JP2017064505A - 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法 - Google Patents

治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法 Download PDF

Info

Publication number
JP2017064505A
JP2017064505A JP2017006325A JP2017006325A JP2017064505A JP 2017064505 A JP2017064505 A JP 2017064505A JP 2017006325 A JP2017006325 A JP 2017006325A JP 2017006325 A JP2017006325 A JP 2017006325A JP 2017064505 A JP2017064505 A JP 2017064505A
Authority
JP
Japan
Prior art keywords
scanning
path
particle beam
scanning path
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017006325A
Other languages
English (en)
Other versions
JP6328279B2 (ja
Inventor
高明 岩田
Takaaki Iwata
高明 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017006325A priority Critical patent/JP6328279B2/ja
Publication of JP2017064505A publication Critical patent/JP2017064505A/ja
Application granted granted Critical
Publication of JP6328279B2 publication Critical patent/JP6328279B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

【課題】走査時間を短縮し、かつ、正常組織や重要臓器への照射回避も考慮した走査経路を求めるための治療計画装置を得ること。
【解決手段】一レイヤー内の全てのスポット位置を結ぶ走査経路の複数の候補を予め抽出する走査経路候補抽出部と、走査経路候補抽出部が予め抽出した複数の候補の走査経路のそれぞれにおける荷電粒子ビームを走査するのに費やされる時間に基づいて、それぞれの走査経路を評価する走査経路評価部と、この走査経路評価部において評価した結果に基づいて、治療時に用いる走査経路を決定する走査経路決定部とを備えるようにした。
【選択図】図1

