254B2 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
KR102468252B1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
JP6700204B2 (en) Electrode manufacturing method
JP6380808B2 (en) Method for manufacturing electrode for secondary battery
JP2018186033A (en) Manufacturing method of electrode
JP6206259B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product
US10601065B2 (en) Method for manufacturing battery
JP2016181443A (en) Manufacturing method of lithium ion secondary battery electrode
US20100173184A1 (en) Lithium ion secondary battery
JP6946694B2 (en) Lithium ion secondary battery
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2015015182A (en) Nonaqueous electrolyte secondary battery
US10629896B2 (en) Positive electrode and lithium ion secondary battery
JP2017073307A (en) Electrode sheet for nonaqueous electrolyte secondary battery