JP2017072546A - Inner diameter measurement device - Google Patents

Inner diameter measurement device Download PDF

Info

Publication number
JP2017072546A
JP2017072546A JP2015201091A JP2015201091A JP2017072546A JP 2017072546 A JP2017072546 A JP 2017072546A JP 2015201091 A JP2015201091 A JP 2015201091A JP 2015201091 A JP2015201091 A JP 2015201091A JP 2017072546 A JP2017072546 A JP 2017072546A
Authority
JP
Japan
Prior art keywords
inner diameter
opening
angle
measurement
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015201091A
Other languages
Japanese (ja)
Inventor
哲也 松川
Tetsuya Matsukawa
哲也 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015201091A priority Critical patent/JP2017072546A/en
Publication of JP2017072546A publication Critical patent/JP2017072546A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner diameter measurement device that can highly accurately measure an inner diameter of an opening part without need for positioning a measurement head to the opening part using a positioning guide.SOLUTION: An inner diameter measurement device 1 of the present invention comprises, more specifically, a data processing unit 24 that puts together, as one data group, many measurement values measured by a measurement head 15 as causing a mirror angle variable device 18 to change a laser irradiation angle so as to be across an axis orthogonal direction orthogonal to a rotation axis of the measurement head 15; acquires the data group every a unit rotation angle, respectively as causing a rotation drive unit 7 to rotate the measurement head 15; selects each minimum value from each data group, respectively; and calculates an inner diameter of an opening part 2 on the basis of the plurality of minimum values. The opening part 2 can thus be accurately measured without requiring a positioning guide for positioning the measurement head 15 with respect to the opening part 2.SELECTED DRAWING: Figure 1

Description

本発明は、円形状の開口部の内径を測定するための内径測定装置に関するものである。   The present invention relates to an inner diameter measuring device for measuring the inner diameter of a circular opening.

従来の内径測定装置は、概略、開口部の内壁面までの距離を測定する測定ヘッドと、該測定ヘッドを開口部に対して位置決めする位置決めガイドと、測定ヘッドを開口部の内壁面に対して相対的に回転させる回転駆動部と、を備えている。そして、測定ヘッドを位置決めガイドにより開口部に対して位置決めした後、回転駆動部により測定ヘッドを回転させながら、該測定ヘッドにより開口部の内壁面までの距離を複数箇所測定して、これら複数の測定値により開口部の径方向中心点及びその内径を算出している。そこで、位置決めガイドは、測定ヘッドの回転軸上に位置するセンサ基準点を開口部のほぼ径方向中心点に一致させると共に、測定ヘッドの軸方向(回転軸)の、開口部の軸方向に対する傾斜を矯正するために備えられている。この位置決めガイドは、測定ヘッドの外周を囲むように円筒状に形成されており、その外径が、開口部の内径よりも僅かに小径に形成されている。そして、位置決めガイドにより測定ヘッドを開口部に対して位置決めする際には、位置決めガイドを測定ヘッドの外周に装着して開口部内に挿入しながら測定ヘッドを開口部に対して位置決めしている。   A conventional inner diameter measuring device generally includes a measuring head for measuring the distance to the inner wall surface of the opening, a positioning guide for positioning the measuring head with respect to the opening, and the measuring head with respect to the inner wall surface of the opening. And a rotation drive unit that relatively rotates. Then, after positioning the measurement head with respect to the opening by the positioning guide, the distance from the measurement head to the inner wall surface of the opening is measured at a plurality of locations while rotating the measurement head by the rotation drive unit. The center point in the radial direction of the opening and its inner diameter are calculated from the measured values. Therefore, the positioning guide aligns the sensor reference point located on the rotation axis of the measurement head with the substantially radial center point of the opening, and also tilts the axial direction (rotation axis) of the measurement head with respect to the axial direction of the opening. Are provided to correct. The positioning guide is formed in a cylindrical shape so as to surround the outer periphery of the measuring head, and has an outer diameter slightly smaller than the inner diameter of the opening. Then, when positioning the measurement head with respect to the opening by the positioning guide, the measurement head is positioned with respect to the opening while being mounted on the outer periphery of the measurement head and inserted into the opening.

しかしながら、従来の内径測定装置では、開口部の内径に対応した位置決めガイドを備える必要があるために、内径の違う開口部を測定するたびに位置決めガイド、あるいは測定ヘッド全体を交換しなければならず、作業の効率化を図ることができない。また、位置決めガイドは開口部内にその内壁面に接触しながら挿入されて測定ヘッドを開口部に対して位置決めするために、位置決めガイドにより開口部の内壁面が損傷する虞があり、これを未然に防止するための措置が必要になる。しかも、位置決めガイドの外壁面も摩耗や損傷する虞があり、位置決めガイドの外壁面と開口部の内壁面との間で適正なクリアランスを維持することができず、測定ヘッドの過度の傾きを許容してしまい、測定値に対して信頼性が低下する。   However, since the conventional inner diameter measuring device needs to have a positioning guide corresponding to the inner diameter of the opening, the positioning guide or the entire measuring head must be replaced every time an opening having a different inner diameter is measured. , Work efficiency cannot be achieved. Further, since the positioning guide is inserted into the opening while contacting the inner wall surface to position the measuring head relative to the opening, the positioning guide may damage the inner wall surface of the opening. Measures to prevent it are necessary. In addition, the outer wall surface of the positioning guide may be worn or damaged, and an appropriate clearance cannot be maintained between the outer wall surface of the positioning guide and the inner wall surface of the opening, allowing excessive tilting of the measuring head. As a result, the reliability of the measured value decreases.

