JP2017060906A - Coating machine - Google Patents

Coating machine Download PDF

Info

Publication number
JP2017060906A
JP2017060906A JP2015186532A JP2015186532A JP2017060906A JP 2017060906 A JP2017060906 A JP 2017060906A JP 2015186532 A JP2015186532 A JP 2015186532A JP 2015186532 A JP2015186532 A JP 2015186532A JP 2017060906 A JP2017060906 A JP 2017060906A
Authority
JP
Japan
Prior art keywords
exhaust
air
hollow
space
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015186532A
Other languages
Japanese (ja)
Other versions
JP6559522B2 (en
Inventor
川 勝 浩 石
Katsuhiro Ishikawa
川 勝 浩 石
内 照 悦 堀
Teruyoshi Horiuchi
内 照 悦 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Trinity Industrial Corp
Original Assignee
NTN Corp
Trinity Industrial Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Trinity Industrial Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015186532A priority Critical patent/JP6559522B2/en
Priority to PCT/JP2016/077802 priority patent/WO2017051815A1/en
Publication of JP2017060906A publication Critical patent/JP2017060906A/en
Application granted granted Critical
Publication of JP6559522B2 publication Critical patent/JP6559522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1035Driving means; Parts thereof, e.g. turbine, shaft, bearings

Landscapes

  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent atomization failure of paint by restraining a flow rate of exhaust air of flowing in a hollow space of a hollow rotary shaft from an exhaust space formed of an exhaust passage, an exhaust port and an exhaust chamber, and to prevent abnormal vibration by restraining turbulence of the pressure distribution of a leakage air inflow space.SOLUTION: A seal ring 23 is provided for blocking up an annular flow passage 22 reaching a hollow rotary shaft 4 by passing through a clearance between a feed tube 6 and a back face cover 11, and a cylindrical opening part 21 is formed by projecting forward so as to be inserted into a hollow space 29 from the rear end side of the hollow rotary shaft 4, and a narrow clearance of becoming a noncontact seal 24 is formed between its outer peripheral surface 21b and a hollow rotary shaft inner peripheral surface 4a, and a pressure release flow passage F1 for communicating a leakage air inflow space 25 and an exhaust chamber 13, is formed near the center from an exhaust port 12 of the back face cover 11.SELECTED DRAWING: Figure 1

Description

本発明は、エアモータにより回転駆動される回転霧化頭で塗料を微粒化させて噴霧する塗装機に関する。   The present invention relates to a coating machine that atomizes and sprays paint with a rotary atomizing head that is driven to rotate by an air motor.

この種の一般的な塗装機Aは、図7に示すように、塗装機本体2に内蔵されたエアモータ3で高速回転駆動される中空回転軸4の先端に回転霧化頭5が取り付けられ、中空回転軸4の中空空間29に挿通されたフィードチューブ6を介して供給された塗料を回転霧化頭5で遠心霧化させて噴霧するようになっている。   As shown in FIG. 7, this type of general coating machine A has a rotary atomizing head 5 attached to the tip of a hollow rotary shaft 4 that is driven to rotate at high speed by an air motor 3 built in the coating machine body 2. The coating material supplied through the feed tube 6 inserted into the hollow space 29 of the hollow rotary shaft 4 is sprayed by being atomized by the rotary atomizing head 5.

塗装機本体2に搭載されたエアモータ3は、モータハウジング7の先端側から突出させた中空回転軸4がラジアル軸受8で支持されると共に、タービンホイール9aの外周部にタービンブレード9bを形成したエアタービン9が中空回転軸4の後端側に一体的に形成されている。   The air motor 3 mounted on the coating machine main body 2 has an air in which a hollow rotating shaft 4 protruded from the front end side of a motor housing 7 is supported by a radial bearing 8 and a turbine blade 9b is formed on an outer peripheral portion of a turbine wheel 9a. A turbine 9 is integrally formed on the rear end side of the hollow rotary shaft 4.

エアタービン9の周囲には、タービンブレード9bに対しドライブエア(圧縮空気)を吹き付ける給気口10が形成され、エアタービン9を覆うようにモータハウジング7に固定される背面カバー11には、タービンブレード9bの内周面に形成される排気路28を通って排出される排気エアを後方に排出する排気口12が形成されている。
さらに、塗装機本体2内部には、エアモータ3の背面カバー11を隔てた後方に排気室13が形成され、この排気室13に排気ホース(図示せず)等が接続されて、排気エアを塗装機本体2外部に排出するようになっている。
An air supply port 10 for blowing drive air (compressed air) to the turbine blade 9 b is formed around the air turbine 9, and the rear cover 11 fixed to the motor housing 7 so as to cover the air turbine 9 includes a turbine An exhaust port 12 is formed through which exhaust air discharged through the exhaust passage 28 formed on the inner peripheral surface of the blade 9b is discharged rearward.
Further, an exhaust chamber 13 is formed in the interior of the coating machine 2 behind the back cover 11 of the air motor 3, and an exhaust hose (not shown) or the like is connected to the exhaust chamber 13 to paint the exhaust air. The machine body 2 is discharged outside.

また、図8に示すように、前記背面カバー11には、回転霧化頭5(図7参照)に塗料を供給するフィードチューブ6を排気室13側から中空回転軸4の中空空間29に挿通する筒状開口部31が後方に突出するように形成されている。   Further, as shown in FIG. 8, a feed tube 6 for supplying paint to the rotary atomizing head 5 (see FIG. 7) is inserted into the rear cover 11 from the exhaust chamber 13 side into the hollow space 29 of the hollow rotary shaft 4. A cylindrical opening 31 is formed so as to protrude rearward.