Description

発明は、がん治療等に用いられる走査型の粒子線治療装置や、当該粒子線治療装置用の治療計画装置に関する。
がん治療に利用される放射線は、大きく光子線と粒子線の2つに分けることができる。光子線とは、光の波であり、X線・ガンマ線などの従来の放射線として利用されている。他方、粒子線とは、水素の原子核や炭素の原子核等の粒子を利用した放射線をいい、特に医療分野では、水素原子をイオン化して得られる「陽子」や炭素原子をイオン化して得られる「炭素イオン(重イオンとも言う)」を加速して得られるビームが主に用いられている。
粒子線治療は、以下の原理に基づいている。粒子線ががん細胞に照射されると、がん細胞のDNAが傷つき、修復能力を超える損傷が与えられた細胞は次第に死に、最終的には体外に排出されることとなる。X線やガンマ線などの光子線型の従来の放射線が身体の表面近くで作用してしまうのに対し、粒子線は停止する直前で吸収線量がピークに達する特徴を有しているため、エネルギーを変えることによって吸収線量がピーク(ブラッグピークと呼ぶ)となる位置をがん病巣に合わせることができ、がん病巣のみを集中的に破壊することができる。以上のように従来技術にはない優位な効果が得られるため、粒子線治療はQOL(Quality of Life)を維持できる治療としてますます期待されている。
粒子線治療が有効に行われるためには、患部組織に十分な線量を与えつつ周辺組織にはダメージを与えないよう、ビームを成形する必要がある。このビーム成形を実現する照射方法は、大きく「ブロードビーム照射法」と「スキャニング照射法」とに分けることができる。ブロードビーム照射法とは、散乱体やリッジフィルタ等を用いていったん広げたビームを、コリメータやボーラスを用いて成形する方法である。一方、スキャニング照射法とは、ビーム径が細い状態のまま(この状態のビームを「ペンシルビーム」という)、当該ペンシルビームを走査し、点描画のように照射したり(ビームのON/OFFがあるスポットスキャニング)一筆書きのように照射したり(ビームは原則ONであるラスタースキャニング)する方法をいう。
ここで、スキャニング照射についてもう少し詳しく述べ、治療計画装置との関連について説明する。前述のとおり、粒子線の特徴はエネルギーに応じた深さのブラッグピークを有する点にある。体内深さ方向に厚みを有する患部組織に適切な照射線量を付与するためには、当該患部組織を、ビームエネルギーに応じたレイヤーに仮想的に分けて、レイヤー毎に前述のスポットスキャニングやラスタースキャニングを施すことが考えられる。粒子線のブラッグピークは、そのピークよりも深い側の付与線量はほぼゼロであるが、そのピークよりも浅い側へは多少の付与線量があり、その影響を考慮して各レイヤーの各スポット位置での照射量を決めていかなければならない。治療計画装置は、あらかじめ撮影した患部の3次元画像の情報から、適切な付与線量を実現するための、当該各レイヤーの当該各スポットの照射量を決める計算及びシミュレーションを行う。
実際のスキャニング照射を行うに際し、もうひとつ決めなければならないことがある。それは、各レイヤーにおいて、各スポットをどの順番で照射していくか、すなわち走査経路をどのように決めるかである。ラスタースキャニングにおいても、各スポットを結んだ軌跡をなぞって照射すると考えれば同様である。スキャニングの当該走査経路の決定は、通常、治療計画装置が担う。このスキャニングの当該走査経路に関する先行技術は、例えば特許文献1や非特許文献1に見ることができる。
特開2009-66106号公報
J.H. Kang et al., "Demonstration of scan path optimization in proton therapy" Medical Physics 34(9)2007,page 3457-3464
非特許文献1では、走査経路の距離が短くなるような経路を抽出する方法が開示されている。しかしながら、後述するように、経路の距離と走査に要する時間は必ずしも1対1に対応しない。よって、経路の距離を指標とした評価では、必ずしも走査時間が最適化された走査経路を選択することにはならない。本発明の目的は、上記課題に鑑み、ラスタースキャニング型の粒子線治療装置においてその走査時間を短縮し、かつ、正常組織や重要臓器への照射回避も考慮した走査経路を求めるための治療計画装置及びその走査経路を利用した粒子線治療装置を得ることである。