そこで、位置決めガイドを備えることなく、開口部の内径を測定する従来技術として特許文献1には、測定対象へレーザを照射し、反射光を検出して測定点までの距離を算出する距離センサと、該距離センサからの光を複数に分離する分離部と、距離センサと測定対象とを相対的に回転させる回転部と、距離センサから得た複数の測定点までの距離の測定結果を統合するデータ処理部とを備え、管体の深さ方向が異なる複数の断面に係る測定結果により測定装置の傾斜角度を算出して、管体の内径を算出する形状計測装置が開示されている。   Therefore, as a conventional technique for measuring the inner diameter of an opening without providing a positioning guide, Patent Document 1 discloses a distance sensor that irradiates a measurement target with a laser, detects reflected light, and calculates a distance to a measurement point. , Integrating a separation unit that separates light from the distance sensor into a plurality of units, a rotating unit that relatively rotates the distance sensor and the measurement target, and a measurement result of distances to a plurality of measurement points obtained from the distance sensor There is disclosed a shape measuring device that includes a data processing unit and calculates an inclination angle of a measuring device based on measurement results of a plurality of cross sections having different depth directions of the tube body, thereby calculating an inner diameter of the tube body.

特開2015−17811号公報JP2015-17811A

しかしながら、特許文献1に係る形状計測装置では次のような問題がある。この形状計測装置では、深さ方向の異なる複数の断面に係る測定結果から、各断面形状の中心点O1及びO2を算出して、この算出結果に基づいて、内面形状計測装置の中心軸の傾きθを算出して、最終的に実際の測定データに対して角度補正して管体の内径を算出している。このため、この算出方法では、複数の演算過程を要するので誤差が大きくなる虞があり、管体の内径を精度良く測定することが困難である。   However, the shape measuring apparatus according to Patent Document 1 has the following problems. In this shape measuring device, the center points O1 and O2 of each cross-sectional shape are calculated from the measurement results of a plurality of cross-sections having different depth directions, and the inclination of the central axis of the inner surface shape measuring device is calculated based on the calculation results. θ is calculated, and finally the inner diameter of the tube is calculated by correcting the angle with respect to actual measurement data. For this reason, since this calculation method requires a plurality of calculation processes, there is a possibility that an error may increase, and it is difficult to accurately measure the inner diameter of the tube body.

本発明は、かかる点に鑑みてなされたものであり、位置決めガイドを用いて測定ヘッドを開口部に対して位置決めする必要なく、開口部の内径を精度良く測定することのできる内径測定装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides an inner diameter measuring device that can accurately measure the inner diameter of the opening without the need to position the measuring head with respect to the opening using a positioning guide. The purpose is to do.

上記課題を解決するために、請求項1の発明は、円形状の開口部の内径を測定する内径測定装置であって、前記開口部の内壁面に向かってレーザを照射し、その反射光を検出することで基準点から内壁面までの距離を測定する測定ヘッドと、該測定ヘッドをその回転軸周りに、前記開口部の内壁面に対して相対的に回転させる回転駆動部と、前記測定ヘッドの前記回転軸上に位置する前記基準点から照射されるレーザの、前記測定ヘッドの回転軸と直交する軸直交方向に対する照射角度を変化させる角度可変装置と、該角度可変装置によりレーザの照射角度を、前記軸直交方向を跨ぐように変化させながら、前記測定ヘッドにより測定された多数の測定値を一つのデータ群とし、該データ群を、前記測定ヘッドを前記回転駆動部により回転させながらその単位回転角度毎にそれぞれ取得し、各データ群から最小値をそれぞれ選択して、該複数の最小値に基づいて、前記開口部の内径を算出するデータ処理部と、を備えることを特徴とするものである。   In order to solve the above-mentioned problem, the invention of claim 1 is an inner diameter measuring device for measuring the inner diameter of a circular opening, which irradiates a laser toward the inner wall surface of the opening and reflects the reflected light. A measurement head for measuring the distance from the reference point to the inner wall surface by detecting, a rotation driving unit for rotating the measurement head around the rotation axis relative to the inner wall surface of the opening, and the measurement An angle variable device that changes an irradiation angle of a laser irradiated from the reference point located on the rotation axis of the head with respect to an axis orthogonal direction orthogonal to the rotation axis of the measurement head, and laser irradiation by the angle variable device While changing the angle so as to straddle the direction perpendicular to the axis, a large number of measurement values measured by the measurement head are made into one data group, and the measurement head is rotated by the rotation drive unit. A data processing unit that obtains each unit rotation angle, selects a minimum value from each data group, and calculates an inner diameter of the opening based on the plurality of minimum values. It is what.

