JP2017067422A - Brine supply device - Google Patents

Brine supply device Download PDF

Info

Publication number
JP2017067422A
JP2017067422A JP2015197134A JP2015197134A JP2017067422A JP 2017067422 A JP2017067422 A JP 2017067422A JP 2015197134 A JP2015197134 A JP 2015197134A JP 2015197134 A JP2015197134 A JP 2015197134A JP 2017067422 A JP2017067422 A JP 2017067422A
Authority
JP
Japan
Prior art keywords
brine
temperature
cooling water
heat exchanger
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197134A
Other languages
Japanese (ja)
Other versions
JP6533445B2 (en
Inventor
禎一郎 上田
Teiichiro Ueda
禎一郎 上田
大阿 仁藤
Daia Nito
大阿 仁藤
繁雄 青木
Shigeo Aoki
繁雄 青木
俊紀 樋熊
Toshinori Higuma
俊紀 樋熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Controls Co Ltd
Original Assignee
Shinwa Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Controls Co Ltd filed Critical Shinwa Controls Co Ltd
Priority to JP2015197134A priority Critical patent/JP6533445B2/en
Publication of JP2017067422A publication Critical patent/JP2017067422A/en
Application granted granted Critical
Publication of JP6533445B2 publication Critical patent/JP6533445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a brine supply device which does not require a freezer capable of performing heat insulation on a stage with high accuracy by suppressing temperature fluctuation at a temperature in the vicinity of the preset room temperature even if an electron beam exposure device is applied to a workpiece.SOLUTION: In a brine supply device 1, a pressure reduction valve 102 and a cooling control valve 103 that is driven by a motor M1 for performing flow rate control, are provided at an inflow side of a heat exchanger 101 in a cooling water circuit 100. A brine circuit 200 includes: a bypass flow passage 208 in which a flow rate adjustment valve 203 is interposed; temperature sensors T1, T2 for detecting a supply temperature of a brine to a heat insulation part (stage) 301 of the electron beam exposure device 300 and its return temperature; and a flow rate sensor F1. In an apparatus control unit 105, a thermal load amount of an apparatus 300 is calculated based on the return detection temperature, the supply detection temperature and a supply detection flow rate. Feedforward control is performed while reflecting drive control on the motor M1 with a control output amount calculated based on a result of the calculation of such a thermal load amount and a result of performing PID calculation on the supply detection temperature.SELECTED DRAWING: Figure 1

Description

本発明は、保温用のブライン(熱媒体)が循環されるブライン回路とブラインを冷却するための冷却水が循環される冷却水回路とで熱交換器を共有し、使用者により設定される設定温度とブライン回路に接続されるワーク(顧客装置)のワーク温度との温度差に応じてブライン回路におけるブラインタンクに繋がるポンプによるブライン供給された温度を制御装置で制御してワークを室温付近で保温する機能を持つブライン供給装置に関する。   In the present invention, a heat exchanger is shared between a brine circuit in which a brine (heat medium) for heat insulation is circulated and a cooling water circuit in which cooling water for cooling the brine is circulated, and is set by a user The temperature of the brine supplied by the pump connected to the brine tank in the brine circuit is controlled by the controller according to the temperature difference between the temperature and the workpiece temperature of the workpiece (customer device) connected to the brine circuit, and the workpiece is kept near room temperature. The present invention relates to a brine supply device having a function of

従来、この種のブライン供給装置に関連する周知技術として、複数の負荷(上述のワークに該当する)に対し、一台の冷凍機を容量制御することなく使用して、モーターバルブの制御により高精度な温度制御を行える二段階温調方式によって、目標温度のブラインを供給する「ブラインの供給装置」(特許文献1参照)等が挙げられる。   Conventionally, as a well-known technique related to this type of brine supply device, a single refrigerator is used for a plurality of loads (corresponding to the above-mentioned workpieces) without capacity control, and the motor valve is controlled more highly. Examples include a “brine supply device” (see Patent Document 1) that supplies brine at a target temperature by a two-stage temperature control method that can perform accurate temperature control.

特開平9−89436号公報JP-A-9-89436

上述したブラインの供給装置の場合、冷凍機とブラインを負荷に供給するためのタンク、ポンプ、加熱機等を備えた循環流路とを備えると共に、冷凍機で容量制御することなく熱交換機器で熱交換冷却されたブラインを負荷に供給するブラインの目標温度よりも低い所定の温度に調節する単一の一次温調回路と、一次温調回路で低温に調整されたブラインを更にモーターバルブによる高精度な温度制御によって目標温度に調節する単一或いは複数の二次温調回路と、を備えて構成されるものであるが、例えば負荷(ワーク)として、光露光と荷電粒子ビーム露光とを相補的に用いた半導体基板向けのリソグラフィ技術に適用される電子ビーム(EB)露光装置へ適用した場合を想定すると、半導体基板が載置される保温対象のステージ(装置)の温度を適正温度として室温(20〜27℃)付近程度の範囲から設定された温度に対して温度変動を抑制して高精度に維持する必要があるのに対し、ここでの保温機能の温度制御によれば、実際には外乱に対する温度変動を0.1℃程度しか達成できない(その他の一般的に周知なチラー装置を用いた場合にも同様である)上、冷凍機を備える必要がなくてコスト上で無駄となってしまうため、実用上で適用し難いという問題がある。   In the case of the above-described brine supply apparatus, a chiller and a circulation channel including a tank, a pump, a heater, and the like for supplying brine to the load are provided, and the capacity of the chiller can be controlled without using a heat exchanger. A single primary temperature control circuit that adjusts the heat exchange-cooled brine to a predetermined temperature lower than the target temperature of the brine that supplies the load to the load, and a brine that is adjusted to a low temperature by the primary temperature control circuit is further increased by a motor valve. A single or a plurality of secondary temperature control circuits that adjust to a target temperature by precise temperature control. For example, as a load (work), light exposure and charged particle beam exposure are complemented. Assuming a case where the present invention is applied to an electron beam (EB) exposure apparatus applied to a lithography technique for a semiconductor substrate used in general, a stage (apparatus for heat insulation) on which the semiconductor substrate is placed It is necessary to suppress the temperature fluctuation with respect to the temperature set from the range of around room temperature (20 to 27 ° C.) with the temperature of the temperature being an appropriate temperature, whereas the temperature of the heat retaining function here According to the control, the temperature fluctuation with respect to the disturbance can be actually achieved only by about 0.1 ° C. (the same applies when other generally known chiller devices are used), and there is no need to provide a refrigerator. Therefore, there is a problem that it is difficult to apply practically.

具体的に云えば、電子ビーム露光装置の場合、ステージの温度が0.01℃変化したとき、ステージの伸びは80nmになり、例えば幅500nmのパターンを半導体基板に形成するときにはその1/10の露光位置精度が要求されるため、ステージの温度変化による伸びの影響を無視することはできず、ブライン供給装置やチラー装置における保温機能で設定された温度に対してステージの温度変動を極力抑制(少なくとも0.1℃未満)して高精度に保温維持することが要求されるが、現状ではそうした高精度な保温機能が実現されていない。   Specifically, in the case of an electron beam exposure apparatus, when the temperature of the stage changes by 0.01 ° C., the elongation of the stage becomes 80 nm. For example, when a pattern with a width of 500 nm is formed on a semiconductor substrate, it is 1/10 of that. Because exposure position accuracy is required, the influence of elongation due to stage temperature changes cannot be ignored, and stage temperature fluctuations are suppressed as much as possible with respect to the temperature set by the heat retention function in the brine supply device and chiller device ( However, at present, such a highly accurate heat retaining function has not been realized.

その理由は、荷電粒子ビーム露光処理の影響や周囲温度の影響でステージにおいて熱負荷による温度変動があると電子ビーム露光装置のブライン吐出側のブラインの戻り温度として検出されるワーク温度をいち早く検出しても、制御装置で有効な数値演算制御を実施してのフィードバック制御が行われていないことにより、ブラインタンクに繋がるポンプによるブライン供給流量を精度良く制御できていないこと、ブライン回路におけるブラインの総循環量を安定して一定量にして供給するための工夫が十分に施されていないこと、熱交換器の熱交換冷却性能を有効に行わせるための冷却水回路における冷却水を安定して一定量にして供給するための工夫が十分に施されていないこと等が挙げられ、結果として、ステージの温度変化を0.1℃未満に抑制する温度制御を行うことが困難となっており、露光位置精度が低下してしまうという問題がある。因みに、こうした問題は露光パターンの微細化に伴って大きくなる。   The reason is that the workpiece temperature detected as the return temperature of the brine on the brine discharge side of the electron beam exposure device is detected quickly if there is a temperature fluctuation due to the thermal load on the stage due to the influence of the charged particle beam exposure process or the ambient temperature. However, since the feedback control is not performed by performing effective numerical calculation control in the control device, the brine supply flow rate by the pump connected to the brine tank cannot be accurately controlled, and the total amount of brine in the brine circuit is not controlled. Insufficient ingenuity to supply the circulating amount in a stable and constant amount, and stable and constant cooling water in the cooling water circuit for effective heat exchange cooling performance of the heat exchanger It is mentioned that the device for supplying in quantity is not sufficiently devised, and as a result, the temperature change of the stage is reduced to 0.1. It has become difficult to perform suppressing temperature controlled below, there is a problem that the exposure position accuracy is degraded. Incidentally, such a problem increases as the exposure pattern becomes finer.

