JP2017062140A - Manufacturing method of reactor control rod and reactor control rod - Google Patents

Manufacturing method of reactor control rod and reactor control rod Download PDF

Info

Publication number
JP2017062140A
JP2017062140A JP2015186522A JP2015186522A JP2017062140A JP 2017062140 A JP2017062140 A JP 2017062140A JP 2015186522 A JP2015186522 A JP 2015186522A JP 2015186522 A JP2015186522 A JP 2015186522A JP 2017062140 A JP2017062140 A JP 2017062140A
Authority
JP
Japan
Prior art keywords
control rod
reactor control
welded
weld metal
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015186522A
Other languages
Japanese (ja)
Other versions
JP6470664B2 (en
JP2017062140A5 (en
Inventor
幸弘 曽我
Sachihiro Soga
幸弘 曽我
湘 多羅沢
Sho Tarasawa
湘 多羅沢
真 岡田
Makoto Okada
真 岡田
亮 井上
Ryo Inoue
亮 井上
旭東 張
Xudong Zhang
旭東 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015186522A priority Critical patent/JP6470664B2/en
Publication of JP2017062140A publication Critical patent/JP2017062140A/en
Publication of JP2017062140A5 publication Critical patent/JP2017062140A5/ja
Application granted granted Critical
Publication of JP6470664B2 publication Critical patent/JP6470664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide manufacturing method of reactor control rod capable of increasing the amount of δ ferrite in welded metal part and reducing the porosity, and a reactor control rod manufactured by using the manufacturing method.SOLUTION: Disclosed manufacturing method reactor control rod includes the steps of: preparing at least two members of stainless steel to be welded constituting a support structure of a reactor control rod; and laser-welding the members to be welded via a welding metal part by irradiating with a laser beam while supplying a welding metal rod of stainless steel to a part of the respective members to be welded and while supplying a shield gas. The shape at a focus point of the laser beam is rectangular, and the shield gas is an inert gas which does not include components of the member to be welded.SELECTED DRAWING: Figure 3

Description

本発明は、原子炉制御棒の製造方法および原子炉制御棒に関する。   The present invention relates to a method for manufacturing a reactor control rod and a reactor control rod.

原子力設備の炉内構造物等の溶接には、ポロシティおよび溶接割れ等の溶接欠陥の無い高品質な溶接が要求される。一般的に、これらの溶接にはTIG(Tungsten Inert Gas)溶接またはレーザ溶接が適用される。   For the welding of nuclear facilities in a nuclear facility, high-quality welding without weld defects such as porosity and weld cracking is required. Generally, TIG (Tungsten Inert Gas) welding or laser welding is applied to these weldings.

炉内構造物である制御棒を構成するステンレス鋼製のタイロッドとシースとをTIG溶接により溶接した場合、その溶接金属部では、完全溶着させているため、すきま腐食は発生しない。しかしながら、TIG溶接の熱影響によりタイロッドの収縮およびシースの変形が見られ、制御棒の真直性などの品質に影響を与え、修正作業に時間を費やす原因となっている。   When a tie rod made of stainless steel and a sheath constituting a control rod, which is a furnace internal structure, are welded by TIG welding, the weld metal part is completely welded, so that crevice corrosion does not occur. However, due to the thermal effect of TIG welding, tie rod contraction and sheath deformation are seen, which affects the quality of the control rod, such as straightness, and is a cause of spending time on correction work.

一方、タイロッドとシースとをレーザ溶接する場合では、TIG溶接と同様に完全溶着させているため、すきま腐食は発生しない。また、TIG溶接より熱影響が少ないため、タイロッドの収縮およびシースの変形も少なく、制御棒の真直性などの品質が向上する。しかし、TIG溶接に比べて冷却速度が速いため、レーザ溶接金属部ではδフェライト量(δフェライト生成量)が少なくなり、高温割れが発生しやすくなる。   On the other hand, in the case of laser welding the tie rod and the sheath, crevice corrosion does not occur because they are completely welded similarly to TIG welding. In addition, since there is less thermal influence than TIG welding, there is less tie rod shrinkage and sheath deformation, and quality such as straightness of the control rod is improved. However, since the cooling rate is faster than TIG welding, the amount of δ ferrite (δ ferrite generation amount) is reduced in the laser weld metal part, and high temperature cracking is likely to occur.

TIG溶接またはレーザ溶接を使用した原子炉制御棒の製造に関する公知技術として、例えば特許文献1がある。特許文献1には、レーザ溶接またはTIG溶接により部品相互を接合するようにした原子炉制御棒の製造方法及び製造装置が開示されており、具体的には、部品溶接時に開先位置上または開先位置から平行に2mm以内でずらした位置にYAGレーザ光またはCOレーザ光を光学系を通して照射し、かつ、2パス目以降の狙い位置を0.1〜0.2mmの範囲でずらして数パスラップさせるようにするか、またはレーザ光を2mm以内で円運動した状態で前進させながら照射するか、または集光レンズの手前にプリズムを入れ、このプリズムを用いることでレーザ光の焦点位置を回転させること、などが開示されている。特許文献2によれば、レーザ光による溶接を実施することにより、入熱量を少なくして加工後の変形を抑制することができ、且つ溶接速度を上げて生産性を向上させることができる原子炉の制御棒とその製造方法及び製造装置を提供できるとされている。 As a known technique related to the manufacture of a reactor control rod using TIG welding or laser welding, there is, for example, Patent Document 1. Patent Document 1 discloses a method and apparatus for manufacturing a nuclear reactor control rod in which components are joined to each other by laser welding or TIG welding. The YAG laser beam or CO 2 laser beam is irradiated through the optical system at a position shifted within 2 mm in parallel from the previous position, and the target position after the second pass is shifted within the range of 0.1 to 0.2 mm and several Either pass the laser beam or irradiate the laser beam while moving in a circular motion within 2mm, or place a prism in front of the condenser lens, and use this prism to rotate the focal position of the laser beam. And the like. According to Patent Document 2, by performing welding with laser light, the amount of heat input can be reduced, deformation after processing can be suppressed, and the welding speed can be increased to improve productivity. The control rod, its manufacturing method and manufacturing apparatus can be provided.

また、レーザ溶接部におけるδフェライト量を制御(改善)する技術として、例えば特許文献2がある。特許文献2は、沸騰水型原子炉用制御棒の製造方法に係り、レーザ照射角度をシース側より斜め60〜80°とし、かつ溶接ワイヤのCr(クロム)/Ni(ニッケル)当量比が1.6〜1.9と規定している。特許文献2では、レーザ溶接条件およびレーザ溶接ワイヤの組成によってレーザ溶接部のδフェライト量を制御している。特許文献1によれば、溶接性に優れ、高温割れを抑制し、溶接時の変形、残留応力を極力抑えたレーザ溶接法により、高精度、高品質、高信頼の沸騰水型原子炉用制御棒の製造が容易にできるとされている。   As a technique for controlling (improving) the amount of δ ferrite in a laser welded part, for example, there is Patent Document 2. Patent Document 2 relates to a method for manufacturing a boiling water reactor control rod, in which the laser irradiation angle is set to 60 to 80 ° obliquely from the sheath side, and the Cr (chromium) / Ni (nickel) equivalent ratio of the welding wire is 1. .6 to 1.9. In Patent Document 2, the amount of δ ferrite in the laser weld is controlled by the laser welding conditions and the composition of the laser welding wire. According to Patent Document 1, high-precision, high-quality, high-reliability control for boiling water reactors is achieved by a laser welding method that has excellent weldability, suppresses high-temperature cracking, and minimizes deformation and residual stress during welding. It is said that the bar can be easily manufactured.

