JP2017072382A - Inspection reference light generator, inspection reference light generation method, inspection apparatus, inspection method - Google Patents

Inspection reference light generator, inspection reference light generation method, inspection apparatus, inspection method Download PDF

Info

Publication number
JP2017072382A
JP2017072382A JP2015197453A JP2015197453A JP2017072382A JP 2017072382 A JP2017072382 A JP 2017072382A JP 2015197453 A JP2015197453 A JP 2015197453A JP 2015197453 A JP2015197453 A JP 2015197453A JP 2017072382 A JP2017072382 A JP 2017072382A
Authority
JP
Japan
Prior art keywords
inspection
shape
dark part
light
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197453A
Other languages
Japanese (ja)
Other versions
JP6604127B2 (en
Inventor
貴哉 近藤
Takaya Kondo
貴哉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015197453A priority Critical patent/JP6604127B2/en
Publication of JP2017072382A publication Critical patent/JP2017072382A/en
Application granted granted Critical
Publication of JP6604127B2 publication Critical patent/JP6604127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inspection reference light generator, an inspection reference light generation method, an inspection apparatus, and an inspection method capable of improving inspection accuracy.SOLUTION: A light source 1 is disposed at one side in an axial direction of a cylindrical inspection object 4. The light source 1 has a light projecting plane which includes an illumination part 6 for emitting a beam of light to the inspection object 4 and a belt-like dark part 7 with brightness lower than that in illumination part 6. A camera 2 is disposed at the other side in the axial direction of the inspection object 4 to pick up an image of a reflected dark area 9 on the surface of the inspection object 4 in which the dark part 7 is reflected. A setting unit 10, 11 sets the shape of the dark part 7 so that the shape of the reflected dark area 9 has a predetermined shape.SELECTED DRAWING: Figure 1

Description

本発明は、円筒状の検査対象物に対する外観検査で使用される検査基準光を生成する検査基準光生成装置,検査基準光生成方法,検査装置,検査方法に関する。   The present invention relates to an inspection reference light generation device, an inspection reference light generation method, an inspection device, and an inspection method that generate inspection reference light used in an appearance inspection for a cylindrical inspection object.

従来、物品の外観検査において、シーン現象を利用して物品の表面の凹凸を検出する技術が知られている。シーン現象とは、物品の表面での光の反射現象において、入射光と反射面とのなす角が小さな角度である場合(入射角が直角に近い場合)に正反射傾向が強まり、拡散反射が抑制される現象である。物品の表面が平滑で凹凸がない場合、表面塗装や絵柄の有無に関わらず、入射光が物品の表面で全反射しやすくなり、反射光の分布が均一となる。一方、物品の表面に凹凸(傷やへこみなど)がある場合には、凹凸部分からの全反射成分の反射方向が凹凸形状に応じて変化するため、反射光の分布が不均一となる。したがって、反射光の強度分布を把握することで、物品の表面の凹凸を検出しうる(特許文献1,2参照)。   2. Description of the Related Art Conventionally, in the appearance inspection of an article, a technique for detecting unevenness on the surface of the article using a scene phenomenon is known. A scene phenomenon is a phenomenon of light reflection on the surface of an article. When the angle between the incident light and the reflecting surface is a small angle (when the incident angle is close to a right angle), the specular reflection tendency increases and diffuse reflection This phenomenon is suppressed. When the surface of the article is smooth and has no irregularities, the incident light is easily totally reflected on the surface of the article regardless of the presence or absence of surface coating or a pattern, and the distribution of reflected light becomes uniform. On the other hand, when the surface of the article has irregularities (scratches, dents, etc.), the reflection direction of the total reflection component from the irregularities changes according to the irregularity shape, so the distribution of reflected light becomes uneven. Therefore, it is possible to detect irregularities on the surface of the article by grasping the intensity distribution of the reflected light (see Patent Documents 1 and 2).

特開平8-5573号公報JP-A-8-5573 特開平6-241758号公報JP-A-6-2141758

しかしながら、物品の表面に存在する凹凸形状の起伏が小さい場合には、その部分における反射光の強度変化が小さくなり、凹凸を精度よく検出できない場合がある。また、シーン現象を利用した検査手法では、凹凸部分の周囲における正反射光の強度が高くなることから、凹凸部分の反射光強度の変化がかき消されやすく、凹凸を精度よく検出できない場合がある。   However, when the unevenness of the uneven shape present on the surface of the article is small, the intensity change of the reflected light at that portion becomes small, and the unevenness may not be detected accurately. Also, in the inspection method using the scene phenomenon, since the intensity of the regular reflection light around the uneven portion is high, the change in the reflected light intensity of the uneven portion is easily erased, and the uneven portion may not be detected accurately.

本件の目的の一つは、上記のような課題に鑑みて創案されたものであり、検査精度を向上させる検査基準光生成装置,検査基準光生成方法,検査装置,検査方法を提供することである。また、この目的に限らず、後述する「発明を実施するための形態」に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本件の他の目的として位置づけることができる。   One of the purposes of the present invention was created in view of the above-described problems, and provides an inspection reference light generation device, an inspection reference light generation method, an inspection device, and an inspection method that improve inspection accuracy. is there. Further, the present invention is not limited to this purpose, and is an operational effect derived from each configuration shown in “Mode for Carrying Out the Invention” to be described later. It can be positioned as a purpose.

開示の検査基準光生成装置は、円筒状の検査対象物の軸方向一側に配置された光源とカメラとを備える。前記光源は、前記検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する。前記カメラは、前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影する。また、開示の検査基準光生成装置は、前記反射暗部の形状が所定形状となる前記暗部の形状を設定する設定部を備える。
開示の検査装置は、前記光源と、前記カメラと、前記反射暗部の形状が所定形状となる前記暗部の形状の情報を取得する取得部とを備える。また、前記情報に基づき前記反射暗部の形状が所定形状となる検査光を前記光源に照射させる制御部と、前記検査光が照射された前記検査対象物の画像に基づき前記検査対象物の表面を検査する検査部とを備える。
The disclosed inspection reference light generation device includes a light source and a camera arranged on one side in the axial direction of a cylindrical inspection object. The light source has a light projecting surface in which an illumination unit that irradiates light to the inspection object and a belt-like dark part that is lighter than the illumination unit are formed. The camera photographs a reflection dark part formed by reflecting the dark part on the surface of the inspection object from the other side in the axial direction of the inspection object. In addition, the disclosed inspection reference light generation device includes a setting unit that sets the shape of the dark part such that the shape of the reflection dark part is a predetermined shape.
The disclosed inspection apparatus includes the light source, the camera, and an acquisition unit that acquires information on the shape of the dark part where the shape of the reflection dark part is a predetermined shape. Further, a control unit that irradiates the light source with inspection light in which the shape of the reflection dark part becomes a predetermined shape based on the information, and a surface of the inspection object based on an image of the inspection object irradiated with the inspection light. And an inspection unit for inspecting.

検査対象物の外観検査精度を向上させることができる。   The appearance inspection accuracy of the inspection object can be improved.

検査基準光生成装置及び検査装置の概略図である。It is the schematic of an inspection reference light production | generation apparatus and an inspection apparatus. 光源の投光面及びカメラの撮影画像を示す図である。It is a figure which shows the projection surface of a light source, and the picked-up image of a camera. 電子制御装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of an electronic controller. 制御内容を説明するためのブロック図である。It is a block diagram for demonstrating the content of control. (A)〜(D)は照明パターンの設定手法を説明するための図である。(A)-(D) are the figures for demonstrating the setting method of an illumination pattern. 暗部の所望幅の設定手法を説明するための図である。It is a figure for demonstrating the setting method of the desired width | variety of a dark part. 検査基準光生成方法を説明するためのフローチャートである。It is a flowchart for demonstrating the test | inspection reference light production | generation method. 検査方法を説明するためのフローチャートである。It is a flowchart for demonstrating an inspection method. (A)、(B)は照明パターンの変形例を示す図である。(A), (B) is a figure which shows the modification of an illumination pattern.

図面を参照して、実施形態としての検査基準光生成装置,検査基準光生成方法,検査装置,検査方法について説明する。ただし、以下に示す実施形態はあくまでも例示に過ぎず、実施形態で明示しない種々の変形や技術の適用を排除する意図はない。すなわち、本実施形態をその趣旨を逸脱しない範囲で種々変形して(実施形態,変形例を組み合わせて)実施することができる。   With reference to the drawings, an inspection reference light generation device, an inspection reference light generation method, an inspection device, and an inspection method as embodiments will be described. However, the embodiment described below is merely an example, and there is no intention of excluding various modifications and technical applications that are not explicitly described in the embodiment. In other words, the present embodiment can be implemented with various modifications (combining the embodiments and modifications) without departing from the spirit of the present embodiment.

