JP2017065980A - Ultraviolet permeation visible light absorption glass and ultraviolet permeation visible light absorption filter - Google Patents
Ultraviolet permeation visible light absorption glass and ultraviolet permeation visible light absorption filter Download PDFInfo
- Publication number
- JP2017065980A JP2017065980A JP2015194088A JP2015194088A JP2017065980A JP 2017065980 A JP2017065980 A JP 2017065980A JP 2015194088 A JP2015194088 A JP 2015194088A JP 2015194088 A JP2015194088 A JP 2015194088A JP 2017065980 A JP2017065980 A JP 2017065980A
- Authority
- JP
- Japan
- Prior art keywords
- visible light
- mass
- ultraviolet
- irradiation
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 117
- 230000031700 light absorption Effects 0.000 title claims abstract description 29
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 16
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 16
- 229910052745 lead Inorganic materials 0.000 claims abstract description 16
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 48
- 238000002834 transmittance Methods 0.000 claims description 48
- 230000005540 biological transmission Effects 0.000 claims description 33
- 230000005855 radiation Effects 0.000 claims description 26
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 238000012423 maintenance Methods 0.000 claims description 5
- 230000006866 deterioration Effects 0.000 abstract description 13
- 230000007613 environmental effect Effects 0.000 abstract description 11
- 230000035699 permeability Effects 0.000 abstract description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 19
- 229910000428 cobalt oxide Inorganic materials 0.000 description 18
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 18
- 238000000411 transmission spectrum Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 13
- 239000005304 optical glass Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000004031 devitrification Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000511976 Hoya Species 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- QNEFNFIKZWUAEQ-UHFFFAOYSA-N carbonic acid;potassium Chemical compound [K].OC(O)=O QNEFNFIKZWUAEQ-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0085—Compositions for glass with special properties for UV-transmitting glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/226—Glass filters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Glass Compositions (AREA)
- Optical Filters (AREA)
Abstract
Description
本発明は、紫外線透過可視光吸収ガラスおよび紫外線透過可視光吸収フィルターに関する。 The present invention relates to an ultraviolet transmissive visible light absorbing glass and an ultraviolet transmissive visible light absorbing filter.
従来より、紫外線硬化樹脂用光源等の紫外線照射装置において、可視光を吸収しつつ紫外線を選択的に透過する紫外線透過可視光吸収フィルターが用いられており、係るフィルターを構成する黒色ガラスとして、例えば、特許文献1(特公平4−32019号公報)記載のシリケートガラスが提案されるようになっていた。 Conventionally, in an ultraviolet irradiation device such as a light source for an ultraviolet curable resin, an ultraviolet transmission visible light absorption filter that selectively transmits ultraviolet rays while absorbing visible light has been used, and as a black glass constituting such a filter, for example, The silicate glass described in Patent Document 1 (Japanese Patent Publication No. 4-32019) has been proposed.
しかしながら、特許文献1記載の黒色ガラスは、紫外線透過率を向上させたり透過率を調整するためにPbOやAs2O3を含有するものであるのに対し、近年においては、環境負荷を低減するために、Pb、Asの他、Cd、Cr等の元素を含まないガラスが求められるようになっている。 However, the black glass described in Patent Document 1 contains PbO and As 2 O 3 in order to improve the ultraviolet transmittance and adjust the transmittance. In recent years, however, the environmental load is reduced. Therefore, glass that does not contain elements such as Cd and Cr in addition to Pb and As has been demanded.
一方、省エネルギー化および作業の効率化のために、上記フィルターに使用される紫外線透過可視光吸収ガラスとしては、上記元素を含まなくても可視光の吸収性および紫外線の透過性に優れたものが求められるようになっている。 On the other hand, in order to save energy and improve work efficiency, the UV-transmitting visible light absorbing glass used in the above-mentioned filter is excellent in visible light absorption and UV transmittance even if it does not contain the above elements. It has come to be required.
また、光学ガラスに高輝度で放射照度の大きな光を照射すると、ソーラリゼーションと称される着色現象を生じてガラスの透過率の低下を招き易く、このソーラリゼーションは、特に紫外線領域の光を含む照射光を照射した際に生じ易いため、紫外線透過可視光吸収フィルターに使用されるガラスも、長時間の使用に供された場合には、劣化(紫外線領域における吸収)を生じて紫外線領域における透過率の低下を招き易い。 In addition, when the optical glass is irradiated with light with high brightness and high irradiance, a coloring phenomenon called solarization is likely to occur, leading to a decrease in the transmittance of the glass. Glass that is used for UV-transmitting visible light absorption filters also deteriorates (absorption in the UV region) when used for a long period of time. It tends to cause a decrease in transmittance.
このような状況下、本発明は、環境負荷を低減しつつ、350〜370nmの波長領域における透過率が選択的に高く、ソーラリゼーションによる劣化を抑制した新規な紫外線透過可視光吸収ガラスおよび当該ガラスからなる紫外線透過可視光吸収フィルターを提供することを目的とするものである。 Under such circumstances, the present invention provides a novel ultraviolet-transmitting visible light-absorbing glass that has a selectively high transmittance in the wavelength region of 350 to 370 nm and suppresses deterioration due to solarization, while reducing the environmental burden. An object of the present invention is to provide an ultraviolet light transmitting visible light absorbing filter made of glass.
上記目的を達成するために本発明者が鋭意検討したところ、実質的にPb、As、CdおよびCrを含まず、CoO 0.1〜2質量%、NiO 1〜5質量%、TiO2 0〜1質量%、Nb2O5 0.1〜10質量%、前記TiO2およびNb2O5を合計で0.1〜10質量%含む紫外線透過可視光吸収ガラスにより、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。 As a result of intensive studies by the inventor in order to achieve the above object, Pb, As, Cd and Cr are not substantially contained, CoO 0.1 to 2 % by mass, NiO 1 to 5% by mass, TiO 2 0 to 0%. The above-mentioned technical problem can be solved by ultraviolet transmission visible light absorbing glass containing 1% by mass, Nb 2 O 5 0.1 to 10% by mass, and TiO 2 and Nb 2 O 5 in total 0.1 to 10% by mass. As a result, the present invention has been completed based on this finding.
すなわち、本発明は、
(1)実質的にPb、As、CdおよびCrを含まず、CoO 0.1〜2質量%、NiO 1〜5質量%、TiO2 0〜1質量%、Nb2O5 0.1〜10質量%、前記TiO2およびNb2O5を合計で0.1〜10質量%含むことを特徴とする紫外線透過可視光吸収ガラス、
(2)前記TiO2とNb2O5の合計含有割合に対するTiO2の含有割合(TiO2/(TiO2+Nb2O5))が、0〜0.5である上記(1)に記載の紫外線透過可視光吸収ガラス、
(3)SiO2 50〜70質量%、
B2O3 0〜5質量%、
Al2O3 0〜5質量%、
Na2O 5〜20質量%、
K2O 0〜10質量%、
CaO 0〜15質量%、
ZnO 0〜5質量%、
BaO 0〜15質量%、
Sb2O3 0〜2質量%
をさらに含む上記(1)または(2)に記載の紫外線透過可視光吸収ガラス、
(4)厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光を照射したときに、前記照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値が75%以上である上記(1)〜(3)のいずれかに記載の紫外線透過可視光吸収ガラス、
(5)厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光を照射したときに、前記照射光の照射開始時点での200〜290nmの波長領域における透過率および410〜690nmの波長領域における透過率がいずれも1%以下である上記(4)に記載の紫外線透過可視光吸収ガラス、
(6)厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光を100時間照射したときに、下記式(I)
(B/A)×100 (I)
(ただし、Aは前記照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値(%)であり、Bは前記照射光の照射開始100時間経過時点での350〜370nmの波長領域における透過率の最大値(%)である)
で表される維持率が90%以上である
上記(1)〜(5)のいずれかに記載の紫外線透過可視光吸収ガラス、
(7)上記(1)〜(6)のいずれかに記載の紫外線透過可視光吸収ガラスからなることを特徴とする紫外線透過可視光吸収フィルター
を提供するものである。
That is, the present invention
(1) containing substantially no Pb, As, Cd, and Cr, CoO 0.1 to 2 mass%, NiO 1 to 5 wt%, TiO 2 0 to 1 wt%, Nb 2 O 5 0.1~10 UV-transmitting visible light absorbing glass characterized by containing 0.1% by mass to 10% by mass of TiO 2 and Nb 2 O 5 in total,
(2) The content ratio of TiO 2 to the total content ratio of TiO 2 and Nb 2 O 5 (TiO 2 / (TiO 2 + Nb 2 O 5 )) is 0 to 0.5. UV-transmitting visible light absorbing glass,
(3) SiO 2 50~70 wt%,
B 2 O 3 0-5% by mass,
Al 2 O 3 0-5% by mass,
Na 2 O 5-20% by mass,
K 2 O 0-10% by mass,
CaO 0-15% by mass,
ZnO 0-5% by mass,
BaO 0-15% by mass,
Sb 2 O 3 0-2% by mass
The ultraviolet-transmitting visible light absorbing glass according to (1) or (2), further comprising:
(4) When the irradiation light including ultraviolet light and visible light is irradiated at a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm, the irradiation light The ultraviolet-transmitting visible light absorbing glass according to any one of the above (1) to (3), wherein the maximum transmittance in the wavelength region of 350 to 370 nm at the start of irradiation is 75% or more,
(5) When the irradiation light including ultraviolet light and visible light is irradiated with a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm, the irradiation light UV-transmitting visible light absorbing glass according to (4) above, wherein the transmittance in the wavelength region of 200 to 290 nm and the transmittance in the wavelength region of 410 to 690 nm are both 1% or less,
(6) When irradiated with irradiation light including ultraviolet light and visible light at a radiation intensity of 500 mW · cm −2 for 100 hours from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm, Formula (I)
(B / A) × 100 (I)
(However, A is the maximum value (%) of the transmittance in the wavelength region of 350 to 370 nm at the start of irradiation of the irradiation light, and B is 350 to 370 nm at the time when 100 hours have elapsed from the start of irradiation of the irradiation light. (Maximum transmittance (%) in the wavelength region)
The ultraviolet transmission visible light absorbing glass according to any one of the above (1) to (5), wherein the maintenance ratio represented by:
(7) An ultraviolet-transmitting visible light absorbing filter comprising the ultraviolet-transmitting visible light-absorbing glass according to any one of (1) to (6) above is provided.