特開2000‐329885号公報JP 2000-329885 A 特許第4961154号Japanese Patent No. 496154

しかしながら、上述したとおり、冷却速度が速いレーザ溶接ではδフェライトの量が少なくなることに加え、特許文献2のように溶接時にシールドガスとして窒素(N)を使用する場合、溶接金属部のCr当量/Ni当量比が小さくなり、δフェライトの量が更に少なくなる。一方、シールドガスをNガスからアルゴン(Ar)ガスへ変更することでδフェライトの量が改善することが知られているが、シールドガスとしてアルゴンガスを使用すると溶接金属部にポロシティが生成し、溶接欠陥の無い溶接金属部を得ることが難しくなる。 However, as described above, in laser welding with a high cooling rate, the amount of δ ferrite decreases, and when nitrogen (N 2 ) is used as a shielding gas at the time of welding as in Patent Document 2, Cr of the weld metal part is used. The equivalent / Ni equivalent ratio is reduced and the amount of δ ferrite is further reduced. On the other hand, it is known that the amount of δ ferrite is improved by changing the shielding gas from N 2 gas to argon (Ar) gas. However, when argon gas is used as the shielding gas, porosity is generated in the weld metal part. It becomes difficult to obtain a weld metal part having no weld defect.

さらに、原子炉制御棒を構成する部材(例えば、タイロッドおよびシース)の材料であるステンレス鋼は、高温水中における溶接熱影響部の鋭敏化域で発生する応力腐食割れの対策として、炭素含有量を0.02質量%まで減らしている。この炭素含有量低下による強度低下を補うために窒素(N)を添加し、N含有量を約0.04質量%以上としたステンレス鋼が採用されている。通常のN添加無しの場合の窒素含有量は0.02質量%以下である。Nを添加することにより、Nを添加しない場合よりも溶接金属部のCr/Ni当量比は低下する(Cr/Ni当量比≦1.4)。このため、タイロッドとシースのCr/Ni当量比は通常のオーステナイトステンレス鋼よりも低く、δフェライトの量が減少し、溶接部の高温割れ感受性が高くなる。   Furthermore, stainless steel, which is the material of the members that make up the reactor control rod (eg, tie rods and sheaths), has a carbon content as a countermeasure against stress corrosion cracking that occurs in the sensitized region of the weld heat affected zone in high-temperature water. Reduced to 0.02% by mass. In order to compensate for the strength reduction due to this carbon content reduction, stainless steel is employed in which nitrogen (N) is added and the N content is about 0.04 mass% or more. The nitrogen content in the case without normal N addition is 0.02% by mass or less. By adding N, the Cr / Ni equivalent ratio of the weld metal part is lower than when N is not added (Cr / Ni equivalent ratio ≦ 1.4). For this reason, the Cr / Ni equivalent ratio of the tie rod and the sheath is lower than that of ordinary austenitic stainless steel, the amount of δ ferrite is reduced, and the hot cracking susceptibility of the welded portion is increased.

上述した特許文献1および2では、溶接金属部のδフェライト量の増加とポロシティの抑制を両立するための検討はなされておらず、近年原子炉制御棒に要求されている高い品質を十分に満たすことはできない可能性がある。   In Patent Documents 1 and 2 described above, no study has been made to achieve both an increase in the amount of δ ferrite in the weld metal part and a suppression of porosity, and the high quality required in recent years for reactor control rods is sufficiently satisfied. It may not be possible.

したがって、本発明は、上記事情に鑑み、溶接金属部のδフェライト量を増加し、かつポロシティを低減することが可能な原子炉制御棒の製造方法およびその製造方法を用いて作製された原子炉制御棒を提供することにある。   Therefore, in view of the above circumstances, the present invention provides a method for manufacturing a reactor control rod capable of increasing the amount of δ ferrite in the weld metal part and reducing the porosity, and a reactor manufactured using the manufacturing method. It is to provide a control rod.

本発明は、上記目的を達成するため、原子炉制御棒の支持構造体を構成する少なくとも2つのステンレス鋼製の被溶接部材を準備する工程と、それぞれの上記被溶接部材の一部にステンレス鋼製の溶接金属線を供給し、かつシールドガスを供給しながらレーザ光を照射して上記被溶接部材を溶接金属部を介してレーザ溶接する溶接工程と、を有し、上記レーザ光の集光点の形状が矩形であり、かつ上記シールドガスが上記被溶接部材の成分を含まない不活性ガスであることを特徴とする原子炉制御棒の製造方法を提供する。   In order to achieve the above object, the present invention provides a step of preparing at least two stainless steel welded members constituting a support structure for a nuclear reactor control rod, and stainless steel is provided on a part of each of the welded members. A welding step of supplying a weld metal wire made of metal and irradiating a laser beam while supplying a shielding gas to laser weld the member to be welded through a weld metal portion, and condensing the laser beam Provided is a method for manufacturing a nuclear reactor control rod, wherein the shape of a point is a rectangle, and the shield gas is an inert gas that does not contain a component of the member to be welded.

また、本発明は、少なくとも2つのステンレス鋼製の被溶接部材が溶接金属部を介して溶接された溶接構造体である原子炉制御棒の支持構造体を含み、上記溶接金属部のδフェライト量が2質量%以上であり、かつポロシティの数が1mmあたり0.2個以下であることを特徴とする原子炉制御棒を提供する。   The present invention also includes a support structure for a nuclear reactor control rod, which is a welded structure in which at least two welded members made of stainless steel are welded via a weld metal part, and the amount of δ ferrite in the weld metal part Is 2% by mass or more, and the number of porosity is 0.2 or less per mm.

本発明によれば、レーザ溶接金属部のδフェライト量を増加し、かつポロシティを低減することが可能な原子炉制御棒の製造方法およびその製造方法を用いて作製された原子炉制御棒を提供することができる。   According to the present invention, a method for manufacturing a reactor control rod capable of increasing the amount of δ ferrite in a laser weld metal part and reducing the porosity, and a reactor control rod manufactured using the method are provided. can do.

本発明に係る原子炉制御棒の製造方法(溶接工程)の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method (welding process) of the reactor control rod which concerns on this invention. レーザ光の集光点の形状(矩形)とレーザ光のエネルギー密度分布の形状を示す模式図である。It is a schematic diagram which shows the shape (rectangle) of the condensing point of a laser beam, and the shape of the energy density distribution of a laser beam. レーザ光の集光点の形状(円形)とレーザ光のエネルギー密度分布の形状を示す模式図である。It is a schematic diagram which shows the shape (circle) of the condensing point of a laser beam, and the shape of the energy density distribution of a laser beam. 溶接金属部のδフェライト量と溶接金属部のCr/Ni当量比の関係を示すグラフである。It is a graph which shows the relationship of (delta) ferrite amount of a weld metal part, and Cr / Ni equivalent ratio of a weld metal part. 溶接金属部のポロシティの数とレーザエネルギー密度との関係を示すグラフである。It is a graph which shows the relationship between the number of the porosity of a weld metal part, and a laser energy density. レーザ溶接金属部の幅/深さの比の関係を示す模式図である。It is a schematic diagram which shows the relationship of the ratio of the width / depth of a laser weld metal part. 本発明に係る原子炉制御棒の一例を示す上面図である。It is a top view which shows an example of the nuclear reactor control rod which concerns on this invention. 本発明に係る原子炉制御棒の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the nuclear reactor control rod which concerns on this invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で様々な改良および変更を加えることができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various improvements and modifications can be made without departing from the scope of the present invention.

