JP2011203223A - Device and method for detecting flaw - Google Patents

Device and method for detecting flaw Download PDF

Info

Publication number
JP2011203223A
JP2011203223A JP2010073577A JP2010073577A JP2011203223A JP 2011203223 A JP2011203223 A JP 2011203223A JP 2010073577 A JP2010073577 A JP 2010073577A JP 2010073577 A JP2010073577 A JP 2010073577A JP 2011203223 A JP2011203223 A JP 2011203223A
Authority
JP
Japan
Prior art keywords
irradiation
light
inspected
defect
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010073577A
Other languages
Japanese (ja)
Other versions
JP5768224B2 (en
Inventor
Masaharu Kuinose
正治 杭ノ瀬
Tatsuya Honda
達也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010073577A priority Critical patent/JP5768224B2/en
Publication of JP2011203223A publication Critical patent/JP2011203223A/en
Application granted granted Critical
Publication of JP5768224B2 publication Critical patent/JP5768224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely detect an irregular flaw with a simple structure when an object to be inspected is wood.SOLUTION: The device for detecting a flaw includes a first irradiation unit 1, a second irradiation unit 2, an imaging unit 3, and a processing unit 4. The first irradiation unit 1 and the second irradiation unit 2 diagonally irradiate a surface B to be inspected with the diffuse reflectivity of a wood of the object A to be inspected with light. The light passing from the first irradiation unit 1 and the second irradiation unit 2 to the surface B to be inspected enters the imaging unit 3. The processing unit 4 detects an irregular flaw of the surface B to be inspected using an image photographed by the imaging unit 3. The first irradiation unit 1 has an irradiation angle θ1 the same as a visual axis angle θ3 of the imaging unit 3. The second irradiation unit 2 has an irradiation angle θ2 set lower than the irradiation angle θ1 of the first irradiation unit 1.

Description

本発明は、検査対象である木材の被検査面に発生する凹凸欠陥を検出する欠陥検出装置および欠陥検出方法に関する。   The present invention relates to a defect detection apparatus and a defect detection method for detecting a concavo-convex defect generated on a surface to be inspected of wood to be inspected.

従来から、検査対象の被検査面に発生する凹凸欠陥を検出する欠陥検出装置は種々開発されている。従来の欠陥検出装置の一例として、被検査面で反射した光を、検査対象の近傍に設けられた再帰ミラーで略同じ光路に再帰させる装置がある(例えば特許文献1参照)。この欠陥検出装置は、被検査面から直接反射する直接光と再帰ミラーを経由して被検査面で反射する再帰光との両方の光を撮像装置で撮像する。再帰光によって、被検査面にさまざまな方向から光を照射することができ、浅い傷や緩やかなうねりなどを認識しないようにして、致命的な欠陥のみを検出することができる。   Conventionally, various defect detection apparatuses for detecting uneven defects generated on the inspection target surface to be inspected have been developed. As an example of a conventional defect detection apparatus, there is an apparatus that causes light reflected by a surface to be inspected to recur on a substantially same optical path with a recursive mirror provided in the vicinity of the inspection object (see, for example, Patent Document 1). In this defect detection apparatus, both the direct light reflected directly from the surface to be inspected and the recursive light reflected from the surface to be inspected via the recursive mirror are imaged by the imaging device. The retroreflected light can irradiate the surface to be inspected from various directions, and only fatal defects can be detected without recognizing shallow scratches or gentle undulations.

特開2006−258778号公報JP 2006-258778 A

しかしながら、従来の欠陥検出装置は、品質に影響しない程度の凹凸を欠陥として検出しないようにする場合には優れているものの、より微細な凹凸も欠陥として検出したい場合には欠陥の検出漏れが発生してしまうという問題があった。特に検査対象が木材である場合に著しい。また、従来の欠陥検出装置では、再帰ミラーなどの位置精度が必要であり、精密な光学系を構成する必要があった。   However, although the conventional defect detection device is excellent when not detecting irregularities that do not affect the quality as defects, defect detection failure occurs when it is desired to detect finer irregularities as defects. There was a problem of doing. This is particularly noticeable when the inspection object is wood. Moreover, in the conventional defect detection apparatus, the positional accuracy of the recursive mirror or the like is necessary, and it is necessary to configure a precise optical system.

本発明は上記の点に鑑みて為され、本発明の目的は、検査対象が木材である場合に、単純な構成でありながら凹凸欠陥を精度よく検出することができる欠陥検出装置および欠陥検出方法を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to provide a defect detection apparatus and a defect detection method capable of accurately detecting uneven defects while having a simple configuration when the inspection object is wood. Is to provide.

本発明の欠陥検出装置は、検査対象である木材の拡散反射性を有する被検査面に斜め方向から光を照射する第1の照射装置および第2の照射装置と、前記第1の照射装置および前記第2の照射装置から光が照射される前記被検査面を撮像する撮像装置と、前記撮像装置で撮像された撮像画像を用いて前記被検査面の凹凸に関する欠陥を検出する処理装置とを備え、前記第1の照射装置は、照射角度が前記撮像装置の視軸角度と同一であり、前記第2の照射装置は、照射角度が前記第1の照射装置の照射角度より低く設定されていることを特徴とする。   A defect detection apparatus according to the present invention includes a first irradiation apparatus and a second irradiation apparatus that irradiate light from an oblique direction onto a surface to be inspected having diffuse reflectivity of wood to be inspected, the first irradiation apparatus, An imaging device that images the surface to be inspected that is irradiated with light from the second irradiation device, and a processing device that detects a defect related to the unevenness of the surface to be inspected using a captured image captured by the imaging device. The first irradiation device has an irradiation angle equal to a visual axis angle of the imaging device, and the second irradiation device has an irradiation angle set lower than the irradiation angle of the first irradiation device. It is characterized by being.

この欠陥検出装置において、前記第1の照射装置は、拡散光を前記被検査面に照射し、前記第2の照射装置は、集光した光を前記被検査面に照射することが好ましい。   In this defect detection apparatus, it is preferable that the first irradiation device irradiates the surface to be inspected with diffused light, and the second irradiation device irradiates the surface to be inspected with condensed light.

この欠陥検出装置において、前記第2の照射装置は、複数の波長域の光を前記被検査面に照射することが好ましい。   In this defect detection apparatus, it is preferable that the second irradiation apparatus irradiates the surface to be inspected with light in a plurality of wavelength ranges.

この欠陥検出装置において、前記撮像装置に入射する光の光量を減少させる光量調整部を備えることが好ましい。   This defect detection apparatus preferably includes a light amount adjustment unit that reduces the amount of light incident on the imaging device.

この欠陥検出装置において、前記処理装置は、前記第1の照射装置のみが前記被検査面に光を照射し前記撮像装置で予備撮像が行われたときに予め設定された検査範囲内の平均輝度を求める算出機能と、前記平均輝度に応じて前記第1の照射装置の光量を可変させる光量可変機能とを有することが好ましい。   In this defect detection apparatus, the processing apparatus may be configured such that only the first irradiation apparatus emits light to the surface to be inspected and an average luminance within an inspection range set in advance when the imaging apparatus performs preliminary imaging. It is preferable to have a calculation function for obtaining the light amount and a light amount variable function for varying the light amount of the first irradiation device in accordance with the average luminance.