本発明によれば、環境負荷を低減しつつ、350〜370nmの波長領域における透過率が選択的に高く、ソーラリゼーションによる劣化を抑制した紫外線透過可視光吸収ガラスを提供できるとともに、当該ガラスからなる紫外線透過可視光吸収フィルターを提供することができる。 According to the present invention, while reducing the environmental load, it is possible to provide an ultraviolet-transmitting visible light absorbing glass that has a selectively high transmittance in the wavelength region of 350 to 370 nm and suppresses deterioration due to solarization. An ultraviolet transmitting visible light absorbing filter can be provided.
先ず、本発明に係る紫外線透過可視光吸収ガラスについて説明する。
本発明に係る紫外線透過可視光吸収ガラスは、実質的にPb、As、CdおよびCrを含まず、CoO 0.1〜2質量%、NiO 1〜5質量%、TiO2 0〜1質量%、Nb2O5 0.1〜10質量%、前記TiO2およびNb2O5を合計で0.1〜10質量%を含むことを特徴とするものである。
First, the ultraviolet transmitting visible light absorbing glass according to the present invention will be described.
The ultraviolet light transmission visible light absorbing glass according to the present invention is substantially free of Pb, As, Cd and Cr, CoO 0.1 to 2 % by mass, NiO 1 to 5% by mass, TiO 2 0 to 1% by mass, Nb 2 O 5 0.1 to 10% by weight, characterized in that comprising 0.1 to 10 wt% of the TiO 2 and Nb 2 O 5 in total.
本出願書類において、紫外線透過可視光吸収ガラスとは、紫外光および可視光を含む照射光を照射したときに、350〜370nmの波長領域における紫外光を選択的に透過し、410〜690nmの波長領域における可視光を選択的に吸収するガラスを意味する。 In the present application document, the UV-transmitting visible light absorbing glass refers to selectively transmitting UV light in a wavelength region of 350 to 370 nm when irradiated with irradiation light including UV light and visible light, and a wavelength of 410 to 690 nm. It means glass that selectively absorbs visible light in the region.
本発明に係る紫外線透過可視光吸収ガラスは、CoOを、0.1〜2質量%含み、0.1〜1質量%含むことがより好ましい。 The ultraviolet light visible light absorbing glass according to the present invention contains 0.1 to 2% by mass of CoO, more preferably 0.1 to 1% by mass.
CoOは、本発明に係る紫外線透過可視光吸収ガラスの必須成分であって、紫外線を透過し可視光を吸収する成分である。
CoOの含有割合が0.1質量%未満である場合には、上記効果を十分に発揮し難くなり、CoOの含有割合が2質量%を超えると、紫外領域における透過率が低下し易くなる。
CoO is an essential component of the ultraviolet light transmitting visible light absorbing glass according to the present invention, and is a component that transmits ultraviolet light and absorbs visible light.
When the content ratio of CoO is less than 0.1% by mass, the above effect is not sufficiently exhibited, and when the content ratio of CoO exceeds 2% by mass, the transmittance in the ultraviolet region is likely to decrease.
また、本発明に係る紫外線透過可視光吸収ガラスは、NiOを、1〜5質量%含み、1〜3質量%含むことがより好ましい。 Moreover, the ultraviolet light transmission visible light absorption glass which concerns on this invention contains 1-5 mass% of NiO, and it is more preferable that 1-3 mass% is included.
NiOは、本発明に係る紫外線透過可視光吸収ガラスの必須成分であって、紫外線を透過し可視光を吸収する成分である。
NiOの含有割合が1質量%未満である場合には、上記効果を十分に発揮し難くなり、NiOの含有割合が5質量%を超えると、紫外領域における透過率が低下し易くなる。
NiO is an essential component of the ultraviolet light transmitting visible light absorbing glass according to the present invention, and is a component that transmits ultraviolet light and absorbs visible light.
When the content ratio of NiO is less than 1% by mass, it is difficult to sufficiently exhibit the above effect, and when the content ratio of NiO exceeds 5% by mass, the transmittance in the ultraviolet region is likely to decrease.
CoOおよびNiOの合計含有割合は、1.1〜7質量%であることが好ましく、1.1〜4質量%であることがより好ましい。 The total content of CoO and NiO is preferably 1.1 to 7% by mass, and more preferably 1.1 to 4% by mass.
本発明に係る紫外線透過可視光吸収ガラスは、CoOおよびNiOの両者を含有することによって、紫外線を透過しつつ、波長410nm〜690nmに亘る可視光領域全域の光を効果的に吸収することができる。
CoOおよびNiOの合計含有割合が1.1質量%未満であると、可視光を十分に吸収し難くなり、CoOおよびNiOの合計含有割合が7質量%を超えると、紫外領域における透過率が低下し易くなる。
By containing both CoO and NiO, the ultraviolet light-transmitting visible light absorbing glass according to the present invention can effectively absorb light in the entire visible light region over a wavelength range of 410 nm to 690 nm while transmitting ultraviolet light. .
When the total content of CoO and NiO is less than 1.1% by mass, it becomes difficult to absorb visible light sufficiently. When the total content of CoO and NiO exceeds 7% by mass, the transmittance in the ultraviolet region decreases. It becomes easy to do.
本発明に係る紫外線透過可視光吸収ガラスは、TiO2を、0〜1質量%含み、0〜0.5質量%含むことがより好ましい。 The ultraviolet light transmission visible light absorbing glass according to the present invention contains 0 to 1% by mass and more preferably 0 to 0.5% by mass of TiO 2 .
TiO2は、本発明に係る紫外線透過可視光吸収ガラスの任意成分であって、後述するNb2O5と共働して所望の紫外線透過効果およびソーラリゼーションによる劣化を抑制し得る効果を発揮することができる。
ただし、TiO2の含有割合が多くなると紫外光領域における透過率が低下し易くなることから、その含有割合は1質量%以下に制限される。
TiO 2 is an optional component of the UV-transmitting visible light absorbing glass according to the present invention, and exerts the desired UV-transmitting effect and the effect of suppressing deterioration due to solarization in cooperation with Nb 2 O 5 described later. can do.
However, when the content ratio of TiO 2 increases, the transmittance in the ultraviolet light region tends to decrease, so the content ratio is limited to 1% by mass or less.
本発明に係る紫外線透過可視光吸収ガラスは、Nb2O5を、0.1〜10質量%含み、0.1〜5質量%含むことが好ましく、0.5〜5質量%含むことがより好ましい。 The ultraviolet light visible light absorbing glass according to the present invention contains 0.1 to 10% by mass, preferably 0.1 to 5% by mass, more preferably 0.5 to 5% by mass of Nb 2 O 5. preferable.