[原子炉制御棒の製造方法]
以下、本発明に係る原子炉制御棒の製造方法について説明する。図1は本発明に係る原子炉制御棒の製造方法(溶接工程)の一例を示す模式図である。本発明に係る原子炉制御棒の製造方法は、原子炉制御棒を構成する少なくとも2つのステンレス鋼製の部材(被溶接部材)1,2を準備する工程と、この被溶接部材1,2のそれぞれの一部をレーザ溶接する溶接工程(レーザ溶接工程)を有し、この工程において原子炉制御棒を収容する溶接構造体(制御棒支持構造体)を製造する。
[Reactor control rod manufacturing method]
Hereinafter, a method for manufacturing a reactor control rod according to the present invention will be described. FIG. 1 is a schematic view showing an example of a method (welding step) for manufacturing a reactor control rod according to the present invention. The method for manufacturing a reactor control rod according to the present invention includes a step of preparing at least two stainless steel members (members to be welded) 1 and 2 constituting the reactor control rod, A welding process (laser welding process) in which each part is laser-welded is provided, and a welding structure (control rod support structure) that accommodates the reactor control rod is manufactured in this process.

被溶接部材を準備する工程では、原子炉制御棒を構成する部材を準備する。本実施例では、被溶接部材として原子炉制御棒を構成する十字型横断面形状のタイロッドとU字型横断面形状のシースを用いた。これらの構成については、追って詳述する。なお、本発明が適用される原子炉制御棒の構成はこれに限定されるものではなく、レーザ溶接によって作製可能なものであればどのような構成を有していてもよい。以下の製造方法の説明では、タイロッド1のフィン段差部とシース2の凸型先端部を溶接する場合を例にして説明する。   In the step of preparing the member to be welded, a member constituting the nuclear reactor control rod is prepared. In this embodiment, a tie rod having a cross-shaped cross section and a sheath having a U-shaped cross section are used as a member to be welded. These configurations will be described in detail later. The configuration of the nuclear reactor control rod to which the present invention is applied is not limited to this, and any configuration may be used as long as it can be manufactured by laser welding. In the following description of the manufacturing method, the case where the fin step portion of the tie rod 1 and the convex tip portion of the sheath 2 are welded will be described as an example.

レーザ溶接工程では、レーザ発振器(図示せず)から発振されたレーザ光4がファイバーにより伝送され、伝送されたレーザ光4が集光されて、レーザ加工ヘッド5を介して被溶接材1,2の溶接箇所に照射される。シールドノズル7は、被溶接部材のレーザ光照射部に形成されたキーホールの上部にシールドガス6を吹き付け、レーザ光照射部に溶接ヒュームを付着させないようにしている。ワイヤ送給装置(図示せず)によってワイヤ送給ノズル9を介してレーザ光照射部位に生じる溶融プールに溶接金属線(溶接ワイヤ)8が供給される。   In the laser welding process, laser light 4 oscillated from a laser oscillator (not shown) is transmitted by a fiber, and the transmitted laser light 4 is collected and is welded through the laser processing head 5. Irradiated to the welding point. The shield nozzle 7 sprays a shield gas 6 on the upper part of the keyhole formed in the laser beam irradiation part of the member to be welded so that welding fume does not adhere to the laser beam irradiation part. A welding metal wire (welding wire) 8 is supplied to a molten pool generated at a laser beam irradiation site via a wire feeding nozzle 9 by a wire feeding device (not shown).

本発明では、溶接工程におけるシールドガス6として被溶接部材の成分を含まない不活性ガスを用い、レーザ光4の集光点の形状を矩型とする。このようにすることで、溶接金属部3におけるδフェライトの量を増加し、かつ溶接金属部3におけるポロシティ(溶接欠陥)を低減することが可能となる。   In this invention, the inert gas which does not contain the component of a to-be-welded member is used as the shielding gas 6 in a welding process, and the shape of the condensing point of the laser beam 4 is made into a rectangular shape. By doing in this way, it becomes possible to increase the quantity of (delta) ferrite in the weld metal part 3, and to reduce the porosity (weld defect) in the weld metal part 3. FIG.

以下、実施例1、比較例1および比較例2に基づいて本発明の効果について実証する。実施例1、比較例1および比較例2においてそれぞれ異なる条件で溶接工程を実施し、溶接金属部のδフェライト量とポロシティの数について評価した。溶接条件を表1に示す。   Hereinafter, the effects of the present invention will be demonstrated based on Example 1, Comparative Example 1, and Comparative Example 2. The welding process was performed under different conditions in Example 1, Comparative Example 1 and Comparative Example 2, and the amount of δ ferrite and the number of porosity in the weld metal part were evaluated. Table 1 shows the welding conditions.

Figure 2017062140
Figure 2017062140

溶接工程は、次の手順で実施した。まず始めに、レーザ加工ヘッド5をレーザ溶接スタート位置に搬送し、シールドノズル7よりシールドガス6を流す。レーザ溶接ワイヤ8がワイヤ送給装置より送給され、タイロッド1のフィン段差部とレーザ溶接ワイヤ8が接触したら、レーザ加工ヘッド5より、レーザ光4が照射されるのと同時にレーザ加工ヘッド5が走行してレーザ溶接を開始し、被溶接部材1の所定箇所までレーザにより溶接する。   The welding process was performed according to the following procedure. First, the laser processing head 5 is conveyed to the laser welding start position, and the shield gas 6 is caused to flow from the shield nozzle 7. When the laser welding wire 8 is fed from the wire feeding device and the fin step portion of the tie rod 1 comes into contact with the laser welding wire 8, the laser beam 4 is irradiated from the laser beam machining head 5, and the laser beam machining head 5 moves simultaneously. It travels, laser welding is started, and welding is performed by laser to a predetermined portion of the member 1 to be welded.

図2Aはレーザ光の集光点の形状(矩形)とレーザ光のエネルギー密度分布の形状を示す模式図であり、図2Bはレーザ光の集光点の形状(円形)とレーザ光のエネルギー密度分布の形状を示す模式図である。実施例1のレーザ集光点の形状は図2Aに示す矩形(トップハット型エネルギー密度分布21a´)とし、比較例1および2のレーザ集光点の形状は図2Bに示す円形とした。レーザ発振器には直接集光型半導体レーザを用いた。   FIG. 2A is a schematic diagram showing the shape (rectangle) of the condensing point of the laser beam and the shape of the energy density distribution of the laser beam, and FIG. 2B is the shape (circular shape) of the condensing point of the laser beam and the energy density of the laser beam. It is a schematic diagram which shows the shape of distribution. The shape of the laser condensing point of Example 1 was a rectangle (top hat type energy density distribution 21a ′) shown in FIG. 2A, and the shape of the laser condensing point of Comparative Examples 1 and 2 was a circle shown in FIG. 2B. A direct focusing semiconductor laser was used as the laser oscillator.