本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、ワークに電子ビーム露光装置を適用しても設定された室温付近の温度で温度変動を極力抑制して保温対象のステージを高精度に保温維持できる冷凍機が不要なブライン供給装置を提供することにある。   The present invention has been made to solve such problems, and its technical problem is to suppress temperature fluctuation as much as possible at a temperature near the set room temperature even when an electron beam exposure apparatus is applied to the workpiece. An object of the present invention is to provide a brine supply device that does not require a refrigerator that can maintain the temperature of a stage to be kept warm with high accuracy.

上記技術的課題を達成するため、本発明は、ワークへの保温用のブラインが循環されるブライン回路と当該ブラインを冷却するための冷却水が循環される冷却水回路とで熱交換器を共有し、使用者により設定される設定温度と当該ブライン回路に接続される当該ワークのワーク温度との温度差に応じてブライン供給された温度を制御装置により当該冷却水回路で制御して当該ワークを室温付近で保温する機能を持つブライン供給装置において、ブライン回路は、熱交換器のブライン流出側とブラインタンクとの間を接続して当該熱交換器で熱交換冷却されたブラインの一部を当該ブラインタンクへ流し戻すと共に、当該流し戻しの流量を調整するための第1の流量調整バルブが中途箇所に介在接続されたバイパス流路と、熱交換器のブライン流出側でバイパス流路の接続箇所よりも当該熱交換器側寄りに設けられてブラインのワークへの供給温度を検出する第1の温度センサと、ワークのブライン流出側とブラインタンクとの間に設けられてブラインの当該ワークからの戻り温度を検出する第2の温度センサと、ワークのブライン流入側とバイパス流路の接続箇所との間に介在接続されてブラインの当該ワークへの供給流量を検出する流量センサと、ワークのブライン流入側とバイパス流路の接続箇所との間の流量センサよりも当該ワークのブライン流入側寄りに介在接続されてブラインの流量を調整するための第2の流量調整バルブと、を備え、冷却水回路は、熱交換器の冷却水流入側に設けられて冷却水の供給圧力を調整する水圧調整弁と、熱交換器の冷却水流入側で水圧調整弁よりも当該熱交換器側寄りに介在接続されると共に、モータで駆動されて開閉動作により回路全体における冷却水の流量制御を行う冷却制御弁と、を備え、制御装置は、第2の温度センサで検出されたブラインのワークからの戻り温度と第1の温度センサで検出された当該ブラインの当該ワークへの供給温度と流量センサで検出された当該ブラインの当該ワークへの供給流量とに基づいて当該ワークの熱負荷量の算出を行うと共に、当該熱負荷演算の結果と当該第1の温度センサで検出された当該ブラインの当該ワークへの供給温度について比例、積分、微分を含むPID演算した結果との双方に基づいて算出した制御出力量をモータへの駆動制御に反映させてフィードフォワード制御を行うことを特徴とする。   In order to achieve the above technical problem, the present invention shares a heat exchanger between a brine circuit in which a brine for retaining heat to the work is circulated and a cooling water circuit in which cooling water for cooling the brine is circulated. Then, the temperature supplied to the brine according to the temperature difference between the set temperature set by the user and the workpiece temperature of the workpiece connected to the brine circuit is controlled by the control circuit with the cooling water circuit, and the workpiece is In the brine supply device having the function of keeping the temperature near room temperature, the brine circuit connects the brine outlet side of the heat exchanger and the brine tank, and a part of the brine heat-exchanged and cooled by the heat exchanger A bypass flow path in which a first flow rate adjusting valve for adjusting the flow rate of the return flow is intervened and connected to the brine tank, and a heat exchanger brine A first temperature sensor that is provided closer to the heat exchanger side than the connection location of the bypass flow path on the outlet side and detects the supply temperature of the brine to the workpiece, and between the brine outlet side of the workpiece and the brine tank A second temperature sensor provided to detect the return temperature of the brine from the workpiece and an intermediate connection between the brine inflow side of the workpiece and the connection location of the bypass flow path to control the supply flow rate of the brine to the workpiece; The second flow rate for adjusting the flow rate of the brine by being connected to the brine inflow side of the workpiece rather than the flow rate sensor to be detected and the flow rate sensor between the brine inflow side of the workpiece and the connection location of the bypass flow path. The cooling water circuit is provided on the cooling water inflow side of the heat exchanger to adjust the supply pressure of the cooling water, and the water pressure is adjusted on the cooling water inflow side of the heat exchanger. A cooling control valve that is intervened closer to the heat exchanger side than the heat exchanger and that is driven by a motor to control the flow rate of cooling water in the entire circuit by an opening and closing operation, and the control device includes a second temperature sensor Based on the return temperature of the brine detected in step 1 from the workpiece, the supply temperature of the brine detected by the first temperature sensor to the workpiece, and the supply flow rate of the brine detected by the flow sensor to the workpiece. The result of PID calculation including proportional, integral, and differential of the thermal load calculation result and the supply temperature of the brine detected by the first temperature sensor to the workpiece. The feedforward control is performed by reflecting the control output amount calculated based on both of the above and the drive control to the motor.

本発明のブライン供給装置によれば、上記構成により、従来必要とされた冷凍機が不要となり、ワークに電子ビーム露光装置を適用しても設定された室温付近の温度で温度変動を極力抑制して保温対象の保温部(ステージ)を高精度に保温維持できるようになる。   According to the brine supply apparatus of the present invention, the above-described configuration eliminates the need for a conventional refrigerator, and suppresses temperature fluctuations as much as possible at a temperature near the set room temperature even when an electron beam exposure apparatus is applied to the workpiece. Thus, it is possible to maintain the temperature of the heat retaining part (stage) to be kept warm with high accuracy.

本発明の実施例1に係るブライン供給装置の基本構成をブライン回路でのワークとしての電子ビーム露光装置への接続、並びにブライン回路及び冷却水回路を制御する制御装置を含めて示した全体的な概略図である。The basic configuration of the brine supply apparatus according to the first embodiment of the present invention is shown as a whole including the connection to the electron beam exposure apparatus as a work in the brine circuit and the control device for controlling the brine circuit and the cooling water circuit. FIG. 図1に示すブライン供給装置に電子ビーム露光装置を接続しての架設状況、並びに工業用の冷却水の引き回しの概略を説明するために各部の設置上での外観構成を示した斜視図である。FIG. 2 is a perspective view showing an external configuration on installation of each part in order to explain an erection state when an electron beam exposure apparatus is connected to the brine supply apparatus shown in FIG. 1 and an outline of routing of industrial cooling water. . 本発明の実施例2に係るブライン供給装置の基本構成をブライン回路でのワークとする電子ビーム露光装置への接続、並びにブライン回路及び冷却水回路を制御する制御装置を含めて示した全体的な概略図である。The overall configuration shown including the connection to the electron beam exposure apparatus having the basic configuration of the brine supply device according to the second embodiment of the present invention as a work in the brine circuit, and the control device for controlling the brine circuit and the cooling water circuit. FIG.

以下に、本発明のブライン供給装置について、幾つかの実施例を挙げ、図面を参照して詳細に説明する。   Below, some examples are given about the brine supply apparatus of the present invention, and it explains in detail with reference to drawings.

図1は、本発明の実施例1に係るブライン供給装置1の基本構成をブライン回路200でのワークとしての電子ビーム露光装置300への接続、並びにブライン回路200及び冷却水回路100を制御する制御装置としての機器制御ユニット(TC)105を含めて示した全体的な概略図である。   FIG. 1 shows a basic configuration of a brine supply device 1 according to Embodiment 1 of the present invention connected to an electron beam exposure apparatus 300 as a work in a brine circuit 200, and control for controlling the brine circuit 200 and the cooling water circuit 100. 1 is an overall schematic diagram including a device control unit (TC) 105 as an apparatus. FIG.

