JP2017072846A - 光学積層体 - Google Patents

光学積層体 Download PDF

Info

Publication number
JP2017072846A
JP2017072846A JP2016232698A JP2016232698A JP2017072846A JP 2017072846 A JP2017072846 A JP 2017072846A JP 2016232698 A JP2016232698 A JP 2016232698A JP 2016232698 A JP2016232698 A JP 2016232698A JP 2017072846 A JP2017072846 A JP 2017072846A
Authority
JP
Japan
Prior art keywords
meth
coat layer
hard coat
layer
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016232698A
Other languages
English (en)
Inventor
周作 柴田
Shusaku Shibata
周作 柴田
勝則 高田
Katsunori Takada
勝則 高田
武本 博之
Hiroyuki Takemoto
博之 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JP2017072846A publication Critical patent/JP2017072846A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】低透湿性の(メタ)アクリル系樹脂フィルム(基材フィルム)とハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を提供する。【解決手段】本発明の光学積層体100は、(メタ)アクリル系樹脂フィルムから形成される基材層10と、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層30と、基材層と該ハードコート層との間に、ハードコート層形成用組成物が該(メタ)アクリル系樹脂フィルムに浸透して形成された浸透層20とを備え、浸透層の厚みが1.2μm以上である。【選択図】図1

Description

本発明は、光学積層体に関する。
液晶ディスプレイ(LCD)、陰極線管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)等の画像表示装置は、外部からの接触によりその表面に傷がつくと、表示画像の視認性が低下する場合がある。このため、画像表示装置の表面保護を目的として、基材フィルムとハードコート層とを含む光学積層体が用いられている。光学積層体の基材フィルムとしては、代表的にはトリアセチルセルロース(TAC)が用いられている。しかし、TACからなる基材フィルムは、透湿度が高い。そのため、このような基材フィルムを含む光学積層体をLCDに用いた場合、高温高湿下では水分が当該光学積層体を透過して、偏光子の光学特性が劣化するという問題が生じる。近年、屋内での使用に加え、カーナビゲーションシステム、携帯情報端末のような屋外で使用される機器にもLCDが用いられることも多くなっており、高温高湿等の過酷な条件下においても上記問題の生じない信頼性の高いLCDが求められている。
上記問題を解決するため、低透湿性のシクロオレフィン基材フィルムにハードコート層形成用組成物を塗工した光学積層体が提案されている(特許文献1)。しかし、このようなシクロオレフィン基材フィルムはハードコート層との密着性が悪いという問題がある。また、基材フィルムとハードコート層との屈折率差に起因して干渉ムラが生じるという問題がある。さらに、上記のシクロオレフィン基材フィルムは、十分な紫外線吸収能を有さず、これらの基材フィルムを用いた光学積層体は外光等により光学特性が劣化するという問題がある。このように、低透湿性であり、かつ、紫外線吸収能の高い基材フィルムを用いながら、基材フィルムとハードコート層との十分な密着性を満足して干渉ムラの小さい光学積層体は、未だ実用化されていない。
特開2006−110875号公報
本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、低透湿性、かつ、紫外線吸収能を有する(メタ)アクリル系樹脂フィルム(基材フィルム)とハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を提供することにある。
本発明の光学積層体は、(メタ)アクリル系樹脂フィルムから形成される基材層と、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層と、該基材層と該ハードコート層との間に、該ハードコート層形成用組成物が該(メタ)アクリル系樹脂フィルムに浸透して形成された浸透層とを備え、該浸透層の厚みが1.2μm以上である。
好ましい実施形態においては、上記浸透層において、(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂の濃度が、ハードコート層側から基材層側へ連続的に高くなる。
好ましい実施形態においては、500nm〜600nmの波長領域におけるハードコート層の反射スペクトルの振幅が、0.5%以下である。
好ましい実施形態においては、上記基材層の屈折率と、ハードコート層の屈折率との差の絶対値が、0.01〜0.15である。
好ましい実施形態においては、上記(メタ)アクリル系樹脂フィルムの波長380nmにおける光の透過率が、15%以下である。
好ましい実施形態においては、上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する。
好ましい実施形態においては、上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、側鎖に芳香環を有する。
好ましい実施形態においては、上記ハードコート層形成用組成物が、2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む。
好ましい実施形態においては、上記ハードコート層形成用組成物が、単官能モノマーをさらに含む。
好ましい実施形態においては、上記単官能モノマーの重量平均分子量が、500以下である。
好ましい実施形態においては、上記単官能モノマーが、水酸基を有する。
好ましい実施形態においては、上記単官能モノマーが、ヒドロキシアルキル(メタ)アクリレートおよび/またはN−(2−ヒドロキシアルキル)(メタ)アクリルアミドである。
好ましい実施形態においては、上記ハードコート層形成用組成物が、ウレタン(メタ)アクリレートおよび/またはウレタン(メタ)アクリレートのオリゴマーを含む。
1つの実施形態においては、上記ハードコート層形成用組成物が、水酸基を有する(メタ)アクリル系プレポリマーを含む。
1つの実施形態においては、上記ハードコート層形成用組成物が、溶媒を含まない。
好ましい実施形態においては、上記ハードコート層の上記浸透層とは反対側の表面が、凹凸構造を有する。
好ましい実施形態においては、本発明の光学積層体は、上記ハードコート層の上記浸透層とは反対側に、反射防止層をさらに備える。
本発明の別の局面によれば、偏光フィルムが提供される。この偏光フィルムは上記光学積層体を含む。
本発明のさらに別の局面によれば、画像表示装置が提供される。この画像表示装置は上記光学積層体を含む。
本発明のさらに別の局面によれば、光学積層体の製造方法が提供される。この光学積層体の製造方法は、上記(メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を80℃〜140℃で加熱することを含む。
本発明によれば、(メタ)アクリル系樹脂フィルム(基材フィルム)上にハードコート層形成用組成物を塗工して形成された基材層およびハードコート層、ならびに(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物が浸透して形成された浸透層を備えることにより、基材フィルムとして低透湿性の(メタ)アクリル系樹脂フィルムを用いながらも、基材フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体が提供される。本発明の光学積層体は、アンカー層を設けることなく、また、(メタ)アクリル系樹脂フィルム(基材フィルム)に物理的処理を行うことなく、(メタ)アクリル系樹脂フィルム(基材フィルム)とハードコート層との優れた密着性を得ることができる。また、本発明によれば、低透湿性に加えて紫外線吸収能を有する(メタ)アクリル系樹脂フィルム(基材フィルム)に対しても優れた密着性でハードコート層を形成することができる。
(a)は本発明の好ましい実施形態による光学積層体の概略断面図であり、(b)は従来の一般的なハードコート層を有する光学積層体の概略断面図の一例である。 本発明の別の実施形態による光学積層体の概略断面図である。 実施例の評価に用いる積層体(R1)のハードコート層表面の高速フーリエ変換(FFT)スペクトルである。 実施例1の光学積層体のハードコート層表面の反射スペクトルである。 実施例1の光学積層体のハードコート層表面のFFTスペクトルである。 比較例3の光学積層体のハードコート層表面の反射スペクトルである。 比較例3の光学積層体のハードコート層表面のFFTスペクトルである。
以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.光学積層体の全体構成