本発明に係る治療計画装置は、荷電粒子ビームの進行方向に垂直な2方向であるX方向とY方向に荷電粒子ビームを走査するX方向走査電磁石およびY方向走査電磁石により、荷電粒子ビームを移動と停留を繰り返すように走査して、荷電粒子ビームを照射対象である患者の患部に照射する粒子線治療装置の、荷電粒子ビームの走査経路を決定する治療計画装置において、荷電粒子ビームの停留点であるスポット位置を、レイヤー毎に記憶するスポット位置記憶部と、スポット位置記憶部に記憶された一レイヤー内の全てのスポット位置を結ぶ走査経路の複数の候補を予め抽出する走査経路候補抽出部と、走査経路候補抽出部が予め抽出した複数の候補の走査経路のそれぞれにおける荷電粒子ビームを走査するのに費やされる時間に基づいて、それぞれの走査経路を評価する走査経路評価部と、この走査経路評価部において評価した結果に基づいて、治療時に用いる走査経路を決定する走査経路決定部と、を備えるようにしたものである。
本発明の治療計画装置によれば、患部組織以外への荷電粒子ビームの照射リスクが小さく、全体の照射時間が短い粒子線治療装置を提供できる。
本発明の実施の形態1による治療計画装置を含む粒子線治療装置の構成を示すブロック図である。 本発明を説明するためのスポット位置および走査経路を示す配置図である。 本発明の走査経路を説明するためのスポット位置と走査経路の一例を示す配置図である。 本発明の走査経路を説明するためのスポット位置と走査経路の他の例を示す配置図である。 本発明の走査経路を説明するためのスポット位置と走査経路のさらに他の例を示す配置図である。 本発明の実施の形態2による治療計画装置のステップを示すフロー図である。 図4と同じスポット位置で、図4とは別の走査経路の例を示す配置図である。 図4と同じスポット位置で、図4、図7とは別の走査経路の例を示す配置図である。
通過しなければならない点が与えられ、その経路を決定する問題としては、「巡回セールスマン問題(Traveling Salesman Problem, TSP)」として定式化されている。典型的な巡回セールスマン問題とは以下のとおりである。都市の集合と、各2都市間の移動コスト(例えば距離)が与えられたとき、全ての都市をちょうど一度ずつ巡り出発地に戻る巡回路の総移動コストが最小のものを求める(セールスマンが所定の複数の都市を1回だけ巡回する場合の最短経路を求める)という、組合せ最適化問題である。
したがって、スキャニング照射型の粒子線治療装置において、ビームを走査する経路の決定に際しては、単純に上記巡回セールスマン問題にあてはめて、既存の巡回セールスマン問題を解くツールを用いて、「距離が最短となる経路」を求めればよいとも考えられる。しかし、距離最短経路を求める手法は、以下の点で問題がある。
粒子線のペンシルビームの走査は、通常、X方向偏向用とY方向偏向用との2つの走査電磁石によって実現される。ビーム経路上に走査電磁石を配置する必要があるが、X方向偏向用の走査電磁石とY方向偏向用の走査電磁石を同じ位置に設置することは物理的にできない。X方向偏向用とY方向偏向用の走査電磁石はビーム径路上に並列に配置される結果、照射基準点であるアイソセンタからの距離も異なり、電磁石の大きさも異なることから、X方向の走査速度とY方向との走査速度も異なることとなる。すなわち、「距離が最短となる経路」を求めても、それが走査時間(治療時間)を最小とするものではないという問題がある。
上記の問題に対し、X方向の走査速度とY方向の走査速度との比率に基づいて走査エリアを座標変換すればよいのでは、とも考えられる。例えば、X方向の走査速度を1としY方向の走査速度が2だった場合、走査エリアをY軸方向に2倍に拡大すれば、その座標変換した走査エリアでの距離最短経路は時間最短経路と等しくなるという考え方である。
しかし、上記の座標変換の手法も課題を解決したことになっていない。それは、以下の単純な例を見ればあきらかとなる。前述のとおり、粒子線治療装置においてビームの走査は、X方向とY方向それぞれ独立したスキャニング電磁石により行われている。その結果、ビームの走査がある点を起点としてX方向にもY方向にも変化する場合、走査時間は走査距離に比例せず、「X方向の走査時間とY方向の走査時間のうち長くかかった方の時間」となる性質を有する。(例えば、X方向の走査速度もY方向の走査速度も1とした場合、X方向へ1かつY方向へ1に移動した場合の距離は√2となるが、走査時間は1である。)
ラスタースキャニングにおいては、「距離が最短となる経路」を選択するだけでは不十分である更なる課題がある。前述のとおり、スキャニング照射法においては患部組織をレイヤーに分けレイヤー毎にビームを走査する。照射対象たる患部組織が1つの閉じた領域である場合であっても、レイヤーに分けた結果、或るレイヤーでは照射領域が2つ以上の閉じた領域となる場合がある。数学的にみると、照射対象たる患部組織が有界なConvex集合でないとき、このような現象が起きる。レイヤー内での照射領域が2つ以上の閉じた領域となった場合、当該領域間をビームが行き来するときに照射領域以外の領域を照射することになる。単純に距離最短経路や時間最短経路を求めるのでは、この照射領域以外の領域への影響が考慮されない。更に、重要臓器等があり照射されることを極力避けたい領域が存在する場合もあるが、やはりこの影響が考慮されないという問題があった。