請求項1の発明では、特に、データ処理部において、角度可変装置によりレーザの照射角度を、測定ヘッドの回転軸と直交する軸直交方向を跨ぐように変化させながら、測定ヘッドにより測定された多数の測定値を一つのデータ群とし、該データ群を測定ヘッドの単位回転角度毎にそれぞれ取得し、各データ群から最小値をそれぞれ選択して、該複数の最小値に基づいて、開口部の内径を算出することができる。これにより、測定ヘッドを開口部に対して位置決めする位置決めガイドを必要とせず、また、測定ヘッドの軸方向(回転軸)の、開口部の軸方向に対する傾斜角度を算出して、角度補正する等の複数の演算過程を必要とせず、開口部の内径を精度良く測定することができる。   In the first aspect of the present invention, in particular, in the data processing unit, the number of laser beams measured by the measurement head while changing the laser irradiation angle across the axis orthogonal direction orthogonal to the rotation axis of the measurement head by the angle variable device. Are obtained for each unit rotation angle of the measuring head, and a minimum value is selected from each data group, and based on the plurality of minimum values, the aperture values of the openings are obtained. The inner diameter can be calculated. This eliminates the need for a positioning guide for positioning the measurement head with respect to the opening, calculates the inclination angle of the axial direction (rotation axis) of the measurement head with respect to the axial direction of the opening, and corrects the angle. Therefore, the inner diameter of the opening can be measured with high accuracy.

図1は、本発明の実施の形態に係る内径測定装置の模式図である。FIG. 1 is a schematic diagram of an inner diameter measuring apparatus according to an embodiment of the present invention. 図2は、本内径測定装置の測定ヘッドが開口部内に配置され、開口部の内径を測定する様子を示す図である。FIG. 2 is a diagram showing a state in which the measuring head of the inner diameter measuring apparatus is arranged in the opening and measures the inner diameter of the opening. 図3は、本内径測定装置の距離センサ及びミラー角度可変装置を示す概略図である。FIG. 3 is a schematic diagram showing a distance sensor and a mirror angle varying device of the present inner diameter measuring device. 図4は、データ処理部において開口部の内径を算出する方法を説明するための図である。FIG. 4 is a diagram for explaining a method of calculating the inner diameter of the opening in the data processing unit.

以下、本発明を実施するための形態を図1〜図4に基づいて詳細に説明する。
本発明の実施の形態に係る内径測定装置1は、図1に示すように、ワークWに設けた開口部2の内径を測定するものである。ワークWは円筒状に形成されており、径方向中央部に軸方向に沿う円形状の開口部2が貫通されている。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to FIGS.
An inner diameter measuring apparatus 1 according to an embodiment of the present invention measures an inner diameter of an opening 2 provided in a workpiece W, as shown in FIG. The workpiece W is formed in a cylindrical shape, and a circular opening 2 along the axial direction is penetrated through a central portion in the radial direction.

図1及び図2に示すように、本内径測定装置1は、ワークWが載置される載置台5と、載置台5の端部から上方に延びる柱状の支持体6とを備えている。該支持体6の側壁には上下方向に延びるスライドレール8が突設される。支持体6の側壁には測定ヘッド15を回転させる回転駆動部7がスライドレール8を介して連結される。回転駆動部7は、昇降装置10の駆動によりスライドレール8に沿って支持体6に対して昇降自在となる。回転駆動部7の下端には下方に延びるシャフト部9が連結される。該シャフト部9の下端に測定ヘッド15が連結される。そして、回転駆動部7の駆動により、シャフト部9が回転すると共に、測定ヘッド15がその回転軸、すなわちシャフト部9の軸心周りを回転するようになる。本実施形態では、測定ヘッド15は回転駆動部7の駆動により設定角度ピッチ(本実施形態では1°ピッチ)で回転するようになる。回転駆動部7には、測定ヘッド15の、ワークWの開口部2の内壁面2aに対する相対回転角度を検出する角度エンコーダ16が備えられている。昇降装置10、回転駆動部7及び角度エンコーダ16は制御部25に電気的にそれぞれ接続される。   As shown in FIGS. 1 and 2, the inner diameter measuring device 1 includes a mounting table 5 on which a workpiece W is mounted, and a columnar support 6 that extends upward from an end of the mounting table 5. On the side wall of the support 6, a slide rail 8 extending in the vertical direction is projected. A rotation drive unit 7 that rotates the measurement head 15 is connected to the side wall of the support 6 via a slide rail 8. The rotation drive unit 7 can be raised and lowered with respect to the support 6 along the slide rail 8 by driving the lifting device 10. A shaft portion 9 extending downward is connected to the lower end of the rotation driving portion 7. A measuring head 15 is connected to the lower end of the shaft portion 9. The shaft 9 is rotated by the drive of the rotation driving unit 7, and the measurement head 15 is rotated around the rotation axis thereof, that is, the axis of the shaft 9. In the present embodiment, the measurement head 15 is rotated at a set angle pitch (1 ° pitch in the present embodiment) by driving of the rotation driving unit 7. The rotation drive unit 7 includes an angle encoder 16 that detects a relative rotation angle of the measurement head 15 with respect to the inner wall surface 2 a of the opening 2 of the workpiece W. The lifting device 10, the rotation driving unit 7, and the angle encoder 16 are electrically connected to the control unit 25, respectively.