まず、シールドガス7の種類と溶接金属部3のδフェライトの量の関係について説明する。図3は、溶接金属部3のδフェライトの量と溶接金属部のCr/Ni当量比の関係を示すグラフである。溶接金属部3のδフェライトの量は、フェライトスコープを用いて測定した。Cr/Ni当量比は、被溶接部材1,2と溶接ワイヤ8の組成および溶け込み比率から計算した。なお、Cr/Ni等量比と被溶接部材の各成分組成の関係は、以下の式(1)の通りである。Cr当量はCrと同等の効果を表すフェライト生成元素であるCr、モリブデン(Mo)、シリコン(Si)、ニオブ(Nb)の指数を表したものである。Ni当量はNiと同等の効果を表すオーステナイト生成元素であるNi、マンガン(Mn)、炭素(C)、Nの指数を表したものである。   First, the relationship between the type of the shielding gas 7 and the amount of δ ferrite in the weld metal part 3 will be described. FIG. 3 is a graph showing the relationship between the amount of δ ferrite in the weld metal part 3 and the Cr / Ni equivalent ratio of the weld metal part. The amount of δ ferrite in the weld metal part 3 was measured using a ferrite scope. The Cr / Ni equivalent ratio was calculated from the composition of the welded members 1 and 2 and the welding wire 8 and the penetration ratio. In addition, the relationship between Cr / Ni equivalence ratio and each component composition of a to-be-welded member is as the following formula | equation (1). The Cr equivalent represents an index of Cr, molybdenum (Mo), silicon (Si), and niobium (Nb), which are ferrite forming elements that exhibit the same effect as Cr. Ni equivalent represents an index of Ni, manganese (Mn), carbon (C), and N, which are austenite-forming elements that exhibit the same effect as Ni.

Cr/Ni当量比=(Cr当量:[Cr]+[Mo]+1.5[Si]+0.5[Nb])/(Ni当量:[Ni]+0.5[Mn]+30[C]+30[N])…式(1)
(式(1)中、[]は各成分の含有量(質量%)を示す。)
図3に示すCr/Ni当量比は溶接前の値であり、溶接中にシールドガスから溶接金属部3へ吸収されるNの量を考慮した値ではない。
Cr / Ni equivalent ratio = (Cr equivalent: [Cr] + [Mo] +1.5 [Si] +0.5 [Nb]) / (Ni equivalent: [Ni] +0.5 [Mn] +30 [C] +30 [C] N]) ... Formula (1)
(In formula (1), [] indicates the content (% by mass) of each component.)
The Cr / Ni equivalent ratio shown in FIG. 3 is a value before welding, and is not a value considering the amount of N 2 absorbed from the shield gas to the weld metal part 3 during welding.

実施例1(シールドガス:Arガス)のタイロッド1のフィン段差部とシース2凸型先端部とのレーザ溶接金属部3を調査した結果、タイロッド1のフィン段差部とシース2凸型先端部とのレーザ溶接金属部3のCr/Ni当量比(計算値)は1.44から1.47であった。また、レーザ溶接金属部3のフェライト量を調査した結果、タイロッド1のフィン段差部とシース2凸型先端部とのレーザ溶接金属部3のδフェライト量(実測値)は、3.3〜5.0質量%であった。一方、比較例1(シールドガス:N)の場合、レーザ溶接金属部3のCr/Ni当量比とδフェライト量との関係は、Cr/Ni当量比1.4〜1.53に対し、δフェライト量は1.4%〜4.4%であった。 As a result of investigating the laser welding metal portion 3 between the fin step portion of the tie rod 1 and the sheath 2 convex tip portion of Example 1 (shield gas: Ar gas), the fin step portion of the tie rod 1 and the sheath 2 convex tip portion The Cr / Ni equivalent ratio (calculated value) of the laser weld metal part 3 was 1.44 to 1.47. Further, as a result of investigating the ferrite amount of the laser weld metal part 3, the amount of δ ferrite (actual value) of the laser weld metal part 3 between the fin step part of the tie rod 1 and the sheath 2 convex tip part is 3.3-5. It was 0.0 mass%. On the other hand, in the case of Comparative Example 1 (shield gas: N 2 ), the relationship between the Cr / Ni equivalent ratio of the laser weld metal part 3 and the amount of δ ferrite is as follows: The amount of δ ferrite was 1.4% to 4.4%.

上記結果から、シールドガス6にArを使用することにより、シールドガス6にNガスを使用する場合よりδフェライト量が増加していることがわかる。実施例1タイロッド1のフィン段差部とシース2の凸型先端部との溶接金属部3のCr/Ni当量とフェライト量の関係を外挿すると、Cr/Ni当量比1.4%以下のタイロッドおよびシースにおいても、レーザ溶接金属部3のδフェライト量は、Cr/Ni当量比が1.37以上であれば2%以上確保することができることがわかる。同じCr/Ni当量比の場合、シールドガス6にアルゴンガスを使用した方がシールドガス6にNガスを使用した場合よりもδフェライト量は増加している。これは、シールドガス6にArガスを用いることで、Nガスを用いる場合よりも、溶接時の溶接金属部のCr/Ni当量比の低下を防ぐことができるためであると考えられる。 From the above results, it can be seen that the use of Ar as the shielding gas 6 increases the amount of δ ferrite as compared with the case where N 2 gas is used as the shielding gas 6. EXAMPLE 1 A tie rod having a Cr / Ni equivalent ratio of 1.4% or less is obtained by extrapolating the relationship between the Cr / Ni equivalent and the ferrite content of the weld metal part 3 between the fin step part of the tie rod 1 and the convex tip part of the sheath 2. Also in the sheath, it can be seen that the amount of δ ferrite of the laser weld metal part 3 can be secured at 2% or more if the Cr / Ni equivalent ratio is 1.37 or more. In the case of the same Cr / Ni equivalent ratio, the amount of δ ferrite is increased when argon gas is used as the shielding gas 6 than when N 2 gas is used as the shielding gas 6. This is considered to be because by using Ar gas as the shielding gas 6, it is possible to prevent a decrease in the Cr / Ni equivalent ratio of the weld metal part during welding, compared to the case of using N 2 gas.

シールドガス6は、Arガス以外でも、被溶接部材の成分を含まない不活性ガス、すなわち上記式(1)で表されるCr/Ni当量比に影響を及ぼさない不活性ガスであれば、上記Arガスを使用した場合と同様の効果が得られるものと考えられる。例えば、Arガスに代えてヘリウム(He)ガスを用いても同様の効果が得られると考えられる。   If the shielding gas 6 is an Ar gas other than an inert gas that does not include a component of the member to be welded, that is, an inert gas that does not affect the Cr / Ni equivalent ratio represented by the above formula (1), It is considered that the same effect as that obtained when Ar gas is used can be obtained. For example, it is considered that the same effect can be obtained even if helium (He) gas is used instead of Ar gas.

次に、レーザ光の集光点の形状とδフェライト量の関係について説明する。図4は溶接金属部のポロシティの数とレーザエネルギー密度との関係を示すグラフである。ポロシティの数は、溶接ビードの放射線透過検査(RT:Radiographic Testing)によって評価した。実施例1および比較例2ともに複数の溶接構造体(被溶接部材の溶接体)を作製し、各溶接構造体の評価結果をプロットしている。   Next, the relationship between the shape of the laser beam condensing point and the amount of δ ferrite will be described. FIG. 4 is a graph showing the relationship between the number of porosity of the weld metal part and the laser energy density. The number of porosity was evaluated by radiographic testing (RT) of the weld bead. In both Example 1 and Comparative Example 2, a plurality of welded structures (welded bodies of members to be welded) are produced, and the evaluation results of each welded structure are plotted.