照射対象たる患部組織をレイヤーに分けた結果、或るレイヤーでの照射領域が1つであってもConvex集合でないときがある。照射領域がConvex集合でなければ、求めた経路によっては正常組織・重要臓器を通過してしまうという現象が生じうる。
そもそも巡回セールスマン問題は、「巡回」と名がつくとおり、起点と終点とが一致する「ループ」についての最適化に関する。一方、ラスタースキャニングのビーム走査経路の問題は、起点と終点とが必ずしも一致する必要はない。すなわちビーム走査経路の場合は「ループ」ではなく、「経路」についての最適化に関する。ただし、最適なループを求めることができれば、どのスポットも起点として選ぶことができる等のメリットがある。以上のような問題は、本発明者が初めて提起するものであり、本発明では、その問題を解決する解決策を提案する。
実施の形態1.
図1は本発明の実施の形態1による治療計画装置を含む粒子線治療装置の概略構成を示すブロック図である。図1において、加速器1から陽子線や炭素線などの荷電粒子ビーム2が出力され、電磁石群等で構成されるビーム輸送系3で荷電粒子ビーム2をビーム照射系4に導く。ビーム照射系4には、入射される荷電粒子ビーム2を、荷電粒子ビーム2の進行方向に垂直な方向であるX−Y方向2次元に偏向して走査する、X方向走査電磁石5とY方向走査電磁石6の1組の走査電磁石7が備えられている。この走査電磁石7が、荷電粒子ビーム2を、荷電粒子ビームの進行方向に垂直なX方向およびY方向に移動と停留を繰り返すように偏向させて走査する。このとき、荷電粒子ビーム2の移動中も荷電粒子ビーム2は照射される。一方、治療計画装置20では、患者の患部である標的8に対する照射計画を立案する。具体的には、標的8の3次元体積領域を、荷電粒子ビーム2が形成するブラッグピークの位置を標的8の3次元形状に合わせて走査して、標的形状に合わせた線量領域を形成するために、標的8における荷電粒子ビームの停留点であるスポット位置、および各スポット位置における照射線量を決める。同時に、これらのスポット位置群のうち、同じ粒子線エネルギーに対応するスポット位置の集合を1レイヤー内にあるレイヤー内スポット位置として、レイヤー毎にスポット位置記憶部21に記憶する。
走査経路候補抽出部22では、スポット位置記憶部21に記憶されたスポット位置により、レイヤー毎に複数の走査経路候補を抽出する。走査経路候補の抽出方法は実施の形態2で説明する。レイヤー毎の走査経路候補の中から、走査に要する時間が短い経路、またスポット間のビームの移動中にビームが重要臓器を通過しない走査経路を決定することが本発明の目的である。このため、走査経路候補の中から、ビームが重要臓器を通過せず、最も走査に要する時間が短い経路を抽出するために、走査経路に関する次のような評価関数を導入する。
評価関数Jを以下の式のように定義する。
Figure 2017064505
ただし、
Tk:k番目として選択したスポットからk+1番目として選択したスポットへの 経路(以下「k番目の部分経路」という)についてビームを走査するのに費 やされる時間
wk:「k番目の部分経路」に対する重み係数
k番目の部分経路が患部組織に含まれる場合、wk=wkd=1
k番目の部分経路が正常組織を通過する場合、wk=wko>1
k番目の部分経路が重要臓器を通過する場合、wk=wkO>wko
図2に簡単のため、2×2の格子状に配列されたスポットを黒丸で示した。また、簡単のため、X方向に隣接しているスポットへの走査時間を1、Y方向も同様に1とする。ここで、斜め方向のスポットへの走査時間は√2とはならず1であることに留意する。これは前述したとおり、X方向への走査とY方向への走査が独立かつ同時に行われるためである。よって、S11からS21への経路のTkとS11からS22への経路のTkは同じ値とする。このように、経路の長さではなく、経路についてビームを走査するのに費やされる時間を評価するのが、本発明の第1のポイントである。
また、評価関数は「ビームを走査するのに費やされる時間」であって、実際の照射に費やされる時間ではないことに留意する必要がある。実際の照射は、各スポットにおいて治療計画で求めた目標線量を付与しなければならず、荷電粒子ビームが移動と停留を繰り返しているためである。一定の速度で走査する従来のラスタースキャニングと区別するため、このような照射方法をハイブリッドスキャニングと呼ぶ場合がある。