図1を参照すれば、ブライン供給装置1は、冷却用の冷却水(工業用水)が循環される冷却水回路100において、熱交換器(蒸発器)101の冷却水流入側に設けられて冷却水の供給圧力を調整する水圧調整弁としての減圧弁102と、熱交換器101の冷却水流入側で減圧弁102よりも熱交換器101側寄りに介在接続されると共に、モータM1で駆動されて開閉動作により回路全体における冷却水の流量制御を行う冷却制御弁103と、減圧弁102と冷却制御弁103との間で冷却水の圧力を検出する第1の圧力センサP1と、冷却制御弁103と熱交換器101の冷却水流入側との間における冷却制御弁103側寄りで冷却水の圧力を検出する第2の圧力センサP2と、冷却制御弁103と熱交換器101の冷却水流入側との間における熱交換器101側寄りで冷却水の熱交換器101への供給温度を検出する第3の温度センサT3と、熱交換器101の冷却水流出側に設けられて冷却水の熱交換器101からの戻り温度を検出する第4の温度センサT4と、を備えて構成される。この冷却水回路100では、特許文献1の周知技術の場合のように冷凍機を備えず、熱交換器101でのブラインに対する冷却機能を工業用水によって行わせる仕様となっている。   Referring to FIG. 1, the brine supply device 1 is provided on the cooling water inflow side of a heat exchanger (evaporator) 101 in a cooling water circuit 100 in which cooling water for cooling (industrial water) is circulated. A pressure reducing valve 102 as a water pressure adjusting valve for adjusting the supply pressure of water is connected to the cooling water inflow side of the heat exchanger 101 closer to the heat exchanger 101 side than the pressure reducing valve 102 and is driven by the motor M1. A cooling control valve 103 that controls the flow rate of the cooling water in the entire circuit by opening and closing operation, a first pressure sensor P1 that detects the pressure of the cooling water between the pressure reducing valve 102 and the cooling control valve 103, and a cooling control valve The second pressure sensor P2 that detects the pressure of the cooling water near the cooling control valve 103 side between the cooling control inlet 103 and the cooling water inflow side of the heat exchanger 101, and the cooling water inflow of the cooling control valve 103 and the heat exchanger 101 Between the side A third temperature sensor T3 that detects the supply temperature of the cooling water to the heat exchanger 101 near the heat exchanger 101, and a cooling water heat exchanger 101 that is provided on the cooling water outflow side of the heat exchanger 101. And a fourth temperature sensor T4 for detecting the return temperature from the. This cooling water circuit 100 does not include a refrigerator as in the case of the well-known technique of Patent Document 1, and has a specification in which the cooling function for the brine in the heat exchanger 101 is performed by industrial water.

また、このブライン供給装置1は、ワークへの保温用のブラインが循環されるブライン回路200において、熱交換器101のブライン流入側に配置されて循環されるブラインをロジックLG式で貯えるブラインタンク(TANK)201と、インバータINVにより駆動されてブラインタンク201に貯えられたブラインを圧力可変で熱交換器101へ供給して回路内を循環させるポンプ202と、熱交換器101のブライン流出側とブラインタンク201との間を接続して熱交換器101で熱交換冷却されたブラインの一部をブラインタンク201へ流し戻すと共に、流し戻しの流量を調整するための第1の流量調整バルブ203が中途箇所に介在接続されたバイパス流路208と、熱交換器101のブライン流出側でバイパス流路208の接続箇所よりも熱交換器101側寄りに設けられてブラインのワークとしての電子ビーム露光装置300への供給温度を検出する第1の温度センサT1と、電子ビーム露光装置300のブライン流出側とブラインタンク201との間に設けられてブラインの電子ビーム露光装置300からの戻り温度を検出する第2の温度センサT2と、電子ビーム露光装置300のブライン流入側とバイパス流路208の接続箇所との間に介在接続されてブラインの電子ビーム露光装置300への供給流量を検出する流量センサF1と、電子ビーム露光装置300のブライン流入側とバイパス流路208の接続箇所との間の流量センサF1よりも電子ビーム露光装置300側寄りに介在接続されてブラインの流量を調整するための第2の流量調整バルブ204と、を備えて構成される。   Further, the brine supply device 1 includes a brine tank (logic LG type) that stores and circulates the brine arranged and circulated on the brine inflow side of the heat exchanger 101 in the brine circuit 200 in which the brine for keeping heat to the work is circulated. TANK) 201, a pump 202 that is driven by an inverter INV and stored in the brine tank 201, supplies the heat to the heat exchanger 101 with a variable pressure, and circulates in the circuit, the brine outflow side of the heat exchanger 101 and the brine A part of the brine which is connected to the tank 201 and is heat-exchanged and cooled by the heat exchanger 101 is returned to the brine tank 201, and the first flow rate adjustment valve 203 for adjusting the flow rate of the return is halfway. A bypass channel 208 interveningly connected to the location, and the bypass channel 20 on the brine outflow side of the heat exchanger 101 A first temperature sensor T1 that is provided closer to the heat exchanger 101 side than the connection location of the first temperature sensor T1 and detects a supply temperature to the electron beam exposure apparatus 300 as a work of brine, and a brine outflow side of the electron beam exposure apparatus 300 A second temperature sensor T2 provided between the brine tank 201 and detecting a return temperature of the brine from the electron beam exposure apparatus 300; a brine inflow side of the electron beam exposure apparatus 300; A flow rate sensor F1 that is interposed between the two and detects the supply flow rate of the brine to the electron beam exposure apparatus 300, and a flow rate sensor F1 between the brine inflow side of the electron beam exposure apparatus 300 and the connection location of the bypass flow path 208. A second flow rate adjustment valve for adjusting the flow rate of the brine, which is intervened and connected closer to the electron beam exposure apparatus 300 side. And 04, configured to include a.

このブライン供給装置では、ワークへの保温用のブラインが循環されるブライン回路200とブラインを冷却するための冷却水が循環される冷却水回路100とで熱交換器101を共有し、使用者により設定される設定温度とブライン回路200に接続される電子ビーム露光装置300の保温対象となる保温部(ステージ)301のワーク温度(第1の温度センサT1によるブラインの供給温度)との温度差に応じてブライン供給された温度を機器制御ユニット105により冷却水回路100(具体的には後述する冷却制御弁103の開閉動作)で制御して電子ビーム露光装置300の保温対象となる保温部301を室温付近で保温する機能を持つことを基本とする。   In this brine supply device, the heat exchanger 101 is shared by the brine circuit 200 in which the brine for keeping heat to the work is circulated and the cooling water circuit 100 in which the cooling water for cooling the brine is circulated. The temperature difference between the set temperature to be set and the work temperature (the supply temperature of the brine by the first temperature sensor T1) of the heat retaining unit (stage) 301 that is the heat retaining object of the electron beam exposure apparatus 300 connected to the brine circuit 200. Accordingly, the temperature supplied by the brine is controlled by the device control unit 105 by the cooling water circuit 100 (specifically, an opening / closing operation of the cooling control valve 103 described later), and the heat retaining unit 301 that is the heat retaining object of the electron beam exposure apparatus 300 is controlled. Basically, it has a function to keep the temperature around room temperature.

具体的に云えば、このブライン回路200において、バイパス流路208での第1の流量調整バルブ203と電子ビーム露光装置300のブライン流入側の第2の流量調整バルブ204とにおける流量調整を適宜手動で設定し、流量センサF1の流量検出結果を機器制御ユニット105で認識しながら電子ビーム露光装置300へのブラインの供給量を0〜50リットル/分で行うことができるものである。ここで、工業用水の冷却水が5℃であり、使用者により設定される設定温度(目標温度)が20℃、電子ビーム露光装置300の保温対象となる保温部301の負荷熱量が25kWである条件下を想定する。   Specifically, in this brine circuit 200, the flow rate adjustment in the first flow rate adjustment valve 203 in the bypass channel 208 and the second flow rate adjustment valve 204 on the brine inflow side of the electron beam exposure apparatus 300 is manually performed as appropriate. The brine supply amount to the electron beam exposure apparatus 300 can be performed at 0 to 50 liters / minute while the apparatus control unit 105 recognizes the flow rate detection result of the flow rate sensor F1. Here, the cooling water for industrial water is 5 ° C., the set temperature (target temperature) set by the user is 20 ° C., and the load heat quantity of the heat retaining unit 301 that is the heat retaining object of the electron beam exposure apparatus 300 is 25 kW. Assumes conditions.

機器制御ユニット105は、ブライン回路200において、バイパス流路208での第1の流量調整バルブ203と電子ビーム露光装置300のブライン流入側の第2の流量調整バルブ204とにおける流量調整を適宜手動で設定し、第2の温度センサT2で検出されたブラインの電子ビーム露光装置300からの戻り温度と第1の温度センサT1で検出されたブラインの電子ビーム露光装置300への供給温度と流量センサF1で検出されたブラインの電子ビーム露光装置300への供給流量とに基づいて電子ビーム露光装置300の熱負荷量の算出を行うと共に、冷却水回路100において、第3の温度センサT3で検出された冷却水の熱交換器101への供給温度と第4の温度センサT4で検出された冷却水の熱交換器101からの戻り温度との差分、及び第1の圧力センサP1及び第2の圧力センサP2で検出される回路における冷却水の圧力差に基づいて算出した冷却水回路100の熱負荷量を用いて減圧弁102で減圧調整された冷却水の供給圧力に応じた冷却制御弁103に対する冷却水の流量制御を補正する。   In the brine circuit 200, the device control unit 105 manually adjusts the flow rate in the first flow rate adjustment valve 203 in the bypass flow path 208 and the second flow rate adjustment valve 204 on the brine inflow side of the electron beam exposure apparatus 300 as appropriate. The return temperature from the electron beam exposure apparatus 300 for the brine detected by the second temperature sensor T2, the supply temperature to the electron beam exposure apparatus 300 for the brine detected by the first temperature sensor T1, and the flow rate sensor F1. The thermal load amount of the electron beam exposure apparatus 300 is calculated based on the supply flow rate of brine to the electron beam exposure apparatus 300 detected in step 3, and the cooling water circuit 100 detects the thermal load amount detected by the third temperature sensor T3. The supply temperature of the cooling water to the heat exchanger 101 and the return of the cooling water from the heat exchanger 101 detected by the fourth temperature sensor T4. The pressure reducing valve 102 uses the heat load amount of the cooling water circuit 100 calculated based on the difference from the temperature and the pressure difference of the cooling water in the circuit detected by the first pressure sensor P1 and the second pressure sensor P2. The flow rate control of the cooling water with respect to the cooling control valve 103 according to the supply pressure of the cooling water whose pressure has been adjusted is corrected.