図4に示すように、ビーム形状が矩形の実施例1の場合、レーザエネルギー密度は3〜5kW/mmであり、溶接金属部3のポロシティは1mmあたり0.2個以下である。一方、ビーム形状が円形の比較例2の場合、レーザエネルギー密度は約22kW/mmであり、溶接金属部3のポロシティは1mmあたり1〜2.6個である。この結果から、実施例1では、レーザエネルギー密度が低くなり、ポロシティ数が抑制できているが、比較例2では、エネルギー密度が高くなりポロシティ生成が抑制できていないことがわかる。 As shown in FIG. 4, in the case of Example 1 having a rectangular beam shape, the laser energy density is 3 to 5 kW / mm 2 , and the porosity of the weld metal part 3 is 0.2 or less per 1 mm. On the other hand, in the case of Comparative Example 2 in which the beam shape is circular, the laser energy density is about 22 kW / mm 2 and the porosity of the weld metal part 3 is 1 to 2.6 per 1 mm. From this result, it can be seen that in Example 1, the laser energy density is low and the porosity number can be suppressed, but in Comparative Example 2, the energy density is high and porosity generation cannot be suppressed.

上記結果について、以下に考察する。ビーム形状が矩形の場合、円形の場合と比較すると、単位面積あたりのエネルギーは小さくなり、エネルギー密度を低くすることによってポロシティ生成が抑制できると考えられる。また、ポロシティ発生の数は、ビーム形状が大きく起因していると考えられる。ポロシティはキーホールの先端部で蒸発に伴う気泡がシールドガスを巻き込み、湯流れによる輸送中に凝固壁にトラップされ、生ずると考えられている。レーザ光4の集光点の形状が円形でも矩形でもシールドガス6にアルゴンガスを用いた場合には、キーホール先端部で気泡は生じているものと思われる。しかしながら、ビーム形状が円形でもビーム径が大きいほうがポロシティの発生数は少ない。このため、気泡の発生数はレーザ光4の集光点の形状が円形形状より、エネルギー密度の低い矩形形状の方が少ないと考えられる。さらに、集光点が矩形の場合は、キーホール幅が長くなるため、キーホールの先端部で発生した気泡が逸散しやすく、気泡がキーホール内にトラップされにくいと推察される。   The above results are discussed below. When the beam shape is rectangular, the energy per unit area is small compared to the circular shape, and it is considered that the generation of porosity can be suppressed by lowering the energy density. In addition, it is considered that the number of porosity generations is largely caused by the beam shape. Porosity is thought to be caused by bubbles that accompany evaporation at the tip of the keyhole and trapped in the solidification wall during transport by hot water flow. If argon gas is used as the shielding gas 6 regardless of whether the condensing point of the laser beam 4 is circular or rectangular, bubbles are likely generated at the tip of the keyhole. However, the number of generated porosity is smaller when the beam shape is circular but the beam diameter is large. For this reason, it is considered that the number of bubbles generated is smaller in the rectangular shape with a lower energy density than in the circular shape of the condensing point of the laser beam 4. Further, when the condensing point is rectangular, the keyhole width is long, so that the bubbles generated at the tip of the keyhole are likely to dissipate, and it is assumed that the bubbles are not easily trapped in the keyhole.

集光点の形状は、矩形であれば正方形であっても長方形であってもよい。また、集光点の形状が矩形であれば、エネルギー密度分布の形状に限定は無いが、図2Aに示すガウシアン型とトップハット型では、トップハット型の方がより好ましい。これは、トップハット型はガウシアン型よりも中心(ピーク)のエネルギー密度が低くなるため、キーホール先端部での溶融金属の蒸発及び気泡の発生が少なくなり、結果として溶接金属中のポロシティの抑制に効果があると考えられるためである。   The shape of the condensing point may be a square or a rectangle as long as it is a rectangle. Moreover, if the shape of the condensing point is rectangular, the shape of the energy density distribution is not limited, but the top hat type is more preferable in the Gaussian type and the top hat type shown in FIG. 2A. This is because the top hat type has a lower energy density at the center (peak) than the Gaussian type, so evaporation of molten metal and bubbles are less generated at the tip of the keyhole, resulting in suppression of porosity in the weld metal. This is because it is considered effective.

以上のとおり、本発明に係る原子炉制御棒の製造方法では、レーザ溶接工程におけるシールドガス6として被溶接部材の成分を含まない不活性ガスを用い、レーザ光4の集光点の形状を矩型とすることで、溶接金属部3におけるδフェライトの量を増加し、かつ溶接金属部3におけるポロシティ(溶接欠陥)を低減することが可能となる。   As described above, in the method for manufacturing a reactor control rod according to the present invention, the inert gas that does not include the component of the member to be welded is used as the shielding gas 6 in the laser welding process, and the shape of the condensing point of the laser light 4 is rectangular. By using a mold, it is possible to increase the amount of δ ferrite in the weld metal part 3 and to reduce the porosity (weld defect) in the weld metal part 3.

[原子炉制御棒]
次に、上述した本発明に係る原子炉制御棒の製造方法を用いて作製した原子炉制御棒について説明する。図6Aは本発明に係る原子炉制御棒の一例を示す上面図であり、図6Bは本発明に係る原子炉制御棒の一例を示す分解斜視図である。図6Aおよび6Bに示す原子炉制御棒は、十字形横断面形状のオーステナイトステンレス鋼製タイロッド1とU字形横断面形状のオーステナイトステンレス鋼製シース2のレーザ溶接構造体を原子炉制御棒の支持構造体として含む。本発明において「原子炉制御棒」は、この支持構造体を含めたものとする。タイロッド61とシース64の一面に溶接箇所67が21箇所あり、全体で168箇所である。上述した本発明に係る原子炉制御棒の製造方法によれば、本発明に係る原子炉制御棒は、溶接金属部におけるδフェライト量が十分な量であるため、高温強度を十分に発揮することができる。さらに、溶接金属部におけるポロシティの数が少ないため、信頼性に優れる。したがって、本発明によれ高品質な原子炉制御棒を提供することができる。
[Reactor control rod]
Next, a reactor control rod produced by using the above-described method for producing a reactor control rod according to the present invention will be described. 6A is a top view showing an example of a reactor control rod according to the present invention, and FIG. 6B is an exploded perspective view showing an example of a reactor control rod according to the present invention. The reactor control rod shown in FIGS. 6A and 6B is a structure in which a laser welded structure of an austenitic stainless steel tie rod 1 having a cross-shaped cross section and an austenitic stainless steel sheath 2 having a U-shaped cross section is supported by the reactor control rod. Include as body. In the present invention, the “reactor control rod” includes this support structure. There are 21 welding points 67 on one surface of the tie rod 61 and the sheath 64, which is 168 in total. According to the method for manufacturing a reactor control rod according to the present invention described above, the reactor control rod according to the present invention exhibits sufficient high-temperature strength because the amount of δ ferrite in the weld metal part is a sufficient amount. Can do. Furthermore, since the number of porosity in the weld metal part is small, the reliability is excellent. Therefore, according to the present invention, a high-quality reactor control rod can be provided.