一方、経路が患部組織ではなく正常組織を通過する場合、また正常組織のなかでも特に重要な重要臓器を通過する場合は、リスクが大きい径路であるとして、重み係数を大きくする。例えば、図3に示すように、患部が患部81と患部82のように分離した領域の場合、一部の部分経路は患部以外を通過することになる。また患部の間に重要臓器83が存在する場合も考えられる。上記のように、重み係数wkを、当該部分経路が患部組織に含まれる場合は1とし、患部組織ではない正常組織を通過する場合は1より大きく設定し、患部組織ではない重要臓器83を通過する場合はさらに大きい値に設定する。重み係数wkをこのように設定することで、図3(a)の走査経路のように、正常組織を通過する部分経路P11を含む走査経路候補よりも、図3(b)の走査経路のように重要臓器83を通過する部分経路P22を含む走査経路候補の評価関数Jは値が大きくなる。
走査経路評価部23では、走査経路候補抽出部22で抽出した複数の走査経路候補についてそれぞれ、評価関数Jの値を算出する。走査経路決定部24では、走査経路評価部23で算出した評価関数Jの値に基づいて、走査経路候補の中から評価関数Jの値が小さいものを治療時の照射に用いる走査経路として決定する。照射制御装置10の走査制御部11は、治療計画装置20の走査経路決定部24で決定された走査経路に従って荷電粒子ビーム2が標的を移動するように、X方向走査電磁石5とY方向走査電磁石6を制御する。
以上の構成により、走査の時間が短く、正常組織、正常組織の内でも特に重要臓器への粒子線の照射リスクが小さい粒子線治療装置が得られる。
実施の形態2.
照射対象たる患部組織の大きさによっても異なるが、ひとつのレイヤーにおけるスポット数は、数千〜数万点に及ぶことが常である。スポット数が10しかない場合でも、評価関数を最小化する最適経路を求めるには、評価関数を10!=3,628,800通り(362万8千8百通り)計算しなければならないことになるため、力技で全ての通り行うのは現実的ではない。そこで、実施の形態2では、粒子線治療におけるスキャニング照射の特殊性を考慮して、機械的に最適若しくは準最適走査経路を決定する方法について説明する。
粒子線治療におけるスキャニング照射は、前述のとおり各レイヤーの照射領域内の「スポット」とよばれる単位で管理され、通常このスポットは格子状に配列されている。図2で説明したように、2×2の格子状に配列されたスポットについて、X方向に隣接しているスポットへの走査時間を1、Y方向も同様に1とする。ここで、斜め方向のスポットへの走査時間は√2とはならず1であることに留意する。以上に留意すれば、下記のような定理が導き出せる。
(定理1)
格子状に配列されている1または2以上のスポットについて、X方向に隣接している格子(交差点)への走査時間を1、Y方向も同様に1とした場合、スポットをすべて通過する走査経路に従って走査する時間はn−1以上となる。ここで、nはスポットの総数である。
(定理2)
格子状に配列されている1または2以上のスポットについて、X方向に隣接している格子(交差点)への走査時間をTmin_x、Y方向に隣接している格子(交差点)への走査時間をTmin_y(ただしTmin_y>Tmin_x)とした場合、スポットをすべて通過する走査経路に従って走査する時間は、(l−1)Tmin_y+(n−l)Tmin_x以上となる。ここで、lはスポットが配置された格子の行数である。また、全スポットを通過する走査時間が(l−1)Tmin_y+(n−l)Tmin_xとなる走査経路が存在する必要条件は、以下である。
条件1:照射領域が1つの閉じた領域であり、かつ、
条件2:照射領域が、X方向でみてConvexであること
ここで、「X方向でみてConvex」とは、格子の各行をみた場合、スポットが存在するすべての行において、隣接して配置されたスポットの群が1つであることをいう。
定理1は、スポットが格子状に配列されている場合において、スポット数と全スポットを走査する最短時間との関係について述べている。複数のスポットが、1つの行の上に隣接して配列されているケースを考えれば、最短時間がn−1となることが容易にわかる。
定理2は、定理1と同じくスポット数と最短時間との関係について述べているが、X方向とY方向との走査時間の違いを考慮に入れている。定理2の仮定のようにX方向への走査時間の方が短い場合、全スポットを最短時間で走査する経路は、(a)一番上(若しくは一番下)の行の左端(若しくは右端)を起点とし、(b)X方向の他の端に向けて走査、すなわち、「行」を走査し、(c)次の行の端点へ移る、という経路を候補として考える。このとき、常にスポットが隣接(左右、上下、斜め)していれば、それは最短時間経路である。簡単のため、このように走査する経路をここでは「ジグザグ経路」と呼ぶことにする。Y方向への走査時間の方が短い時は、Y方向を行方向として上記と同じ考え方で経路を決定すればよい。