ところで、こうした機器制御ユニット105によるブライン回路200でのブラインの循環量、冷却水回路100での冷却水の循環量を調整しての温度制御(フィードバック制御)に係る保温性能を上述した条件下で所定時間試験したところ、電子ビーム露光装置300の保温部301を保温する負荷開始後には或る時間のタイミングで温度変動のスペックの±0.1℃を超えるスペックアウトになってしまうことが判った。   By the way, the heat retention performance related to temperature control (feedback control) by adjusting the circulation amount of the brine in the brine circuit 200 and the circulation amount of the cooling water in the cooling water circuit 100 by the device control unit 105 under the above-described conditions. As a result of testing for a predetermined time, it was found that after starting the load for keeping the heat retaining portion 301 of the electron beam exposure apparatus 300, the spec out exceeded ± 0.1 ° C. of the spec of temperature fluctuation at a certain time. .

そこで、実施例1に係るブライン供給装置1では、機器制御ユニット105によって、ブラインの電子ビーム露光装置300からの戻り温度と第1の温度センサT1で検出されたブラインの電子ビーム露光装置300への供給温度と流量センサF1で検出されたブラインの電子ビーム露光装置300への供給流量と基づいて電子ビーム露光装置300の熱負荷量の算出を行う以外、この熱負荷量の演算の結果と第1の温度センサT1で検出されたブラインの電子ビーム露光装置300への供給温度について比例、積分、微分を含むPID演算した結果との双方に基づいて算出した制御出力量をモータM1への駆動制御に反映させて制御系に入る指令値や外乱を検出して影響を打ち消すようにフィードフォワード(FF)制御を行うようにする。因みに、ここでのブラインの熱負荷量はブラインと冷却水との熱収支差に該当するもので、例えば0.5秒周期で算出する場合を例示できるが、保持したデータについては遅れ時間を調整することが可能である。フィードフォワード制御については、自動制御で行われることを基本とするが、リモコン等の指示によりユーザが指示して行わせることも可能である。   Therefore, in the brine supply apparatus 1 according to the first embodiment, the return temperature from the brine electron beam exposure apparatus 300 and the brine detected by the first temperature sensor T1 to the electron beam exposure apparatus 300 by the device control unit 105 are supplied. Except for calculating the thermal load amount of the electron beam exposure apparatus 300 based on the supply temperature and the supply flow rate of brine to the electron beam exposure apparatus 300 detected by the flow sensor F1, the result of the calculation of the thermal load amount and the first The control output amount calculated based on both the result of PID calculation including proportionality, integration, and differentiation for the supply temperature of the brine detected by the temperature sensor T1 to the electron beam exposure apparatus 300 is used for drive control to the motor M1. Perform feedforward (FF) control so that the command value and disturbance entering the control system are reflected and the influence is canceled out.Incidentally, the heat load of the brine here corresponds to the difference in the heat balance between the brine and the cooling water. For example, it can be calculated with a cycle of 0.5 seconds, but the delay time is adjusted for the retained data. Is possible. The feedforward control is basically performed by automatic control, but can be performed by a user instructing by an instruction from a remote controller or the like.

このようにフィードフォワード制御を先のフィードバック制御に併用させて追従補正する機能を持たせた場合について、上述した条件下で所定時間試験したところ、目標温度20℃に対して温度変動を極力抑制して保温対象となる電子ビーム露光装置300の保温部301をスペックの±0.1℃に収まる±0.05℃程度の高精度に保温維持できることが判った。この結果、電子ビーム露光プロセスにおいて、図示されない真空容器内の保温部301上の半導体基板へ電子ビームを照射する電子ビーム露光工程時に発熱する保温部301の他、電子レンズ、ガラスマスク、半導体基板、デバイス(増幅器)等の熱変動を抑制し、熱負荷変動0〜25kWに追従して高精度な温度調節が可能となり、電子ビーム露光による高微細化の実現に貢献できる他、工業用水を冷却水として熱交換器101でブラインを効果的に冷却させることができるため、装置全体の小型化も実現される。   In this way, when the feedforward control is used in combination with the previous feedback control to provide a follow-up correction function, a test is performed for a predetermined time under the above-described conditions. Thus, it was found that the heat retaining portion 301 of the electron beam exposure apparatus 300 that is a heat retaining object can be kept warm with a high accuracy of about ± 0.05 ° C. that is within ± 0.1 ° C. of the specification. As a result, in the electron beam exposure process, in addition to the heat retaining portion 301 that generates heat during the electron beam exposure process of irradiating the semiconductor substrate on the heat retaining portion 301 in the vacuum container (not shown), an electron lens, a glass mask, a semiconductor substrate, Suppresses thermal fluctuations of devices (amplifiers), etc., enables thermal adjustment with high accuracy by following thermal load fluctuations of 0 to 25 kW, contributes to realization of high miniaturization by electron beam exposure, and cooling industrial water Since the brine can be effectively cooled by the heat exchanger 101, the entire apparatus can be downsized.

また、冷却水回路100における減圧弁102の有無による温度制御性を検討したところ、減圧弁102を全開にした無調整状態では、電子ビーム露光装置300の保温部301を保温する負荷開始後には熱交換器101でのブラインへの冷却に際しての温度変動の抑制効果は優れず、時間推移の大部分で温度変動のスペックの±0.1℃を超えるスペックアウトになってしまうことが判った。これはブライン回路200における熱負荷変動時の温度制御の影響が冷却水回路100の冷却水の圧力変動の影響を受け易いためと考えられる。また、仮に減圧弁102を使用しなければ、冷却水の圧力が0.07MPa変動するため、熱負荷が加わるとハンチングして温度が安定しなくなり、スペックアウトを起こすことになってしまう。従って、工業用水を冷却水として用いて温度調整する場合には、冷却水の圧力を安定させることが極めて重要になると考えられる。その他、減圧弁102を全開にした無調整状態では、負荷開始後には冷却制御弁103の前後差圧(第1の圧力センサP1及び第2の圧力センサP2の差圧)が0.07MPaの変化でバルブ1開度当り0.017℃の変化を示すことが判った。   Further, when the temperature controllability due to the presence or absence of the pressure reducing valve 102 in the cooling water circuit 100 was examined, in an unadjusted state in which the pressure reducing valve 102 is fully opened, heat is applied after the start of the load for keeping the heat retaining unit 301 of the electron beam exposure apparatus 300. It was found that the effect of suppressing the temperature fluctuation at the time of cooling to the brine in the exchanger 101 is not excellent, and the spec out exceeds ± 0.1 ° C. of the spec of the temperature fluctuation over most of the time transition. This is considered to be because the influence of the temperature control at the time of the thermal load fluctuation in the brine circuit 200 is easily influenced by the pressure fluctuation of the cooling water in the cooling water circuit 100. Moreover, if the pressure reducing valve 102 is not used, the pressure of the cooling water fluctuates by 0.07 MPa. Therefore, when a heat load is applied, hunting occurs and the temperature becomes unstable, resulting in specification out. Therefore, when adjusting the temperature using industrial water as cooling water, it is considered to be extremely important to stabilize the pressure of the cooling water. In addition, in the non-adjusted state in which the pressure reducing valve 102 is fully opened, the change in pressure across the cooling control valve 103 (the pressure difference between the first pressure sensor P1 and the second pressure sensor P2) is 0.07 MPa after the load is started. It was found that a change of 0.017 ° C. per opening of the valve was shown.