図1(a)は、本発明の好ましい実施形態による光学積層体の概略断面図であり、図1(b)は、従来の一般的なハードコート層を有する光学積層体の概略断面図である。図1(a)に示す光学積層体100は、(メタ)アクリル系樹脂フィルムから形成される基材層10と、浸透層20と、ハードコート層30とをこの順に備える。ハードコート層30は、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成される。浸透層20は、ハードコート層形成用組成物が(メタ)アクリル系樹脂フィルムに浸透して形成される。基材層10は、このようにハードコート層形成用組成物が(メタ)アクリル系樹脂フィルムに浸透した際に、(メタ)アクリル系樹脂フィルムにおいてハードコート層形成用組成物が到達(浸透)しなかった部分である。一方、図1(b)に示す光学積層体200は、浸透層が形成されていない。図1(a)および(b)に示す境界Aは、(メタ)アクリル系樹脂フィルムのハードコート層形成用組成物塗工面により規定される境界である。したがって、境界Aは、光学積層体100においては浸透層20とハードコート層30との境界であり、浸透層が形成されていない光学積層体200においては基材層10’(すなわち、(メタ)アクリル系樹脂フィルム)とハードコート層30’との境界である。なお、本明細書において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。
浸透層20は、上記のとおり、光学積層体100において、ハードコート層形成用組成物が(メタ)アクリル系樹脂フィルムに浸透して形成される。すなわち、浸透層20とは、(メタ)アクリル系樹脂フィルムにおいて、ハードコート層成分が存在している部分である。浸透層20の厚みは1.2μm以上である。なお、浸透層20の厚みとは、上記(メタ)アクリル系樹脂フィルムにおいてハードコート層成分が存在している部分の厚みであり、具体的には、(メタ)アクリル系樹脂フィルムにおいてハードコート層成分が存在している部分(浸透層)と存在していない部分(基材層)との境界Bと、境界Aとの距離である。
本発明の光学積層体は、必要に応じて、ハードコート層30の外側に任意の適切なその他の層(図示せず)が配置されてもよい。その他の層は、代表的には、粘着剤層(図示せず)を介して配置される。
上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、ハードコート層形成用組成物に溶出して、ハードコート層中に当該(メタ)アクリル系樹脂が存在していてもよい。
図2は、本発明の別の実施形態による光学積層体の概略断面図である。光学積層体300は、ハードコート層30の浸透層20とは反対側に、ブロック層40をさらに備える。ブロック層40は上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、ハードコート層形成用組成物に溶出し、ハードコート層形成用組成物が、当該(メタ)アクリル系樹脂と相分離を起こすことにより生じる。ブロック層40を備える光学積層体は、耐擦傷性に優れる。
本発明の光学積層体の500nm〜600nmの波長領域におけるハードコート層の反射スペクトルの振幅は、好ましくは0.5%以下であり、より好ましくは0.3%以下であり、さらに好ましくは0.1%以下である。本発明によれば、反射スペクトルの振幅の小さい、すなわち、干渉ムラの少ない光学積層体を得ることができる。
本発明の光学積層体は、所定厚みの浸透層を有するので、(メタ)アクリル系樹脂フィルムおよびハードコート層の形成材料として屈折率差の大きい材料を選択しても、干渉ムラの発生を防止することができる。本発明の光学積層体は、例えば、基材層の屈折率とハードコート層の屈折率との差の絶対値を0.01〜0.15とすることができる。もちろん、当該屈折率の差の絶対値を0.01未満に設定することも可能である。
本発明の光学積層体は、例えば、偏光フィルム(偏光板とも称される)に適用される。具体的には、本発明の光学積層体は、偏光フィルムにおいて、偏光子の片面または両面に設けられ、偏光子の保護材料として好適に用いられ得る。
B.基材層
上記基材層は、(メタ)アクリル系樹脂フィルムから形成される。より詳細には、上記のように、基材層は、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工した際に、(メタ)アクリル系樹脂フィルムにおいて、当該ハードコート層形成用組成物が到達(浸透)しなかった部分である。
上記(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂を含む。(メタ)アクリル系樹脂フィルムは、例えば、(メタ)アクリル系樹脂を主成分として含む樹脂成分を含有する成形材料を、押出し成形して得られる。
上記(メタ)アクリル系樹脂フィルムの透湿度は、好ましくは200g/m・24hr以下であり、より好ましくは80g/m・24hr以下である。本発明によれば、このように透湿度の高い(メタ)アクリル系樹脂フィルムを用いても、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。なお、透湿度は、例えば、JIS Z 0208に準じた方法により、40℃、相対湿度92%の試験条件で測定することができる。
上記(メタ)アクリル系樹脂フィルムの波長380nmにおける光の透過率は、好ましくは15%以下であり、より好ましくは12%以下であり、さらに好ましくは9%以下である。波長380nmの光の透過率がこのような範囲であれば、優れた紫外線吸収能が発現するので、光学積層体の外光等による紫外線劣化が防止され得る。
上記(メタ)アクリル系樹脂フィルムの面内位相差Reは、好ましくは10nm以下であり、より好ましくは7nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。(メタ)アクリル系樹脂フィルムの厚み方向位相差Rthは、好ましくは15nm以下であり、より好ましくは10nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。面内位相差および厚み方向位相差がこのような範囲であれば、位相差に起因する画像表示装置の表示特性への悪影響が顕著に抑制され得る。より具体的には、干渉ムラや3Dディスプレイ用液晶表示装置に用いる場合の3D像の歪みが顕著に抑制され得る。面内位相差および厚み方向位相差がこのような範囲の(メタ)アクリル系樹脂フィルムは、例えば、後述のグルタルイミド構造を有する(メタ)アクリル系樹脂を用いて得ることができる。なお、面内位相差Reおよび厚み方向位相差Rthは、それぞれ、以下の式で求められる:
Re=(nx−ny)×d
Rth=(nx−nz)×d
ここで、nxは(メタ)アクリル系樹脂フィルムの遅相軸方向の屈折率であり、nyは(メタ)アクリル系樹脂フィルムの進相軸方向の屈折率であり、nzは(メタ)アクリル系樹脂フィルムの厚み方向の屈折率であり、d(nm)は(メタ)アクリル系樹脂フィルムの厚みである。遅相軸は、フィルム面内の屈折率が最大になる方向をいい、進相軸は、面内で遅相軸に垂直な方向をいう。代表的には、ReおよびRthは、波長590nmの光を用いて測定される。
上記(メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル−(メタ)アクリル酸共重合体、メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、メタクリル酸メチル−アクリル酸エステル−(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル−スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル−メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル−(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1−6アルキルが挙げられる。より好ましくは、メタクリル酸メチルを主成分(50〜100重量%、好ましくは70〜100重量%)とするメタクリル酸メチル系樹脂が挙げられる。
上記(メタ)アクリル系樹脂の重量平均分子量は、好ましくは10000〜500000である。重量平均分子量が小さすぎると、フィルムにした場合の機械的強度が不足する傾向がある。重量平均分子量が大きすぎると、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する傾向がある。
上記(メタ)アクリル系樹脂のガラス転移温度は、好ましくは110℃以上であり、より好ましくは120℃以上である。ガラス転移温度がこのような範囲であれば、耐久性および耐熱性に優れた(メタ)アクリル系樹脂フィルムが得られ得る。ガラス転移温度の上限は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。
上記(メタ)アクリル系樹脂は、好ましくは、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する。これらの構造単位を有していれば、その存在比を調整して、(メタ)アクリル系樹脂フィルムの位相差を制御することができ、低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。正の複屈折を発現する構造単位としては、例えば、ラクトン環、ポリカーボネート、ポリビニルアルコール、酢酸セルロース、ポリエステル、ポリアリレート、ポリイミド、ポリオレフィン等を構成する構造単位、後述の一般式(1)で示される構造単位が挙げられる。負の複屈折を発現する構造単位としては、例えば、スチレン系モノマー、マレイミド系モノマー等を由来とする構造単位、ポリメチルメタクリレートの構造単位、後述の一般式(3)で示される構造単位等が挙げられる。本明細書において、正の複屈折を発現する構造単位とは、当該構造単位のみを有する樹脂が正の複屈折特性を示す場合(すなわち、樹脂の延伸方向に遅相軸が発現する場合)の構造単位を意味する。また、負の複屈折を発現する構造単位とは、当該構造単位のみを有する樹脂が負の複屈折特性を示す場合(すなわち、樹脂の延伸方向と垂直な方向に遅相軸が発現する場合)の構造単位を意味する。