もちろん、照射対象たる患部組織の形状によっては、このジグザグ経路によってすべてのスポットを走査することが出来ない場合もある。そこで、ここではこのような場合の走査経路の決定方法について、図4〜図7の概念図、および図6のフローチャートを参照しながら説明する。
図4は、走査経路の決定を4つの段階に分けて示している。
段階1:或るレイヤーにおける照射領域及びスポットを示している
段階2:前述の起点(ここでは最上行の左端)から、ジグザグ経路を描ける部分について描く(ジグザグ経路については、部分最適)(ST1)。
段階3:ジグザグ経路以外の部分について、最適化ができるか検討する(ST2)。残りの部分が、図4のスポット群84のように、ループになれば(ST2 YES、ST3)、ループの部分に関しては段階4へ進む。
段階4:ジグザグ経路と段階3のループが、2つの隣接するスポットを介して互いに隣接していれば、ジグザグ経路と前記ループとを図のように接続する(ST4 NO、ST5)。余っているスポットがあれば、段階3へ戻る(ST4 YES)。
図4で示した方法では、必ずしも解決できない場合(ST2 NO)がある。それは、ジグザグ経路以外の部分のスポット群が一次元に配置されていてループとならない場合である。図5の段階3においては、残りの部分がループとなるスポット群85のほか、一次元に配置されたスポット群86やスポット群87の経路が存在している。そこで、このような場合は、前記経路を形式的にループとして扱う(ST6)ことを考える。「形式的にループとして扱う」とは、図5の段階4の図に示すように、一次元に配置されているスポット群に対し、往復するように経路を設定することを言う。この場合、同じスポットを2回通過することになるが、当該スポットにおいては、2回の照射線量が治療計画での目標線量となるよう、停留時間を分配すればよい。同じスポットを、照射線量を分けて複数回照射する方法は「リペイント照射」などと呼ばれ知られている。本発明においては、この残り経路部分についてのみリペイントする「部分リペイント」方法を提案する。形式的にループとして扱った部分もループとして、ジグザグ経路とループとを接続する(ST5)。
次に、図4で示したスポット配置において、起点を変えた場合の走査経路候補を説明する。図7は、最下行の左端を起点とした場合の走査経路候補である。まず段階2として起点からジグザグ経路を描く。段階3で残りの部分のスポット群88について経路を描く。スポット群88は一次元に配置されたスポット群になっている。段階4において、段階2で描いたジグザグ経路と段階3で描いた一次元の経路とを接続する。
図8は、右側領域の最上行の右端を起点とした場合の走査経路候補である。まず、段階2として起点からジグザグ経路を描く。段階3で残りのスポット群89について最適経路を描く。ここではジグザグ経路が描けるのでジグザグ経路を描く。段階4で2つのジグザグ経路を接続する。
ジグザグ経路を複数描いた場合、ジグザグ経路同士は端点同士を直列に繋げて、すなわち部分経路を直列に繋げて最終的には1つの経路としなければならない。この場合、どの端点を始点とするかはいくつかの組合せが考えられる。図8に示すように、部分経路がA、Bと2つ存在し、部分経路Aの端点をそれぞれA1、A2とし、部分経路Bの端点をそれぞれB1、B2とする。すると、最終的な経路は、
A1→A2→B1→B2
A2→A1→B1→B2
A1→A2→B2→B1
A2→A1→B2→B1
と、上記の逆順の合計8通りが考えられる。図8の段階4では、このうち、端点を接続する距離が最も短く、評価関数Jが小さくなると考えられるA1→A2→B1→B2の経路を描いている。
走査経路候補抽出部22は、図4に説明したように、ひとつのジグザグ経路を基礎として、残りのスポットをループ経路にする手法を優先して経路を抽出し、さらには図8に説明したように、複数のジグザグ経路を抽出して直列に繋げて複数の走査経路候補を抽出することができる。
以上のようにして抽出した複数の走査経路候補について、実施の形態1で説明した評価関数Jの値を算出し、評価関数Jの値が最も小さい走査経路を患者の患部に照射する場合の走査経路として決定する。これにより、走査経路候補を少なくして、走査の時間が短く、正常組織、正常組織の内でも特に重要臓器への粒子線の照射リスクが小さい粒子線治療装置が得られる。
なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することができる。
2…荷電粒子ビーム、5…X方向走査電磁石、6…Y方向走査電磁石、7…走査電磁石、8…標的(患部)、10…照射制御装置、11…走査制御部、20…治療計画装置、21…スポット位置記憶部、22…走査経路候補抽出部、23…走査経路評価部、24…走査経路決定部、83…重要臓器