測定ヘッド15は、上側に位置する小径ヘッド部15aと、小径ヘッド部15aより大径で下側に位置する大径ヘッド部15bとからなる。当然ながら、大径ヘッド部15bはワークWの開口部2よりも小径となる。図3も参照して、測定ヘッド15内には、大径ヘッド部15bの外壁面からワークWの開口部2の内壁面2aに向かってレーザを照射し、その反射光を検出することで、測定ヘッド15の回転軸上に位置する基準点(図2、図3の黒点及び図4の点O1)から内壁面2aまでの距離を測定する距離センサ17と、距離センサ17から照射されるレーザの、測定ヘッド15の回転軸(軸方向)と直交する軸直交方向(径方向)に対する照射角度を変化させる角度可変装置であるミラー角度可変装置18とが備えられている。   The measurement head 15 includes a small-diameter head portion 15a located on the upper side and a large-diameter head portion 15b located on the lower side with a larger diameter than the small-diameter head portion 15a. Naturally, the large-diameter head portion 15b has a smaller diameter than the opening 2 of the workpiece W. Referring also to FIG. 3, in the measuring head 15, a laser is irradiated from the outer wall surface of the large-diameter head portion 15 b toward the inner wall surface 2 a of the opening 2 of the workpiece W, and the reflected light is detected. A distance sensor 17 for measuring a distance from a reference point (black point in FIG. 2, FIG. 3 and point O1 in FIG. 4) located on the rotation axis of the measuring head 15 to the inner wall surface 2a, and a laser emitted from the distance sensor 17 And a mirror angle varying device 18 that is an angle varying device that changes an irradiation angle with respect to an axis orthogonal direction (radial direction) orthogonal to the rotation axis (axial direction) of the measuring head 15.

図3に示すように、距離センサ17は、レーザを照射して被測定面からの反射光を検出して被測定面までの距離を測定する投受光部20を備えている。ミラー角度可変装置18は、投受光部20から離れて配置され、投受光部20からのレーザを測定ヘッド15の大径ヘッド部15bの外壁面からワークWの開口部2の内壁面2aに向かうように屈曲させるガルバノミラー21と、該ガルバノミラー21をレーザのガルバノミラー21との屈曲点(図3の黒点)を中心に所定角度の範囲でスイングさせる角度可変本体部19とが備えられている。そして、距離センサ17の投受光部20からのレーザをガルバノミラー21にて屈曲させてワークWの開口部2の内壁面2aに向かって照射して、内壁面2aからの反射光を投受光部20で検出することで、測定ヘッド15の回転軸上に位置するレーザの基準点となる投光点、すなわちレーザのガルバノミラー21との屈曲点(図2、図3の黒点及び図4の点O1)からワークWの開口部2の内壁面2aまでの距離を測定している。なお、本実施形態では、距離センサ17である投受光部20を測定ヘッド15内に配置しているが、測定ヘッド15の外部に配置してもよい。   As shown in FIG. 3, the distance sensor 17 includes a light projecting / receiving unit 20 that measures the distance to the surface to be measured by detecting the reflected light from the surface to be measured by irradiating the laser. The mirror angle varying device 18 is disposed away from the light projecting / receiving unit 20 and directs the laser from the light projecting / receiving unit 20 from the outer wall surface of the large-diameter head unit 15b of the measuring head 15 to the inner wall surface 2a of the opening 2 of the workpiece W. A galvanometer mirror 21 that is bent in this manner, and a variable angle main body 19 that swings the galvanometer mirror 21 within a range of a predetermined angle around a bending point (black point in FIG. 3) with the galvanometer mirror 21 of the laser. . Then, the laser from the light projecting / receiving unit 20 of the distance sensor 17 is bent by the galvano mirror 21 and irradiated toward the inner wall surface 2a of the opening 2 of the workpiece W, and the reflected light from the inner wall surface 2a is projected and received. By detecting at 20, the projection point that becomes the reference point of the laser located on the rotation axis of the measuring head 15, that is, the bending point of the laser with the galvanometer mirror 21 (the black point in FIGS. 2 and 3 and the point in FIG. 4). The distance from O1) to the inner wall surface 2a of the opening 2 of the workpiece W is measured. In the present embodiment, the light projecting / receiving unit 20 that is the distance sensor 17 is disposed in the measurement head 15, but may be disposed outside the measurement head 15.

ミラー角度可変装置18は、ガルバノミラー21を、角度可変本体部19により基準角度(投受光部20からのレーザの屈曲角度が90°になる角度)からレーザのガルバノミラー21との屈曲点(図3の黒点)を中心に所定方向に±α°の範囲でスイングさせることで、投受光部20からのレーザをガルバノミラー21で屈曲させて測定ヘッド15の回転軸と直交する軸直交方向に対して±α°の範囲で傾斜して照射されるように構成される。なお、このスイング角度α°は、測定ヘッド15の軸方向(回転軸)の、開口部2の軸方向に対する傾斜角度θの推定値よりも大きく設定する必要がある。距離センサ17(投受光部20)及びミラー角度可変装置18(角度可変本体部19)は制御部25に電気的にそれぞれ接続される。該制御部25は、各構成装置の起動及び停止を制御するものである。   The mirror angle varying device 18 is configured so that the galvano mirror 21 is bent by a variable angle main body 19 from a reference angle (an angle at which the laser bending angle from the light projecting / receiving unit 20 is 90 °) to the laser galvano mirror 21 (see FIG. 3), the laser beam from the light projecting / receiving unit 20 is bent by the galvano mirror 21 to the axis orthogonal direction orthogonal to the rotation axis of the measuring head 15 by swinging in a predetermined direction within a range of ± α °. And configured to be irradiated with an inclination within a range of ± α °. The swing angle α ° needs to be set larger than the estimated value of the inclination angle θ of the measuring head 15 in the axial direction (rotating axis) with respect to the axial direction of the opening 2. The distance sensor 17 (projecting / receiving unit 20) and the mirror angle varying device 18 (angle varying main body 19) are electrically connected to the control unit 25, respectively. The control unit 25 controls starting and stopping of each component device.