上記(メタ)アクリル系樹脂として、ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂が好ましく用いられる。ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂は耐熱性に優れる。より好ましくは、グルタルイミド構造を有する(メタ)アクリル系樹脂である。グルタルイミド構造を有する(メタ)アクリル系樹脂を用いれば、上記のように、低透湿、かつ、位相差および紫外線透過率の小さい(メタ)アクリル系樹脂フィルムを得ることができる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報、特開2007−009182号公報、特開2009−161744号公報に記載されている。これらの記載は、本明細書に参考として援用される。
好ましくは、上記グルタルイミド樹脂は、下記一般式(1)で表される構造単位(以下、グルタルイミド単位とも称する)と、下記一般式(2)で表される構造単位(以下、(メタ)アクリル酸エステル単位とも称する)とを含む。
式(1)において、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基である。式(2)において、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基である。
グルタルイミド樹脂は、必要に応じて、下記一般式(3)で表される構造単位(以下、芳香族ビニル単位とも称する)をさらに含んでいてもよい。
式(3)において、Rは、水素または炭素数1〜8のアルキル基であり、Rは、炭素数6〜10のアリール基である。
上記一般式(1)において、好ましくは、RおよびRは、それぞれ独立して、水素またはメチル基であり、Rは水素、メチル基、ブチル基、またはシクロヘキシル基であり、さらに好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。
上記グルタルイミド樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、およびRが異なる複数の種類を含んでいてもよい。
グルタルイミド単位は、上記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより、形成することができる。また、グルタルイミド単位は、無水マレイン酸等の酸無水物、または、このような酸無水物と炭素数1〜20の直鎖または分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β−エチレン性不飽和カルボン酸等をイミド化することによっても、形成することができる。
上記一般式(2)において、好ましくは、RおよびRは、それぞれ独立して、水素またはメチル基であり、Rは水素またはメチル基であり、さらに好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。
上記グルタルイミド樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、R、およびRが異なる複数の種類を含んでいてもよい。
上記グルタルイミド樹脂は、上記一般式(3)で表される芳香族ビニル単位として、好ましくはスチレン、α−メチルスチレン等を含み、さらに好ましくはスチレンを含む。このような芳香族ビニル単位を有することにより、グルタルイミド構造の正の複屈折性を低減し、より低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。
上記グルタルイミド樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、RおよびRが異なる複数の種類を含んでいてもよい。
上記グルタルイミド樹脂における上記グルタルイミド単位の含有量は、例えばRの構造等に依存して変化させることが好ましい。グルタルイミド単位の含有量は、グルタルイミド樹脂の総構造単位を基準として、好ましくは1重量%〜80重量%であり、より好ましくは1重量%〜70重量%であり、さらに好ましくは1重量%〜60重量%であり、特に好ましくは1重量%〜50重量%である。グルタルイミド単位の含有量がこのような範囲であれば、耐熱性に優れた低位相差の(メタ)アクリル系樹脂フィルムが得られ得る。
上記グルタルイミド樹脂における上記芳香族ビニル単位の含有量は、目的や所望の特性に応じて適切に設定され得る。用途によっては、芳香族ビニル単位の含有量は0であってもよい。芳香族ビニル単位が含まれる場合、その含有量は、グルタルイミド樹脂のグルタルイミド単位を基準として、好ましくは10重量%〜80重量%であり、より好ましくは20重量%〜80重量%であり、さらに好ましくは20重量%〜60重量%であり、特に好ましくは20重量%〜50重量%である。芳香族ビニル単位の含有量がこのような範囲であれば、低位相差、かつ、耐熱性および機械的強度に優れた(メタ)アクリル系樹脂フィルムが得られ得る。
上記グルタルイミド樹脂には、必要に応じて、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の構造単位がさらに共重合されていてもよい。その他の構造単位としては、例えば、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体から構成される構造単位が挙げられる。これらのその他の構造単位は、上記グルタルイミド樹脂中に、直接共重合していてもよいし、グラフト共重合していてもよい。
上記(メタ)アクリル系樹脂フィルムは、紫外線吸収剤を含む。紫外線吸収剤としては、上記所望の特性が得られる限りにおいて、任意の適切な紫外線吸収剤が採用され得る。上記紫外線吸収剤の代表例としては、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤、およびオキサジアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は、単独で用いてもよく、複数を組み合わせて用いてもよい。
上記紫外線吸収剤の含有量は、(メタ)アクリル系樹脂100重量部に対して、好ましくは0.1重量部〜5重量部であり、より好ましくは0.2重量部〜3重量部である。紫外線吸収剤の含有量がこのような範囲であれば、紫外線を効果的に吸収することができ、かつ、フィルム成形時のフィルムの透明性が低下することがない。紫外線吸収剤の含有量が0.1重量部より少ない場合、紫外線の遮断効果が不十分となる傾向がある。紫外線吸収剤の含有量が5重量部より多い場合、着色が激しくなったり、成形後のフィルムのヘイズが高くなり、透明性が悪化したりする傾向がある。
上記(メタ)アクリル系樹脂フィルムは、目的に応じて任意の適切な添加剤を含有し得る。添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;位相差低減剤等が挙げられる。含有される添加剤の種類、組み合わせ、含有量等は、目的や所望の特性に応じて適切に設定され得る。
上記(メタ)アクリル系樹脂フィルムの製造方法としては、特に限定されるものではないが、例えば、(メタ)アクリル系樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、任意の適切な混合方法で充分に混合し、予め熱可塑性樹脂組成物としてから、これをフィルム成形することができる。あるいは、(メタ)アクリル系樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、それぞれ別々の溶液にしてから混合して均一な混合液とした後、フィルム成形してもよい。
上記熱可塑性樹脂組成物を製造するには、例えば、オムニミキサー等、任意の適切な混合機で上記のフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いられる混合機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、任意の適切な混合機を用いることができる。
上記フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法等、任意の適切なフィルム成形法が挙げられる。溶融押出法が好ましい。溶融押出法は溶剤を使用しないので、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。
上記溶融押出法としては、例えば、Tダイ法、インフレーション法等が挙げられる。成形温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。
上記Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻取って、ロール状のフィルムを得ることができる。この際、巻取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸等を行うこともできる。
上記(メタ)アクリル系樹脂フィルムは、上記所望の位相差が得られる限りにおいて、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。
上記延伸温度は、フィルム原料である熱可塑性樹脂組成物のガラス転移温度近傍であることが好ましく、具体的には、好ましくは(ガラス転移温度−30℃)〜(ガラス転移温度+30℃)、より好ましくは(ガラス転移温度−20℃)〜(ガラス転移温度+20℃)の範囲内である。延伸温度が(ガラス転移温度−30℃)未満であると、得られるフィルムのヘイズが大きくなり、あるいは、フィルムが裂けたり、割れたりして所定の延伸倍率が得られないおそれがある。逆に、延伸温度が(ガラス転移温度+30℃)を超えると、得られるフィルムの厚みムラが大きくなったり、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質が十分に改善できなかったりする傾向がある。さらに、フィルムがロールに粘着するといったトラブルが発生しやすくなる傾向がある。
上記延伸倍率は、好ましくは1.1〜3倍、より好ましくは1.3〜2.5倍である。延伸倍率がこのような範囲であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。結果として、厚みムラが小さく、複屈折が実質的にゼロであり(したがって、位相差が小さく)、さらに、ヘイズが小さいフィルムを製造することができる。
上記(メタ)アクリル系樹脂フィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)等を行うことができる。熱処理の条件は、任意の適切な条件を採用し得る。