Claims (9)

  1. 荷電粒子ビームの進行方向に垂直な2方向であるX方向とY方向に前記荷電粒子ビームを走査するX方向走査電磁石およびY方向走査電磁石により、前記荷電粒子ビームを移動と停留を繰り返すように走査して、前記荷電粒子ビームを照射対象である患者の患部に照射する粒子線治療装置の、前記荷電粒子ビームの走査経路を決定する治療計画装置において、
    前記患部内に設定される前記荷電粒子ビームの停留点である、前記X方向と前記Y方向との格子状に配列されたスポット位置を、レイヤー毎に記憶するスポット位置記憶部と、
    前記スポット位置記憶部に記憶された一レイヤー内の全てのスポット位置を結ぶ走査経路の複数の候補を予め抽出する走査経路候補抽出部と、
    前記走査経路候補抽出部が予め抽出した複数の候補の走査経路のそれぞれにおける前記荷電粒子ビームを走査するのに費やされる時間に基づいて、それぞれの走査経路を評価する走査経路評価部と、
    この走査経路評価部において評価した結果に基づいて、治療時に用いる走査経路を決定する走査経路決定部と、
    を備えたことを特徴とする治療計画装置。
  2. 前記走査経路候補抽出部は、前記格子状に配列されたスポット位置の配列方向のうち、前記X方向走査電磁石による前記荷電粒子ビームの移動速度と前記Y方向電磁石による前記荷電粒子ビームの移動速度のうち、速い移動速度の方向を行方向に設定し、前記スポット位置の配列の行のうち一方の端の行の一方の端のスポット位置を起点とし、この起点から当該行の他の端のスポット位置に向けて経路を設定し、さらに前記他の端のスポット位置から隣接する行の端点のスポット位置に向けて経路を設定し、さらにこの隣接する行の端点のスポット位置から当該行の他の端点に向けて経路を設定する経路設定を繰り返して前記走査経路としてジグザグ経路を設定することを特徴とする請求項1に記載の治療計画装置。
  3. 前記走査経路候補抽出部は、前記ジグザグ経路により、前記一レイヤー内の全てのスポット位置を結ぶことができない場合、結ぶことができなかったスポット位置群においてループ経路または他のジグザグ経路を設定することを特徴とする請求項2に記載の治療計画装置。
  4. 前記走査経路候補抽出部は、ジグザグ経路またはループ経路により、前記一レイヤー内の全てのスポット位置を結ぶことができず一次元に配列されたスポット位置群が残った場合、当該一次元に配列されたスポット位置群は往復する経路によりループ経路を設定することを特徴とする請求項3に記載の治療計画装置。
  5. 請求項1から4のいずれか1項に記載の治療計画装置と、
    X方向走査電磁石およびY方向走査電磁石と、
    前記走査経路決定部により決定された走査経路に従って前記X方向走査電磁石および前記Y方向走査電磁石を制御する走査制御部を備えた照射制御装置と、を備えたことを特徴とする粒子線治療装置。
  6. 荷電粒子ビームの進行方向に垂直な2方向であるX方向とY方向に前記荷電粒子ビームを走査するX方向走査電磁石およびY方向走査電磁石により、前記荷電粒子ビームを移動と停留を繰り返すように走査して、前記荷電粒子ビームを照射対象である患者の患部に照射する粒子線治療装置の、前記荷電粒子ビームの走査経路を決定する荷電粒子ビームの走査経路決定方法において、
    前記患部内に設定される前記荷電粒子ビームの停留点である、前記X方向と前記Y方向との格子状に配列されたスポット位置を、レイヤー毎に記憶するスポット位置記憶ステップと、
    前記スポット位置記憶ステップにおいて記憶された一レイヤー内の全てのスポット位置を結ぶ走査経路の複数の候補を予め抽出する走査経路候補抽出ステップと、
    前記走査経路候補抽出ステップにおいて予め抽出した複数の候補の走査経路のそれぞれにおける前記荷電粒子ビームを走査するのに費やされる時間に基づいて、それぞれの走査経路を評価する走査経路評価ステップと、
    この走査経路評価ステップにおいて評価した結果に基づいて、治療時に用いる走査経路を決定する走査経路決定ステップと、
    を含むことを特徴とする荷電粒子ビームの走査経路決定方法。
  7. 前記走査経路候補抽出ステップにおいて、前記格子状に配列されたスポット位置の配列方向のうち、前記X方向走査電磁石による前記荷電粒子ビームの移動速度と前記Y方向電磁石による前記荷電粒子ビームの移動速度のうち、速い移動速度の方向を行方向に設定し、前記スポット位置の配列の行のうち一方の端の行の一方の端のスポット位置を起点とし、この起点から当該行の他の端のスポット位置に向けて経路を設定し、さらに前記他の端のスポット位置から隣接する行の端点のスポット位置に向けて経路を設定し、さらにこの隣接する行の端点のスポット位置から当該行の他の端点に向けて経路を設定する経路設定を繰り返して前記走査経路としてジグザグ経路を設定することを特徴とする請求項6に記載の荷電粒子ビームの走査経路決定方法。
  8. 前記走査経路候補抽出ステップにおいて、前記ジグザグ経路により、前記一レイヤー内の全てのスポット位置を結ぶことができない場合、結ぶことができなかったスポット位置群においてループ経路または他のジグザグ経路を設定することを特徴とする請求項7に記載の荷電粒子ビームの走査経路決定方法。
  9. 前記走査経路候補抽出ステップにおいて、ジグザグ経路またはループ経路により、前記一レイヤー内の全てのスポット位置を結ぶことができず一次元に配列されたスポット位置群が残った場合、当該一次元に配列されたスポット位置群は往復する経路によりループ経路を設定することを特徴とする請求項8に記載の荷電粒子ビームの走査経路決定方法。
JP2017006325A 2017-01-18 2017-01-18 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法 Active JP6328279B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006325A JP6328279B2 (ja) 2017-01-18 2017-01-18 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006325A JP6328279B2 (ja) 2017-01-18 2017-01-18 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016016841A Division JP6139717B2 (ja) 2016-02-01 2016-02-01 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法