この欠陥検出装置において、前記処理装置は、前記撮像画像において前記欠陥によって発生する暗領域の検出面積と形状とによって前記欠陥の凹凸量を推定して前記欠陥を判定することが好ましい。   In this defect detection apparatus, it is preferable that the processing apparatus determines the defect by estimating an unevenness amount of the defect based on a detection area and a shape of a dark region generated by the defect in the captured image.

本発明の欠陥検出方法は、第1の照射装置および第2の照射装置を用いて検査対象である木材の拡散反射性を有する被検査面に斜め方向から光を照射する第1のステップと、前記第1の照射装置および前記第2の照射装置から光が照射される前記被検査面を撮像する第2のステップと、前記第2のステップで撮像した撮像画像を用いて前記被検査面の凹凸に関する欠陥を検出する第3のステップとを有し、前記第1のステップにおいて、照射角度が前記撮像装置の視軸角度と同一である位置から前記第1の照射装置が前記被検査面に光を照射し、照射角度が前記第1の照射角度より低い位置から前記第2の照射装置が前記被検査面に光を照射することを特徴とする。   The defect detection method of the present invention includes a first step of irradiating light from an oblique direction onto a surface to be inspected having diffuse reflectivity of wood to be inspected using the first irradiation device and the second irradiation device; A second step of imaging the surface to be inspected that is irradiated with light from the first irradiation device and the second irradiation device, and an image of the surface to be inspected using the captured image captured in the second step. A third step of detecting a defect related to unevenness, and in the first step, the first irradiation device is placed on the surface to be inspected from a position where the irradiation angle is the same as the visual axis angle of the imaging device. The second irradiation device irradiates light onto the surface to be inspected from a position where the irradiation angle is lower than the first irradiation angle.

本発明によれば、照射角度が撮像装置の視軸角度と同一である照射光と、照射角度が低く設定されている照射光とを検査対象の被検査面に照射することによって、被検査面の凹凸欠陥の形状を明確にすることができるので、単純な構成でありながら凹凸欠陥を精度よく検出することができる。   According to the present invention, the surface to be inspected is irradiated by irradiating the surface to be inspected with irradiation light whose irradiation angle is the same as the visual axis angle of the imaging device and irradiation light whose irradiation angle is set low. Since the shape of the concave / convex defect can be clarified, the concave / convex defect can be accurately detected even with a simple configuration.

実施形態1に係る欠陥検出装置の構成を示す概略図である。It is the schematic which shows the structure of the defect detection apparatus which concerns on Embodiment 1. FIG. 同上に係る欠陥検出装置において、(a)は第2の照射装置の光のみを被検査面に照射した場合の撮像画像を示す図、(b)は第1の照射装置の光のみを被検査面に照射した場合の撮像画像を示す図、(c)が第1の照射装置の光および第2の照射装置の光を被検査面に照射した場合の撮像画像を示す図である。In the defect detection apparatus according to the above, (a) is a diagram showing a captured image when the surface to be inspected is irradiated only with the light from the second irradiation device, and (b) is an inspection only with the light from the first irradiation device. The figure which shows the captured image at the time of irradiating a surface, (c) is a figure which shows the captured image at the time of irradiating the to-be-inspected surface with the light of a 1st irradiation apparatus, and the light of a 2nd irradiation apparatus. 同上に係る欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method which concerns on the same as the above. 実施形態2に係る欠陥検出装置の構成を示す概略図である。It is the schematic which shows the structure of the defect detection apparatus which concerns on Embodiment 2. FIG. 実施形態4に係る欠陥検出装置の構成を示す概略図である。It is the schematic which shows the structure of the defect detection apparatus which concerns on Embodiment 4. FIG. 同上の変形例に係る欠陥検出装置の構成を示す概略図である。It is the schematic which shows the structure of the defect detection apparatus which concerns on the modification same as the above. 実施形態5に係る欠陥検出装置の構成を示す概略図である。It is the schematic which shows the structure of the defect detection apparatus which concerns on Embodiment 5. FIG. 同上に係る欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method which concerns on the same as the above. 実施形態6に係る欠陥検出装置において検出面積と実際の面積との関係を示す図である。It is a figure which shows the relationship between a detection area and an actual area in the defect detection apparatus which concerns on Embodiment 6. FIG. 同上に係る欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method which concerns on the same as the above.

(実施形態1)
実施形態1に係る欠陥検出装置は、図1に示すように、検査対象Aの被検査面Bに発生する凹凸欠陥を検出する装置である。本実施形態の欠陥検出装置は、第1の照射装置1と、第2の照射装置2と、撮像装置3と、処理装置4と、搬送装置5とを備えている。
(Embodiment 1)
As shown in FIG. 1, the defect detection apparatus according to the first embodiment is an apparatus that detects a concavo-convex defect generated on a surface B to be inspected A. The defect detection apparatus of the present embodiment includes a first irradiation apparatus 1, a second irradiation apparatus 2, an imaging apparatus 3, a processing apparatus 4, and a transport apparatus 5.

検査対象Aは、例えば被検査面Bがつや出し処理された木材である。上記木材としては木質床材などがある。被検査面Bは拡散反射性を有している。なお、被検査面Bは着色塗装されていることもある。   The inspection target A is, for example, wood from which the surface B to be inspected is polished. Examples of the timber include wooden flooring. The surface B to be inspected has diffuse reflectivity. Note that the surface B to be inspected may be colored and painted.

第1の照射装置1は、例えばLEDや蛍光灯などを用いてライン状の光を発するライン照明装置であり、検査対象Aの被検査面Bに斜め方向(照射角度θ1)から光を照射する。つまり、被検査面Bには、第1の照射装置1からの照射光が照射される。第1の照射装置1の取付角度θ1は、撮像装置3の視軸の角度θ3と同一であり、30度とする。   The first irradiation device 1 is a line illumination device that emits line-shaped light using, for example, an LED or a fluorescent lamp, and irradiates light on the inspection surface B of the inspection target A from an oblique direction (irradiation angle θ1). . That is, the surface to be inspected B is irradiated with irradiation light from the first irradiation apparatus 1. The attachment angle θ1 of the first irradiation device 1 is the same as the angle θ3 of the visual axis of the imaging device 3 and is 30 degrees.