距離センサ17の投受光部20は、データ処理部24に電気的に接続される。データ処理部24は、距離センサ17からの測定結果に基づいて、ワークWの開口部2の径方向中心点O2及びその内径を算出するものである。その算出方法は後で詳述する。   The light projecting / receiving unit 20 of the distance sensor 17 is electrically connected to the data processing unit 24. The data processing unit 24 calculates the radial center point O2 of the opening 2 of the workpiece W and its inner diameter based on the measurement result from the distance sensor 17. The calculation method will be described in detail later.

次に、本発明の実施の形態に係る内径測定装置1の作用を説明する。
まず、ワークWを本内径測定装置1の載置台5上に、その開口部2が上方を向くように位置決めして載置する。なお、以下の説明では、測定ヘッド15の軸方向(回転軸)が、ワークWの開口部2の軸方向に対して傾斜角度θで傾斜した状態を想定して説明している。
Next, the operation of the inner diameter measuring apparatus 1 according to the embodiment of the present invention will be described.
First, the workpiece W is positioned and mounted on the mounting table 5 of the inner diameter measuring apparatus 1 so that the opening 2 faces upward. In the following description, it is assumed that the axial direction (rotating axis) of the measuring head 15 is inclined at an inclination angle θ with respect to the axial direction of the opening 2 of the workpiece W.

次に、制御部25からの信号により昇降装置10が駆動して、測定ヘッド15がワークWの開口部2内の所定位置に挿入される。続いて、制御部25からの信号により、レーザが測定ヘッド15の距離センサ17からワークWの開口部2の内壁面2aに向かって照射される。続いて、制御部25からの信号により角度可変本体部19が駆動して、ガルバノミラー21を−α°から+α°(または+α°から−α°)までスイングさせることで、ガルバノミラー21からのレーザの照射角度を測定ヘッド15の回転軸と直交する軸直交方向を跨ぐように−α°から+α°(または+α°から−α°)まで変化させながら、距離センサ17により、測定ヘッド15の回転軸上に位置するレーザの基準点である投光点(図2、図3の黒点及び図4の点O1)からワークWの開口部2の内壁面2aまでの距離を多数測定する。その測定された多数の測定値が一つのデータ群としてデータ処理部24に送信される。   Next, the lifting device 10 is driven by a signal from the control unit 25, and the measuring head 15 is inserted into a predetermined position in the opening 2 of the workpiece W. Subsequently, the laser is emitted from the distance sensor 17 of the measuring head 15 toward the inner wall surface 2 a of the opening 2 of the workpiece W by a signal from the control unit 25. Subsequently, the variable angle main body 19 is driven by a signal from the control unit 25, and the galvano mirror 21 is swung from -α ° to + α ° (or + α ° to -α °). While changing the laser irradiation angle from −α ° to + α ° (or + α ° to −α °) so as to cross the axis orthogonal direction orthogonal to the rotation axis of the measurement head 15, the distance sensor 17 causes the measurement head 15 to move. A number of distances from the projection point (black point in FIGS. 2 and 3 and point O1 in FIG. 4), which is the reference point of the laser located on the rotation axis, to the inner wall surface 2a of the opening 2 of the workpiece W are measured. The measured many measured values are transmitted to the data processing unit 24 as one data group.

次に、この位置における測定の終了を制御部25が検出すると、制御部25からの信号により回転駆動部7が駆動すると共に測定ヘッド15が開口部2の内壁面2aに対して相対的に回転する。続いて、角度エンコーダ16により測定ヘッド15の回転角度、例えば回転角度1°を検出すると、該検出信号が制御部25を介して回転駆動部7に伝達されて、測定ヘッド15の回転が一旦停止する。続いて、再び、制御部25からの信号により角度可変本体部19が駆動して、ガルバノミラー21を−α°から+α°(または+α°から−α°)までスイングさせることで、ガルバノミラー21からのレーザの照射角度を測定ヘッド15の回転軸と直交する軸直交方向を跨ぐように−α°から+α°(または+α°から−α°)まで変化させながら、距離センサ17により、測定ヘッド15のレーザの投光点(基準点)からワークWの開口部2の内壁面2aまでの距離を多数測定する。その測定された多数の測定値が一つのデータ群としてデータ処理部24に送信される。
以後、上述した測定操作が、測定ヘッド15を1回転させながら、その単位回転角度毎、例えば回転角度1°毎に繰り返される。
Next, when the control unit 25 detects the end of the measurement at this position, the rotation drive unit 7 is driven by the signal from the control unit 25 and the measurement head 15 rotates relative to the inner wall surface 2 a of the opening 2. To do. Subsequently, when the angle encoder 16 detects the rotation angle of the measurement head 15, for example, a rotation angle of 1 °, the detection signal is transmitted to the rotation drive unit 7 via the control unit 25, and the rotation of the measurement head 15 is temporarily stopped. To do. Subsequently, the angle variable main body 19 is driven again by a signal from the control unit 25, and the galvano mirror 21 is swung from -α ° to + α ° (or + α ° to -α °), so that the galvano mirror 21 is driven. The measurement head is measured by the distance sensor 17 while changing the laser irradiation angle from −α ° to + α ° (or + α ° to −α °) so as to straddle the axis orthogonal direction orthogonal to the rotation axis of the measurement head 15. A number of distances from the 15 laser projection points (reference points) to the inner wall surface 2a of the opening 2 of the workpiece W are measured. The measured many measured values are transmitted to the data processing unit 24 as one data group.
Thereafter, the measurement operation described above is repeated for each unit rotation angle, for example, every rotation angle of 1 °, while rotating the measurement head 15 once.