本実施形態の検査装置,検査方法は、円筒状の検査対象物の外観検査を実施するものであり、本実施形態の検査基準光生成装置,検査基準光生成方法は、外観検査で使用される検査基準光を設定するものである。外観検査では、シーン現象を利用して検査対象物の表面(円筒面)における凹凸(へこみ,出っ張り,傷など)の有無が判断される。ここでいう検査対象物には、円筒状の形を有する任意の物体が含まれ、例えば乾電池,ボタン型電池,光半導体デバイス,円筒型照明装置,グロースターターなどが含まれる。   The inspection apparatus and inspection method of the present embodiment perform an appearance inspection of a cylindrical inspection object, and the inspection reference light generation device and the inspection reference light generation method of the present embodiment are used in an appearance inspection. Inspection reference light is set. In the appearance inspection, the presence or absence of irregularities (dents, protrusions, scratches, etc.) on the surface (cylindrical surface) of the inspection object is determined using a scene phenomenon. The inspection object here includes an arbitrary object having a cylindrical shape, and includes, for example, a dry battery, a button-type battery, an optical semiconductor device, a cylindrical illumination device, a glow starter, and the like.

[1.装置構成]
本実施形態の検査基準光生成装置及び検査装置のシステム構成を図1に例示する。このシステムには、光源1,カメラ2,駆動装置3,ランプ5と、これらに接続された電子制御装置10とが設けられる。光源1は、検査対象物である電池4の表面に光を照射する面照明装置である。検査時における電池4の姿勢は、軸方向がほぼ水平となる向きに設定される。光源1は、図1に示すような電池4の検査姿勢を基準として、軸方向一側かつ電池4の中心軸よりも上方に配置される。光源1の具体例としては、照明パターンを制御することのできる照明装置,投光装置,表示装置などが考えられ、例えば液晶ディスプレイ(LCD,Liquid Crystal Display),有機ELディスプレイ(OELD,Organic Electro-Luminescence Display),プロジェクター装置などが挙げられる。
[1. Device configuration]
FIG. 1 illustrates a system configuration of the inspection reference light generation device and the inspection device according to the present embodiment. In this system, a light source 1, a camera 2, a driving device 3, a lamp 5 and an electronic control device 10 connected thereto are provided. The light source 1 is a surface illumination device that irradiates light on the surface of a battery 4 that is an inspection object. The posture of the battery 4 at the time of inspection is set so that the axial direction is substantially horizontal. The light source 1 is arranged on one side in the axial direction and above the central axis of the battery 4 with reference to the inspection posture of the battery 4 as shown in FIG. Specific examples of the light source 1 include an illuminating device, a light projecting device, and a display device that can control an illumination pattern. For example, a liquid crystal display (LCD), an organic EL display (OELD, Organic Electro- Luminescence Display) and projector devices.

また、光源1の投光面には、光を照射する照明部6と照明部6よりも明度(輝度又は照度)の低い帯状の暗部7とが設けられる。暗部7は、その周囲が照明部6によって囲まれるように、照明部6の内側(例えば、照明部6によって左右から挟まれた位置)に設けられる。ここでいう投光面とは、電池4の表面に光を投げかける面状の部位を意味する。投光面は、液晶ディスプレイや有機ELディスプレイの場合にはディスプレイ本体の表示画面に相当し、プロジェクターの場合には映像が投影されるスクリーンに相当する。投光面は、好ましくは電池4の中心軸に対してほぼ垂直に配置されるが、中心軸に対して傾斜して配置することも可能である。   The light projecting surface of the light source 1 is provided with an illuminating unit 6 that irradiates light and a band-shaped dark unit 7 having a lower brightness (luminance or illuminance) than the illuminating unit 6. The dark part 7 is provided inside the illumination part 6 (for example, a position sandwiched from the left and right by the illumination part 6) so that the periphery thereof is surrounded by the illumination part 6. The light projecting surface here refers to a planar portion that casts light on the surface of the battery 4. In the case of a liquid crystal display or an organic EL display, the light projecting surface corresponds to a display screen of the display body, and in the case of a projector, the light projection surface corresponds to a screen on which an image is projected. The light projecting surface is preferably arranged substantially perpendicular to the central axis of the battery 4, but can be arranged inclined with respect to the central axis.

光源1は、照明部6,暗部7のそれぞれにおける光量を任意に変更可能である。また、暗部7の形状(すなわち、照明部6以外の部分の形状)は、任意に変更可能である。本実施形態の暗部7は、その幅や、照明部6との境界線の向き(傾き)を任意に変更可能である。例えば、図2に示すように、暗部7を一定幅の帯状にすることが可能であり、あるいは図1に示すように、上方に向かうほど幅が広がる放射ライン形状とすることも可能である。   The light source 1 can arbitrarily change the amount of light in each of the illumination unit 6 and the dark unit 7. Moreover, the shape of the dark part 7 (namely, the shape of parts other than the illumination part 6) can be changed arbitrarily. The dark part 7 of this embodiment can change arbitrarily the width | variety and the direction (inclination) of a boundary line with the illumination part 6. FIG. For example, as shown in FIG. 2, it is possible to make the dark part 7 into a strip shape with a constant width, or as shown in FIG. 1, it is also possible to make it a radiation line shape whose width increases toward the top.

電池4を挟んで光源1の反対側となる軸方向他側には、電池4の表面を撮影するカメラ2が配置される。カメラ2は、電池4の中心軸を通る鉛直平面内において、電池4の中心軸よりも上方に配置される。また、カメラ2の撮影範囲は、電池4の全体を見下ろすように設定される。カメラ2の撮影方向と電池4の中心軸とのなす角度θは、電池4の表面のほぼ全体が光源1からの照明光を正反射する角度(例えば、約10°以下の小さな角度)に設定される。カメラ2と電池4との間の距離は、光源1から照射される光量や光源1の投光面の面積(照明部6のサイズ)などに応じて設定される。シーン現象を利用することで、電池4の表面における正反射が強化される。これにより、カメラ2で撮影される画像が電池4の表面の素材や絵柄の影響を受けにくくなり、外観検査精度が向上する。また、図2に示すように、電池4の表面には、照明部6から照射された光が反射している明るい部位と、暗部7に相当する暗い部位とが形成される。以下、前者を反射照明部8と呼び、後者を反射暗部9と呼ぶ。   A camera 2 for photographing the surface of the battery 4 is disposed on the other side in the axial direction opposite to the light source 1 with the battery 4 interposed therebetween. The camera 2 is disposed above the central axis of the battery 4 in a vertical plane passing through the central axis of the battery 4. In addition, the shooting range of the camera 2 is set so as to look down on the entire battery 4. The angle θ between the shooting direction of the camera 2 and the central axis of the battery 4 is set to an angle at which almost the entire surface of the battery 4 reflects the illumination light from the light source 1 (for example, a small angle of about 10 ° or less). Is done. The distance between the camera 2 and the battery 4 is set according to the amount of light emitted from the light source 1, the area of the light projecting surface of the light source 1 (the size of the illumination unit 6), and the like. By using the scene phenomenon, regular reflection on the surface of the battery 4 is enhanced. Thereby, the image photographed by the camera 2 is not easily affected by the material and the pattern on the surface of the battery 4, and the appearance inspection accuracy is improved. In addition, as shown in FIG. 2, on the surface of the battery 4, a bright part where the light irradiated from the illumination unit 6 is reflected and a dark part corresponding to the dark part 7 are formed. Hereinafter, the former is referred to as a reflective illumination unit 8 and the latter is referred to as a reflection dark unit 9.

駆動装置3は、電池4を軸周りに回転駆動するための装置である。駆動装置3には、電池4の位置をほぼ一定に保ったまま、その電池4を回転させる機構が設けられている。図1には、二列のローラーで電池4の下方を支承する機構を例示する。ローラーは、図示しない電動モータで回転可能に設けられる。電池4を回転させることで、電池4の表面のうち光源1から照射された光が反射する位置が変化するため、電池4の表面を全周にわたって検査することが容易となる。なお、ランプ5は外観検査で電池4の表面に凹凸が発見されたこと(検査結果がNGであること)を報知するための電灯である。   The drive device 3 is a device for driving the battery 4 to rotate about the axis. The driving device 3 is provided with a mechanism for rotating the battery 4 while keeping the position of the battery 4 substantially constant. FIG. 1 illustrates a mechanism for supporting the lower side of the battery 4 with two rows of rollers. The roller is rotatably provided by an electric motor (not shown). By rotating the battery 4, the position of the surface of the battery 4 where the light emitted from the light source 1 is reflected is changed, so that the surface of the battery 4 can be easily inspected over the entire circumference. The lamp 5 is an electric lamp for notifying that irregularities are found on the surface of the battery 4 in the appearance inspection (the inspection result is NG).