第2の照射装置2は、例えばLEDや蛍光灯などを用いてライン状の光を発するライン照明装置であり、検査対象Aの被検査面Bに斜め方向(照射角度θ2)から光を照射する。つまり、被検査面Bには、第2の照射装置2からの照射光が照射される。第2の照射装置2の取付角度θ2は、第1の照射装置1の照射角度θ1および撮像装置3の視軸の角度θ3より小さく(浅く)、10度とする。   The second irradiation apparatus 2 is a line illumination apparatus that emits line-shaped light using, for example, an LED or a fluorescent lamp, and irradiates light on the inspection surface B of the inspection target A from an oblique direction (irradiation angle θ2). . That is, the surface to be inspected B is irradiated with irradiation light from the second irradiation apparatus 2. The mounting angle θ2 of the second irradiation apparatus 2 is smaller (shallow) than the irradiation angle θ1 of the first irradiation apparatus 1 and the visual axis angle θ3 of the imaging apparatus 3 and is 10 degrees.

撮像装置3は、例えばエリアセンサカメラやラインセンサカメラなどであり、第1の照射装置1および第2の照射装置2から被検査面Bを通った光が入射する。撮像装置3の取付角度θ3は、第1の照射装置1の照射角度θ1と同等であり、30度とする。撮像装置3は、搬送停止時または搬送時のいずれかの状態にある検査対象Aの被検査面Bを撮像する。   The imaging device 3 is, for example, an area sensor camera or a line sensor camera, and light that has passed through the surface B to be inspected from the first irradiation device 1 and the second irradiation device 2 is incident thereon. The mounting angle θ3 of the imaging device 3 is equivalent to the irradiation angle θ1 of the first irradiation device 1, and is set to 30 degrees. The imaging device 3 captures an image of the inspection surface B of the inspection target A that is in either the state of conveyance stop or the state of conveyance.

処理装置4は、例えばマイクロプロセッサ(MPU)などを主構成要素とし、撮像装置3で撮像された撮像画像を用いて被検査面Bの凹凸欠陥を検出する。つまり、処理装置4は、搬送時または搬送停止時のいずれかの状態にある検査対象Aが撮像された画像を用いて欠陥検出処理を行う。   The processing device 4 includes, for example, a microprocessor (MPU) as a main component, and detects an uneven defect on the inspection surface B using a captured image captured by the imaging device 3. That is, the processing device 4 performs defect detection processing using an image obtained by imaging the inspection target A that is in either the transport state or the transport stop state.

搬送装置5は、例えば駆動コンベアなどであり、検査対象Aを搬送する。なお、搬送装置5は、検査対象Aを搬送できる手段であれば上記に限定されない。   The transport device 5 is, for example, a drive conveyor and transports the inspection target A. In addition, if the conveying apparatus 5 is a means which can convey the test object A, it will not be limited to the above.

第2の照射装置2の光のみが被検査面Bに照射された場合の撮像画像では、図2(a)に示すように、凸欠陥Cの凸領域に第2の照射装置2の光が照射され、明暗領域が発生する。凸領域が明領域になり、明領域の反対領域に暗領域が発生する。   In the captured image when only the light of the second irradiation device 2 is irradiated onto the surface B to be inspected, the light of the second irradiation device 2 is applied to the convex region of the convex defect C as shown in FIG. Irradiated to generate bright and dark areas. The convex region becomes a bright region, and a dark region is generated in a region opposite to the bright region.

第1の照射装置1の光のみが被検査面Bに照射された場合の撮像画像では、図2(b)に示すように、凸欠陥Cの欠陥領域以外の領域(良品部)が明るく観察される。撮像装置3の視軸の角度θ3と第1の照射装置1の照射角度θ1とが同一であるため、凸領域からの反射光は凸領域で光の反射角度が変化する(凸領域で拡散する)ことで撮像装置3の視軸方向からずれて検出されにくい。良品部からの光は同一方向であるため(反射方向が同一であるため)、撮像装置3に検出されやすい。   In the picked-up image when only the light of the first irradiation apparatus 1 is irradiated onto the surface B to be inspected, as shown in FIG. 2B, the region (non-defective portion) other than the defective region of the convex defect C is observed brightly. Is done. Since the visual axis angle θ3 of the imaging device 3 and the irradiation angle θ1 of the first irradiation device 1 are the same, the reflection angle of light reflected from the convex region changes in the convex region (diffuses in the convex region). Therefore, it is difficult to be detected by deviating from the visual axis direction of the imaging device 3. Since the light from the non-defective part is in the same direction (because the reflection direction is the same), it is easily detected by the imaging device 3.

検査対象Aである検査木材の表面(被検査面B)には、着色塗料のコーティングがなされており、鏡面に近い状態になっているため、光の照射角度と同一角度に光が反射される傾向がある。このため、上記の現象がより強く見受けられることになる。   Since the surface of the inspection wood (inspected surface B), which is the inspection object A, is coated with a colored paint and is in a state close to a mirror surface, the light is reflected at the same angle as the light irradiation angle. Tend. For this reason, the above phenomenon can be seen more strongly.

第1の照射装置1と第2の照射装置2との光が被検査面Bに照射された場合の撮像画像では、図2(c)に示すように、第1の照射装置1と第2の照射装置2とを同時に照射した状態で、凸領域に発生した影が第1の照射装置1の効果により良品部と輝度差が大きく検出できるようになっている。通常の浅い角度から光を照射して凸領域の影を検出する方法よりは明暗領域が良品部と異なり明確に分離できるようになる。   As shown in FIG. 2 (c), in the captured image when the inspected surface B is irradiated with light from the first irradiation device 1 and the second irradiation device 2, the first irradiation device 1 and the second irradiation device 2 In the state of simultaneously irradiating with the irradiation device 2, the shadow generated in the convex region can be detected with a large luminance difference from the non-defective part due to the effect of the first irradiation device 1. The bright and dark areas can be clearly separated, unlike the non-defective parts, than the method of detecting the shadow of the convex area by irradiating light from a normal shallow angle.

本実施形態では、欠陥Cの凸領域に発生した影をより強調させるために、第1の照射装置1に400nm〜500nmの波長域の光源を適用することが好ましい。第2の照射装置2には蛍光灯を適用する。400nm〜500nmの短波長の光は散乱性(拡散性)が高いため、検査木材の表面状態に依存して極端に輝度が高くなったり、輝度が低下したりすることを防止し、より均一な表面の輝度状態を保つことができる。また、凹凸欠陥に対しても拡散した光を照射するので、凹凸領域から正反射され、撮像装置3で輝点として検出される領域を減少させ、第2の照射装置2の照射光により検出される明領域と暗領域のコントラストを維持しながら、周辺の良品部の輝度を向上させることができる。   In the present embodiment, it is preferable to apply a light source having a wavelength range of 400 nm to 500 nm to the first irradiation apparatus 1 in order to enhance the shadow generated in the convex region of the defect C. A fluorescent lamp is applied to the second irradiation device 2. Since light with a short wavelength of 400 nm to 500 nm has high scattering (diffusibility), it is possible to prevent the brightness from being extremely increased or decreased depending on the surface condition of the inspection wood, and more uniform. The luminance state of the surface can be maintained. In addition, since the diffused light is also emitted to the concave and convex defect, a region that is regularly reflected from the concave and convex region and detected as a bright spot by the imaging device 3 is reduced and detected by the irradiation light of the second irradiation device 2. It is possible to improve the brightness of the peripheral non-defective parts while maintaining the contrast between the bright area and the dark area.