本発明に係る紫外線透過可視光吸収ガラスにおいてNb2O5は必須含有成分であり、本発明者の検討によれば、実質的にPb、As、CdおよびCrを含まず、CoO、NiOおよびTiO2を所定量含有するガラス系において、Nb2O5を所定量含有することにより、可視光領域において好適に光吸収し得るとともに、紫外領域において高い透過率を発揮し、さらにはソーラリゼーションによる劣化を抑制し得ることを見出して、本発明を完成するに至った。 In the ultraviolet light transmitting visible light absorbing glass according to the present invention, Nb 2 O 5 is an essential component, and according to the study of the present inventor, it is substantially free of Pb, As, Cd and Cr, CoO, NiO and TiO. In a glass system containing a predetermined amount of N2, by containing a predetermined amount of Nb 2 O 5 , it can absorb light suitably in the visible light region, exhibits high transmittance in the ultraviolet region, and further by solarization The inventors have found that deterioration can be suppressed and have completed the present invention.
本発明に係る紫外線透過可視光吸収ガラスにおいて、Nb2O5の含有割合が0.1質量%未満である場合には、ソーラリゼーションによる劣化を生じ易くなり、Nb2O5の含有割合が10質量%を超えると、紫外領域における透過率が低下し易くなる。 In the ultraviolet transmitting visible light absorbing glass according to the present invention, when the content ratio of Nb 2 O 5 is less than 0.1% by mass, deterioration due to solarization tends to occur, and the content ratio of Nb 2 O 5 is If it exceeds 10% by mass, the transmittance in the ultraviolet region tends to decrease.
本発明に係る紫外線透過可視光吸収ガラスは、TiO2およびNb2O5合計含有割合(TiO2+Nb2O5)が、0.1〜10質量%であり、0.1〜5質量%であることがより好ましい。 In the ultraviolet light transmitting visible light absorbing glass according to the present invention, the total content ratio of TiO 2 and Nb 2 O 5 (TiO 2 + Nb 2 O 5 ) is 0.1 to 10% by mass, and 0.1 to 5% by mass. More preferably.
本発明に係る紫外線透過可視光吸収ガラスにおいて、TiO2およびNb2O5合計含有割合(TiO2+Nb2O5)が、0.1質量%未満である場合には、 ソーラリゼーションによる劣化を生じ易くなり、10質量%を超える場合は、 紫外領域における透過率が低下し易くなる。 In the ultraviolet transmission visible light absorbing glass according to the present invention, when the total content of TiO 2 and Nb 2 O 5 (TiO 2 + Nb 2 O 5 ) is less than 0.1% by mass, deterioration due to solarization is caused. When it exceeds 10% by mass, the transmittance in the ultraviolet region tends to decrease.
また、本発明に係る紫外線透過可視光吸収ガラスにおいて、TiO2とNb2O5の合計含有割合に対するTiO2の含有割合(TiO2/(TiO2+Nb2O5))が、0〜0.5であることが好ましい。 Further, in the ultraviolet transmissive visible light-absorbing glass according to the present invention, the content of TiO 2 to the total content of TiO 2 and Nb 2 O 5 (TiO 2 / (TiO 2 + Nb 2 O 5)) is 0-0. 5 is preferable.
本発明に係る紫外線透過可視光吸収光学ガラスにおいて、TiO2とNb2O5の合計含有量(質量%)に対するTiO2の含有割合(TiO2/(TiO2+Nb2O5))が、0.5を超える場合、紫外光領域における透過率が低下し易くなる。 In ultraviolet transmitting visible light absorbing optical glass according to the present invention, the total content of TiO 2 and Nb 2 O 5 content of TiO 2 with respect to (mass%) (TiO 2 / (TiO 2 + Nb 2 O 5)) is, 0 If it exceeds .5, the transmittance in the ultraviolet region tends to decrease.
本発明に係る紫外線透過可視光吸収光学ガラスは、Pb、As、CdおよびCrを実質的に含まない。
本出願書類において、実質的に含まないとは、Pb、As、CdまたはCrの化合物を原料として使用しないことを意味し、意図しない不純物として混入する場合を排除するものではない。
The ultraviolet-transmitting visible light absorbing optical glass according to the present invention is substantially free of Pb, As, Cd and Cr.
In the present application documents, “substantially not containing” means that a compound of Pb, As, Cd or Cr is not used as a raw material, and does not exclude the case of mixing as an unintended impurity.
本発明に係る紫外線透過可視光吸収光学ガラスは、SiO2を、50〜70質量%含むことが好ましい。 The UV-transmitting visible light absorbing optical glass according to the present invention preferably contains 50 to 70% by mass of SiO 2 .
SiO2は、ガラスの網目形成酸化物であり、熱的安定性、化学的耐久性を発揮する上で重要な成分である。
SiO2の含有割合が50質量%未満である場合は、所望の熱的安定性および化学的耐久性を発揮し難くなり、70質量%を超えると溶融し難くなって成形性が低下し易くなる。
SiO 2 is a network-forming oxide of glass, and is an important component for exhibiting thermal stability and chemical durability.
When the content ratio of SiO 2 is less than 50% by mass, it becomes difficult to exhibit desired thermal stability and chemical durability, and when it exceeds 70% by mass, it is difficult to melt and formability tends to be lowered. .
本発明に係る紫外線透過可視光吸収光学ガラスは、B2O3を、0〜5質量%含むことが好ましい。 Ultraviolet transmitting visible light absorbing optical glass according to the present invention, the B 2 O 3, preferably comprises 0-5 wt%.
B2O3もガラスの網目形成酸化物であり、ガラスの溶融性や熱的安定性を向上させる上で有効な成分であるが、その含有割合が5質量%を超えると化学的耐久性が低下し易くなる。 B 2 O 3 is also a network-forming oxide of glass, and is an effective component for improving the meltability and thermal stability of glass. However, when its content exceeds 5% by mass, chemical durability is improved. It tends to decrease.
本発明に係る紫外線透過可視光吸収光学ガラスは、Al2O3を、0〜5質量%含むことが好ましい。 Ultraviolet transmitting visible light absorbing optical glass according to the present invention, the Al 2 O 3, preferably comprises 0-5 wt%.
Al2O3もガラスの網目形成酸化物であり、ガラスの分相や失透を抑制する上で有効な成分であるが、その含有割合が5質量%を超えるとガラスの粘度が高くなって溶融、成形し難くなる。 Al 2 O 3 is also a glass network-forming oxide, and is an effective component for suppressing glass phase separation and devitrification. However, when its content exceeds 5% by mass, the viscosity of the glass increases. It becomes difficult to melt and mold.
本発明に係る紫外線透過可視光吸収光学ガラスにおいて、SiO2、B2O3およびAl2O3の合計含有割合(SiO2+B2O3+Al2O3)は、50〜70質量%であることが好ましい。
SiO2、B2O3およびAl2O3の合計含有割合が上記範囲内にあることにより、熱的安定性および化学的耐久性を発揮し易くなる。
In the ultraviolet transmitting visible light absorbing optical glass according to the present invention, the total content ratio of SiO 2 , B 2 O 3 and Al 2 O 3 (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 50 to 70% by mass. It is preferable.
When the total content ratio of SiO 2 , B 2 O 3 and Al 2 O 3 is within the above range, thermal stability and chemical durability are easily exhibited.
本発明に係る紫外線透過可視光吸収光学ガラスは、Na2Oを、5〜20質量%含むことが好ましく、5〜15質量%含むことがより好ましい。 Ultraviolet transmitting visible light absorbing optical glass according to the present invention, the Na 2 O, preferably comprises 5 to 20 wt%, and more preferably contains 5 to 15 wt%.
Na2Oはガラスの溶融温度を低下させ溶融性を向上させる成分であるが、含有割合が5質量%未満ではガラスの粘度が高くなって溶融が困難になり、含有割合が20質量%を越えると化学的耐久性が低下し易くなる。 Na 2 O is a component that lowers the melting temperature of the glass and improves the meltability. However, if the content ratio is less than 5% by mass, the viscosity of the glass becomes high and melting becomes difficult, and the content ratio exceeds 20% by mass. And chemical durability tends to decrease.
本発明に係る紫外線透過可視光吸収光学ガラスは、Na2Oの一部をK2Oに置き換えた場合、以下の効果が得られるためより好ましい。すなわち、ガラス溶融時における粘性を増加させることで溶融槽(耐火物等)に対する侵食を抑制し、溶融ガラス中への溶融槽材料物質(耐火物等)からの不純物の混入を抑制し、その結果350〜370nmの波長領域における透過率の低下を防止することが出来る。さらに、ガラスの軟化点を上昇させ、ガラスの耐熱性を高める効果、およびガラスの化学的耐久性が改善される効果などがある。ただし、K2Oへの置換え量が大きすぎると、溶融ガラスの粘性が高くなり過ぎ溶融困難となり、また耐失透性が低下するなどの問題が発生するため、置換え量は一定範囲でなければならない。 Ultraviolet transmitting visible light absorbing optical glass according to the present invention, when replacing a part of Na 2 O to K 2 O, more preferable because the following advantages. In other words, by increasing the viscosity at the time of glass melting, erosion to the melting tank (refractory, etc.) is suppressed, and mixing of impurities from the melting tank material (refractory, etc.) into the molten glass is suppressed. It is possible to prevent a decrease in transmittance in the wavelength region of 350 to 370 nm. Further, there are an effect of increasing the softening point of the glass and increasing the heat resistance of the glass, and an effect of improving the chemical durability of the glass. However, if the amount of replacement with K 2 O is too large, the viscosity of the molten glass becomes too high and it becomes difficult to melt, and problems such as reduced devitrification resistance occur. Therefore, the amount of replacement is not within a certain range. Don't be.