電子制御装置10は、電池4の外観検査を実施する機能と、その外観検査で使用される検査基準光を生成する機能とを併せ持つコンピュータである。外観検査の工程では、後述する検査工程フローに沿って検査プログラムが実行される。また、外観検査の前処理である準備工程では、後述する検査準備工程フローに沿って検査準備プログラムが実行される。図3に示すように、電子制御装置10には、プロセッサ21(CPU,中央処理装置),メモリ22(メインメモリ,主記憶装置),補助記憶装置23,インタフェース装置24,記録媒体ドライブ25などが内蔵され、内部バス26を介して互いに通信可能に接続される。   The electronic control device 10 is a computer having both a function of performing an appearance inspection of the battery 4 and a function of generating inspection reference light used in the appearance inspection. In the appearance inspection process, an inspection program is executed along an inspection process flow to be described later. Moreover, in the preparatory process which is the pre-process of the appearance inspection, an inspection preparation program is executed along an inspection preparation process flow which will be described later. As shown in FIG. 3, the electronic control unit 10 includes a processor 21 (CPU, central processing unit), a memory 22 (main memory, main storage unit), an auxiliary storage unit 23, an interface unit 24, a recording medium drive 25, and the like. They are built in and are communicably connected to each other via the internal bus 26.

プロセッサ21は、制御ユニット(制御回路)や演算ユニット(演算回路),キャッシュメモリ(レジスタ群)などを内蔵する中央処理装置である。また、メモリ22は、プログラムや作業中のデータが格納される記憶装置であり、例えばROM(Read Only Memory),RAM(Random Access Memory)がこれに含まれる。一方、補助記憶装置23は、メモリ22よりも長期的に保持されるデータやファームウェアが格納されるメモリ装置であり、例えばフラッシュメモリやEEPROM(Electrically Erasable Programmable Read-Only Memory)などの不揮発性メモリがこれに含まれる。インタフェース装置24は、電子制御装置10と外部との間の入出力(Input and Output;I/O)を司るものである。   The processor 21 is a central processing unit that incorporates a control unit (control circuit), an arithmetic unit (arithmetic circuit), a cache memory (register group), and the like. The memory 22 is a storage device that stores a program and working data, and includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). On the other hand, the auxiliary storage device 23 is a memory device that stores data and firmware that are held for a longer time than the memory 22. For example, a nonvolatile memory such as a flash memory or an EEPROM (Electrically Erasable Programmable Read-Only Memory) is used. Included in this. The interface device 24 controls input / output (I / O) between the electronic control device 10 and the outside.

記録媒体ドライブ25は、光ディスクや半導体メモリなどの記録媒体27(リムーバブルメディア)に記録,保存された情報を読み取る読取装置である。電子制御装置10で実行されるプログラムは、例えばメモリ22内に記録,保存されることとしてもよいし、補助記憶装置23の内部に記録,保存されることとしてもよい。あるいは、記録媒体27上にプログラムが記録,保存され、その記録媒体27に書き込まれているプログラムが、記録媒体ドライブ25を介して電子制御装置10に読み込まれることとしてもよい。   The recording medium drive 25 is a reading device that reads information recorded and stored in a recording medium 27 (removable medium) such as an optical disk or a semiconductor memory. The program executed by the electronic control device 10 may be recorded and stored in the memory 22, for example, or may be recorded and stored in the auxiliary storage device 23. Alternatively, a program may be recorded and stored on the recording medium 27, and the program written on the recording medium 27 may be read into the electronic control device 10 via the recording medium drive 25.

[2.制御構成]
図4は、電子制御装置10のプロセッサ21で実行される検査プログラム及び検査準備プログラムの処理内容を説明するためのブロック図である。これらの処理内容は、アプリケーションプログラムとして補助記憶装置23,記録媒体27などに記録され、メモリ22上に展開されて実行される。ここで実行される処理内容を機能的に分類すると、これらのプログラムには、設定部11,記憶部12,取得部13,制御部14,検査部15,駆動部16が設けられる。検査準備プログラムには、少なくとも設定部11が含まれ、好ましくは記憶部12も含まれる。また、検査プログラムには、少なくとも取得部13,制御部14,検査部15が含まれ、好ましくは駆動部16が含まれる。
[2. Control configuration]
FIG. 4 is a block diagram for explaining the processing contents of the inspection program and the inspection preparation program executed by the processor 21 of the electronic control device 10. These processing contents are recorded as an application program in the auxiliary storage device 23, the recording medium 27, etc., and are expanded on the memory 22 and executed. When the processing contents executed here are functionally classified, these programs are provided with a setting unit 11, a storage unit 12, an acquisition unit 13, a control unit 14, an inspection unit 15, and a drive unit 16. The inspection preparation program includes at least the setting unit 11 and preferably also includes the storage unit 12. The inspection program includes at least the acquisition unit 13, the control unit 14, and the inspection unit 15, and preferably includes the drive unit 16.

設定部11は、カメラ2で撮影された画像中の反射暗部9の形状が外観検査に適した所定形状となるように、光源1の投光面における暗部7の形状を設定するものである。ここでいう「外観検査に適した所定形状」には、例えばライン状(直線状,曲線状),帯状,矩形状,台形状,三角形状,波線状などの形状を含む。ここで、反射暗部9の形状が所定形状となるような照明パターンの光のことを検査基準光と呼べば、設定部11は検査基準光を設定する機能を持つ。本実施形態の設定部11は、反射暗部9の形状が一定幅の帯状となる暗部7の形状を設定する。図2に示すように、光源1の投光面における暗部7の形状を一定幅の帯状とした場合、反射暗部9の形状は下方へと向かうほど狭められた形状の逆台形状となる。一方、暗部7の形状を逆台形状にすれば、反射暗部9の形状は一定幅の帯状となる。   The setting unit 11 sets the shape of the dark portion 7 on the light projection surface of the light source 1 so that the shape of the reflection dark portion 9 in the image photographed by the camera 2 becomes a predetermined shape suitable for appearance inspection. Here, the “predetermined shape suitable for appearance inspection” includes, for example, a line shape (straight shape, curved shape), a strip shape, a rectangular shape, a trapezoidal shape, a triangular shape, a wavy shape, and the like. Here, if the light of the illumination pattern in which the shape of the reflection dark portion 9 has a predetermined shape is called inspection reference light, the setting unit 11 has a function of setting the inspection reference light. The setting unit 11 of the present embodiment sets the shape of the dark part 7 in which the shape of the reflection dark part 9 is a band having a certain width. As shown in FIG. 2, when the shape of the dark portion 7 on the light projecting surface of the light source 1 is a band having a certain width, the shape of the reflective dark portion 9 is an inverted trapezoidal shape that is narrowed downward. On the other hand, if the shape of the dark portion 7 is an inverted trapezoidal shape, the shape of the reflective dark portion 9 is a band having a certain width.

暗部7の形状と反射暗部9の形状との関係を把握するには、電池4の表面で反射する照明部6及び暗部7の光によって形成される虚像の位置を算出すればよい。また、反射暗部9が一定幅となる暗部7の形状を簡便に設定するには、暗部7を一定幅の帯状としたときの反射暗部9の形状を取得し、その形状に相似な形状(あるいは類似した形状)を暗部7の形状とすることが考えられる。この場合、反射暗部9の幅が所望幅Wとなる位置に対応する投光面上の位置を基準として、暗部7の形状を設定してもよい。   In order to grasp the relationship between the shape of the dark part 7 and the shape of the reflection dark part 9, the position of the virtual image formed by the light of the illumination part 6 and the dark part 7 reflected on the surface of the battery 4 may be calculated. In addition, in order to easily set the shape of the dark part 7 in which the reflection dark part 9 has a constant width, the shape of the reflection dark part 9 when the dark part 7 is a belt having a constant width is acquired, and a shape similar to the shape (or It is conceivable that the shape of the dark portion 7 is a similar shape. In this case, the shape of the dark part 7 may be set on the basis of the position on the light projection surface corresponding to the position where the width of the reflection dark part 9 becomes the desired width W.

設定部11による具体的な設定手法を説明する。まず、光源1の投光面の全体に照明部6を設定し、電池4の表面に絵柄が見えなくなるように照明光量を調整する〔図5(A)〕。次に、光源1の投光面における照明部6の内側に帯状の暗部7を形成し、電池4の表面に映った反射暗部9をカメラ2で撮影する。このとき、暗部7の幅は一定幅とする〔図5(B)〕。これにより、撮影画像中における反射暗部9の幅は、下方へと向かうほど(カメラ2に近い位置ほど)細い形状となる。   A specific setting method by the setting unit 11 will be described. First, the illumination unit 6 is set on the entire light projecting surface of the light source 1, and the amount of illumination light is adjusted so that the pattern is not visible on the surface of the battery 4 (FIG. 5A). Next, a band-like dark part 7 is formed inside the illumination part 6 on the light projection surface of the light source 1, and the reflected dark part 9 reflected on the surface of the battery 4 is photographed by the camera 2. At this time, the dark portion 7 has a constant width [FIG. 5B]. Thereby, the width of the reflection dark portion 9 in the captured image becomes thinner as it goes downward (closer to the camera 2).