これに対し、冷却水回路100における減圧弁102を開閉動作させて減圧した調整状態では、電子ビーム露光装置300の保温部301を保温する負荷開始後の熱交換器101でのブラインへの冷却に際しての温度変動の抑制効果が優れ、時間推移に拘らず温度変動のスペックの±0.1℃以内に納まることが判った。このような温度制御性の向上は上述したフィードフォワード制御による影響が大きいと考えられる。その他、減圧弁102を開閉動作させて減圧した調整状態で負荷開始後には冷却制御弁103の前後差圧(第1の圧力センサP1及び第2の圧力センサP2の差圧)が0.04MPaの変化でバルブ1開度当り0.013℃の変化を示すことが判った。   On the other hand, in the adjustment state in which the pressure reducing valve 102 in the cooling water circuit 100 is opened and closed to reduce the pressure, the heat exchanger 101 of the electron beam exposure apparatus 300 is cooled to the brine in the heat exchanger 101 after starting the load for keeping the temperature of the heat retaining unit 301. It was found that the effect of suppressing the temperature fluctuation was excellent, and it was within ± 0.1 ° C. of the temperature fluctuation specification regardless of the time transition. Such an improvement in temperature controllability is considered to be greatly influenced by the feedforward control described above. In addition, after starting the load in the adjusted state in which the pressure reducing valve 102 is opened and closed to reduce the pressure, the differential pressure across the cooling control valve 103 (the pressure difference between the first pressure sensor P1 and the second pressure sensor P2) is 0.04 MPa. It was found that the change showed a change of 0.013 ° C. per valve opening.

因みに、実施例1では電子ビーム露光装置300の保温部301がステージ自体であり、蛇行状の流路孔によるブライン流路がブラインに対する耐腐食性のあるステージ自体の内部に設けられ、その流路孔のブライン出入口となる箇所をステージの移動に追従できるように可撓性を持つホース等の架間ブライン配管で寸法的に余裕を持たせて結合した構造を持つ場合を想定している。その他、ステージに対してそれを保温する保温部301を別体で構成することも可能であり、この場合の保温部301は、蛇行状の流路孔によるブライン流路が内部に設けられると共に、ブラインに対する耐腐食性のある図示されないパネル部材をステージに付設した上、パネル部材における流路孔のブライン出入口となる箇所を同様に可撓性を有するホース等の架間ブライン配管で寸法的に余裕を持たせて結合した複合構造を採用すれば良い。   Incidentally, in the first embodiment, the heat retaining portion 301 of the electron beam exposure apparatus 300 is the stage itself, and the brine flow path by the meandering flow path hole is provided inside the stage itself having corrosion resistance against the brine. A case is assumed in which the portion serving as the brine inlet / outlet of the hole has a structure that is coupled with a dimensional margin with a flexible brine pipe such as a flexible hose so as to follow the movement of the stage. In addition, it is also possible to separately configure the heat retaining unit 301 that retains the temperature with respect to the stage, and in this case, the heat retaining unit 301 is provided with a brine flow path formed by meandering flow path holes therein, A panel member (not shown) that is resistant to brine is attached to the stage, and the location of the panel member that serves as the brine inlet / outlet of the panel member is similarly provided with a flexible hose, etc. What is necessary is just to employ | adopt the composite structure couple | bonded with having.

図2は、実施例1に係るブライン供給装置1に電子ビーム露光装置300を接続しての架設状況、並びに工業用の冷却水の引き回しの概略を説明するために各部の設置上での外観構成を示した斜視図である。   FIG. 2 is an external configuration on installation of each part in order to explain an erection state when the electron beam exposure apparatus 300 is connected to the brine supply apparatus 1 according to the first embodiment and an outline of routing of industrial cooling water. It is the perspective view which showed.

図2を参照すれば、例えば階下に設置されるスタンドアロン型のブライン供給装置1に対して階上に設置される電子ビーム露光装置300を接続して設置を行う場合、ブライン供給装置1と電子ビーム露光装置300との架間高さHは5m(メートル)以下とし、電子ビーム露光装置300の発熱負荷0〜25kWの保温部301における流路孔のブライン出入口となる箇所を架間ブライン配管401で結合すると共に、冷却水回路100における配管接続箇所に外部冷却水配管402が結合され、外部冷却水配管402の冷却水流入側、冷却水流出側の端部は何れも冷却水(工業水)溜め漕内に設置される。   Referring to FIG. 2, for example, when the electron beam exposure apparatus 300 installed on the floor is connected to the stand-alone brine supply apparatus 1 installed on the lower floor, the brine supply apparatus 1 and the electron beam are installed. The height H between the exposure apparatus 300 is 5 m (meters) or less, and an intermediate brine pipe 401 serves as a brine inlet / outlet of the channel hole in the heat retaining portion 301 of the electron beam exposure apparatus 300 with a heat generation load of 0 to 25 kW. In addition, an external cooling water pipe 402 is connected to a pipe connection location in the cooling water circuit 100, and both ends of the cooling water inflow side and the cooling water outflow side of the external cooling water pipe 402 are pooled with cooling water (industrial water). Installed in the cage.

以上に説明した実施例1に係るブライン供給装置1によれば、ワークへの保温用のブラインが循環されるブライン回路200には第1の流量調整バルブ203を介在させたバイパス流路208を設けると共に、ブラインのワークへの供給温度並びにブラインのワークからの戻り温度を検出する温度センサT1、T2と流量センサF1とを設け、ブラインへの冷却用の冷却水が循環される冷却水回路100には熱交換器101の冷却水流入側に水圧調整弁としての減圧弁102とモータM1で駆動されて開閉動作により回路全体における冷却水の流量制御を行う冷却制御弁103とを設け、機器制御ユニット105でワークからの戻り温度についての検出温度とブラインのワークへの供給温度についての検出温度とブラインのワークへの供給流量についての検出流量とに基づいてワークの熱負荷量の算出を行うと共に、係る熱負荷量の演算の結果とワークへの供給温度についての検出温度をPID演算した結果との双方に基づいて算出した制御出力量をモータM1への駆動制御に反映させてフィードフォワード制御を行うため、従来必要とされた冷凍機が不要となり、ワークに電子ビーム露光装置300を適用しても設定された室温付近の温度で温度変動を極力抑制して保温対象の保温部(ステージ)301を±0.05℃程度の高精度に保温維持できるようになる。   According to the brine supply device 1 according to the first embodiment described above, the bypass circuit 208 in which the first flow rate adjustment valve 203 is interposed is provided in the brine circuit 200 in which the brine for keeping warm to the work is circulated. In addition, temperature sensors T1 and T2 for detecting a supply temperature of the brine to the workpiece and a return temperature from the brine workpiece and a flow rate sensor F1 are provided, and the cooling water circuit 100 in which the cooling water for cooling to the brine is circulated is provided. Is provided with a pressure reducing valve 102 as a water pressure adjusting valve and a cooling control valve 103 which is driven by a motor M1 and controls the flow rate of the cooling water in the entire circuit by an opening / closing operation on the cooling water inflow side of the heat exchanger 101, In 105, the detected temperature for the return temperature from the workpiece and the detected temperature for the supply temperature of brine to the workpiece and the supply flow of brine to the workpiece The thermal load amount of the workpiece is calculated based on the detected flow rate of the workpiece, and the calculation result of the thermal load amount is calculated based on both the result of the PID calculation of the detected temperature for the supply temperature to the workpiece. Since the feedforward control is performed by reflecting the control output amount in the drive control to the motor M1, a conventionally required refrigerator is not required, and even when the electron beam exposure apparatus 300 is applied to the workpiece, Temperature variation can be suppressed as much as possible with temperature, and the temperature maintaining part (stage) 301 to be maintained can be maintained at a high accuracy of about ± 0.05 ° C.

図3は、本発明の実施例2に係るブライン供給装置10の基本構成をブライン回路200′でのワークとしての電子ビーム露光装置300への接続、並びにブライン回路200′及び冷却水回路100′を制御する制御装置としての機器制御ユニット(TC)105を含めて示した全体的な概略図である。   FIG. 3 shows the basic configuration of the brine supply device 10 according to the second embodiment of the present invention connected to the electron beam exposure apparatus 300 as a work in the brine circuit 200 ′, and the brine circuit 200 ′ and the cooling water circuit 100 ′. 1 is an overall schematic diagram including a device control unit (TC) 105 as a control device to be controlled. FIG.

図3を参照すれば、実施例2に係るブライン供給装置10は、実施例1に係るブライン供給装置1と比べると、冷却水回路100′において、第1の圧力センサP1と第2の圧力センサP2との間が分岐された配管構造となっており、分岐管毎にモータM1、M2によって開閉動作が駆動される冷却制御弁103a、103bが設けられ、ブライン回路200′において、電子ビーム露光装置300への接続箇所が保温部(ステージ)301a、301bを含めて分岐された配管構造となっており、電子ビーム露光装置300のブライン流入側の分岐管毎に流量センサF1、F2と第2の流量調整バルブ204a、204bとが設けられた点が主な構成上の相違となっている。   Referring to FIG. 3, the brine supply device 10 according to the second embodiment is different from the brine supply device 1 according to the first embodiment in the cooling water circuit 100 ′ in the first pressure sensor P <b> 1 and the second pressure sensor. The pipe structure is branched from P2, and cooling control valves 103a and 103b, which are opened and closed by motors M1 and M2, are provided for each branch pipe. In the brine circuit 200 ′, an electron beam exposure apparatus is provided. 300 has a piping structure branched including the heat retaining portions (stages) 301a and 301b. The flow rate sensors F1 and F2 and the second flow sensors F1 and F2 are connected to the branch pipes on the brine inflow side of the electron beam exposure apparatus 300. The main difference is that the flow rate adjusting valves 204a and 204b are provided.