前記のように本発明に係る紫外線透過可視光吸収光学ガラスは、Na2OとK2Oとの合計含有割合(Na2O+K2O)が5〜20質量%であり、このうちK2Oを0〜10質量%含有することが好ましく、2〜8質量%含有することがさらに好ましい。 As described above, the UV-transmitting visible light absorbing optical glass according to the present invention has a total content ratio of Na 2 O and K 2 O (Na 2 O + K 2 O) of 5 to 20% by mass, of which K 2 O It is preferable to contain 0-10 mass%, and it is more preferable to contain 2-8 mass%.
本発明に係る紫外線透過可視光吸収光学ガラスは、CaOを、0〜15質量%含むことが好ましい。 It is preferable that the ultraviolet light transmission visible light absorption optical glass which concerns on this invention contains 0-15 mass% of CaO.
CaOはガラスを安定化させる成分であり、ガラスの化学的耐久性、溶融成形性、耐失透性を向上させる上で有効な成分である。
CaOの含有割合が15質量%を越えると十分な耐失透性が得られ難くなる。
CaO is a component that stabilizes the glass, and is an effective component for improving the chemical durability, melt moldability, and devitrification resistance of the glass.
If the CaO content exceeds 15% by mass, sufficient devitrification resistance is difficult to obtain.
本発明に係る紫外線透過可視光吸収ガラスは、ZnOを、0〜5質量%含むことが好ましい。 It is preferable that the ultraviolet light transmission visible light absorption glass which concerns on this invention contains 0-5 mass% of ZnO.
ZnOもガラスを安定化させる成分であり、ガラスの化学的耐久性を向上させる上で有効な成分である。
ZnOの含有割合が5質量%を越えると耐失透性が低下し易くなる。
ZnO is also a component that stabilizes the glass, and is an effective component for improving the chemical durability of the glass.
When the content ratio of ZnO exceeds 5% by mass, the devitrification resistance tends to be lowered.
本発明に係る紫外線透過可視光吸収光学ガラスは、BaOを、0〜15質量%含むことが好ましい。 It is preferable that the ultraviolet light transmission visible light absorption optical glass which concerns on this invention contains 0-15 mass% of BaO.
BaOもガラスを安定化させる成分であり、ガラスの化学的耐久性を向上させる上で有効な成分である。
BaOの含有割合が15質量%を越えると十分な耐失透性が得られ難くなる。
BaO is also a component that stabilizes the glass, and is an effective component for improving the chemical durability of the glass.
When the content ratio of BaO exceeds 15% by mass, it is difficult to obtain sufficient devitrification resistance.
本発明に係る紫外線透過可視光吸収ガラスにおいて、CaO、ZnOおよびBaOの合計含有割合(CaO+ZnO+BaO)は、0〜30質量%であることが好ましく、5〜20質量%であることがより好ましい。
本発明に係る紫外線透過可視光吸収ガラスにおいて、CaO、ZnOおよびBaOの合計含有割合が上記範囲内にあることにより、ガラスの化学的耐久性や耐失透性を容易に向上させることができる。
In the ultraviolet light transmitting visible light absorbing glass according to the present invention, the total content ratio of CaO, ZnO and BaO (CaO + ZnO + BaO) is preferably 0 to 30% by mass, and more preferably 5 to 20% by mass.
In the ultraviolet light transmissive visible light absorbing glass according to the present invention, when the total content ratio of CaO, ZnO and BaO is within the above range, the chemical durability and devitrification resistance of the glass can be easily improved.
本発明に係る紫外線透過可視光吸収ガラスは、Sb2O3を、0〜2質量%含むことが好ましく、0〜1質量%含むことがより好ましい。 Ultraviolet transmitting visible light absorbing glass according to the present invention, the Sb 2 O 3, preferably contain 0-2 wt%, and more preferably contains 0-1 wt%.
Sb2O3は清澄剤(消泡剤)として有用な成分であり、その含有割合が2質量%を越えると逆に清澄性が低下し易くなる。 Sb 2 O 3 is a component useful as a fining agent (antifoaming agent), and when the content exceeds 2% by mass, the fining property tends to decrease.
本発明に係る紫外線透過可視光吸収ガラスとしては、
実質的にPb、As、CdおよびCrを含まず、
CoO 0.1〜2質量%、
NiO 1〜5質量%、
TiO2 0〜1質量%、
Nb2O5 0.1〜10質量%、
前記TiO2およびNb2O5を合計で0.1〜10質量%含み、
前記TiO2とNb2O5の合計含有割合に対するTiO2の含有割合(TiO2/(TiO2+Nb2O5))が0〜0.5であるものが好ましい。
As ultraviolet transmission visible light absorption glass according to the present invention,
Substantially free of Pb, As, Cd and Cr,
CoO 0.1-2% by mass,
NiO 1-5% by mass,
TiO 2 0 to 1% by mass,
Nb 2 O 5 0.1~10 wt%,
Including 0.1 to 10% by mass in total of TiO 2 and Nb 2 O 5 ,
The content ratio of TiO 2 to the total content of TiO 2 and Nb 2 O 5 (TiO 2 / (TiO 2 + Nb 2 O 5)) is what is preferably 0 to 0.5.
また、本発明に係る紫外線透過可視光吸収ガラスとしては、
実質的にPb、As、CdおよびCrを含まず、
CoO 0.1〜2質量%、
NiO 1〜5質量%、
TiO2 0〜1質量%、
Nb2O5 0.1〜10質量%
前記TiO2およびNb2O5を合計で0.1〜10質量%含むとともに、
SiO2 50〜70質量%、
B2O3 0〜5質量%、
Al2O3 0〜5質量%、
Na2O 5〜20質量%、
K2O 0〜10質量%、
CaO 0〜15質量%、
ZnO 0〜5質量%、
BaO 0〜15質量%、
Sb2O3 0〜2質量%
を含むものが好ましい。
In addition, as the ultraviolet transmission visible light absorbing glass according to the present invention,
Substantially free of Pb, As, Cd and Cr,
CoO 0.1-2% by mass,
NiO 1-5% by mass,
TiO 2 0 to 1% by mass,
Nb 2 O 5 0.1~10 wt%
Including 0.1 to 10% by mass in total of TiO 2 and Nb 2 O 5 ,
SiO 2 50~70% by weight,
B 2 O 3 0-5% by mass,
Al 2 O 3 0-5% by mass,
Na 2 O 5-20% by mass,
K 2 O 0-10% by mass,
CaO 0-15% by mass,
ZnO 0-5% by mass,
BaO 0-15% by mass,
Sb 2 O 3 0 to 2% by mass
The thing containing is preferable.
また、本発明に係る紫外線透過可視光吸収ガラスとしては、
実質的にPb、As、CdおよびCrを含まず、
CoO 0.1〜2質量%、
NiO 1〜5質量%、
TiO2 0〜1質量%、
Nb2O5 0.1〜10質量%
前記TiO2およびNb2O5を合計で0.1〜10質量%含むとともに、
前記TiO2とNb2O5の合計含有割合に対するTiO2の含有割合(TiO2/(TiO2+Nb2O5))が0〜0.5であり、
SiO2 50〜70質量%、
B2O3 0〜5質量%、
Al2O3 0〜5質量%、
Na2O 5〜20質量%、
K2O 0〜10質量%、
CaO 0〜15質量%、
ZnO 0〜5質量%、
BaO 0〜15質量%、
Sb2O3 0〜2質量%
を含むものが好ましい。
In addition, as the ultraviolet transmission visible light absorbing glass according to the present invention,
Substantially free of Pb, As, Cd and Cr,
CoO 0.1-2% by mass,
NiO 1-5% by mass,
TiO 2 0 to 1% by mass,
Nb 2 O 5 0.1~10 wt%
Including 0.1 to 10% by mass in total of TiO 2 and Nb 2 O 5 ,
The content ratio of TiO 2 to the total content ratio of TiO 2 and Nb 2 O 5 (TiO 2 / (TiO 2 + Nb 2 O 5 )) is 0 to 0.5,
SiO 2 50~70% by weight,
B 2 O 3 0-5% by mass,
Al 2 O 3 0-5% by mass,
Na 2 O 5-20% by mass,
K 2 O 0-10% by mass,
CaO 0-15% by mass,
ZnO 0-5% by mass,
BaO 0-15% by mass,
Sb 2 O 3 0 to 2% by mass
The thing containing is preferable.