設定部11は、この画像中で反射暗部9の幅が所望幅Wとなる上下方向の位置17を特定する。所望幅Wは、図6に示すように、画像中の反射暗部9に対応するピクセル幅Pに基づいて算出可能である。なお、反射照明部8,反射暗部9は、各ピクセルの輝度や横方向の輝度変化量などに基づいて識別することができる。その後、図5(C)に示すように、設定部11は反射暗部9の位置17に対応する投光面上の暗部7の位置18を特定し、位置18を基準として暗部7の形状を設定する。例えば、位置18の幅を固定したまま、暗部7の全体形状を逆台形型とする。このとき、暗部7の形状は一定の割合で拡幅される逆台形状としてもよいし、図5(B)中の反射暗部9と相似な形状としてもよい。また、電池4の表面加工状態や塗装状態,絵柄などに応じて、暗部7の幅を部分的に拡幅又は縮小してもよい。上記のような暗部7の形状設定により、反射暗部9の形状が一定幅の帯状となる〔図5(C)〕。   The setting unit 11 specifies a position 17 in the vertical direction where the width of the reflection dark portion 9 becomes the desired width W in the image. As shown in FIG. 6, the desired width W can be calculated based on the pixel width P corresponding to the reflection dark portion 9 in the image. The reflected illumination unit 8 and the reflected dark unit 9 can be identified based on the luminance of each pixel, the luminance change amount in the horizontal direction, and the like. Thereafter, as illustrated in FIG. 5C, the setting unit 11 specifies the position 18 of the dark part 7 on the light projection surface corresponding to the position 17 of the reflection dark part 9, and sets the shape of the dark part 7 with reference to the position 18. To do. For example, the entire shape of the dark part 7 is an inverted trapezoidal shape while the width of the position 18 is fixed. At this time, the shape of the dark part 7 may be an inverted trapezoidal shape widened at a constant rate, or may be similar to the reflective dark part 9 in FIG. Further, the width of the dark portion 7 may be partially expanded or reduced according to the surface processing state, the painted state, the pattern, or the like of the battery 4. By setting the shape of the dark part 7 as described above, the shape of the reflective dark part 9 becomes a band having a certain width [FIG. 5C].

記憶部12は、このようにして設定された暗部7の形状と電池4とを関連づけて記憶するものである。暗部7の形状と電池4とを関連づける理由は、電池4の形状や表面塗装が異なれば、反射暗部9を一定幅の帯状とする暗部7の形状も異なるからである。暗部7の形状と電池4とを関連づけて記憶させることで、検査対象物のサイズや種類に見合った検査基準光の生成が可能となる。   The storage unit 12 stores the shape of the dark part 7 set in this way and the battery 4 in association with each other. The reason for associating the shape of the dark portion 7 with the battery 4 is that the shape of the dark portion 7 in which the reflective dark portion 9 is a band having a certain width is different if the shape of the battery 4 and the surface coating are different. By storing the shape of the dark part 7 and the battery 4 in association with each other, it is possible to generate inspection reference light that matches the size and type of the inspection object.

取得部13は、外観検査を実施する際に、反射暗部9の形状が所定形状となる暗部7の形状の情報を取得するものである。ここでは、外観検査で使用される検査基準光の情報として、電池4に関連づけられた暗部7の形状が記憶部12から読み込まれる。例えば、図5(C)に示すように、逆台形型の暗部7の形状情報が読み込まれる。ここで取得された暗部7の形状の情報は、制御部14に伝達される。   The acquisition unit 13 acquires information on the shape of the dark part 7 in which the shape of the reflection dark part 9 becomes a predetermined shape when performing an appearance inspection. Here, the shape of the dark portion 7 associated with the battery 4 is read from the storage unit 12 as information on the inspection reference light used in the appearance inspection. For example, as shown in FIG. 5C, the shape information of the inverted trapezoidal dark portion 7 is read. The information on the shape of the dark part 7 acquired here is transmitted to the control part 14.

制御部14は、外観検査において、取得部13で取得された情報に基づいて、反射暗部9の形状が所定形状となる検査基準光を光源1に照射させるものである。ここでは、例えば電池4の表面形状に適した照明パターンの光が光源から照射されるように、投光面における照明部6,暗部7の形状が制御される。これにより、図5(C)に示すように、反射暗部9の形状が一定幅の帯状となる。また、外観検査が開始されると、制御部14はカメラ2を制御して反射暗部9の画像の撮影を開始する。カメラ2で撮影された画像の情報は、検査部15に伝達される。   The control unit 14 irradiates the light source 1 with inspection reference light in which the shape of the reflection dark portion 9 becomes a predetermined shape based on the information acquired by the acquisition unit 13 in the appearance inspection. Here, for example, the shapes of the illumination part 6 and the dark part 7 on the light projection surface are controlled so that light of an illumination pattern suitable for the surface shape of the battery 4 is emitted from the light source. As a result, as shown in FIG. 5C, the shape of the reflection dark portion 9 becomes a band having a constant width. When the appearance inspection is started, the control unit 14 controls the camera 2 to start capturing an image of the reflection dark portion 9. Information on the image captured by the camera 2 is transmitted to the inspection unit 15.

検査部15は、検査基準光が照射された電池4の画像に基づき、電池4の表面における凹凸の有無を検査するものである。ここでは、反射暗部9を含む画像中の領域が検査範囲19として特定されるとともに、反射暗部9の形状が変形しているか否かが判定される。検査部15は、図5(D)に示すように、反射暗部9に変形20が含まれている場合に「電池4の表面に凹凸が発見された」と判断し、ランプ5に灯火信号を出力してランプ5を点灯させる。一方、反射暗部9に変形20が見られない場合には「電池4の表面に凹凸が発見されない」と判断し、ランプ5の消灯状態を維持する。   The inspection unit 15 inspects the presence or absence of irregularities on the surface of the battery 4 based on the image of the battery 4 irradiated with the inspection reference light. Here, a region in the image including the reflection dark portion 9 is specified as the inspection range 19 and it is determined whether or not the shape of the reflection dark portion 9 is deformed. As shown in FIG. 5D, the inspection unit 15 determines that “unevenness has been found on the surface of the battery 4” when the reflection dark portion 9 includes the deformation 20, and sends a lamp signal to the lamp 5. Output the lamp 5 to light. On the other hand, when the deformation 20 is not seen in the reflection dark portion 9, it is determined that “unevenness is not found on the surface of the battery 4”, and the lamp 5 is kept off.

駆動部16は、駆動装置3の作動状態を制御するものである。外観検査が開始されると、駆動部16は駆動装置3に駆動信号を出力し、電池4を軸周りに回転させる。また、電池4の回転速度(駆動装置3の駆動速度)は、カメラ2の撮影能力(シャッタースピードやフレームレート)に応じた速度に設定される。これにより、電池4の表面のうちカメラ2で撮影される位置が変化し、電池4の表面が全周にわたって撮影される。なお、カメラ2が電池4の表面を全周にわたって撮影した後には、駆動装置3を停止させてもよい。   The drive unit 16 controls the operating state of the drive device 3. When the appearance inspection is started, the driving unit 16 outputs a driving signal to the driving device 3 to rotate the battery 4 around the axis. Further, the rotation speed of the battery 4 (drive speed of the drive device 3) is set to a speed according to the photographing ability (shutter speed or frame rate) of the camera 2. Thereby, the position image | photographed with the camera 2 among the surfaces of the battery 4 changes, and the surface of the battery 4 is image | photographed over a perimeter. The driving device 3 may be stopped after the camera 2 has photographed the entire surface of the battery 4.

[3.フローチャート]
図7は検査準備工程フローの例であり、図8は検査工程フローの例である。
検査準備工程フローでは、電池4の表面に絵柄が見えなくなるように照明光量が調節された後(ステップA1)、光源1の投光面における照明部6の内側に、一定幅の暗部7が形成される(ステップA2)。この状態で電池4の表面がカメラ2で撮影され(ステップA3)、画像中の反射暗部9が所望幅Wとなる位置17が特定される(ステップA4)。また、位置17に対応する投光面上の暗部7の位置18が特定され(ステップA5)、この位置18を基準として暗部7の全体形状が設定部11で設定される(ステップA6)。例えば、位置18の幅を固定したまま、暗部7の全体形状が反射暗部9と相似な形状となるように、その形状が設定される。また、電池4の表面加工状態や塗装状態,絵柄などに応じて、暗部7の幅が微調整される。ここで設定された暗部7の形状は、電池4に関連づけられて記憶部12に記憶される。
[3. flowchart]
FIG. 7 is an example of an inspection preparation process flow, and FIG. 8 is an example of an inspection process flow.
In the inspection preparation process flow, after the amount of illumination light is adjusted so that the pattern cannot be seen on the surface of the battery 4 (step A1), a dark portion 7 having a certain width is formed inside the illumination unit 6 on the light projecting surface of the light source 1. (Step A2). In this state, the surface of the battery 4 is photographed by the camera 2 (step A3), and the position 17 where the reflection dark portion 9 in the image has the desired width W is specified (step A4). Further, the position 18 of the dark part 7 on the light projection surface corresponding to the position 17 is specified (step A5), and the entire shape of the dark part 7 is set by the setting unit 11 with the position 18 as a reference (step A6). For example, the shape of the dark portion 7 is set so that the overall shape of the dark portion 7 is similar to the reflective dark portion 9 while the width of the position 18 is fixed. Further, the width of the dark portion 7 is finely adjusted according to the surface processing state, painting state, pattern, etc. of the battery 4. The shape of the dark part 7 set here is associated with the battery 4 and stored in the storage part 12.