次に、本実施形態に係る欠陥検出装置を用いた欠陥検出方法について図3を用いて説明する。まず、第1の照射装置1および第2の照射装置2が検査対象Aの被検査面Bを照射し、撮像装置3が被検査面Bを撮像する(図3のS1)。その後、処理装置4は、2値化しきい値を用いて撮像画像に対して2値化処理を行う(S2)。2値化しきい値は、任意に設定された値(例えば60など)が適用される。処理装置4は、2値化画像から画素値の小さい黒領域を抽出し、検出領域とする(S3)。その後、検出領域面積が設定領域面積より大きいか否かを判定する(S4)。検出領域面積が設定領域面積より大きい場合、検出領域に欠陥が存在し、検査対象Aが不良であると判定する(S5)。検出領域面積が設定領域面積以下である場合、処理装置4は、検出領域には欠陥が存在しないと判定し、検査対象Aが良品であると判定する(S6)。処理装置4は、全ての検出領域に対してステップS4からステップS6までの処理を実行し(S7)、欠陥検出の動作を終了する。   Next, a defect detection method using the defect detection apparatus according to the present embodiment will be described with reference to FIG. First, the first irradiation device 1 and the second irradiation device 2 irradiate the inspection surface B of the inspection object A, and the imaging device 3 images the inspection surface B (S1 in FIG. 3). Thereafter, the processing device 4 performs binarization processing on the captured image using the binarization threshold (S2). An arbitrarily set value (for example, 60) is applied to the binarization threshold. The processing device 4 extracts a black region having a small pixel value from the binarized image and sets it as a detection region (S3). Thereafter, it is determined whether or not the detection area is larger than the set area (S4). If the detection area is larger than the set area, it is determined that there is a defect in the detection area and the inspection object A is defective (S5). When the detection area is equal to or smaller than the set area, the processing device 4 determines that there is no defect in the detection area, and determines that the inspection target A is a non-defective product (S6). The processing device 4 executes the processing from step S4 to step S6 for all the detection areas (S7), and ends the defect detection operation.

以上、本実施形態の欠陥検出装置および欠陥検出方法によれば、照射角度θ1が撮像装置3の視軸角度θ3と同一である照射光と、照射角度θ2が低く設定されている照射光とを検査対象Aの被検査面Bに照射することによって、被検査面Bの凹凸欠陥の形状を明確にすることができるので、単純な構成でありながら凹凸欠陥を精度よく検出することができる。   As described above, according to the defect detection apparatus and the defect detection method of the present embodiment, the irradiation light whose irradiation angle θ1 is the same as the visual axis angle θ3 of the imaging device 3 and the irradiation light whose irradiation angle θ2 is set low. By irradiating the inspection surface B of the inspection object A, the shape of the concavo-convex defect on the inspection surface B can be clarified, so that the concavo-convex defect can be detected with high accuracy while having a simple configuration.

(実施形態2)
実施形態2に係る欠陥検出装置は、図4に示すように拡散板11とシリンドリカルレンズ21とを備えている点で、実施形態1に係る欠陥検出装置(図1参照)と相違する。以下、本実施形態の欠陥検出装置について図4を用いて説明する。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 2)
The defect detection apparatus according to the second embodiment is different from the defect detection apparatus according to the first embodiment (see FIG. 1) in that it includes a diffusion plate 11 and a cylindrical lens 21 as shown in FIG. Hereinafter, the defect detection apparatus of this embodiment will be described with reference to FIG. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第1の照射装置1は、被検査面Bに拡散光を照射する。第1の照射装置1の照射面側(前側)に光拡散部材として拡散板11を備えて拡散光を照射することで、拡散性の高い短波長の光をより拡散光として用いることができる。このようにすることで、拡散効果をより大きく獲得することができる。   The first irradiation apparatus 1 irradiates the inspection surface B with diffused light. By irradiating the diffused light with the diffusing plate 11 as the light diffusing member on the irradiation surface side (front side) of the first irradiation apparatus 1, light having a short wavelength with high diffusibility can be used as diffused light. By doing in this way, the diffusion effect can be acquired more greatly.

第2の照射装置2は、被検査面Bに、集光した光を照射する。第2の照射装置2の照射面側(前側)に集光部材としてシリンドリカルレンズ21を備えて照明光を集光して被検査面Bを照射することで、凹凸欠陥領域で発生する明暗領域をより明確に検出するようにする。   The second irradiation device 2 irradiates the inspected surface B with the condensed light. By providing a cylindrical lens 21 as a condensing member on the irradiation surface side (front side) of the second irradiation apparatus 2 and condensing illumination light to irradiate the surface B to be inspected, a bright and dark region generated in the uneven defect region can be obtained. Try to detect more clearly.

以上、本実施形態の欠陥検出装置および欠陥検出方法によれば、第1の照射装置1に設けられた拡散板11と第2の照射装置2に設けられたシリンドリカルレンズ21により、凹凸欠陥の凹凸領域で発生する明領域をより強調するとともに、良品部の表面状態に依存しない明るさを確保することができるので、正確に凹凸欠陥を検出することができる。   As described above, according to the defect detection apparatus and the defect detection method of the present embodiment, the unevenness of the uneven defect is caused by the diffusion plate 11 provided in the first irradiation apparatus 1 and the cylindrical lens 21 provided in the second irradiation apparatus 2. The bright area generated in the area is more emphasized, and the brightness that does not depend on the surface state of the non-defective part can be ensured, so that the irregular defect can be accurately detected.

(実施形態3)
実施形態3に係る欠陥検出装置は、第2の照射装置2に広波長域の光源を用いている点で、実施形態1に係る欠陥検出装置と相違する。以下、本実施形態の欠陥検出装置について図1を用いて説明する。なお、実施形態1と同様の構成要素については説明を省略する。
(Embodiment 3)
The defect detection apparatus according to the third embodiment is different from the defect detection apparatus according to the first embodiment in that a light source having a wide wavelength region is used for the second irradiation apparatus 2. Hereinafter, the defect detection apparatus of this embodiment will be described with reference to FIG. Note that the description of the same components as those in the first embodiment is omitted.

本実施形態の第2の照射装置2には、広い波長域の光を照射する光源を適用する。つまり、本実施形態の第2の照射装置2は、複数の波長域の光を検査対象Aの被検査面Bに照射する。第2の照射装置2の一例としてキセノンランプなどがある。なお、第1の照射装置1は、例えば蛍光灯などである。   A light source that irradiates light in a wide wavelength range is applied to the second irradiation device 2 of the present embodiment. That is, the second irradiation apparatus 2 of the present embodiment irradiates the inspection surface B of the inspection target A with light in a plurality of wavelength ranges. An example of the second irradiation device 2 is a xenon lamp. In addition, the 1st irradiation apparatus 1 is a fluorescent lamp etc., for example.