本発明に係る紫外線透過可視光吸収光学ガラスの基礎ガラス組成は、特に制限されないが、ソーダ珪酸ガラスまたはソーダカリバリウムガラスであることが好ましい。 The basic glass composition of the ultraviolet light transmitting visible light absorbing optical glass according to the present invention is not particularly limited, but is preferably soda silicate glass or soda calibarium glass.
本発明に係る紫外線透過可視光吸収ガラスは、厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光(200nm〜700nmの波長領域の照射光)を照射したときに、上記照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値が、75%以上であることが好ましい。 The ultraviolet-transmitting visible light absorbing glass according to the present invention is an irradiation light including ultraviolet light and visible light with a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm. When (irradiation light in a wavelength region of 200 nm to 700 nm) is irradiated, the maximum value of the transmittance in the wavelength region of 350 to 370 nm at the start of irradiation of the irradiation light is preferably 75% or more.
一方、本発明に係る紫外線透過可視光吸収ガラスは、厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光(200nm〜700nmの波長領域の照射光)を照射したときに、上記照射光の照射開始時点での200〜290nmの波長領域における透過率が、1%以下であることが好ましい。 On the other hand, the ultraviolet light transmitting visible light absorbing glass according to the present invention includes ultraviolet light and visible light with a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm. When irradiation light (irradiation light in a wavelength region of 200 nm to 700 nm) is irradiated, the transmittance in the wavelength region of 200 to 290 nm at the start of irradiation of the irradiation light is preferably 1% or less.
また、本発明に係る紫外線透過可視光吸収ガラスは、厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光(200nm〜700nmの波長領域の照射光)を照射したときに、上記照射光の照射開始時点での410〜690nmの波長領域における透過率が、1%以下であることが好ましく、450〜650mの波長領域における透過率が、0.1%以下であることがさらに好ましい。 In addition, the UV-transmitting visible light absorbing glass according to the present invention includes ultraviolet light and visible light with a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm. When irradiation light (irradiation light in a wavelength region of 200 nm to 700 nm) is irradiated, the transmittance in the wavelength region of 410 to 690 nm at the start of irradiation of the irradiation light is preferably 1% or less, and 450 to More preferably, the transmittance in the wavelength region of 650 m is 0.1% or less.
本発明に係る紫外線透過可視光吸収ガラスは、実質的にPb、As、CdおよびCrを含まず、CoO、NiO、TiO2、Nb2O5を各々所定量含むものであることにより、環境負荷を低減しつつ、350〜370nmの波長領域において選択的に高い透過率を発揮することができる。 The UV-transmitting visible light absorbing glass according to the present invention is substantially free of Pb, As, Cd and Cr, and includes a predetermined amount of CoO, NiO, TiO 2 and Nb 2 O 5 respectively, thereby reducing environmental burden. However, high transmittance can be selectively exhibited in the wavelength region of 350 to 370 nm.
本発明に係る紫外線透過可視光吸収ガラスは、厚さ3mmの板状の状態で、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光を100時間照射したときに、下記式(I)
(B/A)×100 (I)
(ただし、Aは前記照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値(%)であり、Bは上記照射光の照射開始100時間経過時点での350〜370nmの波長領域における透過率の最大値(%)である)
で表される維持率が90%以上であることが好ましい。
The ultraviolet-transmitting visible light absorbing glass according to the present invention is an irradiation light including ultraviolet light and visible light with a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm. When irradiated for 100 hours, the following formula (I)
(B / A) × 100 (I)
(However, A is the maximum transmittance (%) in the wavelength region of 350 to 370 nm at the start of irradiation of the irradiation light, and B is 350 to 370 nm at the time when 100 hours have elapsed from the start of irradiation of the irradiation light. (Maximum transmittance (%) in the wavelength region)
It is preferable that the maintenance rate represented by is 90% or more.
本出願書類において、上記各透過率を測定する際に使用される板状のガラスは、両面が光学研磨されたものであり、上記各透過率は、上記光学研磨が施された面に対して垂直に照射光を入射したときに測定される値を意味する。 In the present application documents, the plate-like glass used for measuring each transmittance is optically polished on both sides, and each transmittance is relative to the surface subjected to the optical polishing. It means a value measured when incident light is incident vertically.
本発明に係る紫外線透過可視光吸収ガラスは、実質的にPb、As、CdおよびCrを含まず、CoO、NiO、TiO2、Nb2O5を各々所定量含むものであることにより、環境負荷を低減し、350〜370nmの波長領域において選択的に高い透過率を発揮しつつ、ソーラリゼーションによる劣化を好適に抑制することができる。 The UV-transmitting visible light absorbing glass according to the present invention is substantially free of Pb, As, Cd and Cr, and includes a predetermined amount of CoO, NiO, TiO 2 and Nb 2 O 5 respectively, thereby reducing environmental burden. In addition, deterioration due to solarization can be suitably suppressed while selectively exhibiting high transmittance in a wavelength region of 350 to 370 nm.
本発明に係る紫外線透過可視光吸収ガラスの製造方法も特に制限されず、従来慣用されている方法を適宜採用すればよい。
例えば、ガラス原料として酸化物、水酸化物、炭酸塩、硝酸塩、塩化物、硫化物などを適宜用い、所望の組成になるように秤量し、混合して調合原料とする。得られた調合原料を耐熱坩堝に入れ1300〜1400℃程度の温度で溶融し、撹拌、清澄して均質な溶融ガラスとする。次いでこの溶融ガラスを成形枠に鋳込み、ガラスブロックを形成した後、ガラスの徐冷点近くに加熱した炉に移し、室温まで冷却することにより、目的とする紫外線透過可視光吸収ガラスのブロック状物を得ることができる。
The method for producing the ultraviolet light transmitting visible light absorbing glass according to the present invention is not particularly limited, and a conventionally used method may be appropriately employed.
For example, oxides, hydroxides, carbonates, nitrates, chlorides, sulfides, and the like are appropriately used as glass raw materials, weighed so as to have a desired composition, and mixed to prepare a raw material for preparation. The obtained blended raw material is put in a heat-resistant crucible, melted at a temperature of about 1300 to 1400 ° C., stirred and clarified to obtain a homogeneous molten glass. Next, this molten glass is cast into a forming frame to form a glass block, which is then transferred to a furnace heated near the annealing point of the glass and cooled to room temperature. Can be obtained.
本発明によれば、環境負荷を低減しつつ、350〜370nmの波長領域における透過率が選択的に高く、ソーラリゼーションによる劣化を抑制した紫外線透過可視光吸収ガラスを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the transmittance | permeability in the wavelength range of 350-370 nm is selectively high, reducing the environmental load, and can provide the ultraviolet transmission visible light absorption glass which suppressed the deterioration by solarization.
次に、本発明に係る紫外線透過可視光吸収フィルターについて説明する。
本発明に係る紫外線透過可視光吸収フィルターは、本発明に係る紫外線透過可視光吸収ガラスからなることを特徴とするものである。
Next, the ultraviolet transmission visible light absorption filter according to the present invention will be described.
The ultraviolet transmission visible light absorption filter according to the present invention is characterized by comprising the ultraviolet transmission visible light absorption glass according to the present invention.
本発明に係る紫外線透過可視光吸収ガラスの詳細については、上述したとおりである。 The details of the ultraviolet light transmitting visible light absorbing glass according to the present invention are as described above.
本発明に係る紫外線透過可視光吸収フィルターとしては、両面が光学研磨された板状ガラス等を例示することができる。
本発明に係る紫外線透過可視光吸収フィルターとしては、フィルターの紫外線透過面(例えば、上記光学研磨された両面)に反射防止膜あるいはその他の光学多層膜をコートしたものであってもよい。
Examples of the ultraviolet light transmitting visible light absorbing filter according to the present invention include plate-like glass whose both surfaces are optically polished.
The UV-transmitting visible light absorbing filter according to the present invention may be a filter in which an UV-transmitting surface (for example, both optically polished surfaces) of the filter is coated with an antireflection film or other optical multilayer film.
本発明に係る紫外線透過可視光吸収フィルターの作製方法も特に制限されず、本発明に係る外線透過可視光吸収ガラスを周知の加工法により加工することにより作製することができる。
本発明に係る紫外線透過可視光吸収フィルターは、本発明に係る外線透過可視光吸収ガラスからなるものであって、Pb、As、Cd及びCrといった成分を含まないので、切削屑や廃水等により生じる環境負荷を低減することができる。
The production method of the ultraviolet ray transmission visible light absorption filter according to the present invention is not particularly limited, and can be produced by processing the external ray transmission visible light absorption glass according to the present invention by a known processing method.