被溶接部材(タイロッド61とシース64)の組成は、特に限定は無いが、以下に示すオーステナイト鋼であることが好ましい。炭素(C)に関しては、オーステナイト安定化元素であり、強度向上の観点から、0.03質量%以下が好ましい。耐応力腐食性を維持するためには、0.02質量%以下がさらに望ましい。N組成に関しては、オーステナイト安定化元素であり、強度向上の観点から、0.03質量%以上が望ましい。一般的なタイロッドとシースのNの含有量は0.04質量%以上である。シールドガス6にNガスを使用すると、タイロッド1のフィン段差部とシース2の凸型先端部とのレーザ溶接部3のN組成は、タイロッド1とシース2のN組成より増加する。Nはオーステナイト強化成分であり、溶接金属部に含まれることによりオーステナイト化を促進し、結果としてδフェライト量は減少することになる。本発明では、シールドガスとしてArガスを用いることにより、一般的なタイロッドとシースのNの含有量(0.04質量%以上)であっても溶接金属部のCr/Ni当量比の値の低下を防止し、δフェライト量低下を防止することができる。 The composition of the members to be welded (tie rod 61 and sheath 64) is not particularly limited, but is preferably austenitic steel shown below. About carbon (C), it is an austenite stabilization element, and 0.03 mass% or less is preferable from a viewpoint of an intensity | strength improvement. In order to maintain the stress corrosion resistance, 0.02% by mass or less is more desirable. The N composition is an austenite stabilizing element, and is preferably 0.03% by mass or more from the viewpoint of improving the strength. The content of N in a general tie rod and sheath is 0.04% by mass or more. When N 2 gas is used as the shielding gas 6, the N composition of the laser welded portion 3 between the fin step portion of the tie rod 1 and the convex tip portion of the sheath 2 increases from the N composition of the tie rod 1 and the sheath 2. N is an austenite strengthening component and promotes austenitization by being contained in the weld metal part, resulting in a decrease in the amount of δ ferrite. In the present invention, by using Ar gas as the shielding gas, the value of the Cr / Ni equivalent ratio of the weld metal part is reduced even when the N content (0.04% by mass or more) of a general tie rod and sheath is used. And a decrease in the amount of δ ferrite can be prevented.

次に、溶接金属部の幅と深さの比、溶け込み比率およびδフェライト量の関係について説明する。図5は、レーザ溶接金属部の幅/深さの比の関係を示す模式図である。実施例2として、a/b=1.7〜2.3の溶接構造体を用意した。a/bは、溶接条件によって変化させることができる。a/b=1.7の場合の溶接条件は、レーザ出力2.8kW、溶接速度0.5m/minおよびワイヤ送給速度3.0m/minであり、これ以外の条件は実施例1と同様である。また、a/b=2.3の場合の溶接条件は、レーザ出力2.5kW、溶接速度1.0m/minおよびワイヤ送給速度1.1m/minであり、これ以外の条件は実施例1と同様である。   Next, the relationship between the width and depth ratio of the weld metal part, the penetration ratio, and the amount of δ ferrite will be described. FIG. 5 is a schematic diagram showing the relationship of the width / depth ratio of the laser weld metal part. As Example 2, a welded structure having a / b = 1.7 to 2.3 was prepared. a / b can be changed according to welding conditions. The welding conditions in the case of a / b = 1.7 are a laser output of 2.8 kW, a welding speed of 0.5 m / min, and a wire feed speed of 3.0 m / min. The other conditions are the same as in Example 1. It is. The welding conditions in the case of a / b = 2.3 are a laser output of 2.5 kW, a welding speed of 1.0 m / min, and a wire feed speed of 1.1 m / min. It is the same.

a/b=1.7〜2.3の溶接構造体について、被溶接部材(タイロッド)の溶け込み比率(計算値)とδフェライト量(測定値)について評価した。評価結果を表2に示す。   For the welded structure of a / b = 1.7 to 2.3, the penetration ratio (calculated value) and the amount of δ ferrite (measured value) of the member to be welded (tie rod) were evaluated. The evaluation results are shown in Table 2.

Figure 2017062140
Figure 2017062140

レーザ溶接金属部3のδフェライト量を調査した結果、タイロッド1のフィン段差部とシース2凸型先端部とのレーザ溶接金属部3のδフェライト量は3.3〜5質量%であった。実施例2の溶接構造体は、レーザ溶接金属部3に発生しやすい高温割れを十分に防止することが出来るδフェライト量を有していることが分かる。   As a result of investigating the amount of δ ferrite in the laser weld metal part 3, the amount of δ ferrite in the laser weld metal part 3 between the fin step portion of the tie rod 1 and the sheath 2 convex tip portion was 3.3 to 5% by mass. It can be seen that the welded structure of Example 2 has an amount of δ ferrite that can sufficiently prevent high temperature cracks that are likely to occur in the laser weld metal part 3.

上記評価に加えて、実施例2のタイロッド1のフィン段差部とシース2凸型先端部との溶接金属部3のN原子含有量を測定した。タイロッド1とシース2のレーザ溶接後、溶接金属部3のサンプルを採取し、不活性ガス溶解熱伝導法により、溶接金属内部のNガス含有量を測定した。その結果、シールドガス6にNガスを使用する場合、溶接金属部3のN原子含有量は600〜800ppmである。タイロッド1、シース2の成分、溶接条件により異なるケースもある。一方、シールドガス6にArを使用する場合、外部からNが溶接金属部3に入り込むことは無いため、溶接金属部のN原子含有量は、使用したタイロッド1、レーザ溶接ワイヤ8およびシース2のうち最もN含有量が高いもののN含有量以下の値となる。溶接金属部のN含有量は、溶タイロッド1、シース2およびレーザ溶接ワイヤ8の溶け込み比率によって異なる。 In addition to the above evaluation, the N atom content of the weld metal portion 3 between the fin step portion of the tie rod 1 of Example 2 and the sheath 2 convex tip portion was measured. After laser welding of the tie rod 1 and the sheath 2, a sample of the weld metal part 3 was taken, and the N gas content inside the weld metal was measured by an inert gas dissolution heat conduction method. As a result, when using the N 2 gas to the shielding gas 6, N atom content of the weld metal portion 3 is 600-800 ppm. There are cases where the tie rod 1 and sheath 2 components and welding conditions vary. On the other hand, when Ar is used for the shielding gas 6, since N does not enter the weld metal part 3 from the outside, the N atom content of the weld metal part is the same as that of the tie rod 1, laser welding wire 8 and sheath 2 used. Of these, the N content is the highest but the N content or less. The N content of the weld metal portion varies depending on the penetration ratio of the molten tie rod 1, the sheath 2, and the laser welding wire 8.