その他、冷却水回路100′において、冷却水流入方向の手前側から順にバルブ接続部107、ストレーナ109、減圧弁102、第1のソレノイドバルブ104を備えるようにしているが、ここでの減圧弁102以外の他部は実用上、冷却水の循環を停止しての装置の据付設置やメンテナンスでの部品交換等を経た後に安全且つ適確に冷却水を一定量で循環させるために実施例1で説明した冷却水回路100においても適用させることが好ましい。また、冷却水回路100′において、熱交換器101での冷却水流出方向の手前側から順に第4の温度センサT4、逆止弁106、バルブ接続部108を備えるようにしているが、ここでの第4の温度センサT4以外の他部についても実用上、同様な理由により実施例1で説明した冷却水回路100においても適用させることが好ましい。   In addition, the cooling water circuit 100 ′ includes a valve connecting portion 107, a strainer 109, a pressure reducing valve 102, and a first solenoid valve 104 in order from the near side in the cooling water inflow direction. Other than the above, practically, in Example 1, in order to circulate the cooling water in a certain amount safely and appropriately after the installation and installation of the equipment with the cooling water circulation stopped and the parts replacement in the maintenance, etc. It is preferable to apply also to the cooling water circuit 100 described. Further, the cooling water circuit 100 ′ includes a fourth temperature sensor T 4, a check valve 106, and a valve connection portion 108 in order from the front side in the cooling water outflow direction in the heat exchanger 101. For practical reasons, it is preferable to apply the other portions other than the fourth temperature sensor T4 to the cooling water circuit 100 described in the first embodiment for the same reason.

更に、ブライン回路200′において、熱交換器101からのブライン流入方向の手前側から順に第1の温度センサT1、バイパス流路208の接続箇所、金属フィルタ205、逆止弁206、分岐管での流量センサF1、F2と第2の流量調整バルブ204a、204bと第3の圧力センサP3、第4の圧力センサP4とバルブ接続部209、210とを備えるようにして電子ビーム露光装置300への保温部(ステージ)301a、301bに接続しているが、ここでの金属フィルタ205や逆止弁206、或いはバルブ接続部209、210についても実用上、ブラインの循環を停止しての装置の据付設置やメンテナンスでの部品交換等を経た後に安全且つ適確にブラインを一定量で循環させるために実施例1で説明したブライン回路200においても適用させることが好ましい。加えて、ブライン回路200′において、電子ビーム露光装置300からのブライン流出方向の手前側から順に分岐管でのバルブ接続部211、212、分岐合流後の管での第2のソレノイドバルブ207、第2の温度センサT2、ブラインタンク201、ポンプ202、第5の圧力センサP5を備えるようにしているが、ここでの第2の温度センサT2、ブラインタンク201、ポンプ202以外の他部についても実用上、同様な理由により実施例1で説明したブライン回路200においても適用させることが好ましい。   Further, in the brine circuit 200 ′, the first temperature sensor T 1, the connection location of the bypass flow path 208, the metal filter 205, the check valve 206, and the branch pipe are sequentially arranged from the front side in the brine inflow direction from the heat exchanger 101. Insulating the electron beam exposure apparatus 300 with the flow rate sensors F1 and F2, the second flow rate adjustment valves 204a and 204b, the third pressure sensor P3, the fourth pressure sensor P4, and the valve connection portions 209 and 210. Although it is connected to the parts (stages) 301a and 301b, the metal filter 205, the check valve 206, or the valve connection parts 209 and 210 here is also practically installed with the brine stopped circulating. The brine circuit described in the first embodiment in order to circulate the brine in a certain amount safely and accurately after parts replacement for maintenance or maintenance. It is preferred to also be applied at 00. In addition, in the brine circuit 200 ′, the valve connecting portions 211 and 212 in the branch pipes, the second solenoid valve 207 in the pipe after branching and joining, in order from the near side in the brine outflow direction from the electron beam exposure apparatus 300. 2 temperature sensor T 2, brine tank 201, pump 202, and fifth pressure sensor P 5, but other parts other than the second temperature sensor T 2, brine tank 201, and pump 202 are also practical. For the same reason, it is preferably applied to the brine circuit 200 described in the first embodiment.

実施例2に係るブライン供給装置10は、実施例1のブライン供給装置1の場合よりも一層電子ビーム露光装置300での保温部301a、301bの保温機能を実用上でより向上させるための構成を例示したもので、機器制御ユニット105自体の温度制御機能は基本的に同様なものである。   The brine supply device 10 according to the second embodiment has a configuration for further improving the heat retention function of the heat retention units 301a and 301b in the electron beam exposure apparatus 300 more practically than in the case of the brine supply device 1 according to the first embodiment. For example, the temperature control function of the device control unit 105 itself is basically the same.

以上に説明した実施例2に係るブライン供給装置10によれば、分岐管構造でワーク(電子ビーム露光装置300での保温部301a、301b)への保温用のブラインが循環されるブライン回路200′には第1の流量調整バルブ203を介在させたバイパス流路208を設けると共に、ブラインのワークへの供給温度並びにブラインのワークからの戻り温度を検出する温度センサT1、T2を設ける他、分岐管毎に流量センサF1、F2と第2の流量調整バルブ204a、204bとを設け、ブラインへの冷却用の冷却水が循環される冷却水回路100′には熱交換器101の冷却水流入側に水圧調整弁としての減圧弁102とモータM1、M2で駆動されて開閉動作により回路全体における冷却水の流量制御を行う分岐管構造での冷却制御弁103a、103bとを設け、機器制御ユニット105でワークからの戻り温度についての検出温度とブラインのワークへの供給温度についての検出温度とブラインのワークへの供給流量についての分岐管の検出流量とに基づいてワークの熱負荷量の算出を行うと共に、係る熱負荷量演算の結果とワークへの供給温度についての検出温度をPID演算した結果との双方に基づいて算出した制御出力量を分岐管のモータM1、M2への駆動制御に反映させてフィードフォワード制御を行うため、ここでも従来必要とされた冷凍機が不要となり、ワークに電子ビーム露光装置300を適用しても設定された室温付近の温度で温度変動を極力抑制して保温対象の保温部301a、301bを±0.05℃程度の高精度に保温維持できるようになる。   According to the brine supply device 10 according to the second embodiment described above, the brine circuit 200 ′ in which the brine for heat insulation is circulated to the workpiece (the heat insulation units 301a and 301b in the electron beam exposure apparatus 300) in the branch tube structure. In addition to providing a bypass flow path 208 with a first flow rate adjusting valve 203 interposed therebetween, temperature sensors T1 and T2 for detecting the supply temperature of the brine to the workpiece and the return temperature of the brine from the workpiece are provided. The flow rate sensors F1 and F2 and the second flow rate adjustment valves 204a and 204b are provided for each, and the cooling water circuit 100 ′ in which the cooling water for cooling to the brine is circulated is connected to the cooling water inflow side of the heat exchanger 101. Cooling in a branch pipe structure that is driven by a pressure reducing valve 102 as a water pressure adjusting valve and motors M1 and M2 and controls the flow rate of cooling water in the entire circuit by opening and closing operations. The control valves 103a and 103b are provided, and the device control unit 105 detects the detection temperature for the return temperature from the work, the detection temperature for the supply temperature of brine to the work, and the detection flow rate of the branch pipe for the supply flow of brine to the work. And the control output amount calculated based on both the result of the thermal load amount calculation and the result of PID calculation of the detected temperature for the supply temperature to the workpiece is branched. Since feedforward control is performed by reflecting it in the drive control of the tube motors M1 and M2, a conventionally required refrigerator is no longer necessary, and the room temperature set even when the electron beam exposure apparatus 300 is applied to the workpiece. Temperature variation can be suppressed as much as possible at a temperature in the vicinity, and the heat retaining portions 301a and 301b to be heat retained can be maintained at high accuracy of about ± 0.05 ° C. The

尚、実施例2に係るブライン供給装置においても、電子ビーム露光装置300の保温部301a、301bがステージ自体であり、蛇行状の流路孔によるブライン流路がブラインに対する耐腐食性のあるステージ自体の内部に設けられ、その流路孔のブライン出入口となる箇所をステージの移動に追従できるように可撓性を持つホース等の架間ブライン配管で寸法的に余裕を持たせて結合した構造を持つ場合を想定している。その他、ステージに対してそれを保温する保温部301a、301bを別体で構成することも可能であり、この場合の保温部301a、301bは、実施例1で説明した場合と同様に蛇行状の流路孔によるブライン流路が内部に設けられると共に、ブラインに対する耐腐食性のある図示されないパネル部材をステージに付設した上、パネル部材における流路孔のブライン出入口となる箇所を同様に可撓性を有するホース等の架間ブライン配管で寸法的に余裕を持たせて結合した複合構造を採用すれば良い。   Note that also in the brine supply apparatus according to the second embodiment, the heat retaining units 301a and 301b of the electron beam exposure apparatus 300 are the stage itself, and the brine flow path formed by meandering flow path holes is the corrosion resistant stage itself for the brine. A structure that is connected inside with a dimensional margin with a flexible brine pipe such as a flexible hose so that the location of the inlet / outlet of the flow path hole can follow the movement of the stage. It is assumed that you have one. In addition, the heat retaining portions 301a and 301b that retain the temperature of the stage can be configured separately, and the heat retaining portions 301a and 301b in this case are serpentine like the case described in the first embodiment. A brine flow path with flow path holes is provided inside, and a panel member (not shown) that is resistant to brine is attached to the stage, and the position of the flow channel hole in the panel member that serves as the brine inlet / outlet is also flexible. What is necessary is just to employ | adopt the composite structure couple | bonded with dimensional margins by the interstitial brine pipings, such as a hose which has.