上記(メタ)アクリル系樹脂フィルムの厚みは、好ましくは10μm〜200μmであり、より好ましくは20μm〜100μmである。厚みが10μm未満であると、強度が低下するおそれがある。厚みが200μmを超えると、透明性が低下するおそれがある。
上記(メタ)アクリル系樹脂フィルムの表面の濡れ張力は、好ましくは40mN/m以上、より好ましくは50mN/m以上、さらに好ましくは55mN/m以上である。表面の濡れ張力が少なくとも40mN/m以上であると、(メタ)アクリル系樹脂フィルムとハードコート層との密着性がさらに向上する。表面の濡れ張力を調整するために、任意の適切な表面処理を施すことができる。表面処理としては、例えば、コロナ放電処理、プラズマ処理、オゾン吹き付け、紫外線照射、火炎処理、化学薬品処理が挙げられる。これらの中でも、好ましくは、コロナ放電処理、プラズマ処理である。
C.浸透層
上記浸透層は、上記のとおり、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物が浸透することにより形成される。言い換えれば、浸透層は(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂とハードコート層を形成する成分との相溶化領域の一部に対応し得る。
上記浸透層において、(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂の濃度が、ハードコート層側から基材層側にかけて連続的に高くなることが好ましい。(メタ)アクリル系樹脂の濃度が連続的に変化すること、すなわち(メタ)アクリル系樹脂の濃度変化に起因する界面が形成されていないことにより界面反射を抑制することができ、干渉ムラの少ない光学積層体を得ることができるからである。
上記浸透層の厚みの下限は1.2μmであり、好ましくは1.5μmであり、より好ましくは2.5μmであり、さらに好ましくは3μmである。浸透層の厚みの上限は、好ましくは((メタ)アクリル系樹脂フィルムの厚み×70%)μmであり、より好ましくは((メタ)アクリル系樹脂フィルムの厚み×40%)μmであり、さらに好ましくは((メタ)アクリル系樹脂フィルムの厚み×30%)μmであり、特に好ましくは((メタ)アクリル系樹脂フィルム×20%)μmである。浸透層の厚みがこのような範囲であれば、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。なお、浸透層の厚みは、ハードコート層の反射スペクトル、またはSEM、TEM等の電子顕微鏡による観察により測定することができる。反射スペクトルによる浸透層の厚みの測定方法の詳細は、実施例における評価方法として後述する。
D.ハードコート層
ハードコート層は、上記のとおり、上記(メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗工して形成される。ハードコート層形成用組成物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る硬化性化合物を含む。好ましくは、ハードコート層形成用組成物は、光硬化型の硬化性化合物を含む。硬化性化合物は、モノマー、オリゴマーおよびプレポリマーのいずれであってもよい。
上記ハードコート層形成用組成物は、好ましくは、2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む。当該2個以上の(メタ)アクリロイル基を有する硬化性化合物に含まれる(メタ)アクリロイル基の個数の上限は、好ましくは100個である。2個以上の(メタ)アクリロイル基を有する硬化性化合物は、(メタ)アクリル系樹脂との相溶性に優れるので、塗工時に(メタ)アクリル系樹脂フィルムに容易に浸透および拡散する。なお、本明細書において、「(メタ)アクリロイル」は、メタクリロイルおよび/またはアクリロイルを意味する。
上記2個以上の(メタ)アクリロイル基を有する硬化性化合物としては、例えば、トリシクロデカンジメタノールジアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパントテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオール(メタ)アクリレート、1,9−ノナンジオールジアクリレート、1,10−デカンジオール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジアクリレート、イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレートおよびこれらのオリゴマーまたはプレポリマー等が挙げられる。2個以上の(メタ)アクリロイル基を有する硬化性化合物は、単独で用いてもよく、複数を組み合わせて用いてもよい。なお、本明細書において、「(メタ)アクリレート」とはアクリレートおよび/またはメタクリレートを意味する。
上記2個以上の(メタ)アクリロイル基を有する硬化性化合物は、好ましくは水酸基を有する。上記ハードコート層形成用組成物が、このような硬化性化合物を含んでいれば、ハードコート層形成時の加熱温度をより低く、加熱時間をより短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。また、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れる光学積層体を得ることができる。水酸基および2個以上の(メタ)アクリロイル基を有する硬化性化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。
上記2個以上の(メタ)アクリロイル基を有する硬化性化合物の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは30重量%〜100重量%であり、より好ましくは40重量%〜95重量%であり、特に好ましくは50重量%〜95重量%である。このような範囲であれば、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。また、ハードコート層の硬化収縮を有効に防止できる。
上記ハードコート層形成用組成物は、硬化性化合物として、単官能モノマーを含んでいてもよい。単官能モノマーは、(メタ)アクリル系樹脂フィルムに容易に浸透するので、単官能モノマーを含んでいれば、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。また、ハードコート層形成用組成物が単官能モノマーを含んでいれば、ハードコート層形成時の加熱温度を低く、加熱時間を短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。上記ハードコート層形成用組成物が単官能モノマーを含む場合、単官能モノマーの含有割合は、ハードコート層形成用組成物中の全硬化性化合物に対して、好ましくは40重量%以下であり、より好ましくは30重量%以下であり、特に好ましくは20重量%以下である。単官能モノマーの含有割合が40重量%より多い場合、所望の硬度および耐擦傷性が得られないおそれがある。
上記単官能モノマーの重量平均分子量は、好ましくは500以下である。このような単官能モノマーであれば、(メタ)アクリル系樹脂フィルムに容易に浸透および拡散する。このような単官能モノマーとしては、例えば、エトキシ化o−フェニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2−エチルヘキシルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソホロニルアクリレート、ベンジルアクリレート、2−ヒドロキシ−3−フェノキシアクリレート、アクリロイルモルホリン、2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジメチルアミノプロピルアクリルアミド、N−(2−ヒドロキシエチル)(メタ)アクリルアミド等が挙げられる。
上記単官能モノマーは、好ましくは水酸基を有する。このような単官能モノマーであれば、ハードコート層形成時の加熱温度をより低く、加熱時間をより短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。また、上記ハードコート層形成用組成物が、水酸基を有する単官能モノマーを含んでいれば、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れる光学積層体を得ることができる。このような単官能モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシアクリレート、1,4−シクロヘキサンメタノールモノアクリレート等のヒドロキシアルキル(メタ)アクリレート;N−(2−ヒドロキシエチル)(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド等のN−(2−ヒドロキシアルキル)(メタ)アクリルアミド等が挙げられる。なかでも好ましくは、4−ヒドロキシブチルアクリレート、N−(2−ヒドロキシエチル)アクリルアミドである。
上記単官能モノマーの沸点は、ハードコート層形成時における塗布層の加熱温度(後述)より高いことが好ましい。上記単官能モノマーの沸点は、例えば、好ましくは150℃以上であり、より好ましくは180℃以上であり、特に好ましくは200℃以上である。このような範囲であれば、ハードコート層形成時における加熱により単官能モノマーが揮発することを防止でき、(メタ)アクリル系樹脂フィルムに単官能モノマーを十分に浸透させることができる。