検査木材の表面は着色塗装コーティングがされているため、実施されたコーティングによっては、表面で反射や吸収が多くなる場合がある。このような状態が発生した場合には、凹凸欠陥の明暗領域の状態が異なることになるため、安定した検査が行えなくなる。   Since the surface of the inspection wood has a colored paint coating, reflection and absorption may increase on the surface depending on the applied coating. When such a state occurs, the state of the light and dark area of the concavo-convex defect is different, so that stable inspection cannot be performed.

表面のこのようなコーティング状態に依存せずに凹凸欠陥の明暗領域を確保し、凹凸欠陥を検査するために、複数の光源を持つことが考えられるが、より単純な構成を実現するために広い波長域の光源を適用することで複数の光源を持つのと同効果を獲得する。   It is conceivable to have a plurality of light sources in order to secure a bright and dark area of the uneven defect and inspect the uneven defect without depending on such a coating state on the surface, but it is wide to realize a simpler configuration. By applying a light source in the wavelength range, the same effect as having a plurality of light sources is obtained.

以上、本実施形態の欠陥検出装置および欠陥検出方法によれば、検査対象Aの被検査面Bの状態にできるだけ依存せずに正確に凹凸欠陥を検出することができる。   As described above, according to the defect detection apparatus and the defect detection method of the present embodiment, it is possible to accurately detect an uneven defect without depending on the state of the inspection surface B of the inspection target A as much as possible.

(実施形態4)
実施形態4に係る欠陥検出装置は、図5に示すように偏光板6を備えている点で、実施形態1に係る欠陥検出装置(図1参照)と相違する。以下、本実施形態の欠陥検出装置について図5を用いて説明する。なお、実施形態1と同様の構成要素については説明を省略する。
(Embodiment 4)
The defect detection apparatus according to the fourth embodiment is different from the defect detection apparatus according to the first embodiment (see FIG. 1) in that a polarizing plate 6 is provided as shown in FIG. Hereinafter, the defect detection apparatus of this embodiment will be described with reference to FIG. Note that the description of the same components as those in the first embodiment is omitted.

第2の照射装置2からの照射光が強すぎると、撮像画像に輝度が飽和するサチレーションが発生し、凹凸量が小さい場合にはエリア内に発生する微小領域が埋もれてしまい、微小領域を検出することができない場合がある。つまり、欠陥の明暗領域が明確ではなくなったり、サチレーションが発生していない場合よりも微小領域になったりすることがある。   If the irradiation light from the second irradiation device 2 is too strong, saturation in which the brightness is saturated occurs in the captured image, and if the unevenness amount is small, the minute area generated in the area is buried, and the minute area is detected. You may not be able to. In other words, the bright and dark areas of the defect may not be clear, or the area may be smaller than when no saturation occurs.

そこで、本実施形態では、偏光板6は、図5に示すように、第2の照射装置2と撮像装置3との光路上に設けられている。偏光板6は、所定の偏光方向の光のみを透過する。偏光板6は、本発明の光量調整部に相当する。偏光板6は、例えば照射方向および第2の照射装置2の長手方向に直交する方向に対して偏光方向が10度傾くように設置される。偏光板6は、第2の照射装置2からの照射光を特定の偏光方向(偏光角)を有する光のみを透過し、直進性を高めた光をできるだけ多く被検査面Bに照射する。このように光の直進性を高めることで、凹凸領域でより光は反射するようになるので、凹凸欠陥領域において発生する明領域をより明確にする。   Therefore, in the present embodiment, the polarizing plate 6 is provided on the optical path between the second irradiation device 2 and the imaging device 3 as shown in FIG. The polarizing plate 6 transmits only light having a predetermined polarization direction. The polarizing plate 6 corresponds to the light amount adjusting unit of the present invention. For example, the polarizing plate 6 is installed so that the polarization direction is inclined by 10 degrees with respect to the irradiation direction and the direction orthogonal to the longitudinal direction of the second irradiation device 2. The polarizing plate 6 transmits only the light having a specific polarization direction (polarization angle) to the irradiation light from the second irradiation device 2 and irradiates the surface B to be inspected with as much light as possible with improved straightness. By increasing the straightness of light in this way, light is reflected more in the uneven region, and thus the bright region generated in the uneven defect region is made clearer.

以上、本実施形態の欠陥検出装置によれば、凹凸領域で発生する明暗領域において、明領域を強調し、暗領域をより暗く計測することができるので、正確に凹凸欠陥を検出することができる。   As described above, according to the defect detection apparatus of the present embodiment, the bright area can be emphasized and the dark area can be measured darker in the bright / dark area generated in the uneven area, so that the uneven defect can be accurately detected. .

なお、本実施形態の変形例として、欠陥検出装置は、図6に示すように撮像装置3の撮像面側に偏光板7を備え、検査対象Aからの反射光のうちで所定角度を有する光のみを撮像するような構成であってもよい。偏光板7は、例えば撮像装置3の視軸およびライン方向に直交する方向に対して偏光方向(偏光角)が10度傾くように設置される。偏光板7は、反射光のなかで所定の偏光方向の光のみを検出する。このことから、凹凸欠陥領域の明領域からの反射光を多く検出できる角度に取り付けられた偏光板7により、凹凸欠陥の明領域を強調し、暗領域をより暗くさせる。また、第1の照射装置1による良品部からの反射光も特定の光を除き検出量を低減するので、凹凸領域をより強調することができる。偏光板7は、本発明の光量調整部に相当する。   As a modification of the present embodiment, the defect detection device includes a polarizing plate 7 on the imaging surface side of the imaging device 3 as shown in FIG. 6 and has a predetermined angle among the reflected light from the inspection target A. It is also possible to have a configuration in which only the image is captured. For example, the polarizing plate 7 is installed such that the polarization direction (polarization angle) is inclined by 10 degrees with respect to the direction orthogonal to the visual axis and the line direction of the imaging device 3. The polarizing plate 7 detects only light having a predetermined polarization direction in the reflected light. For this reason, the bright region of the concavo-convex defect is emphasized and the dark region is made darker by the polarizing plate 7 attached at an angle at which a large amount of reflected light from the bright region of the concavo-convex defect region can be detected. Moreover, since the reflected light from the non-defective part by the 1st irradiation apparatus 1 also reduces specific amount except for specific light, an uneven | corrugated area | region can be emphasized more. The polarizing plate 7 corresponds to the light amount adjusting unit of the present invention.

(実施形態5)
実施形態5に係る欠陥検出装置は、第1の照射装置1の調光レベルを調整する点で、実施形態1に係る欠陥検出装置と相違する。以下、本実施形態の欠陥検出装置について図7,8を用いて説明する。なお、実施形態1と同様の構成要素については説明を省略する。
(Embodiment 5)
The defect detection apparatus according to the fifth embodiment is different from the defect detection apparatus according to the first embodiment in that the light control level of the first irradiation apparatus 1 is adjusted. Hereinafter, the defect detection apparatus of this embodiment will be described with reference to FIGS. Note that the description of the same components as those in the first embodiment is omitted.