The ultraviolet light transmissive visible light absorption filter according to the present invention is made of the external light transmissive visible light absorption glass according to the present invention, and does not contain components such as Pb, As, Cd, and Cr, and thus is generated by cutting waste or waste water. Environmental load can be reduced.
本発明の紫外線透過可視光吸収フィルターは、半導体露光機、紫外線硬化樹脂用光源等の紫外線照射装置に組み込まれる紫外線透過フィルターとして好適に使用することができる。 The ultraviolet transmission visible light absorption filter of the present invention can be suitably used as an ultraviolet transmission filter incorporated in an ultraviolet irradiation device such as a semiconductor exposure machine or a light source for ultraviolet curable resin.
本発明によれば、環境負荷を低減しつつ、350〜370nmの波長領域において選択的に高い透過率を示し、ソーラリゼーションによる劣化を抑制した紫外線透過可視光吸収フィルターを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ultraviolet transmission visible light absorption filter which showed the selectively high transmittance | permeability in the wavelength range of 350-370 nm, suppressing the deterioration by solarization, reducing an environmental load can be provided.
以下、実施例および比較例により本発明を更に説明するが、本発明は下記実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further, this invention is not limited to the following Example.
(実施例1〜実施例4、比較例1〜比較例2)
表1および表2に示す組成を有するガラスが得られるように、酸化コバルト(CoO)、水酸化ニッケル(Ni(OH)2)、酸化チタン(TiO2)および酸化ニオブ(Nb2O5)を各々秤量するとともに、さらに珪石粉(SiO2)、ホウ酸(H3BO3)、水酸化アルミニウム(Al(OH)3)、炭酸ナトリウム(Na2CO3)、硝酸ナトリウム(NaNO3)、炭酸カリウム(K2CO3)、炭酸カルシウム(CaCO3)、酸化亜鉛(ZnO)、炭酸バリウム(BaCO3)、酸化アンチモン(Sb2O3)、酸化セリウム(CeO2)を各々秤量して混合した調合原料を、白金坩堝に入れ、大気中で1300〜1400℃に加熱、溶融、撹拌し、均質化、清澄を行った後、鋳型に流し込んだ。ガラスが固化した後、次いでガラスの徐冷点近くに加熱しておいた電気炉に移し、室温まで徐冷することにより、目的とするガラスを得た。
(Example 1 to Example 4, Comparative Example 1 to Comparative Example 2)
Cobalt oxide (CoO), nickel hydroxide (Ni (OH) 2 ), titanium oxide (TiO 2 ), and niobium oxide (Nb 2 O 5 ) were used so as to obtain glasses having the compositions shown in Tables 1 and 2. While weighing each, quartzite powder (SiO 2 ), boric acid (H 3 BO 3 ), aluminum hydroxide (Al (OH) 3 ), sodium carbonate (Na 2 CO 3 ), sodium nitrate (NaNO 3 ), carbonic acid Potassium (K 2 CO 3 ), calcium carbonate (CaCO 3 ), zinc oxide (ZnO), barium carbonate (BaCO 3 ), antimony oxide (Sb 2 O 3 ), and cerium oxide (CeO 2 ) were weighed and mixed. The prepared raw material was put in a platinum crucible, heated to 1300 to 1400 ° C. in the atmosphere, melted and stirred, homogenized and clarified, and then poured into a mold. After the glass solidified, the glass was then transferred to an electric furnace heated near the annealing point of the glass and slowly cooled to room temperature, thereby obtaining the target glass.
(実施例5)
表1および表2に示す組成を有するガラスが得られるように、実施例2において、白金坩堝に代えて粘度坩堝を用いた以外は、実施例2と同様にして目的とするガラスを得た。
(Example 5)
The target glass was obtained in the same manner as in Example 2 except that a viscosity crucible was used instead of the platinum crucible in Example 2 so that the glass having the composition shown in Tables 1 and 2 was obtained.
表1は、各ガラスを構成する各成分の含有割合、各成分の合計含有割合および含有比を質量%基準で表示したものであり、表2は、各ガラスを構成する各成分の含有割合、各成分の合計含有割合および含有比をmol%基準で表示したものである。 Table 1 shows the content ratio of each component constituting each glass, the total content ratio and content ratio of each component on a mass% basis, and Table 2 shows the content ratio of each component constituting each glass, The total content ratio and content ratio of each component are displayed on a mol% basis.
実施例1〜実施例5および比較例1〜比較例2で各々得られたガラスを、両面が光学研磨された厚さ3mmの板状物に加工し、紫外可視分光光度計(株式会社島津製作所製UV3600)を用いて、波長200〜700nmに対する分光透過率を測定した。
次に、波長365nmに最大放射強度を有する紫外光源(HOYA CANDEO OPTRONICS株式会社製 型式:UL750)を使用して、上記光学研磨が施された面に対して垂直方向から、被照射面における放射強度500mW・cm−2(USHIO株式会社製紫外線強度計UIT−101を使用して被照射面において測定)の紫外光および可視光を含む照射光を照射した。
The glass obtained in each of Examples 1 to 5 and Comparative Examples 1 to 2 was processed into a plate having a thickness of 3 mm and optically polished on both sides, and an ultraviolet-visible spectrophotometer (Shimadzu Corporation) was processed. Spectral transmittance for wavelengths of 200 to 700 nm was measured using UV3600).
Next, using an ultraviolet light source (HOYA CANDEO OPTRONICS Co., Ltd. model: UL750) having a maximum radiation intensity at a wavelength of 365 nm, the radiation intensity on the irradiated surface from a direction perpendicular to the surface subjected to the optical polishing. Irradiation light including ultraviolet light and visible light of 500 mW · cm −2 (measured on the irradiated surface using a UV intensity meter UIT-101 manufactured by USHIO Corporation) was irradiated.
実施例1〜実施例5で各々得られたガラスからなる板状物は、350〜370nmの波長領域における透過率の最大値が、上記照射光の照射前では、いずれも75%以上であった。
また、実施例1〜実施例5で各々得られたガラスから得られた板状物は、上記照射光の照射前での200〜290nmの波長領域における透過率および410〜690nmの波長領域における透過率がいずれも1%以下であった。
In the plate-like materials each made of glass obtained in each of Examples 1 to 5, the maximum transmittance in the wavelength region of 350 to 370 nm was 75% or more before irradiation with the irradiation light. .
Moreover, the plate-like material obtained from the glass obtained in each of Examples 1 to 5 has transmittance in a wavelength region of 200 to 290 nm and transmission in a wavelength region of 410 to 690 nm before irradiation with the irradiation light. All the rates were 1% or less.
上記照射光を100時間継続して照射したときの、照射光の照射前での350〜370nmの波長領域における透過率の最大値(Tmax初期)、照射光の照射開始後100時間経過時点での350〜370nmの波長領域における透過率の最大値(Tmax100hr)を表1および表2の両者に各々記載する。
また、上記(Tmax100hr/Tmax初期)×100により算出される維持率(%)を表1および表2の両者に各々記載する。
When the irradiation light is continuously irradiated for 100 hours, the maximum transmittance (T max initial) in the wavelength region of 350 to 370 nm before irradiation of the irradiation light, at the time when 100 hours have elapsed after the irradiation light irradiation starts. Table 1 and Table 2 show the maximum transmittance (T max 100 hr) in the wavelength region of 350 to 370 nm.
Moreover, the maintenance rate (%) calculated by the above (T max 100hr / T max initial) × 100 is described in both Table 1 and Table 2, respectively.
図1に、上記実施例1で得られたガラスから得られた板状物に上記照射光を照射したときの、照射開始時における透過スペクトル(a)および照射開始100時間経過後における透過スペクトル(b)を示すとともに、図2に、上記実施例2で得られたガラスから得られた板状物に上記照射光を照射したときの、照射開始時における透過スペクトル(a)および照射開始100時間経過後における透過スペクトル(b)を示す。
また、図3に、上記実施例5で得られたガラスから得られた板状物に上記照射光を照射したときの、照射開始時における透過スペクトル(a)および照射開始100時間経過後における透過スペクトル(b)を示す。
さらに、図4に、上記比較例1で得られたガラスから得られた板状物に上記照射光を照射したときの、照射開始時における透過スペクトル(a)および照射開始100時間経過後における透過スペクトル(b)を示すとともに、図5に、上記比較例1で得られたガラスから得られた板状物に上記照射光を照射したときの、照射開始時における透過スペクトル(a)および照射開始100時間経過後における透過スペクトル(b)を示す。
図1〜図3に示す、照射光の照射開始時における透過スペクトル(a)および照射開始100時間経過後における透過スペクトル(b)より、各実施例で得られたガラスからなる厚さ3mmの板状物は、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光を100時間照射したときであっても、照射前後において350〜370nmの波長領域において高い透過率を示し、以下の表1および表2に記述するように、波長365nmに最大放射強度を有する光源から500mW・cm−2の放射強度で紫外光および可視光を含む照射光を100時間照射したときに、式(B/A)×100(ただし、Aは前記照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値(%)であり、Bは前記照射光の照射開始100時間経過時点での350〜370nmの波長領域における透過率の最大値(%)である)で表される紫外線透過の維持率が90%以上と高いものであることが分かる。
FIG. 1 shows a transmission spectrum (a) at the start of irradiation and a transmission spectrum after 100 hours from the start of irradiation when the plate-like material obtained from the glass obtained in Example 1 is irradiated with the irradiation light ( FIG. 2 shows a transmission spectrum (a) at the start of irradiation and 100 hours from the start of irradiation when the plate-like material obtained from the glass obtained in Example 2 is irradiated with the irradiation light. The transmission spectrum (b) after progress is shown.