ハードコート層形成用組成物は、好ましくは、硬化性化合物としてウレタン(メタ)アクリレートおよび/またはウレタン(メタ)アクリレートのオリゴマーを含む。ハードコート層形成用組成物がウレタン(メタ)アクリレートおよび/またはウレタン(メタ)アクリレートのオリゴマーを含んでいれば、柔軟性および(メタ)アクリル系樹脂フィルムに対する密着性に優れるハードコート層を形成することができる。上記ウレタン(メタ)アクリレートは、例えば、(メタ)アクリル酸または(メタ)アクリル酸エステルとポリオールとから得られるヒドロキシ(メタ)アクリレートを、ジイソシアネートと反応させることにより得ることができる。ウレタン(メタ)アクリレートおよびウレタン(メタ)アクリレートのオリゴマーは、単独で用いてもよく、複数を組み合わせて用いてもよい。
上記(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。
上記ポリオールとしては、例えば、エチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、3−メチル−1,5−ペンタンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、トリシクロデカンジメチロール、1,4−シクロヘキサンジオール、スピログリコール、水添ビスフェノールA、エチレンオキサイド付加ビスフェノールA、プロピレンオキサイド付加ビスフェノールA、トリメチロールエタン、トリメチロールプロパン、グリセリン、3−メチルペンタン−1,3,5−トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類等が挙げられる。
上記ジイソシアネートとしては、例えば、芳香族、脂肪族または脂環族の各種のジイソシアネート類を使用することができる。上記ジイソシアネートの具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、4,4−ジフェニルジイソシアネート、1,5−ナフタレンジイソシアネート、3,3−ジメチル−4,4−ジフェニルジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、およびこれらの水添物等が挙げられる。
上記ウレタン(メタ)アクリレートおよびウレタン(メタ)アクリレートのオリゴマーの合計含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは5重量%〜70重量%であり、さらに好ましくは5重量%〜50重量%であり、特に好ましくは5重量%〜30重量%である。このような範囲であれば、硬度、柔軟性および密着性のバランスに優れるハードコート層を形成することができる。
上記ハードコート層形成用組成物は、水酸基を有する(メタ)アクリル系プレポリマーを含んでいてもよい。ハードコート層形成用組成物が水酸基を有する(メタ)アクリル系プレポリマーを含んでいれば、硬化収縮を低減することができ、かつ、ハードコート層中にブロック層を形成して、耐擦傷性に優れるハードコート層を形成することができる。また、当該(メタ)アクリル系プレポリマーが水酸基を有していることにより、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れる光学積層体を得ることができる。水酸基を有する(メタ)アクリル系プレポリマーは、好ましくは、炭素原子数1〜10の直鎖状または分枝状アルキル基を有するヒドロキシアルキル(メタ)アクリレートから重合されるポリマーである。水酸基を有する(メタ)アクリル系プレポリマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2,3−ジヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−アクリロイルオキシプロピル(メタ)アクリレート、2−アクリロイルオキシ−3−ヒドロキシプロピル(メタ)アクリレートからなる群から選択される少なくとも一つのモノマーから重合されたポリマーが挙げられる。水酸基を有する(メタ)アクリル系プレポリマーは、単独で用いてもよく、複数を組み合わせて用いてもよい。
上記水酸基を有する(メタ)アクリル系プレポリマーの含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは5重量%〜50重量%であり、より好ましくは10重量%〜30重量%である。このような範囲であれば、塗工性に優れたハードコート層形成用組成物が得られる。また、形成されたハードコート層の硬化収縮を有効に防止できる。
上記ハードコート層形成用組成物は、好ましくは、任意の適切な光重合開始剤を含む。光重合開始剤としては、例えば、2,2−ジメトキシ−2−フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントン、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、N,N,N’,N’−テトラメチル−4,4’−ジアミノベンゾフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、チオキサントン系化合物等が挙げられる。
1つの実施形態においては、ハードコート層の基材層とは反対側の表面は、凹凸構造を有する。ハードコート層の表面が凹凸構造であれば、光学積層体に防眩性を付与することができる。このような凹凸構造を形成する方法としては、例えば、ハードコート層形成用組成物に微粒子を含有させる方法が挙げられる。微粒子は無機微粒子であってもよく、有機微粒子であってもよい。無機微粒子としては、例えば、酸化ケイ素微粒子、酸化チタン微粒子、酸化アルミニウム微粒子、酸化亜鉛微粒子、酸化錫微粒子、炭酸カルシウム微粒子、硫酸バリウム微粒子、タルク微粒子、カオリン微粒子、硫酸カルシウム微粒子等が挙げられる。有機微粒子としては、例えば、ポリメタクリル酸メチル樹脂粉末(PMMA微粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等が挙げられる。これらの微粒子は、単独で用いてもよく、複数を組み合わせて用いてもよい。
上記微粒子の形状は、任意の適切な形状が採用され得る。好ましくは略球形であり、より好ましくはアスペクト比が1.5以下の略球形である。微粒子の重量平均粒径は、好ましくは1μm〜30μmであり、より好ましくは2μm〜20μmである。微粒子の重量平均粒径は、例えば、コールターカウント法により測定できる。
上記ハードコート層形成用組成物が上記微粒子を含む場合、上記微粒子の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは1重量%〜60重量%であり、より好ましくは2重量%〜50重量%である。
上記ハードコート層形成用組成物は、任意の適切な添加剤をさらに含み得る。添加剤としては、例えば、レベリング剤、ブロッキング防止剤、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、フィラー、滑剤、帯電防止剤等が挙げられる。
上記レベリング剤としては、例えば、フッ素系またはシリコーン系のレベリング剤が挙げられ、好ましくは、シリコーン系レベリング剤である。上記シリコーン系レベリング剤としては、例えば、反応性シリコーン、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン等が挙げられる。なかでも好ましくは、反応性シリコーンである。反応性シリコーンを添加すれば、ハードコート層表面に滑り性が付与され耐擦傷性が長期間にわたり持続するようになる。上記レベリング剤の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは5重量%以下であり、より好ましくは0.01重量%〜5重量%である。
上記ハードコート層形成用組成物は、溶媒を含んでいてもよく、含んでいなくてもよい。溶媒としては、例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン(CPN)、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n−ペンチル、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、イソプロピルアルコール(IPA)、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2−オクタノン、2−ペンタノン、2−ヘキサノン、2−ヘプタノン、3−ヘプタノン、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等が挙げられる。これらは、単独で用いてもよく、複数を組み合わせて用いてもよい。
本発明によれば、溶媒を含まないハードコート層形成用組成物、あるいは溶媒として(メタ)アクリル系樹脂フィルム形成材料の貧溶媒のみを含むハードコート層形成用組成物を用いても、ハードコート形成用組成物が(メタ)アクリル系樹脂フィルムに浸透して、所望の厚みを有する浸透層を形成することができる。
上記ハードコート層の厚みは、好ましくは1μm〜20μmであり、より好ましくは3μm〜10μmである。
上記のとおり、(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、ハードコート層形成用組成物に溶出して、ハードコート層中に当該(メタ)アクリル系樹脂が存在していてもよい。 ハードコート層中に、(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が存在する場合、1つの実施形態においては、当該(メタ)アクリル系樹脂の濃度が、浸透層の基材層側からハードコート層へ連続的に低くなる。このような実施形態においては、(メタ)アクリル系樹脂の濃度が連続的に変化すること、すなわち(メタ)アクリル系樹脂の濃度変化に起因する界面が形成されていないことにより界面反射を抑制することができ、干渉ムラの少ない光学積層体を得ることができる。別の実施形態においては、当該(メタ)アクリル系樹脂とハードコート層形成用組成物とが相分離し、ハードコート層の浸透層とは反対側にブロック層が形成される。このような実施形態においても、当該(メタ)アクリル系樹脂の濃度が、浸透層の基材層側からブロック層を除くハードコート層へ連続的に低くなることが好ましい。
ブロック層の厚みは、好ましくは1μm〜10μmであり、さらに好ましくは2μm〜5μmである。