検査木材の表面は着色塗装コーティングされた状態に依存しているので、撮像状態も可変する。そこで、検査木材の表面状態を事前検証して実際に欠陥検出することで、より正確に欠陥を検出する。   Since the surface of the inspection wood depends on the state of being colored and coated, the imaging state is also variable. Therefore, the surface condition of the inspection wood is verified in advance and the defect is actually detected to detect the defect more accurately.

本実施形態において、図7に示す処理装置4は、算出機能と、光量可変機能とを有している。処理装置4は、算出機能として、撮像装置3で行われた予備撮像の検査範囲内の平均輝度を求める。   In the present embodiment, the processing device 4 shown in FIG. 7 has a calculation function and a light amount variable function. The processing device 4 obtains an average luminance within the inspection range of the preliminary imaging performed by the imaging device 3 as a calculation function.

処理装置4は、光量可変機能として、算出機能で算出した平均輝度に応じて第1の照射装置1の光量(調光レベル)を可変させる。図7に示すように、処理装置4から光源の電源部(図示せず)には調光レベル指示信号が送信され、光源の調光レベルを外部制御する。   The processing device 4 varies the light amount (light control level) of the first irradiation device 1 according to the average luminance calculated by the calculation function as the light amount variable function. As shown in FIG. 7, a dimming level instruction signal is transmitted from the processing device 4 to a power source unit (not shown) of the light source to externally control the dimming level of the light source.

次に、本実施形態に係る欠陥検出装置を用いた欠陥検出方法について図8を用いて説明する。まず、第1の照射装置1のみが検査対象Aの被検査面Bを照射し、撮像装置3が予備撮像を行う(図8のS11)。その後、処理装置4は、撮像領域内の平均輝度を算出する(S12)。その後、算出した平均輝度が比較平均輝度(140)未満であるか否かを判定する(S13)。平均輝度が比較平均輝度未満である場合、第1の照射装置1の調光レベルを120に設定する(S14)。平均輝度が比較平均輝度以上である場合、第1の照射装置1の調光レベルを160に設定する(S15)。   Next, a defect detection method using the defect detection apparatus according to the present embodiment will be described with reference to FIG. First, only the first irradiation apparatus 1 irradiates the inspection surface B of the inspection object A, and the imaging apparatus 3 performs preliminary imaging (S11 in FIG. 8). Thereafter, the processing device 4 calculates the average luminance in the imaging region (S12). Thereafter, it is determined whether or not the calculated average luminance is less than the comparative average luminance (140) (S13). When the average luminance is less than the comparative average luminance, the dimming level of the first irradiation apparatus 1 is set to 120 (S14). When the average luminance is equal to or higher than the comparative average luminance, the dimming level of the first irradiation apparatus 1 is set to 160 (S15).

その後、第1の照射装置1および第2の照射装置2が検査対象Aの被検査面Bを照射し、撮像装置3が被検査面Bを撮像する(S16)。その後、処理装置4は、2値化しきい値を用いて撮像画像に対して2値化処理を行う(S17)。処理装置4は、2値化画像から画素値の小さい黒領域を抽出し、検出領域とする(S18)。その後、検出領域面積が設定領域面積より大きいか否かを判定する(S19)。検出領域面積が設定領域面積より大きい場合、処理装置4は、検出領域に欠陥が存在し、検査対象Aが不良であると判定する(S20)。検出領域面積が設定領域面積以下である場合、処理装置4は、検出領域には欠陥が存在しないと判定し、検査対象Aが良品であると判定する(S21)。処理装置4は、全ての検出領域に対してステップS19からステップS21までの処理を実行し(S22)、第1の照明装置1の調光レベルを90に戻して(S23)、欠陥検出の動作を終了する。   Thereafter, the first irradiation device 1 and the second irradiation device 2 irradiate the inspection surface B of the inspection object A, and the imaging device 3 images the inspection surface B (S16). Thereafter, the processing device 4 performs binarization processing on the captured image using the binarization threshold (S17). The processing device 4 extracts a black area having a small pixel value from the binarized image and sets it as a detection area (S18). Thereafter, it is determined whether or not the detection area is larger than the set area (S19). When the detection area is larger than the set area, the processing device 4 determines that there is a defect in the detection area and the inspection target A is defective (S20). When the detection area is equal to or smaller than the set area, the processing device 4 determines that there is no defect in the detection area, and determines that the inspection target A is a non-defective product (S21). The processing device 4 executes the processing from step S19 to step S21 for all the detection areas (S22), returns the dimming level of the first lighting device 1 to 90 (S23), and operates for defect detection. Exit.

以上、本実施形態の欠陥検出装置および欠陥検出方法によれば、被検査面Bの状態に最適な照射光に調節することができるので、より正確に凹凸欠陥を検出することができる。   As described above, according to the defect detection apparatus and the defect detection method of the present embodiment, it is possible to adjust the irradiation light optimal for the state of the surface B to be inspected, and thus it is possible to detect uneven defects more accurately.

なお、平均輝度を算出する撮像領域は、予備撮像の画像全体または一部特定領域のいずれでもよい。また、平均輝度に応じて調光レベルを切り替える際の調光レベルや調光レベルを切り替える平均輝度は一例である。また、通常状態での調光レベルも一例である。処理終了後に通常状態の調光レベルに切り替える。   Note that the imaging area for calculating the average luminance may be either the entire pre-captured image or a partial specific area. The dimming level when switching the dimming level according to the average luminance and the average luminance for switching the dimming level are examples. The dimming level in the normal state is also an example. After the processing is completed, the dimming level is switched to the normal state.

(実施形態6)
実施形態6に係る欠陥検出装置は、欠陥高さを試算して欠陥を判定する点で、実施形態1に係る欠陥検出装置と相違する。以下、本実施形態の欠陥検出装置について図1および図9,10を用いて説明する。なお、実施形態1と同様の構成要素については説明を省略する。
(Embodiment 6)
The defect detection apparatus according to the sixth embodiment is different from the defect detection apparatus according to the first embodiment in that the defect height is determined by calculating the defect height. Hereinafter, the defect detection apparatus of this embodiment will be described with reference to FIGS. Note that the description of the same components as those in the first embodiment is omitted.

本実施形態の処理装置4は、欠陥による発生する暗領域の検出面積と形状とによって欠陥の凹凸量を推定して欠陥を判定する。   The processing apparatus 4 of the present embodiment determines the defect by estimating the unevenness amount of the defect based on the detected area and shape of the dark region caused by the defect.

図9に示すように、検出面積と実際の欠陥サイズとの間には相関関係が検出される。実際の欠陥サイズ(面積)は欠陥深さ(凹凸量)×欠陥幅(欠陥長手長さ)である。このことから、処理装置4で抽出された検出領域の面積(検出面積)と検出領域の長手方向の長さ(検出長手長さ)とから欠陥高さを試算し、所定の欠陥高さ以上の欠陥を検出する。   As shown in FIG. 9, a correlation is detected between the detection area and the actual defect size. The actual defect size (area) is defect depth (unevenness) × defect width (defect longitudinal length). From this, the defect height is estimated from the area of the detection region (detection area) extracted by the processing device 4 and the length in the longitudinal direction of the detection region (detection longitudinal length). Detect defects.