検査工程フローでは、検査準備工程フローで設定された照明条件(電池4に関連づけられた暗部7の形状)が取得部13により読み込まれ、その後、制御部14により光源1が検査基準光を照射するように制御される(ステップB1)。また、駆動部16から駆動装置3へと駆動信号が出力されて電池4が回転駆動されるとともに(ステップB2)、回転する電池4の表面がカメラ2で撮影される(ステップB3)。カメラ2は、電池4が例えば約12°回転するたびにその表面を撮影し、一個の電池4につき30枚の画像を撮影する。これにより、電池4の全周がカバーされる。   In the inspection process flow, the illumination condition (the shape of the dark part 7 associated with the battery 4) set in the inspection preparation process flow is read by the acquisition unit 13, and then the light source 1 emits inspection reference light by the control unit 14. (Step B1). Further, a driving signal is output from the driving unit 16 to the driving device 3 to rotate the battery 4 (step B2), and the surface of the rotating battery 4 is photographed by the camera 2 (step B3). The camera 2 shoots the surface of the battery 4 every time the battery 4 rotates, for example, about 12 °, and shoots 30 images for each battery 4. Thereby, the entire periphery of the battery 4 is covered.

検査部15では、カメラ2で撮影された画像のうちの一枚について、画像中の反射暗部9を検査範囲19が切り取られ(ステップB4)、グレースケール化処理が施されるとともに二値化処理が実施される(ステップB5,B6)。これにより、反射照明部8に相当する白ピクセルと反射暗部9に相当する黒ピクセルとの境界が明瞭となる。その後、反射暗部9の形状が抽出され(ステップB7)、反射暗部9に変形20が含まれているか否かが判定される(ステップB8)。   In the inspection unit 15, with respect to one of the images photographed by the camera 2, the inspection darkness part 9 in the image is cut out from the inspection range 19 (step B 4), grayscale processing is performed, and binarization processing is performed. Is performed (steps B5 and B6). As a result, the boundary between the white pixel corresponding to the reflection illumination unit 8 and the black pixel corresponding to the reflection dark unit 9 becomes clear. Thereafter, the shape of the reflection dark portion 9 is extracted (step B7), and it is determined whether or not the deformation 20 is included in the reflection dark portion 9 (step B8).

検査範囲19に変形20が含まれていた場合には、電池4の表面に凹凸が発見されたものと判断されてランプ5が点灯制御され(ステップB11)、検査が終了する。一方、検査範囲19に変形20が含まれていなかった場合には、別の画像について、ステップB4からステップB8までの制御が繰り返される(ステップB9)。また、全ての画像についての検査が終了すると、電池4の表面に凹凸が発見されないものと判断されて(ステップB10)、検査が終了する。   If the deformation 20 is included in the inspection range 19, it is determined that irregularities are found on the surface of the battery 4, the lamp 5 is controlled to be turned on (step B11), and the inspection ends. On the other hand, when the deformation | transformation 20 is not contained in the test | inspection range 19, control from step B4 to step B8 is repeated about another image (step B9). When the inspection for all the images is completed, it is determined that no irregularities are found on the surface of the battery 4 (step B10), and the inspection ends.

[4.作用,効果]
(1)画像上の反射暗部9の形状を所定形状とする暗部7の形状を設定部11で設定することで、反射暗部9の形状を基準として簡単に凹凸の有無を判断することが可能な外観検査用の検査基準光を生成することができる。この検査基準光を用いて電池4の外観を検査することで、凹凸の有無を精度よく判別することができ、外観検査精度を向上させることができるとともに、品質管理精度を向上させることができる。
[4. Action, effect]
(1) By setting the shape of the dark portion 7 with the shape of the reflective dark portion 9 on the image as a predetermined shape by the setting unit 11, it is possible to easily determine the presence or absence of unevenness on the basis of the shape of the reflective dark portion 9. Inspection reference light for appearance inspection can be generated. By inspecting the appearance of the battery 4 using the inspection reference light, it is possible to accurately determine the presence / absence of irregularities, the appearance inspection accuracy can be improved, and the quality control accuracy can be improved.

(2)設定部11で設定された暗部7の形状を電池4に対応づけて記憶部12に記憶させることで、電池4のサイズや種類,表面加工などに見合った検査基準光を外観検査で使用することができ、電池4の外観検査精度を向上させることができる。
(3)反射暗部9の幅を一定とする照明を光源1に照射させることで、反射暗部9の幅寸法を基準として簡単に凹凸の有無を判断することが可能な外観検査用の検査基準光を生成することができる。これにより、検査感度を安定させることができ、外観検査精度をさらに向上させることができるとともに、品質管理精度をさらに向上させることができる。
(2) By correlating the shape of the dark part 7 set by the setting part 11 with the battery 4 and storing it in the storage part 12, the inspection reference light suitable for the size, type, surface processing, etc. of the battery 4 can be obtained by visual inspection. The appearance inspection accuracy of the battery 4 can be improved.
(3) Inspection reference light for appearance inspection that can easily determine the presence or absence of irregularities based on the width dimension of the reflection dark part 9 by irradiating the light source 1 with illumination that makes the width of the reflection dark part 9 constant. Can be generated. Thereby, the inspection sensitivity can be stabilized, the appearance inspection accuracy can be further improved, and the quality control accuracy can be further improved.

(4)また、図5(B),(C)に示すように、暗部7を一定幅としたときの反射暗部9に相似な形状を検査用の暗部7の形状に設定することで、反射暗部9をほぼ一定幅とする検査基準光を容易に生成することができ、外観検査精度及び品質管理精度をさらに向上させることができる。また、検査基準光の設定にかかる電子制御装置10の演算負荷を軽減することができる。
(5)さらに、図5(B)に示すように、反射暗部9の幅が所定幅となる位置17に対応する投光面上の暗部7の位置18を基準位置とすることで、反射暗部9の所望幅Wを確保することができる検査基準光を容易に生成することができ、外観検査精度及び品質管理精度をさらに向上させることができる。また、検査基準光の設定にかかる電子制御装置10の演算負荷を軽減することができる。
(4) Further, as shown in FIGS. 5B and 5C, the shape similar to the reflection dark portion 9 when the dark portion 7 has a constant width is set as the shape of the dark portion 7 for inspection, thereby reflecting Inspection reference light with the dark portion 9 having a substantially constant width can be easily generated, and appearance inspection accuracy and quality control accuracy can be further improved. Further, it is possible to reduce the calculation load of the electronic control device 10 for setting the inspection reference light.
(5) Further, as shown in FIG. 5 (B), the position 18 of the dark part 7 on the light projection surface corresponding to the position 17 where the width of the reflection dark part 9 becomes a predetermined width is set as the reference position, whereby the reflection dark part. Inspection reference light capable of securing a desired width W of 9 can be easily generated, and appearance inspection accuracy and quality control accuracy can be further improved. Further, it is possible to reduce the calculation load of the electronic control device 10 for setting the inspection reference light.

(6)電池4の表面加工状態や塗装状態,絵柄などに応じて暗部7の幅を設定することで、電池4の表面における反射の仕方に左右されることなく一定幅の反射暗部9を撮影することが可能となる。したがって、外観検査精度及び品質管理精度をさらに向上させることができる。
(7)画像上の反射暗部9の形状を所定形状とする暗部7の形状の情報を取得部13で取得し、この情報を用いて外観検査を実施することで、反射暗部9の形状を基準として簡単に凹凸の有無を判断することができ、外観検査精度及び品質管理精度を向上させることができる。
(6) By setting the width of the dark portion 7 according to the surface processing state, paint state, pattern, etc. of the battery 4, the reflected dark portion 9 having a certain width is photographed regardless of the manner of reflection on the surface of the battery 4. It becomes possible to do. Therefore, the appearance inspection accuracy and quality control accuracy can be further improved.
(7) The information of the shape of the dark part 7 which makes the shape of the reflective dark part 9 on the image a predetermined shape is acquired by the acquisition unit 13, and the appearance inspection is performed using this information, so that the shape of the reflective dark part 9 is used as a reference As a result, it is possible to easily determine the presence or absence of unevenness, and to improve the appearance inspection accuracy and the quality control accuracy.