なお、ブロック層の厚みは、ハードコート層の反射スペクトル、またはSEM、TEM等の電子顕微鏡による観察により測定することができる。
E.その他の層
本発明の光学積層体は、必要に応じて、ハードコート層の外側に任意の適切なその他の層が配置され得る。代表例としては、反射防止層およびアンチグレア層が挙げられる。反射防止層およびアンチグレア層としては、当業界で通常用いられている反射防止層およびアンチグレア層が採用され得る。
F.光学積層体の製造方法
本発明の光学積層体の製造方法は、(メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を加熱することを含む。好ましくは、ハードコート層は、加熱後の塗布層を硬化処理して形成される。
ハードコート層形成用組成物の塗布方法としては、任意の適切な方法を採用し得る。例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法が挙げられる。
上記塗布層の加熱温度は、ハードコート層形成用組成物の組成に応じて、適切な温度に設定され得、好ましくは、(メタ)アクリル系樹脂フィルムに含まれる樹脂のガラス転移温度以下に設定される。(メタ)アクリル系樹脂フィルムに含まれる樹脂のガラス転移温度以下の温度で加熱すれば、加熱による変形が抑制された光学積層体を得ることができる。上記塗布層の加熱温度は、例えば、80℃〜140℃である。このような範囲の温度で加熱すれば、ハードコート層形成用組成物中のモノマー、オリゴマーおよび/またはプレポリマーが(メタ)アクリル系樹脂フィルム中に良好に浸透および拡散する。当該加熱、その後の硬化処理を経て、浸透したハードコート層形成用組成物および(メタ)アクリル系樹脂フィルムの形成材料により、上記C項で説明した浸透層が形成される。その結果、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ干渉ムラの抑制された光学積層体を得ることができる。なお、ハードコート層形成用組成物が溶媒を含む場合、当該加熱により、塗布したハードコート層形成用組成物を乾燥させることができる。
1つの実施形態においては、上記加熱温度は上記2個以上の(メタ)アクリロイル基を有する硬化性化合物および上記単官能モノマーの含有割合に応じて設定され得る。ハードコート層形成用組成物中に含まれる2個以上の(メタ)アクリロイル基を有する硬化性化合物および/または単官能モノマーが多いほど、低温の加熱温度(例えば、80℃〜100℃)で、密着性が優れ、かつ、干渉ムラが抑制された光学積層体が得ることが可能であり、環境負荷が小さく効率のよい製造プロセスとすることができる。
上記硬化処理としては、任意の適切な硬化処理が採用され得る。代表的には、硬化処理は紫外線照射により行われる。紫外線照射の積算光量は、好ましくは200mJ〜400mJである。
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は以下のとおりである。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。
(1)屈折率
基材層およびハードコート層の屈折率をアタゴ社製のアッベ屈折率計(商品名:DR−M2/1550)を用い、中間液としてモノブロモナフタレンを選択して測定した。
(2)浸透層の厚み
実施例および比較例で得られた光学積層体の基材層側に、黒色アクリル板(三菱レイヨン社製、厚み2mm)を、厚み20μmのアクリル系粘着剤を介して貼着した。次いで、ハードコート層の反射スペクトルを、瞬間マルチ測光システム(大塚電子社製、商品名:MCPD3700)を用いて以下の条件で測定し、FFTスペクトルのピーク位置から、(ハードコート層+浸透層)の厚みを評価した。なお屈折率は、上記(1)で測定した値を用いた。
・反射スペクトル測定条件
リファレンス:ミラー
アルゴリズム:FFT法
計算波長:450nm〜850nm
・検出条件
露光時間:20ms
ランプゲイン:ノーマル
積算回数:10回
・FFT法
膜厚値の範囲:2〜15μm
膜厚分解能:24nm
また、実施例1〜6、8、9および比較例1〜6のハードコート層の厚みは、下記積層体(R1)についての上記反射スペクトル測定により評価した。実施例7のハードコート層の厚みは、下記積層体(R2)についての上記反射スペクトル測定により評価した。
・積層体(R1):基材フィルムとしてPET基材(東レ社製、商品名:U48−3、屈折率:1.60)を用い、塗布層の加熱温度を60℃とした以外は、実施例1と同様にして得た。
・積層体(R2):基材フィルムとしてPET基材(東レ社製、商品名:U48−3、屈折率:1.60)を用い、塗布層の加熱温度を60℃とした以外は、実施例7と同様にして得た。
なお、これらの積層体に用いられるPET基材には、ハードコート層形成用組成物が浸透しないので、積層体(R1)および積層体(R2)から得られるFFTスペクトルのピーク位置から、ハードコート層のみの厚みが測定される。当該評価の結果、実施例1〜6、8、9および比較例1〜6のハードコート層の厚みは5.3μm、実施例7のハードコート層の厚みは4.4μmであった。積層体(R1)のFFTスペクトルを図3に示す。
((ハードコート層+浸透層)の厚み)−((ハードコート層)の厚み)から算出される正の値を浸透層の厚みとした。なお、FFTスペクトルによれば浸透層の厚みが0μmとなる場合(比較例1および4)においては、光学積層体の断面をSEMにて観察し、浸透層が形成されていないことを実際に確認した。
(3)ハードコート層の密着性
ハードコート層の基材フィルムに対する密着性を、JIS K−5400の碁盤目剥離試験(基板目数:100個)に準じて評価した。
(4)干渉ムラ1
実施例および比較例で得られた光学積層体の基材層側に、黒色アクリル板(三菱レイヨン社製、厚み2mm)をアクリル系粘着剤を介して貼着した後、3波長蛍光灯下で、干渉ムラを目視観察し、以下の基準で評価した。
4:干渉ムラの発生無し
3:少し干渉ムラの発生が認められるが、実用上の問題はない
2:多くの干渉ムラの発生が認められる
1:顕著な干渉ムラの発生が認められる
(5)干渉ムラ2
実施例および比較例で得られた光学積層体について、上記(2)の評価で測定したハードコート層の反射スペクトルの500nm〜600nmの波長領域における振幅から、干渉ムラを評価した。
<製造例1>基材フィルムAの作製
特開2010−284840号公報の製造例1に記載のイミド化MS樹脂100重量部およびトリアジン系紫外線吸収剤(アデカ社製、商品名:T−712)0.62重量部を、2軸混練機にて220℃にて混合し、樹脂ペレットを作製した。得られた樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押出してフィルム状に成形した(厚み160μm)。さらに当該フィルムを、その搬送方向に150℃の雰囲気下に延伸し(厚み80μm)、次いでフィルム搬送方向と直交する方向に150℃の雰囲気下に延伸して、厚み40μmの基材フィルムA((メタ)アクリル系樹脂フィルム)を得た。得られた基材フィルムAの波長380nmの光の透過率は8.5%、面内位相差Reは0.4nm、厚み方向位相差Rthは0.78nmであった。また得られた基材フィルムAの透湿度は、61g/m・24hrであった。なお、光透過率は、日立ハイテク(株)社製の分光光度計(装置名称;U−4100)を用いて波長範囲200nm〜800nmで透過率スペクトルを測定し、波長380nmにおける透過率を読み取った。また、位相差値は、王子計測機器(株)製 商品名「KOBRA21−ADH」を用いて、波長590nm、23℃で測定した。透湿度は、JIS K 0208に準じた方法により、温度40℃、相対湿度92%の条件で測定した。
<実施例1>
イソシアヌル酸トリアクリレート13部、ペンタエリスリトールトリアクリレート16部、ジペンタエリスリトールヘキサアクリレート62部およびイソホロンジイソシアネートポリウレタン9部を含む紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806、固形分:80%、溶媒:酢酸ブチル)100部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製した。
製造例1で得られた基材フィルムA上に、得られたハードコート層形成用組成物を塗布して塗布層を形成し、当該塗布層を110℃で1分間加熱した。加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させて、基材層、ハードコート層および浸透層を形成し、光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。また、上記(2)の評価で得られた実際の反射スペクトルを図4Aに、FFTスペクトルを図4Bに示す。
<実施例2>
塗布層の加熱温度を120℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例3>
ペンタエリスリトール系アクリレートと水添キシレンジイソシアネートとから得られるウレタンアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、2−ヒドロキシエチル基および2、3−ジヒドロキシプロピル基を有する(メタ)アクリルポリマー、および光反応開始剤(チバ・ジャパン社製、商品名:イルガキュア184;BASF社製、商品名:ルシリンTPO)を含む紫外線硬化型樹脂(DIC社製、商品名:PC1070、固形分:66%、溶媒:酢酸エチル、酢酸ブチル)100部およびレベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製した。なお、上記紫外線硬化型樹脂(PC1070)の組成は以下のとおりである。
ペンタエリスリトール系アクリレートと水添キシレンジイソシアネートとから得られるウレタンアクリレート 100部
ジペンタエリスリトールヘキサアクリレート 49部
ペンタエリスリトールテトラアクリレート 41部
ペンタエリスリトールトリアクリレート 24部、
2−ヒドロキシエチル基および2、3−ジヒドロキシプロピル基を有する(メタ)アクリルポリマー 58部