次に、本実施形態に係る欠陥検出装置を用いた欠陥検出方法について図10を用いて説明する。まず、第1の照射装置1および第2の照射装置2が検査対象Aの被検査面Bを照射し、撮像装置3が被検査面Bを撮像する(図10のS31)。その後、処理装置4は、2値化しきい値を用いて撮像画像に対して2値化処理を行う(S32)。2値化しきい値は、任意に設定された値(例えば60など)が適用される。処理装置4は、2値化画像から画素値の小さい黒領域を抽出し、検出領域とする(S33)。その後、検出領域の面積(検出面積)と検出領域の長手方向の長さ(検出長手長さ)とを読み出す(S34)。その後、検出面積を検出長手長さで割って欠陥高さを算出する(S35)。その後、欠陥高さが設定欠陥高さより大きいか否かを判定する(S36)。欠陥高さが設定欠陥高さより大きい場合、検出領域に欠陥が存在し、検査対象Aが不良であると判定する(S37)。欠陥高さが設定欠陥高さ以下である場合、処理装置4は、検出領域には欠陥が存在しないと判定し、検査対象Aが良品であると判定する(S38)。処理装置4は、全ての検出領域に対してステップS34からステップS38までの処理を実行し(S39)、欠陥検出の動作を終了する。   Next, a defect detection method using the defect detection apparatus according to the present embodiment will be described with reference to FIG. First, the first irradiation device 1 and the second irradiation device 2 irradiate the inspection surface B of the inspection object A, and the imaging device 3 images the inspection surface B (S31 in FIG. 10). Thereafter, the processing device 4 performs binarization processing on the captured image using the binarization threshold (S32). An arbitrarily set value (for example, 60) is applied to the binarization threshold. The processing device 4 extracts a black area having a small pixel value from the binarized image and sets it as a detection area (S33). Thereafter, the area of the detection region (detection area) and the length of the detection region in the longitudinal direction (detection longitudinal length) are read (S34). Thereafter, the defect height is calculated by dividing the detected area by the detected longitudinal length (S35). Thereafter, it is determined whether or not the defect height is larger than the set defect height (S36). When the defect height is larger than the set defect height, it is determined that there is a defect in the detection area and the inspection object A is defective (S37). When the defect height is equal to or less than the set defect height, the processing device 4 determines that there is no defect in the detection area, and determines that the inspection target A is a non-defective product (S38). The processing device 4 executes the processing from step S34 to step S38 for all the detection areas (S39), and ends the defect detection operation.

以上、本実施形態の欠陥検出装置および欠陥検出方法によれば、欠陥の凹凸量を正確に反映させた欠陥検出を行うことができる。   As described above, according to the defect detection apparatus and the defect detection method of the present embodiment, it is possible to perform defect detection that accurately reflects the unevenness amount of the defect.

なお、実施形態1〜6の欠陥検出装置の各機能は、適宜組み合わせて用いることができる。   In addition, each function of the defect detection apparatus of Embodiments 1-6 can be used in combination as appropriate.

1 第1の照射装置
2 第2の照射装置
3 撮像装置
4 処理装置
5 搬送装置
6,7 偏光板(光量調整部)
A 検査対象
B 被検査面
C 欠陥
DESCRIPTION OF SYMBOLS 1 1st irradiation apparatus 2 2nd irradiation apparatus 3 Imaging device 4 Processing apparatus 5 Conveyance apparatus 6,7 Polarizing plate (light quantity adjustment part)
A Inspection object B Surface to be inspected C Defect

Claims (7)

検査対象である木材の拡散反射性を有する被検査面に斜め方向から光を照射する第1の照射装置および第2の照射装置と、
前記第1の照射装置および前記第2の照射装置から光が照射される前記被検査面を撮像する撮像装置と、
前記撮像装置で撮像された撮像画像を用いて前記被検査面の凹凸に関する欠陥を検出する処理装置とを備え、
前記第1の照射装置は、照射角度が前記撮像装置の視軸角度と同一であり、
前記第2の照射装置は、照射角度が前記第1の照射装置の照射角度より低く設定されている
ことを特徴とする欠陥検出装置。
A first irradiating device and a second irradiating device that irradiate light from an oblique direction onto a surface to be inspected having diffuse reflectivity of wood to be inspected;
An imaging device that images the surface to be inspected that is irradiated with light from the first irradiation device and the second irradiation device;
A processing device that detects a defect related to the unevenness of the surface to be inspected using a captured image captured by the imaging device;
In the first irradiation device, the irradiation angle is the same as the visual axis angle of the imaging device,
The defect detection apparatus, wherein the second irradiation apparatus has an irradiation angle set lower than that of the first irradiation apparatus.
前記第1の照射装置は、拡散光を前記被検査面に照射し、
前記第2の照射装置は、集光した光を前記被検査面に照射する
ことを特徴とする請求項1記載の欠陥検出装置。
The first irradiation device irradiates the surface to be inspected with diffused light,
The defect detection apparatus according to claim 1, wherein the second irradiation apparatus irradiates the surface to be inspected with condensed light.
前記第2の照射装置は、複数の波長域の光を前記被検査面に照射することを特徴とする請求項1または2記載の欠陥検出装置。   The defect detection apparatus according to claim 1, wherein the second irradiation apparatus irradiates the surface to be inspected with light in a plurality of wavelength ranges. 前記撮像装置に入射する光の光量を減少させる光量調整部を備えることを特徴とする請求項1〜3のいずれか1項に記載の欠陥検出装置。   The defect detection device according to claim 1, further comprising a light amount adjustment unit that reduces a light amount of light incident on the imaging device. 前記処理装置は、
前記第1の照射装置のみが前記被検査面に光を照射し前記撮像装置で予備撮像が行われたときに予め設定された検査範囲内の平均輝度を求める算出機能と、
前記平均輝度に応じて前記第1の照射装置の光量を可変させる光量可変機能と
を有することを特徴とする請求項1〜4のいずれか1項に記載の欠陥検出装置。
The processor is
A calculation function for obtaining an average luminance within a preset inspection range when only the first irradiation device irradiates the surface to be inspected and preliminary imaging is performed by the imaging device;
The defect detection device according to claim 1, further comprising: a light amount variable function that varies a light amount of the first irradiation device according to the average luminance.
前記処理装置は、前記撮像画像において前記欠陥によって発生する暗領域の検出面積と形状とによって前記欠陥の凹凸量を推定して前記欠陥を判定することを特徴とする請求項1〜5のいずれか1項に記載の欠陥検出装置。   The said processing apparatus estimates the unevenness | corrugation amount of the said defect by the detection area and shape of the dark area which generate | occur | produces with the said defect in the said captured image, and determines the said defect. The defect detection apparatus according to item 1. 第1の照射装置および第2の照射装置を用いて検査対象である木材の拡散反射性を有する被検査面に斜め方向から光を照射する第1のステップと、
前記第1の照射装置および前記第2の照射装置から光が照射される前記被検査面を撮像する第2のステップと、
前記第2のステップで撮像した撮像画像を用いて前記被検査面の凹凸に関する欠陥を検出する第3のステップとを有し、
前記第1のステップにおいて、照射角度が前記撮像装置の視軸角度と同一である位置から前記第1の照射装置が前記被検査面に光を照射し、照射角度が前記第1の照射角度より低い位置から前記第2の照射装置が前記被検査面に光を照射する
ことを特徴とする欠陥検出方法。
A first step of irradiating light from an oblique direction on a surface to be inspected having diffuse reflectivity of wood to be inspected using the first irradiation device and the second irradiation device;
A second step of imaging the surface to be inspected that is irradiated with light from the first irradiation device and the second irradiation device;
A third step of detecting a defect related to the unevenness of the surface to be inspected using the captured image captured in the second step,
In the first step, the first irradiation device irradiates light on the surface to be inspected from a position where the irradiation angle is the same as the visual axis angle of the imaging device, and the irradiation angle is greater than the first irradiation angle. The defect detection method, wherein the second irradiation device irradiates the inspection surface with light from a low position.
JP2010073577A 2010-03-26 2010-03-26 Defect detection apparatus and defect detection method Expired - Fee Related JP5768224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073577A JP5768224B2 (en) 2010-03-26 2010-03-26 Defect detection apparatus and defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073577A JP5768224B2 (en) 2010-03-26 2010-03-26 Defect detection apparatus and defect detection method