Publications (2)

Publication Number Publication Date
JP2017064505A true JP2017064505A (ja) 2017-04-06
JP6328279B2 JP6328279B2 (ja) 2018-05-23

Family

ID=58491072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006325A Active JP6328279B2 (ja) 2017-01-18 2017-01-18 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法

Country Status (1)

Country Link
JP (1) JP6328279B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782418A (zh) * 2019-10-25 2020-02-11 上海精测半导体技术有限公司 一种带电粒子束设备的扫描规划方法、装置及设备
CN112752595A (zh) * 2018-11-20 2021-05-04 株式会社日立制作所 粒子束治疗装置及其控制方法
WO2023024156A1 (zh) * 2021-08-25 2023-03-02 豪威芯仑传感器(上海)有限公司 一种扫描器电路及图像传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253250A (ja) * 2009-03-31 2010-11-11 Hitachi Ltd 荷電粒子照射システム及び照射計画装置
US20110280372A1 (en) * 2010-05-13 2011-11-17 Yuri Ivanov Method for Determining Paths of Particle Beams Through 3D Tissue Volumes
US20120187314A1 (en) * 2009-07-15 2012-07-26 Christoph Bert Irradiation or irradiation planning system for a rescanning method using a particle beam
WO2012111125A1 (ja) * 2011-02-17 2012-08-23 三菱電機株式会社 粒子線治療装置
JP2012223259A (ja) * 2011-04-18 2012-11-15 Hitachi Ltd 粒子線治療計画装置および粒子線治療装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253250A (ja) * 2009-03-31 2010-11-11 Hitachi Ltd 荷電粒子照射システム及び照射計画装置
US20120187314A1 (en) * 2009-07-15 2012-07-26 Christoph Bert Irradiation or irradiation planning system for a rescanning method using a particle beam
US20110280372A1 (en) * 2010-05-13 2011-11-17 Yuri Ivanov Method for Determining Paths of Particle Beams Through 3D Tissue Volumes
WO2012111125A1 (ja) * 2011-02-17 2012-08-23 三菱電機株式会社 粒子線治療装置
JP2012223259A (ja) * 2011-04-18 2012-11-15 Hitachi Ltd 粒子線治療計画装置および粒子線治療装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752595A (zh) * 2018-11-20 2021-05-04 株式会社日立制作所 粒子束治疗装置及其控制方法
CN112752595B (zh) * 2018-11-20 2023-05-26 株式会社日立制作所 粒子束治疗装置及其控制方法
US11938346B2 (en) 2018-11-20 2024-03-26 Hitachi, Ltd. Particle beam therapy apparatus and control method thereof
CN110782418A (zh) * 2019-10-25 2020-02-11 上海精测半导体技术有限公司 一种带电粒子束设备的扫描规划方法、装置及设备
CN110782418B (zh) * 2019-10-25 2020-12-04 上海精测半导体技术有限公司 一种带电粒子束设备的扫描规划方法、装置及设备
WO2023024156A1 (zh) * 2021-08-25 2023-03-02 豪威芯仑传感器(上海)有限公司 一种扫描器电路及图像传感器

Also Published As

Publication number Publication date
JP6328279B2 (ja) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5879446B2 (ja) 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路決定方法
US9597530B2 (en) Particle beam scanning irradiation system
US7947969B2 (en) Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
EP2139559B1 (en) Determination of a planning volume for irradiation of a body
JP6328279B2 (ja) 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法
EP3199202B1 (en) Treatment planning device, treatment planning method, control device, and particle beam treatment system
JP2009243891A (ja) 荷電粒子線照射装置
JP6139717B2 (ja) 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路の決定方法
EP3130375A1 (en) Particle beam treatment-planning apparatus and method for simulating particle beam irradiation
JP5932064B2 (ja) 粒子線照射装置、およびそれを備えた粒子線治療装置
CN114096312A (zh) 用于计划和递送放射疗法治疗的计算机程序产品和计算机系统以及计划放射疗法治疗的方法
JP7160716B2 (ja) 粒子線治療装置及びその作動方法
JP6286168B2 (ja) 荷電粒子ビーム照射システム及び照射計画システム
JP6444203B2 (ja) 粒子線治療計画装置、および粒子線照射のシミュレーション方法
JP2022105417A (ja) 治療計画装置、治療計画方法及びコンピュータプログラム
JP2018089172A (ja) 粒子線照射システム、粒子線制御情報生成装置、粒子線照射制御装置、粒子線照射装置、および粒子線照射装置の制御方法、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R151 Written notification of patent or utility model registration

Ref document number: 6328279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350