製造例1で得られた基材フィルム上に、得られたハードコート層形成用組成物を塗布して塗布層を形成し、当該塗布層を120℃で1分間加熱した。加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させて、基材層、ハードコート層および浸透層を形成し、光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例4>
上記紫外線硬化型樹脂(DIC社製、商品名:PC1070、固形分:66%、溶媒:酢酸エチル、酢酸ブチル)100部、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)40部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部および光反応開始剤(チバ・ジャパン社製、商品名:イルガキュア907)1.2部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製した。
製造例1で得られた基材フィルム上に、得られたハードコート層形成用組成物を塗布して塗布層を形成し、当該塗布層を100℃で1分間加熱した。加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させて、基材層、ハードコート層および浸透層を形成し、光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例5>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)に代えて、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)を用いた以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例6>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)に代えて、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)を用い、塗布層の加熱温度を100℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例7>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)100部に代えて、ウレタンアクリルオリゴマー60部、ペンタエリスリトールテトラアクリレート30部およびペンタエリスリトールトリアクリレート10部の混合物(日本合成社製、商品名:UV−7600−B)を用いた以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例8>
メチルイソブチルケトンに代えて、イソプロピルアルコールで希釈してハードコート層形成用組成物を調製した以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例9>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)100部に代えて、ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名:A−DPH)30部、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)55部、アクリロイルモルホリン(ACMO)(興人社製)15部の混合物を用い、溶剤を用いずにハードコート層形成用組成物を調製した以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例10>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)100部に代えて、ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名:A−DPH)30部、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)55部、アクリロイルモルホリン(ACMO)(興人社製)15部の混合物を用い、溶剤を用いずにハードコート層形成用組成物を調製し、塗布層の加熱温度を95℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例11>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)100部に代えて、ユニディック17−806(100部)とペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)40部との混合樹脂を用い、塗布層の加熱温度を100℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例12>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)100部に代えて、ユニディック17−806(100部)とアクリロイルモルホリン(ACMO)(興人社製)20部との混合樹脂を用い、塗布層の加熱温度を100℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例13>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806)100部に代えて、ユニディック17−806(100部)とアクリロイルモルホリン(ACMO)(興人社製)20部との混合樹脂を用い、塗布層の加熱温度を95℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例14>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806、固形分:80%、溶媒:酢酸ブチル)100部、4−ヒドロキシブチルアクリレート(4−HBA)(大阪有機化学工業社製)20部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例15>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806、固形分:80%、溶媒:酢酸ブチル)100部、N−(2−ヒドロキシエチル)アクリルアミド(HEAA)(興人社製)20部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例16>
上記日本合成社製「UV−7600−B」80部、4−ヒドロキシブチルアクリレート(4−HBA)(大阪有機化学工業社製)20部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例17>
上記日本合成社製「UV−7600−B」80部、N−(2−ヒドロキシエチル)アクリルアミド(HEAA)(興人社製)20部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例18>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806、固形分:80%、溶媒:酢酸ブチル)106部、4−ヒドロキシブチルアクリレート(4−HBA)(大阪有機化学工業社製)15部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例19>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806、固形分:80%、溶媒:酢酸ブチル)106部、N−(2−ヒドロキシエチル)アクリルアミド(HEAA)(興人社製)15部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例20>
紫外線硬化型樹脂(DIC社製、商品名:ユニディック17−806、固形分:80%、溶媒:酢酸ブチル)88部、4−ヒドロキシブチルアクリレート(4−HBA)(大阪有機化学工業社製)30部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<実施例21>
ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)80部、4−ヒドロキシブチルアクリレート(4−HBA)(大阪有機化学工業社製)20部、レベリング剤(DIC社製、商品名:GRANDIC PC−4100)5部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して調製したハードコート層形成用組成物を用い、塗布層の加熱温度を90℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<比較例1>
製造例1で得られた基材フィルムAに代えて、シクロオレフィン系基材(日本ゼオン社製、商品名:ゼオノアZF14)を用いた以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<比較例2>
製造例1で得られた基材フィルムAに代えて、トリアセチルセルロース(TAC)基材(富士フイルム社製、商品名:TD80UL)を用い、塗布層の加熱温度を60℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<比較例3>
製造例1で得られた基材フィルムAに代えて、トリアセチルセルロース(TAC)基材(富士フイルム社製、商品名:TD80UL)を用いた以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。また、上記(2)の評価で得られた実際の反射スペクトルを図5Aに、FFTスペクトルを図5Bに示す。
<比較例4>
塗布層の加熱温度を60℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<比較例5>
塗布層の加熱温度を80℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
<比較例6>