つまり、測定ヘッド15を1回転させながら、その単位回転角度毎、例えば回転角度1°毎に、角度可変本体部19の駆動により、ガルバノミラー21からのレーザの照射角度を測定ヘッド15の回転軸と直交する軸直交方向を跨ぐように−α°から+α°(または+α°から−α°)まで変化させながら、距離センサ17により、測定ヘッド15のレーザの投光点(基準点)からワークWの開口部2の内壁面2aまでの距離を多数測定する。そして、回転角度1°毎に測定されたデータ群(360個)がそれぞれデータ処理部24に送信される。   That is, the rotation angle of the laser from the galvanometer mirror 21 is determined by driving the variable angle main body 19 for each unit rotation angle, for example, every rotation angle of 1 °, while rotating the measurement head 15. The distance sensor 17 changes the workpiece from the laser projection point (reference point) of the measuring head 15 while changing from -α ° to + α ° (or + α ° to -α °) so as to straddle the direction perpendicular to the axis perpendicular to the workpiece. A number of distances to the inner wall surface 2a of the W opening 2 are measured. Then, data groups (360 pieces) measured at every rotation angle of 1 ° are transmitted to the data processing unit 24, respectively.

そして、図4を参照して、データ処理部24では、測定ヘッド15を1回転(360°)させた際、その単位回転角度(回転角度1°)毎に測定した360個のデータ群を取得しており、その360個のデータ群から、測定ヘッド15のレーザの基準点である投光点(図4の点O1)からワークWの開口部2の内壁面2aまでの距離の最小値(L1、L2・・・L359、L360)をそれぞれ選択する。続いて、その選択した360個の最小値(L1、L2・・・・L359、L360)、すなわち最小値(L1、L2・・・・L359、L360)それぞれに対応した、投光点O1を原点とする360個の座標(X1、Y1)、(X2、Y2)・・・・(X359、Y359)、(X360、Y360)に基づいて、円の最小二乗法等の演算方式により、測定軌跡として開口部2の径方向に沿う断面形状を得て、ワークWの開口部2の径方向中心点O2及びその内径を算出する。この結果、測定ヘッド15のレーザの基準点である投光点O1がワークWの開口部2の径方向中心点O2に一致せず、測定ヘッド15の軸方向(回転軸)が開口部2の軸方向に対して傾斜角度θで傾斜していても、ワークWの開口部2の径方向中心点O2及びその内径を精度良く測定することができる。   Referring to FIG. 4, the data processing unit 24 acquires 360 data groups measured for each unit rotation angle (rotation angle 1 °) when the measurement head 15 is rotated once (360 °). From the 360 data group, the minimum value of the distance from the projection point (point O1 in FIG. 4) which is the laser reference point of the measuring head 15 to the inner wall surface 2a of the opening 2 of the workpiece W ( L1, L2... L359, L360) are selected. Subsequently, the projection point O1 corresponding to each of the selected 360 minimum values (L1, L2,... L359, L360), that is, the minimum values (L1, L2,... L359, L360) is defined as the origin. Based on 360 coordinates (X1, Y1), (X2, Y2)... (X359, Y359), (X360, Y360), the measurement trajectory A cross-sectional shape along the radial direction of the opening 2 is obtained, and the radial center point O2 and the inner diameter of the opening 2 of the workpiece W are calculated. As a result, the projection point O1, which is the laser reference point of the measuring head 15, does not coincide with the radial center point O2 of the opening 2 of the workpiece W, and the axial direction (rotating axis) of the measuring head 15 is the opening 2 of the opening 2. Even if it is inclined at an inclination angle θ with respect to the axial direction, the radial center point O2 of the opening 2 of the workpiece W and its inner diameter can be accurately measured.

なお、本実施形態では、測定ヘッド15を1回転(360°)回転させて、ワークWの開口部2の径方向中心点O2及びその内径を算出しており、最良の形態であるが、測定ヘッド15を180°回転させて、180個のデータ群から最小値をそれぞれ選択して、選択した180個の最小値に基づいて、ワークWの開口部2の径方向中心点O2及びその内径を算出するようにしてもよい。   In the present embodiment, the measurement head 15 is rotated once (360 °) to calculate the radial center point O2 of the opening 2 of the workpiece W and its inner diameter, which is the best mode. The head 15 is rotated 180 °, the minimum value is selected from each of the 180 data groups, and the radial center point O2 of the opening 2 of the workpiece W and the inner diameter thereof are determined based on the selected 180 minimum values. You may make it calculate.