尚、実施例2に係るブライン供給装置10では、冷却水回路100′、ブライン回路200′の分岐を2系統とし、ブライン回路200′の分岐を電子ビーム露光装置300の真空容器外で行った場合を説明したが、分岐を3系統以上としたり、或いは分岐を電子ビーム露光装置300の真空容器内で行わせる構成にすることも可能である。また、各実施例で説明した保温温度の設定(目標温度=20℃)は、あくまでも一例であり、室温(20〜27℃)の範囲で種々変更可能なものである。従って、本発明のブライン供給装置は各実施例で開示した形態に限定されない。   In the brine supply device 10 according to the second embodiment, the cooling water circuit 100 ′ and the brine circuit 200 ′ are divided into two systems, and the brine circuit 200 ′ is branched outside the vacuum vessel of the electron beam exposure apparatus 300. However, it is also possible to adopt a configuration in which the number of branches is three or more, or the branches are performed in the vacuum vessel of the electron beam exposure apparatus 300. The setting of the heat retention temperature (target temperature = 20 ° C.) described in each embodiment is merely an example, and various changes can be made within a range of room temperature (20 to 27 ° C.). Therefore, the brine supply apparatus of the present invention is not limited to the form disclosed in each embodiment.

1、10 ブライン供給装置
100、100′ 冷却水回路
101 熱交換器(蒸発器)
102 減圧弁
103、103a、103b 冷却制御弁
104 第1のソレノイドバルブ
105 機器制御ユニット(TC)
106、206 逆止弁
107、108、209、210、211、212 バルブ接続部
109 ストレーナ
200、200′ ブライン回路
201 ブラインタンク(TANK)
202 ポンプ
203 第1の流量調整バルブ
204、204a、204b 第2の流量調整バルブ
205 金属フィルタ
207 第2のソレノイドバルブ
208 バイパス流路
300 電子ビーム露光装置
301、301a、301b 保温部
401 架間ブライン配管
402 外部冷却水配管
F1、F2 流量センサ
P1、P2、P3、P4、P5 圧力センサ
M1、M2 モータ
T1 第1の温度センサ
T2 第2の温度センサ
T3 第3の温度センサ
T4 第4の温度センサ
1, 10 Brine supply device 100, 100 'Cooling water circuit 101 Heat exchanger (evaporator)
102 Pressure reducing valves 103, 103a, 103b Cooling control valve 104 First solenoid valve 105 Equipment control unit (TC)
106, 206 Check valve 107, 108, 209, 210, 211, 212 Valve connection 109 Strainer 200, 200 'Brine circuit 201 Brine tank (TANK)
202 Pump 203 First flow rate adjustment valve 204, 204a, 204b Second flow rate adjustment valve 205 Metal filter 207 Second solenoid valve 208 Bypass channel 300 Electron beam exposure apparatus 301, 301a, 301b Thermal insulation unit 401 Brine piping between frames 402 External cooling water piping F1, F2 Flow rate sensor P1, P2, P3, P4, P5 Pressure sensor M1, M2 Motor T1 First temperature sensor T2 Second temperature sensor T3 Third temperature sensor T4 Fourth temperature sensor

Claims (8)