(8)電池4を軸周りに回転駆動する駆動装置3及び駆動部16を設けることで、電池4の表面全体をくまなく検査することができ、外観検査精度及び品質管理精度を向上させることができる。
(9)反射暗部9の変形を検査部15で判定することで、凹凸の有無を精度よく判別することができ、外観検査精度及び品質管理精度を向上させることができる。
(8) By providing the driving device 3 and the driving unit 16 that rotationally drive the battery 4 around the axis, the entire surface of the battery 4 can be inspected, and appearance inspection accuracy and quality control accuracy can be improved. it can.
(9) By determining the deformation of the reflection dark portion 9 by the inspection unit 15, it is possible to accurately determine the presence or absence of irregularities, and it is possible to improve the appearance inspection accuracy and the quality control accuracy.

[5.変形例]
上述の実施形態では、電池4の外観検査を実施する機能と、その外観検査で使用される検査基準光を生成する機能とを併せ持つ電子制御装置10を例示したが、これらの機能は分離することが可能である。前者の機能を実現するには、少なくとも設定部11を電子制御装置10に設ければよい。また、後者の機能を実現するには、少なくとも取得部13,制御部14,検査部15を電子制御装置10に設ければよい。
[5. Modified example]
In the above-described embodiment, the electronic control device 10 having the function of performing the appearance inspection of the battery 4 and the function of generating the inspection reference light used in the appearance inspection is illustrated, but these functions are separated. Is possible. In order to realize the former function, at least the setting unit 11 may be provided in the electronic control device 10. Moreover, what is necessary is just to provide the acquisition part 13, the control part 14, and the test | inspection part 15 in the electronic controller 10 in order to implement | achieve the latter function.

上述の実施形態では、図5(C),(D)に示すように、暗部7の形状を逆台形状としたものを例示したが、暗部7の具体的な形状はこれに限定されない。すなわち、設定部11が、電池4の表面加工状態や塗装状態に応じて、暗部7の幅を部分的に拡幅又は縮小させてもよい。例えば、電池4の表面における領域Rが鏡面加工されている場合、領域Rにおける正反射が強くなるため、反射暗部9の幅が狭くなりうる。一方、図9(A)に示すように、領域Rに対応する投光面上の領域Q内の暗部7の幅を大きく設定すれば、画像中の反射暗部9の幅をほぼ一定とすることが可能となる。   In the above-described embodiment, as illustrated in FIGS. 5C and 5D, the dark portion 7 is illustrated as having an inverted trapezoidal shape, but the specific shape of the dark portion 7 is not limited thereto. That is, the setting unit 11 may partially widen or reduce the width of the dark part 7 according to the surface processing state or the coating state of the battery 4. For example, when the region R on the surface of the battery 4 is mirror-finished, regular reflection in the region R becomes strong, so that the width of the reflection dark portion 9 can be narrowed. On the other hand, as shown in FIG. 9A, if the width of the dark portion 7 in the region Q on the light projection surface corresponding to the region R is set large, the width of the reflected dark portion 9 in the image is made substantially constant. Is possible.

上述の実施形態では、反射暗部9の形状を一定幅の帯状とする暗部7の形状について詳述したが、暗部7の形状を工夫することで、より検査精度の高い反射暗部9の形状設定が可能となる。例えば、図9(B)に示すように、反射暗部9が複数本の帯状となるように、投光面における暗部7の配置を放射状としてもよい。この場合、個々の暗部7が電池4から離れた位置ほど太くなるような逆台形状とすることで、電池4の表面に一定幅の並行線を描くことができる。この場合、各々の線について変形の有無を検査することで、検査精度を向上させることができる。   In the above-described embodiment, the shape of the dark portion 7 in which the shape of the reflective dark portion 9 is a band having a certain width has been described in detail. It becomes possible. For example, as shown in FIG. 9B, the arrangement of the dark portions 7 on the light projecting surface may be radial so that the reflective dark portions 9 have a plurality of strip shapes. In this case, a parallel line having a certain width can be drawn on the surface of the battery 4 by forming the inverted trapezoidal shape such that each dark part 7 becomes thicker as the position away from the battery 4. In this case, inspection accuracy can be improved by inspecting each line for deformation.

[6.付記]
以上の変形例を含む実施形態に関し、さらに以下の付記を開示する。
[6−1.検査基準光生成装置]
(付記1)
円筒状の検査対象物の軸方向一側に配置され、前記検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源と、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影するカメラと、
前記反射暗部の形状が所定形状となる前記暗部の形状を設定する設定部と、
を備えたことを特徴とする、検査基準光生成装置。
(付記2)
前記設定部で設定された前記暗部の形状と前記検査対象物とを関連づけて記憶する記憶部を備える
ことを特徴とする、付記1記載の検査基準光生成装置。
(付記3)
前記所定形状が、一定幅の帯状である
ことを特徴とする、付記1又は2記載の検査基準光生成装置。
(付記4)
前記設定部が、前記暗部の形状を一定幅とした場合に撮影された前記反射暗部の形状に相似な形状を用いて、前記暗部の形状を設定する
ことを特徴とする、付記1〜3の何れか1項に記載の検査基準光生成装置。
(付記5)
前記設定部が、前記反射暗部の幅が所定幅となる位置に対応する前記投光面上の位置を基準として、前記暗部の形状を設定する
ことを特徴とする、付記1〜4の何れか1項に記載の検査基準光生成装置。
(付記6)
前記設定部が、前記検査対象物の表面加工状態又は塗装状態に応じて、前記暗部の幅を設定する
ことを特徴とする、付記1〜5の何れか1項に記載の検査基準光生成装置。
[6. Addendum]
The following additional remarks are disclosed with respect to the embodiment including the above modification.
[6-1. Inspection standard light generator]
(Appendix 1)
A light source having a light projecting surface, which is arranged on one side in the axial direction of a cylindrical inspection object, and is formed with an illumination part that irradiates light to the inspection object and a belt-like dark part having a lightness lower than that of the illumination part When,
A camera that captures a reflection dark part in which the dark part is reflected on the surface of the inspection object from the other side in the axial direction of the inspection object;
A setting unit for setting the shape of the dark part where the shape of the reflection dark part is a predetermined shape;
An inspection reference light generation device comprising:
(Appendix 2)
The inspection reference light generation device according to appendix 1, further comprising a storage unit that stores the shape of the dark part set by the setting unit and the inspection object in association with each other.
(Appendix 3)
The inspection reference light generation device according to appendix 1 or 2, wherein the predetermined shape is a belt having a constant width.
(Appendix 4)
The setting part sets the shape of the dark part using a shape similar to the shape of the reflection dark part photographed when the shape of the dark part is set to a certain width. The inspection reference light generation device according to any one of the above.
(Appendix 5)
Any one of appendices 1 to 4, wherein the setting unit sets the shape of the dark portion with reference to a position on the light projecting surface corresponding to a position where the width of the reflection dark portion becomes a predetermined width. The inspection reference light generator according to item 1.
(Appendix 6)
The inspection reference light generation device according to any one of appendices 1 to 5, wherein the setting unit sets a width of the dark part according to a surface processing state or a coating state of the inspection object. .

[6−2.検査基準光生成方法]
(付記7)
円筒状の検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源で、前記検査対象物を軸方向一側から照らし、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側からカメラで撮影し、
前記反射暗部の形状が所定形状となる前記暗部の形状を設定する
ことを特徴とする、検査基準光生成方法。
(付記8)
前記反射暗部の形状が所定形状となる前記暗部の形状と前記検査対象物とを関連づけて記憶する
ことを特徴とする、付記7記載の検査基準光生成方法。
(付記9)
前記所定形状が、一定幅の帯状である
ことを特徴とする、付記7又は8記載の検査基準光生成方法。
(付記10)
前記暗部の形状を一定幅とした場合に撮影された前記反射暗部の形状に相似な形状を用いて、前記暗部の形状を設定する
ことを特徴とする、付記7〜9の何れか1項に記載の検査基準光生成方法。
(付記11)
前記反射暗部の幅が所定幅となる位置に対応する前記投光面上の位置を基準として、前記暗部の形状を設定する
ことを特徴とする、付記7〜10の何れか1項に記載の検査基準光生成方法。
(付記12)
前記検査対象物の表面加工状態又は塗装状態に応じて、前記暗部の幅を設定する
ことを特徴とする、付記7〜11の何れか1項に記載の検査基準光生成方法。
[6-2. Inspection standard light generation method]
(Appendix 7)
A light source having a light-projecting surface in which an illumination unit that irradiates light onto a cylindrical inspection object and a belt-like dark part that is lighter than the illumination unit is formed, and the inspection object is illuminated from one side in the axial direction. ,
The reflected dark part formed by reflecting the dark part on the surface of the inspection object is photographed with a camera from the other side in the axial direction of the inspection object,
A method for generating inspection reference light, wherein the shape of the dark part is set so that the shape of the reflection dark part is a predetermined shape.
(Appendix 8)
The inspection reference light generation method according to appendix 7, wherein the shape of the dark portion where the shape of the reflection dark portion is a predetermined shape and the inspection object are stored in association with each other.
(Appendix 9)
9. The inspection reference light generation method according to appendix 7 or 8, wherein the predetermined shape is a band having a constant width.
(Appendix 10)
Any one of appendices 7 to 9, wherein the shape of the dark part is set using a shape similar to the shape of the reflected dark part photographed when the dark part has a constant width. The inspection reference light generation method described.
(Appendix 11)
The shape of the dark part is set on the basis of a position on the light projecting surface corresponding to a position where the width of the reflection dark part becomes a predetermined width, according to any one of appendixes 7 to 10, Inspection reference light generation method.
(Appendix 12)
The inspection reference light generation method according to any one of appendices 7 to 11, wherein the width of the dark portion is set according to a surface processing state or a coating state of the inspection object.