以上説明したように、本発明の実施の形態に係る内径測定装置1は、特に、測定ヘッド15の回転軸上に位置する基準点である投光点O1から照射されるレーザの、測定ヘッド15の回転軸(軸方向)と直交する軸直交方向(径方向)に対する照射角度を変化させるミラー角度可変装置18と、該ミラー角度可変装置18によりレーザの照射角度を、測定ヘッド15の回転軸と直交する軸直交方向を跨ぐように変化させながら、測定ヘッド15により測定された多数の測定値を一つのデータ群とし、該データ群を、測定ヘッド15を回転駆動部7により回転させながらその単位回転角度毎にそれぞれ取得し、各データ群から最小値をそれぞれ選択して、該複数の最小値に基づいて、開口部2の内径を算出するデータ処理部24と、を備えている。   As described above, the inner diameter measuring apparatus 1 according to the embodiment of the present invention, in particular, the measuring head 15 of the laser irradiated from the projection point O1, which is the reference point located on the rotation axis of the measuring head 15. The mirror angle varying device 18 that changes the irradiation angle with respect to the axis orthogonal direction (radial direction) orthogonal to the rotation axis (axial direction) of the laser, and the laser irradiation angle by the mirror angle varying device 18 is set as the rotation axis of the measuring head 15. A large number of measurement values measured by the measurement head 15 are changed into one data group while changing so as to cross the orthogonal axis orthogonal directions, and the data group is converted into a unit while the measurement head 15 is rotated by the rotation drive unit 7. A data processing unit 24 that obtains each rotation angle, selects a minimum value from each data group, and calculates the inner diameter of the opening 2 based on the plurality of minimum values. .

これにより、本発明の実施の形態に係る内径測定装置1では、位置決めガイドを用いて測定ヘッド15をワークWの開口部2に対して位置決めすることなく、その結果、測定ヘッド15のレーザの基準点である投光点O1がワークWの開口部2の径方向中心点O2に一致せず、測定ヘッド15の軸方向(回転軸)が開口部2の軸方向に対して傾斜角度θで傾斜していても、ワークWの開口部2の径方向中心点O2及びその内径を精度良く測定することができる。このように、本発明の実施の形態に係る内径測定装置1では、測定ヘッド15をワークWの開口部2に対して位置決めする位置決めガイドを必要としないので、内径の違う開口部2を測定するたびに位置決めガイド、あるいは測定ヘッド全体を交換する必要がなく、作業の効率化を図ることができる。   Thereby, in the inner diameter measuring apparatus 1 according to the embodiment of the present invention, the positioning head is not used to position the measuring head 15 with respect to the opening 2 of the workpiece W, and as a result, the laser reference of the measuring head 15 is obtained. The light projecting point O1, which is a point, does not coincide with the radial center point O2 of the opening 2 of the workpiece W, and the axial direction (rotating axis) of the measuring head 15 is inclined at an inclination angle θ with respect to the axial direction of the opening 2. Even in this case, the radial center point O2 of the opening 2 of the workpiece W and the inner diameter thereof can be measured with high accuracy. As described above, the inner diameter measuring apparatus 1 according to the embodiment of the present invention does not require a positioning guide for positioning the measuring head 15 with respect to the opening 2 of the workpiece W, and therefore measures the openings 2 having different inner diameters. It is not necessary to replace the positioning guide or the entire measuring head each time, and the work efficiency can be improved.

しかも、本発明の実施の形態に係る内径測定装置1では、位置決めガイドを必要としないので、位置決めガイドによる開口部2の内壁面への損傷を防止することができ、また位置決めガイドの外壁面の摩耗や損傷等による測定ヘッド15の位置決め不具合の問題も解消することができる。さらに、本発明の実施の形態に係る内径測定装置1では、測定ヘッド15の軸方向(回転軸)の、ワークWの開口部2の軸方向に対する傾斜角度θを算出して、角度補正する等の複数の演算過程を必要としないので、開口部2の内径の測定誤差を最小限に留めることができる。   In addition, since the inner diameter measuring apparatus 1 according to the embodiment of the present invention does not require a positioning guide, damage to the inner wall surface of the opening 2 due to the positioning guide can be prevented, and the outer wall surface of the positioning guide can be prevented. The problem of positioning failure of the measuring head 15 due to wear or damage can be solved. Furthermore, in the inner diameter measuring apparatus 1 according to the embodiment of the present invention, the inclination angle θ of the axial direction (rotating axis) of the measuring head 15 with respect to the axial direction of the opening 2 of the workpiece W is calculated and angle correction is performed. Thus, the measurement error of the inner diameter of the opening 2 can be kept to a minimum.