ワークへの保温用のブラインが循環されるブライン回路と当該ブラインを冷却するための冷却水が循環される冷却水回路とで熱交換器を共有し、使用者により設定される設定温度と当該ブライン回路に接続される当該ワークのワーク温度との温度差に応じてブライン供給された温度を制御装置により当該冷却水回路で制御して当該ワークを室温付近で保温する機能を持つブライン供給装置において、
前記ブライン回路は、前記熱交換器のブライン流出側とブラインタンクとの間を接続して当該熱交換器で熱交換冷却された前記ブラインの一部を当該ブラインタンクへ流し戻すと共に、当該流し戻しの流量を調整するための第1の流量調整バルブが中途箇所に介在接続されたバイパス流路と、前記熱交換器のブライン流出側で前記バイパス流路の接続箇所よりも当該熱交換器側寄りに設けられて前記ブラインの前記ワークへの供給温度を検出する第1の温度センサと、前記ワークのブライン流出側と前記ブラインタンクとの間に設けられて前記ブラインの当該ワークからの戻り温度を検出する第2の温度センサと、前記ワークのブライン流入側と前記バイパス流路の接続箇所との間に介在接続されて前記ブラインの当該ワークへの供給流量を検出する流量センサと、前記ワークのブライン流入側と前記バイパス流路の接続箇所との間の前記流量センサよりも当該ワークのブライン流入側寄りに介在接続されて前記ブラインの流量を調整するための第2の流量調整バルブと、を備え、
前記冷却水回路は、前記熱交換器の冷却水流入側に設けられて前記冷却水の供給圧力を調整する水圧調整弁と、前記熱交換器の冷却水流入側で前記水圧調整弁よりも当該熱交換器側寄りに介在接続されると共に、モータで駆動されて開閉動作により回路全体における前記冷却水の流量制御を行う冷却制御弁と、を備え、
前記制御装置は、前記第2の温度センサで検出された前記ブラインの前記ワークからの戻り温度と前記第1の温度センサで検出された当該ブラインの当該ワークへの供給温度と前記流量センサで検出された当該ブラインの当該ワークへの供給流量とに基づいて当該ワークの熱負荷量の算出を行うと共に、当該熱負荷量の演算の結果と当該第1の温度センサで検出された当該ブラインの当該ワークへの供給温度について比例、積分、微分を含むPID演算した結果との双方に基づいて算出した制御出力量を前記モータへの駆動制御に反映させてフィードフォワード制御を行うことを特徴とするブライン供給装置。
A heat exchanger is shared between the brine circuit in which the brine for keeping heat to the work is circulated and the cooling water circuit in which the cooling water for cooling the brine is circulated, and the set temperature set by the user and the brine In the brine supply device having a function of controlling the temperature of the brine supplied according to the temperature difference from the workpiece temperature of the workpiece connected to the circuit with the cooling water circuit by the control device and keeping the workpiece near room temperature,
The brine circuit is connected between the brine outlet side of the heat exchanger and a brine tank, and sends back a part of the brine that has been heat exchange cooled by the heat exchanger to the brine tank, and the flow back And a bypass flow path in which a first flow rate adjustment valve for adjusting the flow rate of the heat exchanger is interposed and connected at a midpoint, and closer to the heat exchanger side than the connection position of the bypass flow path on the brine outflow side of the heat exchanger A first temperature sensor for detecting a supply temperature of the brine to the workpiece, and a return temperature of the brine from the workpiece, provided between the brine outlet side of the workpiece and the brine tank. A second temperature sensor to be detected, and connected between the brine inflow side of the workpiece and the connection location of the bypass flow path, and the supply flow rate of the brine to the workpiece is determined. For adjusting the flow rate of the brine by being interposed and connected closer to the brine inflow side of the workpiece than the flow rate sensor between the brine inflow side of the workpiece and the connection location of the bypass flow path A second flow rate adjustment valve,
The cooling water circuit is provided on the cooling water inflow side of the heat exchanger and adjusts the supply pressure of the cooling water, and the cooling water circuit on the cooling water inflow side of the heat exchanger is more than the water pressure adjustment valve. A cooling control valve that is intervened near the heat exchanger side and driven by a motor to control the flow rate of the cooling water in the entire circuit by an opening and closing operation,
The control device detects the return temperature of the brine detected by the second temperature sensor from the workpiece, the supply temperature of the brine detected by the first temperature sensor to the workpiece, and the flow rate sensor. The thermal load amount of the workpiece is calculated based on the supplied flow rate of the brine to the workpiece, the calculation result of the thermal load amount and the brine detected by the first temperature sensor Brine characterized in that feedforward control is performed by reflecting the control output amount calculated based on both the result of PID calculation including proportionality, integration, and differentiation on the supply temperature to the workpiece in drive control to the motor. Feeding device.
請求項1記載のブライン供給装置において、
前記水圧調整弁は、前記冷却水の供給圧力を減圧調整する減圧弁であり、
前記冷却水回路は、前記減圧弁と前記冷却制御弁との間で前記冷却水の圧力を検出する第1の圧力センサと、前記冷却制御弁と前記熱交換器の冷却水流入側との間における当該冷却制御弁側寄りで前記冷却水の圧力を検出する第2の圧力センサと、前記冷却制御弁と前記熱交換器の冷却水流入側との間における当該熱交換器側寄りで前記冷却水の当該熱交換器への供給温度を検出する第3の温度センサと、前記熱交換器の冷却水流出側に設けられて前記冷却水の当該熱交換器からの戻り温度を検出する第4の温度センサと、を備え、
前記制御装置は、前記第3の温度センサで検出された前記冷却水の前記熱交換器への供給温度と前記第4の温度センサで検出された前記冷却水の前記熱交換器からの戻り温度との差分、及び前記第1の圧力センサ及び前記第2の圧力センサで検出される前記冷却水回路における前記冷却水の圧力差に基づいて算出した当該冷却水回路の熱負荷量を用いて前記減圧弁で減圧調整された当該冷却水の供給圧力に応じた前記冷却制御弁に対する当該冷却水の流量制御を補正することを特徴とするブライン供給装置。
The brine supply device according to claim 1, wherein
The water pressure adjusting valve is a pressure reducing valve that adjusts the supply pressure of the cooling water under reduced pressure,
The cooling water circuit includes a first pressure sensor that detects a pressure of the cooling water between the pressure reducing valve and the cooling control valve, and between the cooling control valve and a cooling water inflow side of the heat exchanger. A second pressure sensor for detecting the pressure of the cooling water near the cooling control valve side, and the cooling near the heat exchanger side between the cooling control valve and the cooling water inflow side of the heat exchanger. A third temperature sensor for detecting a supply temperature of water to the heat exchanger, and a fourth temperature sensor for detecting a return temperature of the cooling water from the heat exchanger provided on the cooling water outflow side of the heat exchanger. And a temperature sensor of
The control device includes a supply temperature of the cooling water detected by the third temperature sensor to the heat exchanger and a return temperature of the cooling water detected by the fourth temperature sensor from the heat exchanger. And the heat load amount of the cooling water circuit calculated based on the difference in pressure of the cooling water in the cooling water circuit detected by the first pressure sensor and the second pressure sensor. A brine supply device that corrects flow rate control of the cooling water with respect to the cooling control valve according to the supply pressure of the cooling water that has been decompressed and adjusted by the pressure reducing valve.
請求項1記載のブライン供給装置において、
前記ブライン回路は、前記ワークへの接続箇所が保温部を含めて分岐された配管構造となっており、
前記第2の流量調整バルブは、前記ワークのブライン流入側の分岐管毎に設けられたことを特徴とするブライン供給装置。
The brine supply device according to claim 1, wherein
The brine circuit has a piping structure in which a connection point to the work is branched including a heat retaining part,
The brine supply device, wherein the second flow rate adjustment valve is provided for each branch pipe on the brine inflow side of the workpiece.
請求項2記載のブライン供給装置において、
前記冷却水回路は、前記第1の圧力センサと前記第2の圧力センサとの間が分岐された配管構造となっており、
前記冷却制御弁は、分岐管毎に設けられたことを特徴とするブライン供給装置。
The brine supply device according to claim 2, wherein
The cooling water circuit has a piping structure in which the first pressure sensor and the second pressure sensor are branched.
The brine supply device according to claim 1, wherein the cooling control valve is provided for each branch pipe.
請求項1〜4の何れか1項記載のブライン供給装置において、
前記ワークは、試料としての半導体基板が載置される保温対象となるステージを含むと共に、電子ビームを用いて当該半導体基板へ微細加工を行う電子ビーム露光装置であることを特徴とするブライン供給装置。
In the brine supply apparatus of any one of Claims 1-4,
The brine supplying apparatus characterized in that the work includes an electron beam exposure apparatus that includes a stage to be kept warm on which a semiconductor substrate as a sample is placed, and performs fine processing on the semiconductor substrate using an electron beam. .
請求項5項記載のブライン供給装置において、
前記ステージを保温する保温部に接続される配管は当該ステージの移動に追従できるように可撓性を持つことを特徴とするブライン供給装置。
The brine supply device according to claim 5, wherein
A brine supply device characterized in that a pipe connected to a heat retaining section for retaining the stage has flexibility so as to follow the movement of the stage.
請求項6項記載のブライン供給装置において、
前記ステージを保温する保温部は、蛇行状の流路孔によるブライン流路が内部に設けられると共に、前記ブラインに対する耐腐食性のあるパネル部材を当該ステージに付設した上、当該パネル部材における当該流路孔のブライン出入口となる箇所を前記配管で結合した複合構造を持つことを特徴とするブライン供給装置。
The brine supply device according to claim 6, wherein
The heat retaining section for retaining the stage is provided with a brine flow path formed by meandering flow path holes, and a panel member having corrosion resistance to the brine is attached to the stage, and the flow in the panel member is A brine supply device having a composite structure in which locations serving as brine inlets / outlets of passage holes are connected by the piping.
請求項6項記載のブライン供給装置において、
前記ステージを保温する保温部は、蛇行状の流路孔によるブライン流路が前記ブラインに対する耐腐食性のある当該ステージ自体の内部に設けられ、当該流路孔のブライン出入口となる箇所を前記配管で結合した構造を持つことを特徴とするブライン供給装置。
The brine supply device according to claim 6, wherein
The heat retaining section for retaining the stage has a brine flow path with meandering flow path holes provided inside the stage itself that is resistant to corrosion with respect to the brine, and a pipe serving as a brine inlet / outlet of the flow path hole. A brine supply device characterized by having a structure coupled with each other.
JP2015197134A 2015-10-02 2015-10-02 Brine feeder Active JP6533445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197134A JP6533445B2 (en) 2015-10-02 2015-10-02 Brine feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197134A JP6533445B2 (en) 2015-10-02 2015-10-02 Brine feeder

Publications (2)

Publication Number Publication Date
JP2017067422A true JP2017067422A (en) 2017-04-06
JP6533445B2 JP6533445B2 (en) 2019-06-19

Family

ID=58492108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197134A Active JP6533445B2 (en) 2015-10-02 2015-10-02 Brine feeder

Country Status (1)

Country Link
JP (1) JP6533445B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026892A (en) * 2018-08-09 2020-02-20 伸和コントロールズ株式会社 Chiller apparatus
CN111854317A (en) * 2020-06-29 2020-10-30 珠海格力电器股份有限公司 Refrigerator control method and device for effectively improving temperature control precision and refrigerator
KR20230119986A (en) * 2022-02-08 2023-08-16 유니셈(주) Chiller apparatus using peak cut technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026892A (en) * 2018-08-09 2020-02-20 伸和コントロールズ株式会社 Chiller apparatus
JP7144839B2 (en) 2018-08-09 2022-09-30 伸和コントロールズ株式会社 Chiller equipment
CN111854317A (en) * 2020-06-29 2020-10-30 珠海格力电器股份有限公司 Refrigerator control method and device for effectively improving temperature control precision and refrigerator
KR20230119986A (en) * 2022-02-08 2023-08-16 유니셈(주) Chiller apparatus using peak cut technology
KR102652924B1 (en) * 2022-02-08 2024-04-01 유니셈 주식회사 Chiller apparatus using peak cut technology

Also Published As

Publication number Publication date
JP6533445B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
US9664415B2 (en) Hot-water heat pump and method of controlling the same
KR101109730B1 (en) Chiller apparatus for semiconductor process and Method for controlling temperature in the same
US11187439B2 (en) Heat source system
JP2017067422A (en) Brine supply device
JP4620746B2 (en) Supply air temperature control system for clean rooms
TWI794317B (en) Liquid temperature adjustment device and temperature adjustment method using the same
JP5284295B2 (en) Heat source control system and heat source control method
JP4600139B2 (en) Air conditioner and control method thereof
JP5856520B2 (en) Air conditioning control system and air conditioning control method
JP5379650B2 (en) Primary pump type heat source variable flow rate control system and method
JP5685782B2 (en) Chiller linked operation method and system
KR20110125595A (en) Temperature controller, fluid circulator, and temperature control method using temperature controller
US11353234B2 (en) Air conditioning system
JP2008039230A (en) Heat medium piping system
WO2018180903A1 (en) Heating device and heating method
KR20210013126A (en) Heat source system, heat source device, control device
JP5633074B2 (en) Temperature control device
JP2018119764A (en) Controller of heat source system and control method thereof
JP2016044853A (en) Cooling system and its controlling method
JP2012248014A (en) Temperature conditioner
KR101438182B1 (en) Attachment for controlling the flow rate and temperature of brine
JP2005180848A (en) Heat supply system
JP2005180822A (en) Cooling device
JP6951259B2 (en) Air conditioning system
KR102042653B1 (en) Apparatus for regulating flow rate of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190524

R150 Certificate of patent or registration of utility model

Ref document number: 6533445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250