以上説明したように、本発明によれば、レーザ溶接金属部のδフェライト量を増加し、かつポロシティを低減することが可能な原子炉制御棒の製造方法およびその方法を用いて作製された原子炉制御棒を提供可能であることが示された。   As described above, according to the present invention, a method of manufacturing a reactor control rod capable of increasing the amount of δ ferrite in a laser weld metal part and reducing the porosity, and an atom produced using the method It has been shown that furnace control rods can be provided.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. The above-described embodiments are illustrative of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…タイロッド、2…シース、3…溶接金属部、4…レーザ光、5…レーザ加工ヘッド、6…シールドガス、7…シールドノズル、8…溶接ワイヤ、9…ワイヤ送給ノズル、20a…レーザ光の集光点の形状(矩形)、20b…レーザ光の集光点の形状(円形)、21a…レーザ光のエネルギー密度分布(ガウシアン型)、21a´…レーザ光のエネルギー密度分布(トップハット型)、21b…レーザ光のエネルギー密度分布、61…タイロッド、62…フィン、64…シース、65…シースの凸型先端部、66…制御棒、67…溶接箇所、68…冷却孔、69…制御棒支持構造体、70…ハンドル、71…落下速度リミッタ。   DESCRIPTION OF SYMBOLS 1 ... Tie rod, 2 ... Sheath, 3 ... Weld metal part, 4 ... Laser beam, 5 ... Laser processing head, 6 ... Shield gas, 7 ... Shield nozzle, 8 ... Welding wire, 9 ... Wire feed nozzle, 20a ... Laser Shape of light condensing point (rectangle), 20b ... Shape of laser light condensing point (circular), 21a ... Energy density distribution of laser light (Gaussian type), 21a '... Energy density distribution of laser light (top hat) Mold), 21b ... energy density distribution of laser light, 61 ... tie rod, 62 ... fin, 64 ... sheath, 65 ... convex tip of sheath, 66 ... control rod, 67 ... welding point, 68 ... cooling hole, 69 ... Control rod support structure, 70 ... handle, 71 ... drop speed limiter.

Claims (18)

原子炉制御棒の支持構造体を構成する少なくとも2つのステンレス鋼製の被溶接部材を準備する工程と、
それぞれの前記被溶接部材の一部にステンレス鋼製の溶接金属線を供給し、かつシールドガスを供給しながらレーザ光を照射して前記被溶接部材を溶接金属部を介してレーザ溶接する溶接工程と、を有し、
前記レーザ光の集光点の形状が矩形であり、かつ前記シールドガスが前記被溶接部材の成分を含まない不活性ガスであることを特徴とする原子炉制御棒の製造方法。
Preparing at least two stainless steel welded members that constitute the support structure of the reactor control rod;
A welding process in which a weld metal wire made of stainless steel is supplied to a part of each of the members to be welded, and laser welding is performed while supplying a shielding gas to laser weld the members to be welded through a weld metal portion. And having
A method for manufacturing a nuclear reactor control rod, wherein the condensing point of the laser beam is rectangular, and the shield gas is an inert gas that does not contain a component of the member to be welded.
前記不活性ガスがArまたはHeであることを特徴とする請求項1記載の原子炉制御棒の製造方法。   The method for manufacturing a reactor control rod according to claim 1, wherein the inert gas is Ar or He. 前記被溶接部材のNの含有量が0.04質量%以上であり、かつ下記式(1)で表されるCrとNiの等量比が1.4以下であることを特徴とする請求項1記載の原子炉制御棒の製造方法。
Cr/Ni当量比=(Cr当量:[Cr]+[Mo]+1.5[Si]+0.5[Nb])/(Ni当量:[Ni]+0.5[Mn]+30[C]+30[N])…式(1)
(式(1)中、[]は各成分の含有量(質量%)を示す。)
The N content of the welded member is 0.04% by mass or more, and the equivalent ratio of Cr and Ni represented by the following formula (1) is 1.4 or less. A method for producing the reactor control rod according to claim 1.
Cr / Ni equivalent ratio = (Cr equivalent: [Cr] + [Mo] +1.5 [Si] +0.5 [Nb]) / (Ni equivalent: [Ni] +0.5 [Mn] +30 [C] +30 [C] N]) ... Formula (1)
(In formula (1), [] indicates the content (% by mass) of each component.)
前記被溶接部材のCの含有量が0.02質量%以下であることを特徴とする請求項1記載の原子炉制御棒の製造方法。   The method for manufacturing a nuclear reactor control rod according to claim 1, wherein the C content of the welded member is 0.02 mass% or less. 前記レーザ光のエネルギー密度分布の形状がガウシアン型またはトップハット型であることを特徴とする請求項1記載の原子炉制御棒の製造方法。   2. The method of manufacturing a nuclear reactor control rod according to claim 1, wherein the shape of the energy density distribution of the laser beam is a Gaussian type or a top hat type. 前記溶接金属部の幅aと深さbの比a/bが1.7以上であることを特徴とする請求項1記載の原子炉制御棒の製造方法。   The method for manufacturing a nuclear reactor control rod according to claim 1, wherein a ratio a / b between the width a and the depth b of the weld metal part is 1.7 or more. 前記被溶接部材の溶け込み比率が30〜50%であることを特徴とする請求項1記載の原子炉制御棒の製造方法。   The method for manufacturing a nuclear reactor control rod according to claim 1, wherein a penetration ratio of the welded member is 30 to 50%. 前記溶接金属部のNの含有量が、前記被溶接部材および前記溶接金属線のうち最もNの含有量が高いもののNの含有量以下であることを特徴とする請求項1ないし7のいずれか1項に記載の原子炉制御棒の製造方法。   8. The N content in the weld metal part is equal to or lower than the N content of the welded member and the weld metal wire, but having the highest N content. 2. A method for manufacturing a reactor control rod according to item 1. 前記溶接金属部のδフェライト量が2質量%以上であることを特徴とする請求項1ないし7のいずれか1項に記載の原子炉制御棒の製造方法。   The method for manufacturing a nuclear reactor control rod according to any one of claims 1 to 7, wherein an amount of δ ferrite in the weld metal part is 2 mass% or more. 前記溶接金属部のポロシティの数が1mmあたり0.2個以下であることを特徴とする請求項1ないし7のいずれか1項に記載の原子炉制御棒の製造方法。   The method for manufacturing a nuclear reactor control rod according to any one of claims 1 to 7, wherein the number of porosity of the weld metal part is 0.2 or less per mm. 前記被溶接部材が、十字型横断面形状のタイロッドとU字形横断面形状のシースであることを特徴とする請求項1ないし7のいずれか1項に記載の原子炉制御棒の製造方法。   The method for manufacturing a nuclear reactor control rod according to any one of claims 1 to 7, wherein the members to be welded are a tie rod having a cross-shaped cross section and a sheath having a U-shaped cross section. 少なくとも2つのステンレス鋼製の被溶接部材が溶接金属部を介して溶接された溶接構造体である原子炉制御棒の支持構造体を含み、
前記溶接金属部のδフェライト量が2質量%以上であり、かつポロシティの数が1mmあたり0.2個以下であることを特徴とする原子炉制御棒。
A reactor control rod support structure which is a welded structure in which at least two welded members made of stainless steel are welded via a weld metal part;
A nuclear reactor control rod characterized in that the amount of δ ferrite in the weld metal part is 2% by mass or more and the number of porosity is 0.2 or less per mm.
前記被溶接部材のNの含有量が0.04質量%以上であり、かつ下記式(1)で表されるCrとNiの等量比が1.4以下であることを特徴する請求項12記載の原子炉制御棒。
Cr/Ni当量比=(Cr当量:[Cr]+[Mo]+1.5[Si]+0.5[Nb])/(Ni当量:[Ni]+0.5[Mn]+30[C]+30[N])…式(1)
(式(1)中、[]は各成分の含有量(質量%)を示す。)
The N content of the welded member is 0.04% by mass or more, and the equivalent ratio of Cr and Ni represented by the following formula (1) is 1.4 or less. Reactor control rod as described.
Cr / Ni equivalent ratio = (Cr equivalent: [Cr] + [Mo] +1.5 [Si] +0.5 [Nb]) / (Ni equivalent: [Ni] +0.5 [Mn] +30 [C] +30 [C] N]) ... Formula (1)
(In formula (1), [] indicates the content (% by mass) of each component.)
前記被溶接部材のCの含有量が0.02質量%以下であることを特徴とする請求項12記載の原子炉制御棒。   The nuclear reactor control rod according to claim 12, wherein the C content of the welded member is 0.02 mass% or less. 前記溶接金属部の幅aと深さbの比a/bが1.7以上であることを特徴とする請求項12記載の原子炉制御棒。   The reactor control rod according to claim 12, wherein a ratio a / b between the width a and the depth b of the weld metal portion is 1.7 or more. 前記被溶接部材の溶け込み比率が30〜50%であることを特徴とする請求項12記載の原子炉制御棒。   The nuclear reactor control rod according to claim 12, wherein a penetration ratio of the welded member is 30 to 50%. 前記溶接金属部のNの含有量が、前記被溶接部材および前記溶接金属線のうち最もNの含有量が高いもののNの含有量以下であることを特徴とする請求項12記載の原子炉制御棒。   13. The nuclear reactor control according to claim 12, wherein the N content of the weld metal portion is equal to or less than the N content of the welded member and the weld metal wire having the highest N content. rod. 前記被溶接部材が、十字型横断面形状のタイロッドとU字形横断面形状のシースであることを特徴とする請求項12記載の原子炉制御棒。   13. The nuclear reactor control rod according to claim 12, wherein the member to be welded is a tie rod having a cross-shaped cross section and a sheath having a U-shaped cross section.
JP2015186522A 2015-09-24 2015-09-24 Reactor control rod manufacturing method and reactor control rod Active JP6470664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186522A JP6470664B2 (en) 2015-09-24 2015-09-24 Reactor control rod manufacturing method and reactor control rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186522A JP6470664B2 (en) 2015-09-24 2015-09-24 Reactor control rod manufacturing method and reactor control rod