塗布層の加熱温度を100℃とした以外は、実施例1と同様にして光学積層体を得た。この光学積層体を上記(2)〜(5)の評価に供した。結果を下記表1に示す。
表1からも明らかなように、本発明の光学積層体は、所定厚みの浸透層を有することにより、基材フィルム((メタ)アクリル系樹脂フィルム)とハードコート層との密着性に優れ、かつ、干渉ムラが抑制されている。また、本発明によれば、溶媒を含まないハードコート層形成用組成物(実施例9および10)、あるいは溶媒としてフィルム基材形成材料の貧溶媒のみを含むハードコート層形成用組成物(実施例8)を用いても、所定厚みの浸透層を有する光学積層体を得ることができる。
また、実施例で用いた基材フィルムA((メタ)アクリル系樹脂フィルム)は、透湿度が低い。具体的には、基材フィルムAは、上記のとおり、透湿度61g/m・24hrであり、例えば、厚みが同一のTAC基材(コニカミノルタ社製、商品名:KC4UY、透湿度:800g/m・24hr)よりも、透湿度が低い。本発明によれば、基材フィルムとしてこのように低透湿性の(メタ)アクリル系樹脂フィルムを用いても、基材フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。
本発明の光学積層体は、画像表示装置に好適に用いられ得る。本発明の光学積層体は、画像表示装置の前面板または偏光子の保護材料として好適に用いられ得、とりわけ、液晶表示装置(なかでも、3次元液晶表示装置)の前面板として好適に用いられ得る。
10 基材層
20 浸透層
30 ハードコート層
40 ブロック層
100、200、300 光学積層体

Claims (19)

  1. (メタ)アクリル系樹脂フィルムから形成される基材層と、
    該(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層と、
    該基材層と該ハードコート層との間に、該ハードコート層形成用組成物が該(メタ)アクリル系樹脂フィルムに浸透して形成された浸透層とを備え、
    該浸透層の厚みが1.2μm以上である、
    光学積層体。
  2. 前記浸透層において、前記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂の濃度が、前記ハードコート層側から前記基材層側へ連続的に高くなる、請求項1に記載の光学積層体。
  3. 500nm〜600nmの波長領域における前記ハードコート層の反射スペクトルの振幅が、0.5%以下である、請求項1または2に記載の光学積層体。
  4. 前記基材層の屈折率と、前記ハードコート層の屈折率との差の絶対値が、0.01〜0.15である、請求項1から3のいずれかに記載の光学積層体。
  5. 前記(メタ)アクリル系樹脂フィルムの波長380nmにおける光の透過率が、15%以下である、請求項1から4のいずれかに記載の光学積層体。
  6. 前記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する、請求項1から5のいずれかに記載の光学積層体。
  7. 前記ハードコート層形成用組成物が、2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む、請求項1から6のいずれかに記載の光学積層体。
  8. 前記ハードコート層形成用組成物が、単官能モノマーをさらに含む、請求項7に記載の光学積層体。
  9. 前記単官能モノマーの重量平均分子量が、500以下である、請求項8に記載の光学積層体。
  10. 前記単官能モノマーが、水酸基を有する、請求項8または9に記載の光学積層体。
  11. 前記単官能モノマーが、ヒドロキシアルキル(メタ)アクリレートおよび/またはN−(2−ヒドロキシアルキル)(メタ)アクリルアミドである、請求項10に記載の光学積層体。
  12. 前記ハードコート層形成用組成物が、ウレタン(メタ)アクリレートおよび/またはウレタン(メタ)アクリレートのオリゴマーを含む、請求項1から11のいずれかに記載の光学積層体。
  13. 前記ハードコート層形成用組成物が、水酸基を有する(メタ)アクリル系プレポリマーを含む、請求項1から12のいずれかに記載の光学積層体。
  14. 前記ハードコート層形成用組成物が、溶媒を含まない、請求項1から13のいずれかに記載の光学積層体。
  15. 前記ハードコート層の前記浸透層とは反対側の表面が、凹凸構造を有する、請求項1から14のいずれかに記載の光学積層体。
  16. 前記ハードコート層の前記浸透層とは反対側に、反射防止層をさらに備える、請求項1から15のいずれかに記載の光学積層体。
  17. 請求項1から16のいずれかに記載の光学積層体を含む、偏光フィルム。
  18. 請求項1から16のいずれかに記載の光学積層体を含む、画像表示装置。
  19. (メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を80℃〜140℃で加熱することを含む、請求項1から16のいずれかに記載の光学積層体の製造方法。

JP2016232698A 2011-04-22 2016-11-30 光学積層体 Pending JP2017072846A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095721 2011-04-22
JP2011095721 2011-04-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012093002A Division JP6128576B2 (ja) 2011-04-22 2012-04-16 光学積層体

Publications (1)

Publication Number Publication Date
JP2017072846A true JP2017072846A (ja) 2017-04-13

Family

ID=58538722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232698A Pending JP2017072846A (ja) 2011-04-22 2016-11-30 光学積層体

Country Status (1)

Country Link
JP (1) JP2017072846A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518856A (ja) * 2017-06-29 2020-06-25 エルジー・ケム・リミテッド 偏光子保護フィルムおよびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205545A (ja) * 2005-01-28 2006-08-10 Toray Ind Inc ハードコートフィルム
JP2007090656A (ja) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd 透光性物品
JP2007187746A (ja) * 2006-01-11 2007-07-26 Daicel Chem Ind Ltd 防眩性フィルム及びその製造方法
JP2008165041A (ja) * 2006-12-28 2008-07-17 Dainippon Printing Co Ltd ハードコートフィルム、及びその製造方法
JP2009161609A (ja) * 2007-12-28 2009-07-23 Three M Innovative Properties Co ハードコートフィルム及び印刷体
JP2010065109A (ja) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いたフィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205545A (ja) * 2005-01-28 2006-08-10 Toray Ind Inc ハードコートフィルム
JP2007090656A (ja) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd 透光性物品
JP2007187746A (ja) * 2006-01-11 2007-07-26 Daicel Chem Ind Ltd 防眩性フィルム及びその製造方法
JP2008165041A (ja) * 2006-12-28 2008-07-17 Dainippon Printing Co Ltd ハードコートフィルム、及びその製造方法
JP2009161609A (ja) * 2007-12-28 2009-07-23 Three M Innovative Properties Co ハードコートフィルム及び印刷体
JP2010065109A (ja) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いたフィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518856A (ja) * 2017-06-29 2020-06-25 エルジー・ケム・リミテッド 偏光子保護フィルムおよびその製造方法
US12000979B2 (en) 2017-06-29 2024-06-04 Lg Chem, Ltd. Polarizer protective film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6128576B2 (ja) 光学積層体
JP6128629B2 (ja) 光学積層体
JP6238684B2 (ja) 光学積層体
WO2012144509A1 (ja) 光学積層体
JP6235287B2 (ja) 光学積層体
JP6054019B2 (ja) 光学積層体
JP6235288B2 (ja) 光学積層体
WO2018110447A1 (ja) 光学積層体
JP2017058693A (ja) 光学積層体
JP2017072846A (ja) 光学積層体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180328