1 内径測定装置,2 開口部,2a 内壁面,7 回転駆動部,15 測定ヘッド,17 距離センサ,18 ミラー角度可変装置(角度可変装置),24 データ処理部   DESCRIPTION OF SYMBOLS 1 Inner diameter measuring device, 2 Opening part, 2a Inner wall surface, 7 Rotation drive part, 15 Measuring head, 17 Distance sensor, 18 Mirror angle variable apparatus (angle variable apparatus), 24 Data processing part

Claims (1)

円形状の開口部の内径を測定する内径測定装置であって、
前記開口部の内壁面に向かってレーザを照射し、その反射光を検出することで基準点から内壁面までの距離を測定する測定ヘッドと、
該測定ヘッドをその回転軸周りに、前記開口部の内壁面に対して相対的に回転させる回転駆動部と、
前記測定ヘッドの前記回転軸上に位置する前記基準点から照射されるレーザの、前記測定ヘッドの回転軸と直交する軸直交方向に対する照射角度を変化させる角度可変装置と、
該角度可変装置によりレーザの照射角度を、前記軸直交方向を跨ぐように変化させながら、前記測定ヘッドにより測定された多数の測定値を一つのデータ群とし、該データ群を、前記測定ヘッドを前記回転駆動部により回転させながらその単位回転角度毎にそれぞれ取得し、各データ群から最小値をそれぞれ選択して、該複数の最小値に基づいて、前記開口部の内径を算出するデータ処理部と、
を備えることを特徴とする内径測定装置。
An inner diameter measuring device for measuring the inner diameter of a circular opening,
A measuring head that measures the distance from the reference point to the inner wall surface by irradiating a laser toward the inner wall surface of the opening and detecting the reflected light;
A rotation drive unit for rotating the measurement head around its rotation axis relative to the inner wall surface of the opening;
An angle variable device that changes an irradiation angle of a laser irradiated from the reference point located on the rotation axis of the measurement head with respect to an axis orthogonal direction orthogonal to the rotation axis of the measurement head;
While changing the laser irradiation angle by the angle variable device so as to straddle the direction perpendicular to the axis, a large number of measurement values measured by the measurement head are used as one data group, and the data group is used as the measurement head. A data processing unit that obtains each unit rotation angle while rotating by the rotation driving unit, selects a minimum value from each data group, and calculates an inner diameter of the opening based on the plurality of minimum values When,
An inner diameter measuring device comprising:
JP2015201091A 2015-10-09 2015-10-09 Inner diameter measurement device Pending JP2017072546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201091A JP2017072546A (en) 2015-10-09 2015-10-09 Inner diameter measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201091A JP2017072546A (en) 2015-10-09 2015-10-09 Inner diameter measurement device

Publications (1)

Publication Number Publication Date
JP2017072546A true JP2017072546A (en) 2017-04-13

Family

ID=58537357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201091A Pending JP2017072546A (en) 2015-10-09 2015-10-09 Inner diameter measurement device

Country Status (1)

Country Link
JP (1) JP2017072546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567399A (en) * 2019-07-31 2019-12-13 武汉船用机械有限责任公司 Auxiliary detection equipment and detection method for hole
CN111721234A (en) * 2020-06-22 2020-09-29 太原科技大学 Be used for internal thread line scanning formula three-dimensional scanning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567399A (en) * 2019-07-31 2019-12-13 武汉船用机械有限责任公司 Auxiliary detection equipment and detection method for hole
CN110567399B (en) * 2019-07-31 2021-07-27 武汉船用机械有限责任公司 Auxiliary detection equipment and detection method for hole
CN111721234A (en) * 2020-06-22 2020-09-29 太原科技大学 Be used for internal thread line scanning formula three-dimensional scanning device
CN111721234B (en) * 2020-06-22 2022-03-18 太原科技大学 Be used for internal thread line scanning formula three-dimensional scanning device

Similar Documents

Publication Publication Date Title
CN105424011B (en) Measuring device and method for setting measuring device
US10371507B2 (en) Shape measurement device, structural object production system, shape measurement method, structural object production method, shape measurement program, and recording medium
US9470509B2 (en) Inner diameter measuring device and inner diameter measuring method
JP6743851B2 (en) Steel pipe perpendicularity measuring method and steel pipe manufacturing method
WO2015194506A1 (en) Method for correcting surface shape data of annular rotor, and device for inspecting appearance of annular rotor
JP2009098046A (en) Three-dimensional shape measuring instrument
JP2010085385A (en) Method for measuring eccentricity of rotary disc, rotary encoder, and rotor controller
JP6368933B2 (en) Overhead wire position measuring apparatus and method
JP2018179588A (en) Laser scanner
JP2017072546A (en) Inner diameter measurement device
JP2015087295A (en) Shape inspection device and shape inspection method
CN104117772A (en) Laser processing method and laser processing device
CN108489428B (en) Device and method for detecting coaxiality of piston cylinder
JP6924953B2 (en) Shape measuring device and shape measuring method
JP2010048731A (en) Measuring device and measuring method of cross-sectional shape
JP6542742B2 (en) Drill blade phase measurement device and drill blade phase measurement method
JP6721450B2 (en) Roundness measuring device
JP2013024754A (en) Object diameter measurement method
JP6274956B2 (en) Grinding equipment
JP5823367B2 (en) measuring device
JP2014139535A (en) Centering device
JP2007322419A (en) Bottle inspection device
JP2015203679A (en) Hole position measuring apparatus
JP6079664B2 (en) Apparatus for measuring surface of object to be measured and method for measuring surface thereof
KR101288965B1 (en) Apparatus for measuring diameter of object and method for measuring the same