Publications (2)

Publication Number Publication Date
JP2011203223A true JP2011203223A (en) 2011-10-13
JP5768224B2 JP5768224B2 (en) 2015-08-26

Family

ID=44880006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073577A Expired - Fee Related JP5768224B2 (en) 2010-03-26 2010-03-26 Defect detection apparatus and defect detection method

Country Status (1)

Country Link
JP (1) JP5768224B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373989B1 (en) * 2013-04-12 2013-12-18 橋本電機工業株式会社 Single plate sorting and deposition apparatus and single plate sorting method
JP2014205338A (en) * 2013-09-18 2014-10-30 橋本電機工業株式会社 Veneer screening and stacking apparatus, and veneer screening method
CN104685970A (en) * 2012-09-28 2015-06-03 吉坤日矿日石能源株式会社 Device for inspecting substrate having irregular rough surface and inspection method using same
JP2021139651A (en) * 2020-03-02 2021-09-16 マツダ株式会社 Device and method for evaluating surface irregularity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292509A (en) * 1985-06-20 1986-12-23 Nippon Oil & Fats Co Ltd Non-contacting roughness measuring apparatus
JPH07110303A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Method and apparatus for surface inspection
JPH09179960A (en) * 1995-12-25 1997-07-11 Mitsubishi Rayon Co Ltd Automatic light quantity controlling device and its method
JPH10142162A (en) * 1996-11-11 1998-05-29 Konica Corp Coated layer flaw inspecting light selecting method, coated layer flaw inspecting method, and coated layer flaw inspecting device
JPH11311510A (en) * 1998-04-27 1999-11-09 Asahi Glass Co Ltd Method and apparatus for inspection of very small uneven part
JP2007240512A (en) * 2006-02-08 2007-09-20 Hitachi High-Technologies Corp Wafer surface defect inspection device, and method therefor
JP2009053132A (en) * 2007-08-29 2009-03-12 Hitachi High-Technologies Corp Defect inspection method and defect inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292509A (en) * 1985-06-20 1986-12-23 Nippon Oil & Fats Co Ltd Non-contacting roughness measuring apparatus
JPH07110303A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Method and apparatus for surface inspection
JPH09179960A (en) * 1995-12-25 1997-07-11 Mitsubishi Rayon Co Ltd Automatic light quantity controlling device and its method
JPH10142162A (en) * 1996-11-11 1998-05-29 Konica Corp Coated layer flaw inspecting light selecting method, coated layer flaw inspecting method, and coated layer flaw inspecting device
JPH11311510A (en) * 1998-04-27 1999-11-09 Asahi Glass Co Ltd Method and apparatus for inspection of very small uneven part
JP2007240512A (en) * 2006-02-08 2007-09-20 Hitachi High-Technologies Corp Wafer surface defect inspection device, and method therefor
JP2009053132A (en) * 2007-08-29 2009-03-12 Hitachi High-Technologies Corp Defect inspection method and defect inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685970A (en) * 2012-09-28 2015-06-03 吉坤日矿日石能源株式会社 Device for inspecting substrate having irregular rough surface and inspection method using same
US9310319B2 (en) 2012-09-28 2016-04-12 Jx Nippon Oil & Energy Corporation Device for inspecting substrate having irregular rough surface and inspection method using same
CN104685970B (en) * 2012-09-28 2016-10-19 吉坤日矿日石能源株式会社 Check the device of the substrate with irregular convex-concave surface and use the inspection method of this device
JP5373989B1 (en) * 2013-04-12 2013-12-18 橋本電機工業株式会社 Single plate sorting and deposition apparatus and single plate sorting method
JP2014205338A (en) * 2013-09-18 2014-10-30 橋本電機工業株式会社 Veneer screening and stacking apparatus, and veneer screening method
JP2021139651A (en) * 2020-03-02 2021-09-16 マツダ株式会社 Device and method for evaluating surface irregularity

Also Published As

Publication number Publication date
JP5768224B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5174540B2 (en) Wood defect detection device
JP6229968B2 (en) Concavity and convexity inspection equipment
KR20160047360A (en) System and method for defect detection
JP6038434B2 (en) Defect inspection equipment
JP2006242886A (en) Surface defect inspecting apparatus
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
JP5768224B2 (en) Defect detection apparatus and defect detection method
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
KR102162693B1 (en) System and method for defect detection
JP7010213B2 (en) Cylindrical surface inspection device and cylindrical surface inspection method
JP2008157788A (en) Surface inspection method and device
JP2010044004A (en) Apparatus, method and program for detecting transmitted light, and method of manufacturing sheet material
JP2009109243A (en) Device for inspecting resin sealing material
JP3349069B2 (en) Surface inspection equipment
JP5297245B2 (en) Object surface inspection equipment
JP4496257B2 (en) Defect inspection equipment
JP6381865B2 (en) Inspection apparatus and inspection method
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method
JP2004191070A (en) Coated surface inspection apparatus
JP2002310917A (en) Defect detecting method and device thereof
JP2009042076A (en) Surface inspection device of separation membrane and surface inspection method of separation membrane
JP4445563B2 (en) Defect inspection apparatus and defect inspection method
JP3661466B2 (en) Coating unevenness inspection apparatus and method
JP2006258662A (en) Surface inspection method
JP2002005845A (en) Defect inspecting apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

LAPS Cancellation because of no payment of annual fees