ここで、図7に示すように、エアモータ3にドライブエアを供給して回転霧化頭5を通常回転数(例えば、2〜40000rpm程度)で駆動させながら、フィードチューブ6を介して塗料を供給すると、塗料が回転霧化頭5で遠心霧化されて噴霧される。
また、塗料を大吐出量で噴霧する場合は、微粒化を維持するために回転霧化頭5をより高速の回転数(例えば、4〜60000rpm程度)で駆動させる必要があり、そのためにはドライブエアも高圧で大量供給する必要がある。
Here, as shown in FIG. 7, while supplying drive air to the air motor 3 and driving the rotary atomizing head 5 at a normal rotational speed (for example, about 2 to 40,000 rpm), the paint is supplied through the feed tube 6. Then, the paint is centrifugally atomized by the rotary atomizing head 5 and sprayed.
In addition, when spraying paint with a large discharge amount, it is necessary to drive the rotary atomizing head 5 at a higher speed (for example, about 4 to 60000 rpm) in order to maintain atomization. It is necessary to supply a large amount of air at high pressure.

しかしながら、ドライブエアの供給量が増大すると、排気経路の圧損が大きくなって、排気路28と排気口12と排気室13で形成される空間(以下「排気空間」と呼ぶ。)の圧力が上昇するため、排気エアの一部が前記排気空間から中空回転軸4の中空空間29を通って回転霧化頭5内に流入することで、回転霧化頭5内の圧力を上昇させ、塗料の微粒化不良を発生させる。   However, when the amount of drive air supplied increases, the pressure loss in the exhaust path increases, and the pressure in the space formed by the exhaust path 28, the exhaust port 12, and the exhaust chamber 13 (hereinafter referred to as "exhaust space") increases. Therefore, a part of the exhaust air flows from the exhaust space through the hollow space 29 of the hollow rotary shaft 4 into the rotary atomizing head 5 to increase the pressure in the rotary atomizing head 5 and Causes atomization defects.

このため、中空回転軸の側面に、中空回転軸の内外を連通させる排気口を設け、その中空空間の圧力を解放する機構が提案されている(特許文献1参照)。
しかしながら、本発明者の実験によれば、中空回転軸に排気口を設けても中空空間への流入量が多くなったときに、排気空間及び中空空間の圧力が十分に低下せず、したがって、前述の問題を解決することができなかった。
For this reason, a mechanism has been proposed in which an exhaust port for communicating the inside and the outside of the hollow rotary shaft is provided on the side surface of the hollow rotary shaft to release the pressure in the hollow space (see Patent Document 1).
However, according to the experiment of the present inventor, even when an exhaust port is provided in the hollow rotating shaft, when the amount of inflow into the hollow space increases, the pressure of the exhaust space and the hollow space does not sufficiently decrease. The above problem could not be solved.

このため本発明者らは、排気空間と中空回転軸4の中空空間29との間の空気の流通を遮断することを着想した。
排気室13と中空空間29は、図8に示すように、フィードチューブ6の外周面と、筒状開口部31の内周面との隙間に形成される環状流路32を介して連通されているが、環状流路32となる隙間は、塗装機の組立作業の都合上、ある程度の大きさ(1mm間隔程度)を確保しておく必要がある。
For this reason, the present inventors have conceived of blocking the air flow between the exhaust space and the hollow space 29 of the hollow rotary shaft 4.
As shown in FIG. 8, the exhaust chamber 13 and the hollow space 29 communicate with each other via an annular flow path 32 formed in a gap between the outer peripheral surface of the feed tube 6 and the inner peripheral surface of the cylindrical opening 31. However, it is necessary to ensure a certain size (about 1 mm interval) for the clearance that becomes the annular flow path 32 for the convenience of the assembly work of the coating machine.

そこで、フィードチューブ6の外周面と、筒状開口部31の内周面の間隔の大きさを維持したまま環状流路32を遮断するために、図9に示すように、Oリングなどのシールリング33を設けて、排気室13と中空空間29とを遮断した塗装機Bを試作した。
シールリング33を環状流路32に設けて遮断した場合は、フィードチューブ6や筒状開口部31の剛性部材同士が当接するわけではないので塗装機Bの組立作業に不都合を生じることがなく、ドライブエアを高圧で大量供給することにより排気空間が高圧になったとしても、中空空間29に排気エアが大量に流入することがないので塗料の微粒化不良を生じることがなくなった。
Therefore, in order to block the annular flow path 32 while maintaining the distance between the outer peripheral surface of the feed tube 6 and the inner peripheral surface of the cylindrical opening 31, a seal such as an O-ring is used as shown in FIG. A coating machine B in which the ring 33 was provided and the exhaust chamber 13 and the hollow space 29 were shut off was prototyped.
When the seal ring 33 is provided in the annular flow path 32 and blocked, the rigid members of the feed tube 6 and the cylindrical opening 31 do not come into contact with each other. Even if the exhaust space becomes high pressure by supplying a large amount of drive air at a high pressure, the exhaust air does not flow in a large amount into the hollow space 29, so that the fine atomization of the paint does not occur.

しかし、回転霧化頭の回転数をさらに許容最大回転数(例えば、6〜80000rpm程度)まで上昇させるべく、ドライブエアを、より高圧且つ大供給量で供給したところ、稀ではあるが、異常振動が観察されることがあった。
この異常振動の原因は、背面カバー11とタービンホイール9aとの隙間に形成される漏れ空気流入空間34を流通する空気量の増加と、当該空間34の圧力分布の乱れによるものと考えられる。
すなわち、シールリング33が装着されていない従来構造の塗装機においては、排気空間よりも中空空間29の圧力が低いため、排気空間から中空空間29に向かって空気が流れるが、このとき流れる流量の多くは、漏れ空気流入空間34よりも隙間が大きい環状流路32を流れていた。
しかし、排気室13と中空空間29を連通する環状流路32をシールリング33により遮断することで、中空空間29への流路が漏れ空気流入空間34に限定されたため、ここを流れる流量が増加すると共に圧力が上昇し、さらにエアタービン9の回転の影響で、漏れ空気流入空間34の圧力分布に乱れが生じ、異常振動が発生し易い状態になっていたものと推測される。
However, in order to increase the rotational speed of the rotary atomizing head further to the maximum allowable rotational speed (for example, about 6 to 80000 rpm), when drive air is supplied at a higher pressure and a larger supply amount, it is rare, but abnormal vibration Was sometimes observed.
The cause of this abnormal vibration is thought to be due to an increase in the amount of air flowing through the leaked air inflow space 34 formed in the gap between the back cover 11 and the turbine wheel 9a and the disturbance of the pressure distribution in the space 34.
In other words, in a coating machine having a conventional structure in which the seal ring 33 is not mounted, air flows from the exhaust space toward the hollow space 29 because the pressure in the hollow space 29 is lower than that in the exhaust space. Many of them flowed through the annular flow path 32 having a larger gap than the leakage air inflow space 34.
However, the annular flow path 32 communicating with the exhaust chamber 13 and the hollow space 29 is blocked by the seal ring 33, so that the flow path to the hollow space 29 is limited to the leakage air inflow space 34, and the flow rate flowing therethrough increases. At the same time, the pressure increases, and it is presumed that the pressure distribution in the leaked air inflow space 34 is disturbed due to the rotation of the air turbine 9, and abnormal vibration is likely to occur.

国際公開第2015/004966号パンフレットInternational Publication No. 2015/004966 Pamphlet

そこで本発明は、排気路と排気口と排気室で形成される排気空間から中空回転軸の中空空間へ流入する排気エアの流量を抑制することで塗料の微粒化不良を防止すると共に、漏れ空気流入空間の圧力分布の乱れを抑制することで異常振動を防止することを技術的課題としている。   Accordingly, the present invention prevents the paint atomization failure by suppressing the flow rate of the exhaust air flowing into the hollow space of the hollow rotary shaft from the exhaust space formed by the exhaust path, the exhaust port, and the exhaust chamber, and leaking air. It is a technical problem to prevent abnormal vibration by suppressing the disturbance of the pressure distribution in the inflow space.

この課題を解決するために、本発明は、塗装機本体に内蔵されたエアモータの中空回転軸の先端に塗料を霧化する回転霧化頭が取り付けられ、
前記エアモータは、タービンホイールの外周部にタービンブレードを形成したエアタービンが中空回転軸の後端側に設けられると共に、当該エアモータのハウジングには、エアモータの排気エアを後方に排出する排気口を形成した背面カバーがエアタービンを覆うように取り付けられて成り、
前記背面カバーの後方空間が、エアモータの排気エアを塗装機本体外部に排出する排気室として形成されると共に、前記背面カバーと前記タービンホイールとの隙間は排気エアの漏れ空気が流入する漏れ空気流入空間になっており、
前記背面カバーには、前記回転霧化頭に塗料を供給するフィードチューブを前記排気室側から中空回転軸の中空空間内に挿通する筒状開口部が形成された塗装機において、
前記フィードチューブと背面カバーの隙間を通り中空回転軸に至る環状流路を塞ぐシールリングが設けられ、
前記筒状開口部は、中空回転軸の後端側から前記中空空間に挿入されるように前方に突出して形成されると共に、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成され、
前記背面カバーの排気口より中央寄りに、前記漏れ空気流入空間と前記排気室とを連通する複数の圧力逃し流路が形成されたことを特徴とする。
In order to solve this problem, the present invention is provided with a rotary atomizing head for atomizing paint at the tip of a hollow rotating shaft of an air motor built in the coating machine body,
In the air motor, an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor. The rear cover is attached to cover the air turbine,
The rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is inflow of leaked air from which exhaust air leaks. It ’s a space,
In the coating machine in which the cylindrical cover part through which the feed tube for supplying paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side is formed in the back cover.
A seal ring is provided to close an annular flow path that reaches the hollow rotating shaft through the gap between the feed tube and the back cover,
The cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft. A narrow clearance is formed,
A plurality of pressure relief passages that connect the leakage air inflow space and the exhaust chamber are formed closer to the center than the exhaust port of the back cover.

本発明によれば、フィードチューブと背面カバーの隙間を通り中空回転軸に至る環状流路がシールリングで塞がれているので、当該環状流路を通り排気室から中空回転軸の中空空間に排気エアが流れ込むことがない。   According to the present invention, the annular flow path that passes through the gap between the feed tube and the back cover and reaches the hollow rotary shaft is blocked by the seal ring, and therefore passes through the annular flow path from the exhaust chamber to the hollow space of the hollow rotary shaft. Exhaust air will not flow.

また、筒状開口部が、中空回転軸の後端側から中空空間に挿入されるように前方に突出して形成され、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成されているので、漏れ空気流入空間や圧力逃し流路を通って排気エアが中空回転軸の中空空間に流入することを抑制できる。   Further, the cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotary shaft, and becomes a non-contact seal between the outer peripheral surface and the inner peripheral surface of the hollow rotary shaft. Since the narrow clearance is formed, it is possible to suppress the exhaust air from flowing into the hollow space of the hollow rotary shaft through the leaked air inflow space or the pressure relief passage.

さらに、排気室と漏れ空気流入空間は圧力逃し流路を介して連通されているので、漏れ空気流入空間の圧力は比較的変動の少ない排気室の圧力に同調することとなり、漏れ空気流入空間の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。   Further, since the exhaust chamber and the leaked air inflow space are communicated with each other via a pressure relief passage, the pressure of the leaked air inflow space is synchronized with the pressure of the exhaust chamber with relatively little fluctuation, There is no disturbance in the pressure distribution, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.

本発明に係る塗装機の要部を示す説明図。Explanatory drawing which shows the principal part of the coating machine which concerns on this invention. 本発明に係る他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the other Example which concerns on this invention. 本発明に係るさらに他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the further another Example which concerns on this invention. 本発明に係るさらに他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the further another Example which concerns on this invention. 本発明に係るさらに他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the further another Example which concerns on this invention. 本発明に係るさらに他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the further another Example which concerns on this invention. 一般的な塗装機の構造を示す説明図。Explanatory drawing which shows the structure of a common coating machine. 従来の塗装機の要部を示す説明図。Explanatory drawing which shows the principal part of the conventional coating machine. 従来の塗装機の要部を示す説明図。Explanatory drawing which shows the principal part of the conventional coating machine.

本発明は、排気路と排気口と排気室で成る排気空間から中空回転軸の中空空間へ流入する排気エアの流量を抑制することで、塗料の微粒化不良を防止するとともに、漏れ空気流入空間の圧力分布の乱れを抑制することで、異常振動を防止するという目的を達成するため、以下の構成を有する。
すなわち、塗装機本体に内蔵されたエアモータの中空回転軸の先端に塗料を霧化する回転霧化頭が取り付けられ、
前記エアモータは、タービンホイールの外周部にタービンブレードを形成したエアタービンが中空回転軸の後端側に設けられると共に、当該エアモータのハウジングには、エアモータの排気エアを後方に排出する排気口を形成した背面カバーがエアタービンを覆うように取り付けられて成り、
前記背面カバーの後方空間が、エアモータの排気エアを塗装機本体外部に排出する排気室として形成されると共に、背面カバーとタービンホイールに挟まれた隙間は排気エアの漏れ空気が流入する漏れ空気流入空間になっており、
前記背面カバーには、前記回転霧化頭に塗料を供給するフィードチューブを前記排気室側から中空回転軸の中空空間内に挿通する筒状開口部が形成された塗装機において、
前記フィードチューブと背面カバーの隙間を通り中空回転軸に至る環状流路を塞ぐシールリングが設けられ、
前記筒状開口部は、中空回転軸の後端側から前記中空空間に挿入されるように前方に突出して形成されると共に、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成され、
前記背面カバーの排気口より中央寄りに、前記漏れ空気流入空間と前記排気室とを連通する圧力逃し流路を形成した。
The present invention prevents the paint atomization failure by suppressing the flow rate of the exhaust air flowing into the hollow space of the hollow rotary shaft from the exhaust space composed of the exhaust path, the exhaust port, and the exhaust chamber, and also prevents the leakage air inflow space. In order to achieve the object of preventing abnormal vibration by suppressing the disturbance of the pressure distribution, the following configuration is provided.
That is, a rotary atomizing head for atomizing paint is attached to the tip of the hollow rotary shaft of an air motor built in the coating machine body,
In the air motor, an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor. The rear cover is attached to cover the air turbine,
The rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel enters the leaked air into which the exhaust air leaks. It ’s a space,
In the coating machine in which the cylindrical cover part through which the feed tube for supplying paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side is formed in the back cover.
A seal ring is provided to close an annular flow path that reaches the hollow rotating shaft through the gap between the feed tube and the back cover,
The cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft. A narrow clearance is formed,
A pressure relief passage that connects the leakage air inflow space and the exhaust chamber is formed closer to the center than the exhaust port of the back cover.

図1は、本発明に係る塗装機T1の要部を示す説明図であって、一般的な構成部分については、図7に示す塗装機と共通である。
モータハウジング7の背面カバー11に形成された筒状開口部21は、中空回転軸4の後端側から非接触状態で挿入されるように前方に突出して形成されている。この筒状開口部21は、背面カバー11に一体成形されている場合であっても、付属部品として背面カバー11に一体的に装着固定される場合であってもよい。
FIG. 1 is an explanatory view showing a main part of a coating machine T1 according to the present invention, and common components are common to the coating machine shown in FIG.
The cylindrical opening 21 formed in the back cover 11 of the motor housing 7 is formed to protrude forward so as to be inserted in a non-contact state from the rear end side of the hollow rotary shaft 4. The cylindrical opening 21 may be formed integrally with the back cover 11 or may be attached and fixed integrally to the back cover 11 as an accessory.

フィードチューブ6の外周面6aと筒状開口部21の内周面21aの隙間は、排気室13に開放される環状流路22として形成され、その中空回転軸4側の開口部は、Oリングなどのシールリング23で塞がれている。
なお、このシールリング23は、筒状開口部21の内周面21aに設けられていても、フィードチューブ6の外周面6aに設けられていてもよい。
A gap between the outer peripheral surface 6a of the feed tube 6 and the inner peripheral surface 21a of the cylindrical opening 21 is formed as an annular flow path 22 opened to the exhaust chamber 13, and the opening on the hollow rotary shaft 4 side is an O-ring. Etc. are sealed with a seal ring 23.
The seal ring 23 may be provided on the inner peripheral surface 21 a of the cylindrical opening 21 or may be provided on the outer peripheral surface 6 a of the feed tube 6.

筒状開口部21の外周面21bと中空回転軸4の内周面4aとの間には、非接触シール24となる狭小クリアランスが形成されている。
背面カバー11は、モータハウジング7に固定されるので、その背面カバー11に形成された筒状開口部21を中空回転軸4の内周面4aに対して高精度に心出しすることができる。
したがって、非接触シール24となる狭小クリアランスを0.1mm以下の精度で設計することができ、本例では、非接触シール24で生じさせる圧力損失に応じてその隙間が0.3mm以下に設計されている。
Between the outer peripheral surface 21 b of the cylindrical opening 21 and the inner peripheral surface 4 a of the hollow rotary shaft 4, a narrow clearance that forms a non-contact seal 24 is formed.
Since the back cover 11 is fixed to the motor housing 7, the cylindrical opening 21 formed in the back cover 11 can be centered with high accuracy with respect to the inner peripheral surface 4 a of the hollow rotary shaft 4.
Therefore, the narrow clearance that becomes the non-contact seal 24 can be designed with an accuracy of 0.1 mm or less. In this example, the gap is designed to be 0.3 mm or less according to the pressure loss caused by the non-contact seal 24. ing.

背面カバー11とタービンホイール9aとの隙間は、排気口12から排出されなかった排気エアの漏れ空気が流入する漏れ空気流入空間25になっており、背面カバー11の排気口12より中央寄り(回転中心寄り)には、漏れ空気流入空間25と排気室13とを連通する複数の圧力逃し流路F1が形成されている。   A gap between the back cover 11 and the turbine wheel 9a is a leaked air inflow space 25 into which leaked air of exhaust air that has not been discharged from the exhaust port 12 flows, and is closer to the center (rotation) than the exhaust port 12 of the back cover 11 Near the center, a plurality of pressure relief passages F <b> 1 that connect the leakage air inflow space 25 and the exhaust chamber 13 are formed.

本例では、圧力逃し流路F1は、環状流路22のシールリング23より後方部分から漏れ空気流入空間25に向けて筒状開口部21の内外を放射状に貫通するように形成されている。   In this example, the pressure relief flow path F <b> 1 is formed so as to radially penetrate the inside and outside of the cylindrical opening 21 from the rear part of the annular flow path 22 toward the leakage air inflow space 25.

以上が本発明の一構成例であって、次にその作用について説明する。
エアモータ3にドライブエアを供給すると、ドライブエアが給気口10からタービンブレード9bに吹き付けられてタービン9が回転され、これによって中空回転軸4及び回転霧化頭5が高速回転駆動される。
排気エアは、そのほとんどが排気口12から後方に排出され、排気室13を通り、排気ホース(図示せず)などで外部に導出される。
また、排気エアの一部が、タービンホイール9aと背面カバー11の隙間の漏れ空気流入空間25に流入される。
The above is one configuration example of the present invention, and the operation thereof will be described next.
When drive air is supplied to the air motor 3, the drive air is blown from the air supply port 10 to the turbine blade 9b and the turbine 9 is rotated, whereby the hollow rotary shaft 4 and the rotary atomizing head 5 are driven to rotate at high speed.
Most of the exhaust air is discharged rearward from the exhaust port 12, passes through the exhaust chamber 13, and is led to the outside by an exhaust hose (not shown) or the like.
A part of the exhaust air flows into the leaked air inflow space 25 in the gap between the turbine wheel 9 a and the back cover 11.

このとき、フィードチューブ6と筒状開口部21の隙間に形成される環状流路22は、シールリング23により中空回転軸4側が塞がれているので、当該環状流路22を通り排気エアが中空回転軸4の中空空間29に流入することがない。
また、筒状開口部21の外周面と中空回転軸4の内周面との隙間を通り中空空間29に至る流路には非接触シール24が形成されているので、漏れ空気流入空間25や圧力逃し流路F1に流入した排気エアが中空回転軸4へ流入することを抑制できる。
したがって、中空空間29に排気エアが大量に流入することがなく、塗料の微粒化不良が防止される。
At this time, the annular flow path 22 formed in the gap between the feed tube 6 and the cylindrical opening 21 is closed on the hollow rotary shaft 4 side by the seal ring 23, so that the exhaust air passes through the annular flow path 22. There is no flow into the hollow space 29 of the hollow rotary shaft 4.
In addition, since the non-contact seal 24 is formed in the flow path that passes through the gap between the outer peripheral surface of the cylindrical opening 21 and the inner peripheral surface of the hollow rotary shaft 4 and reaches the hollow space 29, the leakage air inflow space 25 and It is possible to suppress the exhaust air that has flowed into the pressure relief flow path F <b> 1 from flowing into the hollow rotary shaft 4.
Therefore, a large amount of exhaust air does not flow into the hollow space 29, and a poor atomization of the paint is prevented.

さらに、排気室13と漏れ空気流入空間25は圧力逃し流路F1を介して連通され、排気室13の容積は漏れ空気流入空間25に比して十分大きいので、漏れ空気流入空間25の圧力は比較的変動の少ない排気室13の圧力に同調することとなり、漏れ空気流入空間25の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。   Further, the exhaust chamber 13 and the leaked air inflow space 25 are communicated with each other via the pressure relief flow path F1, and the volume of the exhaust chamber 13 is sufficiently larger than the leaked air inflow space 25. It synchronizes with the pressure of the exhaust chamber 13 with relatively little fluctuation, and there is no disturbance in the pressure distribution of the leaking air inflow space 25, and abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotational speed. It does not occur.

図2は他の実施例の要部を示す説明図である。なお、図1及び図7と共通する部分は同一符号を付して詳細説明を省略する。   FIG. 2 is an explanatory view showing a main part of another embodiment. 1 and 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

本例の塗装機T2は、フィードチューブ6に筒状開口部21の後端面と当接される段差部6bが形成され、当該段差部6bと筒状開口部21の当接部にOリングなどのシールリング23が装着されている。
そして、背面カバー11には、シールリング23の外側に位置するように、排気室13と漏れ空気流入空間25を連通する圧力逃し流路F2が複数本形成されている。
In the coating machine T2 of this example, the feed tube 6 is formed with a stepped portion 6b that comes into contact with the rear end surface of the cylindrical opening 21, and an O-ring or the like is formed at the contact between the stepped portion 6b and the cylindrical opening 21. The seal ring 23 is attached.
The back cover 11 is formed with a plurality of pressure relief passages F2 communicating with the exhaust chamber 13 and the leakage air inflow space 25 so as to be positioned outside the seal ring 23.

本例も、実施例1と同様、排気室13と中空回転軸4を連通する環状流路22はシールリング23により遮断されるので環状流路22を通り排気エアが中空回転軸4の中空空間29に流入せず、また、筒状開口部21の外周面と中空回転軸4の内周面との間に非接触シール24が形成されているので漏れ空気流入空間25に流入した排気エアの中空回転軸4への流入が抑制され、これによって微粒化不良が防止される。   In this example, as in the first embodiment, the annular flow path 22 communicating the exhaust chamber 13 and the hollow rotary shaft 4 is blocked by the seal ring 23, so that the exhaust air passes through the annular flow path 22 and the hollow space of the hollow rotary shaft 4. 29 and the non-contact seal 24 is formed between the outer peripheral surface of the cylindrical opening 21 and the inner peripheral surface of the hollow rotary shaft 4, so that the exhaust air flowing into the leaked air inflow space 25 The inflow to the hollow rotary shaft 4 is suppressed, thereby preventing the atomization failure.

さらに、漏れ空気流入空間25と排気室13が圧力逃し流路F2により連通されているので、漏れ空気流入空間25の圧力は比較的変動の少ない排気室13の圧力に同調することとなり、漏れ空気流入空間25の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。   Further, since the leaked air inflow space 25 and the exhaust chamber 13 are communicated with each other by the pressure relief flow path F2, the pressure of the leaked air inflow space 25 is synchronized with the pressure of the exhaust chamber 13 with relatively little fluctuation. There is no disturbance in the pressure distribution in the inflow space 25, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.

図3は他の実施例の要部を示す説明図である。なお、図2及び図7と共通する部分は同一符号を付して詳細説明を省略する。
本例の塗装機T3は、筒状開口部21が背面カバー11の後方まで突出して形成され、フィードチューブ6の基端部に、その筒状開口部21の背面側外周面21cを囲う筒状カバー26が形成されている。
筒状カバー26は、フィードチューブ6と一体成形される場合であっても、付属部品としてフィードチューブ6の基端部に一体的に装着固定される場合であってもよい。
FIG. 3 is an explanatory view showing a main part of another embodiment. 2 and 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the coating machine T3 of this example, the cylindrical opening 21 is formed so as to protrude to the rear of the back cover 11, and a cylindrical shape that surrounds the rear-side outer peripheral surface 21c of the cylindrical opening 21 at the proximal end portion of the feed tube 6. A cover 26 is formed.
The cylindrical cover 26 may be integrally formed with the feed tube 6 or may be integrally attached and fixed to the proximal end portion of the feed tube 6 as an accessory part.

そして、筒状開口部21の背面側外周面21cと筒状カバー26の内周面26aとの隙間にシールリング23が設けられ、このシールリング23によって、排気室13と中空回転軸4を連通する環状流路22が塞がれており、背面カバー11には、シールリング23の外側に位置するように、排気室13と漏れ空気流入空間25を連通する圧力逃し流路F3が複数本形成されている。その他の構成は図2に示す実施例2と同様である。   A seal ring 23 is provided in a gap between the back side outer peripheral surface 21c of the cylindrical opening 21 and the inner peripheral surface 26a of the cylindrical cover 26, and the exhaust chamber 13 and the hollow rotary shaft 4 are communicated with each other by the seal ring 23. The back surface cover 11 is formed with a plurality of pressure relief passages F3 communicating with the exhaust chamber 13 and the leakage air inflow space 25 so as to be located outside the seal ring 23. Has been. Other configurations are the same as those of the second embodiment shown in FIG.

本例も、排気室13と中空回転軸4を連通する環状流路22はシールリング23により遮断されるので環状流路22を通り排気エアが中空回転軸4内の中空空間29に流入せず、また、筒状開口部21の外周面と中空回転軸4の内周面との間に非接触シール24が形成されているので漏れ空気流入空間25に流入した排気エアの中空回転軸4への流入が抑制され、これによって微粒化不良が防止される。   Also in this example, the annular flow path 22 communicating the exhaust chamber 13 and the hollow rotary shaft 4 is blocked by the seal ring 23, so that the exhaust air does not flow into the hollow space 29 in the hollow rotary shaft 4 through the annular flow path 22. Further, since a non-contact seal 24 is formed between the outer peripheral surface of the cylindrical opening 21 and the inner peripheral surface of the hollow rotary shaft 4, the exhaust air flowing into the leaked air inflow space 25 is directed to the hollow rotary shaft 4. Inflow is suppressed, thereby preventing atomization defects.

さらに、漏れ空気流入空間25と排気室13が圧力逃し流路F3により連通されているので、漏れ空気流入空間25の圧力は比較的変動の少ない排気室13の圧力に同調することとなり、漏れ空気流入空間25の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。   Further, since the leaked air inflow space 25 and the exhaust chamber 13 are communicated with each other by the pressure relief flow path F3, the pressure of the leaked air inflow space 25 is synchronized with the pressure of the exhaust chamber 13 with relatively little fluctuation. There is no disturbance in the pressure distribution in the inflow space 25, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.

さらに、図4に示す塗装機T4のように、漏れ空気流入空間25と排気室13を連通する圧力逃し流路F4を、中空回転軸4と略平行に筒状開口部21を縦に貫通するように所要数形成し、当該流路F4の先端部を背面カバー11の正面側で漏れ空気流入空間25に開口させ、その後端部を筒状開口部21の背面側で排気室13に開口させてもよい。
なお、その他の構成は、図1及び図7と共通する。
Further, as in the coating machine T4 shown in FIG. 4, the pressure relief flow path F4 that communicates the leakage air inflow space 25 and the exhaust chamber 13 passes vertically through the cylindrical opening 21 substantially parallel to the hollow rotary shaft 4. In this way, the required number of the flow paths F4 are opened to the leakage air inflow space 25 on the front side of the back cover 11, and the rear end is opened to the exhaust chamber 13 on the back side of the cylindrical opening 21. May be.
Other configurations are the same as those in FIGS. 1 and 7.

さらにまた、図5及び図6に示す塗装機T5及びT6のように、背面カバー11の背面側がフラットに形成され、筒状開口部21が後方に突出していない場合であってもよい。
ここで、塗装機T5は、漏れ空気流入空間25と排気室13を連通する圧力逃し流路F5が、図1と同様、環状流路22のシールリング23より後方部分から漏れ空気流入空間25に向けて筒状開口部21の内外を放射状に貫通して形成されており、その他の構成は図1及び図7と共通する。
また、塗装機T6は、漏れ空気流入空間25と排気室13を連通する圧力逃し流路F6が、図4と同様、中空回転軸4と略平行に背面カバー21の表裏を貫通するように所要数形成され、当該流路F6の先端部が背面カバー11の正面側で漏れ空気流入空間25に開口され、その後端部が背面カバー11の背面側で排気室13に開口されており、その他の構成は、図4及び図7と共通する。
Furthermore, as in the coating machines T5 and T6 shown in FIGS. 5 and 6, the back side of the back cover 11 may be formed flat and the cylindrical opening 21 may not protrude rearward.
Here, in the coating machine T5, the pressure relief flow path F5 communicating with the leakage air inflow space 25 and the exhaust chamber 13 is changed from the seal ring 23 of the annular flow path 22 to the leakage air inflow space 25 in the same manner as in FIG. It is formed so as to radiate through the inside and outside of the cylindrical opening 21 and the other configurations are the same as those in FIGS. 1 and 7.
Further, the coating machine T6 requires that the pressure relief flow path F6 that communicates between the leakage air inflow space 25 and the exhaust chamber 13 penetrates the front and back of the back cover 21 substantially parallel to the hollow rotary shaft 4 as in FIG. The front end of the flow path F6 is opened to the leakage air inflow space 25 on the front side of the back cover 11, the rear end is opened to the exhaust chamber 13 on the back side of the back cover 11, The configuration is the same as in FIGS. 4 and 7.

本発明は、塗料を微粒化する回転霧化頭を、塗装機本体に内蔵されたエアモータにより回転駆動する塗装機の用途に適用し得る。   INDUSTRIAL APPLICABILITY The present invention can be applied to a use of a coating machine that rotates a rotary atomizing head that atomizes a paint by an air motor built in a coating machine body.

T1〜T6 塗装機
2 塗装機本体
3 エアモータ
4 中空回転軸
5 回転霧化頭
6 フィードチューブ
7 ハウジング
9 エアタービン
9a タービンホイール
9b タービンブレード
11 背面カバー
12 排気口
13 排気室
21 筒状開口部
22 環状流路
23 シールリング
24 非接触シール
25 漏れ空気流入空間
F1〜F6 圧力逃し流路




T1-T6 Painter 2 Painter body
3 Air motor
4 Hollow rotating shaft
5 Rotating atomizing head
6 Feed tube
7 Housing 9 Air turbine 9a Turbine wheel 9b Turbine blade 11 Back cover 12 Exhaust port 13 Exhaust chamber 21 Cylindrical opening 22 Annular flow path 23 Seal ring 24 Non-contact seal 25 Leaked air inflow space F1 to F6 Pressure relief flow path




Claims (5)

塗装機本体に内蔵されたエアモータの中空回転軸の先端に塗料を霧化する回転霧化頭が取り付けられ、
前記エアモータは、タービンホイールの外周部にタービンブレードを形成したエアタービンが中空回転軸の後端側に設けられると共に、当該エアモータのハウジングには、エアモータの排気エアを後方に排出する排気口を形成した背面カバーがエアタービンを覆うように取り付けられて成り、
前記背面カバーの後方空間が、エアモータの排気エアを塗装機本体外部に排出する排気室として形成されると共に、前記背面カバーと前記タービンホイールに挟まれた隙間は排気エアの漏れ空気が流入する漏れ空気流入空間になっており、
前記背面カバーには、前記回転霧化頭に塗料を供給するフィードチューブを前記排気室側から中空回転軸の中空空間内に挿通する筒状開口部が形成された塗装機において、
前記フィードチューブと背面カバーの隙間を通り中空回転軸に至る環状流路を塞ぐシールリングが設けられ、
前記筒状開口部は、中空回転軸の後端側から前記中空空間に挿入されるように前方に突出して形成されると共に、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成され、
前記背面カバーの排気口より中央寄りに、前記漏れ空気流入空間と前記排気室とを連通する圧力逃し流路が形成されたことを特徴とする塗装機。
A rotary atomizing head that atomizes the paint is attached to the tip of the hollow rotary shaft of the air motor built in the coating machine body,
In the air motor, an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor. The rear cover is attached to cover the air turbine,
The rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is a leak into which exhaust air leaks. It is an air inflow space,
In the coating machine in which the cylindrical cover part through which the feed tube for supplying paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side is formed in the back cover.
A seal ring is provided to close an annular flow path that reaches the hollow rotating shaft through the gap between the feed tube and the back cover,
The cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft. A narrow clearance is formed,
A coating machine, characterized in that a pressure relief passage that connects the leakage air inflow space and the exhaust chamber is formed closer to the center than the exhaust port of the back cover.
前記フィードチューブ外周面と筒状開口部内周面の隙間で形成される環状流路が排気室に開放されると共に、当該環状流路の中空回転軸側に前記シールリングが設けられ、
前記圧力逃し流路が、前記シールリングより後方の前記環状流路から前記漏れ空気流入空間に向けて筒状開口部を貫通形成された請求項1記載の塗装機。
An annular channel formed by a gap between the outer peripheral surface of the feed tube and the inner peripheral surface of the cylindrical opening is opened to the exhaust chamber, and the seal ring is provided on the hollow rotary shaft side of the annular channel,
The coating machine according to claim 1, wherein the pressure relief passage is formed so as to penetrate a cylindrical opening from the annular passage behind the seal ring toward the leakage air inflow space.
前記フィードチューブに筒状開口部の後端面と当接される段差部が形成され、前記シールリングが前記フィードチューブ及び筒状開口部の当接部に配され、
前記圧力逃し流路が前記シールリングの外側に形成された請求項1記載の塗装機。
A step portion that is in contact with the rear end surface of the cylindrical opening is formed in the feed tube, and the seal ring is arranged at the contact portion of the feed tube and the cylindrical opening,
The coating machine according to claim 1, wherein the pressure relief passage is formed outside the seal ring.
前記筒状開口部が前記背面カバーの後方へ突出され、フィードチューブの基端部に前記筒状開口部の背面側外周面を囲う筒状カバーが形成され、
前記シールリングが、前記筒状開口部の背面側外周面と前記筒状カバーの内周面との隙間に設けられて、排気室と中空回転軸を連通する環状流路が塞がれてなる請求項1記載の塗装機。
The cylindrical opening protrudes rearward of the back cover, and a cylindrical cover surrounding the back side outer peripheral surface of the cylindrical opening is formed at the base end of the feed tube,
The seal ring is provided in a gap between the outer peripheral surface on the back side of the cylindrical opening and the inner peripheral surface of the cylindrical cover, and the annular flow path communicating the exhaust chamber and the hollow rotary shaft is blocked. The coating machine according to claim 1.
前記非接触シールを形成する狭小クリアランスが0.3mm以下である請求項1乃至4いずれか記載の塗装機。


The coating machine according to any one of claims 1 to 4, wherein a narrow clearance forming the non-contact seal is 0.3 mm or less.


JP2015186532A 2015-09-24 2015-09-24 Painting machine Active JP6559522B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015186532A JP6559522B2 (en) 2015-09-24 2015-09-24 Painting machine
PCT/JP2016/077802 WO2017051815A1 (en) 2015-09-24 2016-09-21 Coating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186532A JP6559522B2 (en) 2015-09-24 2015-09-24 Painting machine

Publications (2)

Publication Number Publication Date
JP2017060906A true JP2017060906A (en) 2017-03-30
JP6559522B2 JP6559522B2 (en) 2019-08-14

Family

ID=58386632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186532A Active JP6559522B2 (en) 2015-09-24 2015-09-24 Painting machine

Country Status (2)

Country Link
JP (1) JP6559522B2 (en)
WO (1) WO2017051815A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725279B2 (en) * 2016-03-22 2020-07-15 トリニティ工業株式会社 Painting machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296435A (en) * 2006-04-28 2007-11-15 Anest Iwata Corp Atomization head of rotation spray coater
JP2014079715A (en) * 2012-10-17 2014-05-08 Honda Motor Co Ltd Coating gun
WO2015004966A1 (en) * 2013-07-12 2015-01-15 Abb株式会社 Rotating atomizer head coater
WO2015029763A1 (en) * 2013-08-26 2015-03-05 Abb株式会社 Coating machine having rotary atomizing head
JP2016223346A (en) * 2015-05-29 2016-12-28 Ntn株式会社 Air turbine drive spindle
WO2017022400A1 (en) * 2015-08-05 2017-02-09 Ntn株式会社 Air turbine drive spindle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296435A (en) * 2006-04-28 2007-11-15 Anest Iwata Corp Atomization head of rotation spray coater
JP2014079715A (en) * 2012-10-17 2014-05-08 Honda Motor Co Ltd Coating gun
WO2015004966A1 (en) * 2013-07-12 2015-01-15 Abb株式会社 Rotating atomizer head coater
WO2015029763A1 (en) * 2013-08-26 2015-03-05 Abb株式会社 Coating machine having rotary atomizing head
JP2016223346A (en) * 2015-05-29 2016-12-28 Ntn株式会社 Air turbine drive spindle
WO2017022400A1 (en) * 2015-08-05 2017-02-09 Ntn株式会社 Air turbine drive spindle

Also Published As

Publication number Publication date
WO2017051815A1 (en) 2017-03-30
JP6559522B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
US9687863B2 (en) Rotary atomizing head type coating machine
JP4609893B2 (en) Tool holder
EP3310490B1 (en) Coating apparatus turbine having internally routed shaping air
US8944731B2 (en) Cooling structure for machine tool main spindle
US8794177B2 (en) Coating method and coating apparatus
TW201627585A (en) Cooling structure of bearing device
WO2017164205A1 (en) Spraying apparatus
JP6559522B2 (en) Painting machine
TWI706826B (en) Rotating table device for working machinery
JP5833426B2 (en) End contact type mechanical seal
CN104226546B (en) Rotate point gum machine
JP5653874B2 (en) Coating apparatus and coating method using the same
JP2017067135A (en) mechanical seal
WO2018181917A1 (en) Electrostatic coating device
JP5430894B2 (en) Rotary atomizer
CN109690026B (en) Air turbine drive spindle
JP5402002B2 (en) Rotating shaft sealing device and sealing method
JP6525318B2 (en) Painting machine and rotary atomizing head used therefor
JP2019030868A (en) Nozzle tip adapter, nozzle assembly, and nozzle
JP2006281322A (en) Tool holder
JP5653875B2 (en) Painting equipment
JP2018024035A (en) Spindle device
JPH0811036A (en) Machine tool having fluid feed coupling
JP2002137145A (en) Tool holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190717

R150 Certificate of patent or registration of utility model

Ref document number: 6559522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250