Publications (3)

Publication Number Publication Date
JP2017062140A true JP2017062140A (en) 2017-03-30
JP2017062140A5 JP2017062140A5 (en) 2017-10-05
JP6470664B2 JP6470664B2 (en) 2019-02-13

Family

ID=58430047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186522A Active JP6470664B2 (en) 2015-09-24 2015-09-24 Reactor control rod manufacturing method and reactor control rod

Country Status (1)

Country Link
JP (1) JP6470664B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173493A (en) * 1988-12-23 1990-07-04 Toshiba Corp Insert pipe joint for welding
JP2007000897A (en) * 2005-06-23 2007-01-11 Hamamatsu Photonics Kk Laser beam device
US20070224768A1 (en) * 2006-02-24 2007-09-27 Uvtech Systems, Inc. Method and apparatus for delivery of pulsed laser radiation
JP2007256035A (en) * 2006-03-23 2007-10-04 Hitachi Ltd Control rod for boiling water reactor, and its manufacturing method
JP2010149160A (en) * 2008-12-26 2010-07-08 Hitachi-Ge Nuclear Energy Ltd Method of manufacturing reactor core shroud for nuclear power plant, and nuclear power plant structure
JP2012200778A (en) * 2011-03-28 2012-10-22 Sumitomo Metal Ind Ltd Welded joint of austenitic stainless steel
JP2014113598A (en) * 2012-12-06 2014-06-26 Japan Transport Engineering Co Ltd Laser welding method
JP2014181383A (en) * 2013-03-19 2014-09-29 Hitachi-Ge Nuclear Energy Ltd High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
JP2015031619A (en) * 2013-08-05 2015-02-16 日立Geニュークリア・エナジー株式会社 Method of manufacturing control rod for reactor
JP2015120188A (en) * 2013-12-25 2015-07-02 日立Geニュークリア・エナジー株式会社 Narrow Gap laser welding method
JP2015155110A (en) * 2014-02-21 2015-08-27 株式会社東芝 Laser build-up weld device and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173493A (en) * 1988-12-23 1990-07-04 Toshiba Corp Insert pipe joint for welding
JP2007000897A (en) * 2005-06-23 2007-01-11 Hamamatsu Photonics Kk Laser beam device
US20070224768A1 (en) * 2006-02-24 2007-09-27 Uvtech Systems, Inc. Method and apparatus for delivery of pulsed laser radiation
JP2007256035A (en) * 2006-03-23 2007-10-04 Hitachi Ltd Control rod for boiling water reactor, and its manufacturing method
JP2010149160A (en) * 2008-12-26 2010-07-08 Hitachi-Ge Nuclear Energy Ltd Method of manufacturing reactor core shroud for nuclear power plant, and nuclear power plant structure
JP2012200778A (en) * 2011-03-28 2012-10-22 Sumitomo Metal Ind Ltd Welded joint of austenitic stainless steel
JP2014113598A (en) * 2012-12-06 2014-06-26 Japan Transport Engineering Co Ltd Laser welding method
JP2014181383A (en) * 2013-03-19 2014-09-29 Hitachi-Ge Nuclear Energy Ltd High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
JP2015031619A (en) * 2013-08-05 2015-02-16 日立Geニュークリア・エナジー株式会社 Method of manufacturing control rod for reactor
JP2015120188A (en) * 2013-12-25 2015-07-02 日立Geニュークリア・エナジー株式会社 Narrow Gap laser welding method
JP2015155110A (en) * 2014-02-21 2015-08-27 株式会社東芝 Laser build-up weld device and method

Also Published As

Publication number Publication date
JP6470664B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
US8681923B2 (en) Method of manufacturing core shroud for nuclear power plant and structure of nuclear power plant
US9061374B2 (en) Laser/arc hybrid welding method and method for producing welded member using same
Khan et al. Laser beam welding of dissimilar stainless steels in a fillet joint configuration
Khan et al. Laser beam welding of dissimilar ferritic/martensitic stainless steels in a butt joint configuration
JP6155183B2 (en) Narrow groove laser welding method
Feng et al. Narrow gap laser welding for potential nuclear pressure vessel manufacture
Ma et al. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar
Shanmugarajan et al. Studies on autogenous laser welding of type 304B4 borated stainless steel
Cherepanov et al. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders
JP7089246B2 (en) Butt welded joints made of steel and their manufacturing methods
JP6470664B2 (en) Reactor control rod manufacturing method and reactor control rod
JP5948435B2 (en) Welding materials and welded joints
JP7244704B1 (en) Method for improving corrosion resistance of stainless steel
JP3790956B2 (en) Control rod for boiling water reactor
Chen et al. Quasi-continuous-wave laser directed energy deposition on inclined NV E690 steel plates: Melt pool and temperature evolution
JP5931341B2 (en) Welding method
JP2007024609A (en) Manufacturing method of spent fuel storage rack
JP4961154B2 (en) Manufacturing method of control rod for boiling water reactor
D'amato et al. Autogenous laser keyhole welding of AISI 316LTi
US20240042525A1 (en) Laser powder bed fusion additive manufacturing methods
JPS61177325A (en) Improvement of corrosion resistance or stainles steel weld zone
Khan et al. Meeting weld quality criteria when laser welding Ni-based alloy 718
JP2010131632A (en) Method of reinforcing weld zone
JP6059107B2 (en) Method for manufacturing control rod for nuclear reactor
JP6954970B2 (en) Manufacturing method of parts

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190118

R150 Certificate of patent or registration of utility model

Ref document number: 6470664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150