3 shows the transmission spectrum (a) at the start of irradiation and the transmission after 100 hours from the start of irradiation when the plate-like material obtained from the glass obtained in Example 5 is irradiated with the irradiation light. A spectrum (b) is shown.
Further, FIG. 4 shows a transmission spectrum (a) at the start of irradiation and transmission after 100 hours from the start of irradiation when the plate-like material obtained from the glass obtained in Comparative Example 1 is irradiated with the irradiation light. In addition to showing the spectrum (b), FIG. 5 shows the transmission spectrum (a) at the start of irradiation and the start of irradiation when the plate-like material obtained from the glass obtained in Comparative Example 1 is irradiated with the irradiation light. The transmission spectrum (b) after 100 hours has elapsed.
A 3 mm thick plate made of glass obtained in each example from the transmission spectrum (a) at the start of irradiation of irradiation light and the transmission spectrum (b) after 100 hours from the start of irradiation shown in FIGS. Even when irradiated with irradiation light including ultraviolet light and visible light with a radiation intensity of 500 mW · cm −2 from a light source having a maximum radiation intensity at a wavelength of 365 nm for 100 hours, the shape is 350 to 370 nm before and after irradiation. Irradiation light including ultraviolet light and visible light at a radiation intensity of 500 mW · cm −2 from a light source having a high transmittance in the wavelength region and having a maximum radiation intensity at a wavelength of 365 nm as described in Tables 1 and 2 below. For 100 hours, the formula (B / A) × 100 (where A is the transmission in the wavelength region of 350 to 370 nm at the start of irradiation of the irradiation light). The maximum value (%) of the excess rate, and B is the maximum value (%) of the transmittance in the wavelength region of 350 to 370 nm after the elapse of 100 hours from the start of irradiation of the irradiation light). It can be seen that the maintenance rate is as high as 90% or more.
表1等より、実施例1〜実施例5で得られた紫外線透過可視光吸収ガラスは、実質的にPb、As、CdおよびCrを含まず、各々所定量のCoO、NiO、TiO2およびNb2O5を含むものであることから、環境負荷を低減しつつ、350〜370nmの波長領域における透過率が選択的に高く、ソーラリゼーションによる劣化を抑制し得るものであることから、紫外線透過可視光吸収フィルターに好適に使用し得るものであることが分かる。 From Table 1 and the like, the UV-transmitting visible light absorbing glasses obtained in Examples 1 to 5 are substantially free of Pb, As, Cd, and Cr, and each has a predetermined amount of CoO, NiO, TiO 2 and Nb. Since it contains 2 O 5 , the transmittance in the wavelength region of 350 to 370 nm is selectively high while reducing the environmental load, and the deterioration due to solarization can be suppressed. It turns out that it can use suitably for an absorption filter.
一方、表1および表2等より、比較例1〜比較例2で得られたガラスは、何れもNb2O5を含むものでないことから、照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値(Tmax初期)が低かったり(比較例2)、ソーラリゼーションによる劣化を抑制し得ないものである(比較例1、比較例2)ことが分かる。 On the other hand, from Table 1 and Table 2, etc., since the glass obtained in Comparative Examples 1 to 2 does not contain Nb 2 O 5 , the wavelength of 350 to 370 nm at the start of irradiation with irradiation light. It can be seen that the maximum value of transmittance in the region (initial T max ) is low (Comparative Example 2), and deterioration due to solarization cannot be suppressed (Comparative Example 1 and Comparative Example 2).
本発明によれば、環境負荷を低減しつつ、350〜370nmの波長領域における透過率が選択的に高く、ソーラリゼーションによる劣化を抑制した紫外線透過可視光吸収ガラスを提供できるとともに、当該ガラスからなる紫外線透過可視光吸収フィルターを提供することができる。 According to the present invention, while reducing the environmental load, it is possible to provide an ultraviolet-transmitting visible light absorbing glass that has a selectively high transmittance in the wavelength region of 350 to 370 nm and suppresses deterioration due to solarization. An ultraviolet transmitting visible light absorbing filter can be provided.
Claims (7)
B2O3 0〜5質量%、
Al2O3 0〜5質量%、
Na2O 5〜20質量%、
K2O 0〜10質量%、
CaO 0〜15質量%、
ZnO 0〜5質量%、
BaO 0〜15質量%、
Sb2O3 0〜2質量%
をさらに含む請求項1または請求項2に記載の紫外線透過可視光吸収ガラス。 SiO 2 50~70% by weight,
B 2 O 3 0-5% by mass,
Al 2 O 3 0-5% by mass,
Na 2 O 5-20% by mass,
K 2 O 0-10% by mass,
CaO 0-15% by mass,
ZnO 0-5% by mass,
BaO 0-15% by mass,
Sb 2 O 3 0 to 2% by mass
The ultraviolet ray transmitting visible light absorbing glass according to claim 1 or 2, further comprising:
(B/A)×100 (I)
(ただし、Aは前記照射光の照射開始時点での350〜370nmの波長領域における透過率の最大値(%)であり、Bは前記照射光の照射開始100時間経過時点での350〜370nmの波長領域における透過率の最大値(%)である)
で表される維持率が90%以上である
請求項1〜請求項5のいずれかに記載の紫外線透過可視光吸収ガラス。 When irradiated with irradiation light including ultraviolet light and visible light at a radiation intensity of 500 mW / cm −2 for 100 hours from a light source having a maximum radiation intensity at a wavelength of 365 nm in a plate-like state having a thickness of 3 mm, the following formula (I )
(B / A) × 100 (I)
(However, A is the maximum value (%) of the transmittance in the wavelength region of 350 to 370 nm at the start of irradiation of the irradiation light, and B is 350 to 370 nm at the time when 100 hours have elapsed from the start of irradiation of the irradiation light. (Maximum transmittance (%) in the wavelength region)
The ultraviolet light transmission visible light absorption glass in any one of Claims 1-5 whose maintenance rate represented by these is 90% or more.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015194088A JP6246171B2 (en) | 2015-09-30 | 2015-09-30 | UV transmitting visible light absorbing glass and UV transmitting visible light absorbing filter |
TW105128832A TWI642641B (en) | 2015-09-30 | 2016-09-06 | UV rays pass through visible light absorption glass and UV rays pass through visible light absorption filters |
KR1020160114219A KR102018648B1 (en) | 2015-09-30 | 2016-09-06 | Ultraviolet transmiting and visible-light absorbing glass and ultraviolet transmiting and visible-light absorbing filter |
DE102016117951.5A DE102016117951A1 (en) | 2015-09-30 | 2016-09-23 | Ultraviolet transparent visible light absorbing glass and ultraviolet transparent visible light absorbing filter |
CN201610860683.7A CN106554154A (en) | 2015-09-30 | 2016-09-28 | Ultraviolet passes through visible absorption glass and ultraviolet passes through visible absorption optical filter |
CN202210864516.5A CN115304273A (en) | 2015-09-30 | 2016-09-28 | Ultraviolet-transmitting visible light-absorbing glass and ultraviolet-transmitting visible light-absorbing filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015194088A JP6246171B2 (en) | 2015-09-30 | 2015-09-30 | UV transmitting visible light absorbing glass and UV transmitting visible light absorbing filter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017219127A Division JP6523408B2 (en) | 2017-11-14 | 2017-11-14 | Ultraviolet transmission visible light absorption glass and ultraviolet transmission visible light absorption filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017065980A true JP2017065980A (en) | 2017-04-06 |
JP6246171B2 JP6246171B2 (en) | 2017-12-13 |
Family
ID=58282058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015194088A Active JP6246171B2 (en) | 2015-09-30 | 2015-09-30 | UV transmitting visible light absorbing glass and UV transmitting visible light absorbing filter |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6246171B2 (en) |
KR (1) | KR102018648B1 (en) |
CN (2) | CN115304273A (en) |
DE (1) | DE102016117951A1 (en) |