[6−3.検査装置]
(付記13)
円筒状の検査対象物の軸方向一側に配置され、前記検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源と、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影するカメラと、
前記反射暗部の形状が所定形状となる前記暗部の形状の情報を取得する取得部と、
前記情報に基づき前記反射暗部の形状が所定形状となる検査光を前記光源に照射させる制御部と、
前記検査光が照射された前記検査対象物の画像に基づき前記検査対象物の表面を検査する検査部と、
を備えたことを特徴とする、検査装置。
(付記14)
前記所定形状が、一定幅の帯状である
を備えたことを特徴とする、付記13記載の検査装置。
(付記15)
前記検査対象物を軸周りに回転駆動する駆動部を備える
ことを特徴とする、付記13又は14記載の検査装置。
(付記16)
前記検査部が、前記検査光が照射された前記検査対象物の画像中における前記反射暗部の変形を判定する
ことを特徴とする、付記13〜15記載の検査装置。
[6-3. Inspection device]
(Appendix 13)
A light source having a light projecting surface, which is arranged on one side in the axial direction of a cylindrical inspection object, and is formed with an illumination part that irradiates light to the inspection object and a belt-like dark part having a lightness lower than that of the illumination part When,
A camera that captures a reflection dark part in which the dark part is reflected on the surface of the inspection object from the other side in the axial direction of the inspection object;
An acquisition unit that acquires information on the shape of the dark part, where the shape of the reflection dark part is a predetermined shape;
A control unit that irradiates the light source with inspection light in which the shape of the reflection dark part is a predetermined shape based on the information;
An inspection unit that inspects the surface of the inspection object based on the image of the inspection object irradiated with the inspection light;
An inspection apparatus comprising:
(Appendix 14)
The inspection apparatus according to appendix 13, wherein the predetermined shape is a belt having a constant width.
(Appendix 15)
The inspection apparatus according to appendix 13 or 14, further comprising a drive unit that rotationally drives the inspection object around an axis.
(Appendix 16)
The inspection apparatus according to appendices 13 to 15, wherein the inspection unit determines deformation of the reflection dark portion in an image of the inspection target irradiated with the inspection light.

[6−4.検査方法]
(付記17)
円筒状の検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源で、前記検査対象物を軸方向一側から照らし、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影し、
前記反射暗部の形状が所定形状となる前記暗部の形状の情報を取得し、
前記情報に基づき前記反射暗部の形状が所定形状となる検査光を前記光源に照射させ、
前記検査光が照射された前記検査対象物の画像に基づき前記検査対象物の表面を検査する
ことを特徴とする、検査方法。
(付記18)
前記所定形状が、一定幅の帯状である
ことを特徴とする、付記17記載の検査方法。
(付記19)
前記検査対象物を軸周りに回転駆動する
ことを特徴とする、付記17又は18記載の検査方法。
(付記20)
前記検査光が照射された前記検査対象物の画像中における前記反射暗部の変形を判定する
ことを特徴とする、付記17〜19の何れか1項に記載の検査方法。
[6-4. Inspection method]
(Appendix 17)
A light source having a light-projecting surface in which an illumination unit that irradiates light onto a cylindrical inspection object and a belt-like dark part that is lighter than the illumination unit is formed, and the inspection object is illuminated from one side in the axial direction. ,
Photographing the reflection dark part formed by reflecting the dark part on the surface of the inspection object from the other side in the axial direction of the inspection object,
Acquire information on the shape of the dark part, where the shape of the reflective dark part is a predetermined shape,
Based on the information, irradiate the light source with inspection light in which the shape of the reflection dark portion is a predetermined shape,
An inspection method comprising inspecting a surface of the inspection object based on an image of the inspection object irradiated with the inspection light.
(Appendix 18)
The inspection method according to appendix 17, wherein the predetermined shape is a band having a constant width.
(Appendix 19)
19. The inspection method according to appendix 17 or 18, wherein the inspection object is rotationally driven around an axis.
(Appendix 20)
The inspection method according to any one of appendices 17 to 19, wherein the deformation of the reflection dark portion in the image of the inspection object irradiated with the inspection light is determined.

1 光源
2 カメラ
3 駆動装置
4 電池
5 ランプ
6 照明部
7 暗部
8 反射照明部
9 反射暗部
10 電子制御装置
11 設定部
12 記憶部
13 取得部
14 制御部
15 検査部
16 駆動部
DESCRIPTION OF SYMBOLS 1 Light source 2 Camera 3 Drive apparatus 4 Battery 5 Lamp 6 Illumination part 7 Dark part 8 Reflection illumination part 9 Reflection dark part 10 Electronic controller 11 Setting part 12 Storage part 13 Acquisition part 14 Control part 15 Inspection part 16 Drive part

Claims (12)

円筒状の検査対象物の軸方向一側に配置され、前記検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源と、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影するカメラと、
前記反射暗部の形状が所定形状となる前記暗部の形状を設定する設定部と、
を備えたことを特徴とする、検査基準光生成装置。
A light source having a light projecting surface, which is arranged on one side in the axial direction of a cylindrical inspection object, and is formed with an illumination part that irradiates light to the inspection object and a belt-like dark part having a lightness lower than that of the illumination part When,
A camera that captures a reflection dark part in which the dark part is reflected on the surface of the inspection object from the other side in the axial direction of the inspection object;
A setting unit for setting the shape of the dark part where the shape of the reflection dark part is a predetermined shape;
An inspection reference light generation device comprising:
前記設定部で設定された前記暗部の形状と前記検査対象物とを関連づけて記憶する記憶部を備える
ことを特徴とする、請求項1記載の検査基準光生成装置。
The inspection reference light generation device according to claim 1, further comprising a storage unit that stores the shape of the dark part set by the setting unit and the inspection object in association with each other.
前記所定形状が、一定幅の帯状である
ことを特徴とする、請求項1又は2記載の検査基準光生成装置。
The inspection reference light generation device according to claim 1, wherein the predetermined shape is a band having a constant width.
前記設定部が、前記暗部の形状を一定幅とした場合に撮影された前記反射暗部の形状に相似な形状を用いて、前記暗部の形状を設定する
ことを特徴とする、請求項1〜3の何れか1項に記載の検査基準光生成装置。
The said setting part sets the shape of the said dark part using the shape similar to the shape of the said reflection dark part image | photographed when the shape of the said dark part was made into fixed width, The 1-3. The inspection reference light generation device according to any one of the above.
前記設定部が、前記反射暗部の幅が所定幅となる位置に対応する前記投光面上の位置を基準として、前記暗部の形状を設定する
ことを特徴とする、請求項1〜4の何れか1項に記載の検査基準光生成装置。
The said setting part sets the shape of the said dark part on the basis of the position on the said light projection surface corresponding to the position where the width | variety of the said reflection dark part becomes predetermined width, The any one of Claims 1-4 characterized by the above-mentioned. The inspection reference light generation device according to claim 1.
前記設定部が、前記検査対象物の表面加工状態又は塗装状態に応じて、前記暗部の幅を設定する
ことを特徴とする、請求項1〜5の何れか1項に記載の検査基準光生成装置。
The inspection reference light generation according to claim 1, wherein the setting unit sets a width of the dark part according to a surface processing state or a coating state of the inspection object. apparatus.
円筒状の検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源で、前記検査対象物を軸方向一側から照らし、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側からカメラで撮影し、
前記反射暗部の形状が所定形状となる前記暗部の形状を設定する
ことを特徴とする、検査基準光生成方法。
A light source having a light-projecting surface in which an illumination unit that irradiates light onto a cylindrical inspection object and a belt-like dark part that is lighter than the illumination unit is formed, and the inspection object is illuminated from one side in the axial direction. ,
The reflected dark part formed by reflecting the dark part on the surface of the inspection object is photographed with a camera from the other side in the axial direction of the inspection object,
A method for generating inspection reference light, wherein the shape of the dark part is set so that the shape of the reflection dark part is a predetermined shape.
円筒状の検査対象物の軸方向一側に配置され、前記検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源と、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影するカメラと、
前記反射暗部の形状が所定形状となる前記暗部の形状の情報を取得する取得部と、
前記情報に基づき前記反射暗部の形状が所定形状となる検査光を前記光源に照射させる制御部と、
前記検査光が照射された前記検査対象物の画像に基づき前記検査対象物の表面を検査する検査部と、
を備えたことを特徴とする、検査装置。
A light source having a light projecting surface, which is arranged on one side in the axial direction of a cylindrical inspection object, and is formed with an illumination part that irradiates light to the inspection object and a belt-like dark part having a lightness lower than that of the illumination part When,
A camera that captures a reflection dark part in which the dark part is reflected on the surface of the inspection object from the other side in the axial direction of the inspection object;
An acquisition unit that acquires information on the shape of the dark part, where the shape of the reflection dark part is a predetermined shape;
A control unit that irradiates the light source with inspection light in which the shape of the reflection dark part is a predetermined shape based on the information;
An inspection unit that inspects the surface of the inspection object based on the image of the inspection object irradiated with the inspection light;
An inspection apparatus comprising:
前記所定形状が、一定幅の帯状である
を備えたことを特徴とする、請求項8記載の検査装置。
The inspection apparatus according to claim 8, wherein the predetermined shape is a belt having a constant width.
前記検査対象物を軸周りに回転駆動する駆動部を備える
ことを特徴とする、請求項8又は9記載の検査装置。
The inspection apparatus according to claim 8, further comprising a drive unit that rotationally drives the inspection object around an axis.
前記検査部が、前記検査光が照射された前記検査対象物の画像中における前記反射暗部の変形を判定する
ことを特徴とする、請求項8〜10記載の検査装置。
The inspection apparatus according to claim 8, wherein the inspection unit determines deformation of the reflection dark portion in an image of the inspection object irradiated with the inspection light.
円筒状の検査対象物に光を照射する照明部と前記照明部よりも明度の低い帯状の暗部とが形成されてなる投光面を有する光源で、前記検査対象物を軸方向一側から照らし、
前記検査対象物の表面に前記暗部が映り込んでなる反射暗部を前記検査対象物の軸方向他側から撮影し、
前記反射暗部の形状が所定形状となる前記暗部の形状の情報を取得し、
前記情報に基づき前記反射暗部の形状が所定形状となる検査光を前記光源に照射させ
前記検査光が照射された前記検査対象物の画像に基づき前記検査対象物の表面を検査する
ことを特徴とする、検査方法。
A light source having a light-projecting surface in which an illumination unit that irradiates light onto a cylindrical inspection object and a belt-like dark part that is lighter than the illumination unit is formed, and the inspection object is illuminated from one side in the axial direction. ,
Photographing the reflection dark part formed by reflecting the dark part on the surface of the inspection object from the other side in the axial direction of the inspection object,
Acquire information on the shape of the dark part, where the shape of the reflective dark part is a predetermined shape,
Inspecting the surface of the inspection object based on the image of the inspection object irradiated with the inspection light by irradiating the light source with inspection light having a predetermined shape of the reflection dark portion based on the information Inspection method.
JP2015197453A 2015-10-05 2015-10-05 Inspection reference light generation device, inspection reference light generation method, inspection device, inspection method Active JP6604127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197453A JP6604127B2 (en) 2015-10-05 2015-10-05 Inspection reference light generation device, inspection reference light generation method, inspection device, inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197453A JP6604127B2 (en) 2015-10-05 2015-10-05 Inspection reference light generation device, inspection reference light generation method, inspection device, inspection method

Publications (2)

Publication Number Publication Date
JP2017072382A true JP2017072382A (en) 2017-04-13
JP6604127B2 JP6604127B2 (en) 2019-11-13

Family

ID=58537384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197453A Active JP6604127B2 (en) 2015-10-05 2015-10-05 Inspection reference light generation device, inspection reference light generation method, inspection device, inspection method

Country Status (1)

Country Link
JP (1) JP6604127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4269989A1 (en) * 2022-04-25 2023-11-01 Enscape Co., Ltd. Apparatus for inspecting appearance of secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54171390U (en) * 1978-05-23 1979-12-04
JPS61205009U (en) * 1985-05-20 1986-12-24
JPS6373139A (en) * 1986-09-17 1988-04-02 Canon Inc Surface inspecting system
JPH08219999A (en) * 1995-02-13 1996-08-30 Fuji Xerox Co Ltd Method and apparatus for calibrating surface defect-inspection optical system
JPH1096611A (en) * 1996-07-31 1998-04-14 N S D Kk Shape measuring device
JPH11211442A (en) * 1998-01-27 1999-08-06 Matsushita Electric Works Ltd Method and device for detecting defect of object surface
JP2006258663A (en) * 2005-03-17 2006-09-28 Ricoh Co Ltd Surface flaw inspection device
US20070146691A1 (en) * 2005-12-23 2007-06-28 Xerox Corporation Specular surface flaw detection
JP2007327836A (en) * 2006-06-07 2007-12-20 Olympus Corp Appearance inspection apparatus and method
US20090245614A1 (en) * 2008-03-25 2009-10-01 Electro Scientific Industries, Inc. Method and apparatus for detecting defects using structured light
JP2010085209A (en) * 2008-09-30 2010-04-15 Gunze Ltd Film inspection device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54171390U (en) * 1978-05-23 1979-12-04
JPS61205009U (en) * 1985-05-20 1986-12-24
JPS6373139A (en) * 1986-09-17 1988-04-02 Canon Inc Surface inspecting system
JPH08219999A (en) * 1995-02-13 1996-08-30 Fuji Xerox Co Ltd Method and apparatus for calibrating surface defect-inspection optical system
JPH1096611A (en) * 1996-07-31 1998-04-14 N S D Kk Shape measuring device
JPH11211442A (en) * 1998-01-27 1999-08-06 Matsushita Electric Works Ltd Method and device for detecting defect of object surface
JP2006258663A (en) * 2005-03-17 2006-09-28 Ricoh Co Ltd Surface flaw inspection device
US20070146691A1 (en) * 2005-12-23 2007-06-28 Xerox Corporation Specular surface flaw detection
JP2007327836A (en) * 2006-06-07 2007-12-20 Olympus Corp Appearance inspection apparatus and method
US20090245614A1 (en) * 2008-03-25 2009-10-01 Electro Scientific Industries, Inc. Method and apparatus for detecting defects using structured light
JP2011515703A (en) * 2008-03-25 2011-05-19 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for defect detection using structured light
JP2010085209A (en) * 2008-09-30 2010-04-15 Gunze Ltd Film inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4269989A1 (en) * 2022-04-25 2023-11-01 Enscape Co., Ltd. Apparatus for inspecting appearance of secondary battery

Also Published As

Publication number Publication date
JP6604127B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
CN109583287B (en) Object identification method and verification method
US10484617B1 (en) Imaging system for addressing specular reflection
JP5084398B2 (en) Measuring apparatus, measuring method, and program
JP6229968B2 (en) Concavity and convexity inspection equipment
JP2009020000A (en) Inspection device and method
JP5741186B2 (en) Defect inspection apparatus and defect inspection method
JP2016045194A (en) Optical film inspection device
JP6745150B2 (en) Lighting device and image inspection device
JP6859628B2 (en) Visual inspection method and visual inspection equipment
TWI639977B (en) Inspection device, inspection method and computer-readable recording medium
JP6604127B2 (en) Inspection reference light generation device, inspection reference light generation method, inspection device, inspection method
TW202028728A (en) Image inspection device
JP2020041800A (en) Visual inspection device and inspection system
US11150201B2 (en) System and method of detecting defect of optical film
JP6436664B2 (en) Substrate inspection apparatus and substrate inspection method
TWI703509B (en) Optical detecting device and calibrating method
CN110261408B (en) Display module defect detection device and method
CN107925708B (en) Image read-out and ink-jet recording apparatus
JP6956004B2 (en) Defect inspection equipment and manufacturing method of defect inspection equipment
JP2009162573A (en) Shape recognition device
JP2008111705A (en) Method and program for detecting defect and inspection apparatus
JP6937647B2 (en) Optical display panel damage inspection method
TW202028729A (en) Image inspection device
JP3661466B2 (en) Coating unevenness inspection apparatus and method
JP2011203223A (en) Device and method for detecting flaw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6604127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150