TW (1) | TWI642641B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123705A1 (en) * | 2016-12-26 | 2018-07-05 | 旭硝子株式会社 | Ultraviolet ray transmitting filter |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102642282B1 (en) * | 2017-07-12 | 2024-02-28 | 호야 가부시키가이샤 | Light guide plate and image display device |
CN114381861B (en) * | 2020-10-22 | 2023-02-28 | 立肯诺(上海)新材料科技有限公司 | Pearl amino acid spunlace non-woven fabric and preparation method thereof |
CN114213001B (en) * | 2022-01-06 | 2024-01-12 | 上海罗金光电科技有限公司 | Glass tube for lead-free ultraviolet-transmitting lamp |
CN116239300A (en) * | 2022-12-14 | 2023-06-09 | 南京华生皓光电科技有限公司 | Glass tube for UVA ultraviolet fluorescent lamp for liquid crystal alignment process and application |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201640A (en) * | 1985-03-05 | 1986-09-06 | Toshiba Glass Co Ltd | Ultraviolet-ray transmitting and heat-ray absorbing glass |
JPH08239236A (en) * | 1995-02-28 | 1996-09-17 | Nippon Electric Glass Co Ltd | Uv-transmitting black glass |
JPH08283038A (en) * | 1995-04-07 | 1996-10-29 | Nippon Electric Glass Co Ltd | Ultraviolet-ray transmitting black glass |
JPH09511733A (en) * | 1995-01-13 | 1997-11-25 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Glass composition used for lamp envelope of black light blue lamp |
JP2005314150A (en) * | 2004-04-28 | 2005-11-10 | Hoya Corp | Glass for ultraviolet light-transmitting filter and ultraviolet light-transmitting filter |
JP2007210851A (en) * | 2006-02-10 | 2007-08-23 | Asahi Techno Glass Corp | Glass tube for fluorescent lamp |
JP2008266082A (en) * | 2007-04-23 | 2008-11-06 | Agc Techno Glass Co Ltd | Sleeve for shaping glass tube, and method for producing glass tube |
JP2009263168A (en) * | 2008-04-25 | 2009-11-12 | Hitachi Displays Ltd | Glass for fluorescent lamp, glass tube using the same, fluorescent lamp using the same and liquid crystal display using the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432019A (en) | 1990-05-29 | 1992-02-04 | Sony Corp | Magnetic recording medium |
JPH09100136A (en) * | 1995-07-24 | 1997-04-15 | Hoya Corp | Near infrared absorbing filter glass |
JP2002293571A (en) * | 2001-03-30 | 2002-10-09 | Nippon Electric Glass Co Ltd | Glass for illumination |
DE10245234B4 (en) * | 2002-09-27 | 2011-11-10 | Schott Ag | Crystallisable glass, its use for producing a highly rigid, break-resistant glass ceramic with a good polishable surface and use of the glass ceramic |
JP2004315279A (en) * | 2003-04-15 | 2004-11-11 | Asahi Techno Glass Corp | Glass for fluorescent lamp |
CN1938238A (en) * | 2004-04-05 | 2007-03-28 | 日本电气硝子株式会社 | Illuminating glass |
CN101146748A (en) * | 2005-03-25 | 2008-03-19 | 旭技术玻璃株式会社 | Ultraviolet absorbing glass, glass tube for fluorescent lamp using same, and method for producing ultraviolet absorbing glass for fluorescent lamp |
CN101448751A (en) * | 2006-05-17 | 2009-06-03 | 3M创新有限公司 | Glass-ceramics and methods of making same |
JP2008233547A (en) * | 2007-03-20 | 2008-10-02 | Hoya Corp | Lens glass material for on-vehicle camera and lens for on-vehicle camera |
JP2011219313A (en) * | 2010-04-09 | 2011-11-04 | Ohara Inc | Optical glass and deterioration suppression method for spectral transmittance |
JP2012009616A (en) * | 2010-06-24 | 2012-01-12 | Asahi Glass Co Ltd | Lens for light emitting device |
CN103466943B (en) * | 2013-08-30 | 2015-10-28 | 连云港市弘扬石英制品有限公司 | Saturating infrared quartz sheet glass of a kind of scarlet and preparation method thereof |
JP5640128B2 (en) * | 2013-09-09 | 2014-12-10 | Hoya株式会社 | In-vehicle camera lens |
-
2015
- 2015-09-30 JP JP2015194088A patent/JP6246171B2/en active Active
-
2016
- 2016-09-06 KR KR1020160114219A patent/KR102018648B1/en active IP Right Grant
- 2016-09-06 TW TW105128832A patent/TWI642641B/en active
- 2016-09-23 DE DE102016117951.5A patent/DE102016117951A1/en active Pending
- 2016-09-28 CN CN202210864516.5A patent/CN115304273A/en active Pending
- 2016-09-28 CN CN201610860683.7A patent/CN106554154A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201640A (en) * | 1985-03-05 | 1986-09-06 | Toshiba Glass Co Ltd | Ultraviolet-ray transmitting and heat-ray absorbing glass |
JPH09511733A (en) * | 1995-01-13 | 1997-11-25 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Glass composition used for lamp envelope of black light blue lamp |
JPH08239236A (en) * | 1995-02-28 | 1996-09-17 | Nippon Electric Glass Co Ltd | Uv-transmitting black glass |
JPH08283038A (en) * | 1995-04-07 | 1996-10-29 | Nippon Electric Glass Co Ltd | Ultraviolet-ray transmitting black glass |
JP2005314150A (en) * | 2004-04-28 | 2005-11-10 | Hoya Corp | Glass for ultraviolet light-transmitting filter and ultraviolet light-transmitting filter |
JP2007210851A (en) * | 2006-02-10 | 2007-08-23 | Asahi Techno Glass Corp | Glass tube for fluorescent lamp |
JP2008266082A (en) * | 2007-04-23 | 2008-11-06 | Agc Techno Glass Co Ltd | Sleeve for shaping glass tube, and method for producing glass tube |
JP2009263168A (en) * | 2008-04-25 | 2009-11-12 | Hitachi Displays Ltd | Glass for fluorescent lamp, glass tube using the same, fluorescent lamp using the same and liquid crystal display using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123705A1 (en) * | 2016-12-26 | 2018-07-05 | 旭硝子株式会社 | Ultraviolet ray transmitting filter |
JP2022000704A (en) * | 2016-12-26 | 2022-01-04 | Agc株式会社 | Ultraviolet transmission filter |
JP7136301B2 (en) | 2016-12-26 | 2022-09-13 | Agc株式会社 | UV transmission filter |
Also Published As
Publication number | Publication date |
---|---|
TW201714848A (en) | 2017-05-01 |
TWI642641B (en) | 2018-12-01 |
CN115304273A (en) | 2022-11-08 |
JP6246171B2 (en) | 2017-12-13 |
KR20170038662A (en) | 2017-04-07 |
DE102016117951A1 (en) | 2017-03-30 |
CN106554154A (en) | 2017-04-05 |
KR102018648B1 (en) | 2019-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6246171B2 (en) | UV transmitting visible light absorbing glass and UV transmitting visible light absorbing filter | |
US9233871B2 (en) | Optical glass and core material for optical fiber | |
WO2011016566A1 (en) | Optical glass | |
JP6014301B2 (en) | Optical glass, preform and optical element | |
JP6903373B2 (en) | Optical glass, preform materials and optical elements | |
JP2016074556A (en) | Optical glass and optical element | |
JP2010105902A (en) | Optical glass and method for suppressing deterioration of spectral transmittance | |
JPWO2012057232A1 (en) | Glass plate and method for producing the same | |
JP2016069254A (en) | Glass, glass blank for press-forming, optical element blank, and optical element | |
JP2012193065A (en) | Optical glass | |
JP5596717B2 (en) | Optical glass | |
JP2011140434A (en) | Optical glass, optical element and preform | |
JP2012232874A (en) | Optical glass, preform, and optical element | |
JP2010100440A (en) | Soda lime-based glass composition | |
JP6829548B2 (en) | Optical glass | |
JP2015027944A (en) | Optical glass | |
JP2014196244A (en) | Optical glass | |
JP2010116277A (en) | Glass | |
JP5904864B2 (en) | UV-visible transmission glass | |
JP6523408B2 (en) | Ultraviolet transmission visible light absorption glass and ultraviolet transmission visible light absorption filter | |
JP6866012B2 (en) | Optical glass, preform materials and optical elements | |
JP4758618B2 (en) | Glass for UV transmission filter and UV transmission filter | |
JP2011121833A (en) | Optical glass, optical element and preform | |
JP2013151402A (en) | Optical glass, preform and optical element | |
JP2012091983A (en) | Optical glass and optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170530 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6246171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |