WO2017164205A1 - Spraying apparatus - Google Patents

Spraying apparatus Download PDF

Info

Publication number
WO2017164205A1
WO2017164205A1 PCT/JP2017/011335 JP2017011335W WO2017164205A1 WO 2017164205 A1 WO2017164205 A1 WO 2017164205A1 JP 2017011335 W JP2017011335 W JP 2017011335W WO 2017164205 A1 WO2017164205 A1 WO 2017164205A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exhaust
hollow
space
rotary shaft
Prior art date
Application number
PCT/JP2017/011335
Other languages
French (fr)
Japanese (ja)
Inventor
川 勝 浩 石
Original Assignee
トリニティ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トリニティ工業株式会社 filed Critical トリニティ工業株式会社
Publication of WO2017164205A1 publication Critical patent/WO2017164205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces

Definitions

  • the present invention relates to a coating machine that atomizes and sprays paint with a rotary atomizing head that is rotationally driven by an air motor.
  • this type of general coating machine A has a rotary atomizing head 5 attached to the tip of a hollow rotary shaft 4 that is driven to rotate at high speed by an air motor 3 built in the coating machine body 2.
  • the paint supplied through the feed tube 6 inserted into the hollow space 4 s of the hollow rotary shaft 4 is sprayed by being atomized by the rotary atomizing head 5.
  • the air motor 3 mounted on the coating machine main body 2 has a hollow rotary shaft 4 protruding from the front end side of the motor housing 7 supported by a radial bearing 8, and a turbine wheel 9 a on the rear end side of the hollow rotary shaft 4.
  • the air turbine 9 in which the turbine blade 9b is formed is integrally formed on the outer peripheral portion.
  • An air supply port 10 for blowing drive air (compressed air) to the turbine blade 9 b is formed around the air turbine 9, and the rear cover 11 fixed to the motor housing 7 so as to cover the air turbine 9 includes a turbine
  • An exhaust port 12 is formed through which exhaust air discharged through the exhaust passage 9c formed on the inner peripheral surface of the blade 9b is discharged rearward.
  • an exhaust chamber 13 is formed in the interior of the coating machine 2 behind the back cover 11 of the air motor 3, and an exhaust hose (not shown) or the like is connected to the exhaust chamber 13 to paint the exhaust air.
  • the machine body 2 is discharged outside.
  • a feed tube 6 for supplying paint to the rotary atomizing head 5 (see FIG. 5) is inserted into the back cover 11 from the exhaust chamber 13 side into the hollow space 4s of the hollow rotary shaft 4.
  • a cylindrical opening 31 is formed so as to protrude rearward.
  • the coating air is supplied through the feed tube 6 while driving air is supplied to the air motor 3 and the rotary atomizing head 5 is driven at a normal rotational speed (for example, about 2 to 40,000 rpm), the coating is rotated and atomized. Centrifugal atomization at the head 5 and spraying.
  • a normal rotational speed for example, about 2 to 40,000 rpm
  • spraying paint with a large discharge amount it is necessary to drive the rotary atomizing head 5 at a higher speed (for example, about 4 to 60000 rpm) in order to maintain atomization. It is necessary to supply a large amount of air at high pressure.
  • exhaust space the pressure in the space formed by the exhaust path 9c, the exhaust port 12, and the exhaust chamber 13 (hereinafter referred to as “exhaust space”) increases. Therefore, a part of the exhaust air flows from the exhaust space through the hollow space 4s of the hollow rotary shaft 4 into the rotary atomizing head 5 to increase the pressure in the rotary atomizing head 5, Causes atomization defects.
  • the present inventors have conceived of blocking the air flow between the exhaust space and the hollow space 4 s of the hollow rotary shaft 4.
  • the exhaust chamber 13 and the hollow space 4 s are communicated with each other via an annular flow path 32 formed in a gap between the outer peripheral surface of the feed tube 6 and the inner peripheral surface of the cylindrical opening 31.
  • the gap that becomes the annular flow path 32 needs to have a certain size (about 1 mm interval) in the radial direction for the convenience of inserting the long feed tube 6 in the assembly process of the coating machine. There is.
  • annular flow path 32 having a larger gap than the leakage air inflow space 34.
  • the annular flow path 32 that communicates the exhaust chamber 13 and the hollow space 4s is blocked by the seal ring 33, so that the flow path to the hollow space 4s is limited to the leakage air inflow space 34, so that the flow rate flowing therethrough increases.
  • the pressure increases, and it is presumed that the pressure distribution in the leaked air inflow space 34 is disturbed due to the rotation of the air turbine 9, and abnormal vibration is likely to occur.
  • the present invention reduces the flow rate of the exhaust air flowing from the exhaust space formed by the exhaust path, the exhaust port, and the exhaust chamber to the hollow space of the hollow rotary shaft without using a seal ring, thereby atomizing the paint.
  • it is a technical subject to prevent abnormal vibrations by suppressing the disturbance of the pressure distribution in the leakage air inflow space.
  • the present invention is provided with a rotary atomizing head for atomizing paint at the tip of a hollow rotating shaft of an air motor built in the coating machine body,
  • an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor.
  • the rear cover is attached to cover the air turbine,
  • the rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is a leak into which exhaust air leaks.
  • the rear cover is formed with a cylindrical opening through which a feed tube that supplies paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side.
  • a base opposite to the cylindrical opening is formed at the proximal end of the feed tube, at least one annular protrusion formed on one of the cylindrical opening and the base, and at least one formed on the other
  • a labyrinth seal formed by meshing the annular grooves in a non-contact state is formed,
  • the cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft.
  • a narrow clearance is formed, A pressure relief flow path that penetrates through the cover and is opened to the exhaust air chamber and the exhaust chamber is formed closer to the center than the exhaust port of the back cover.
  • the base of the feed tube and the cylindrical opening of the back cover are formed to face each other and the space therebetween is formed in the labyrinth seal, the flow that communicates the exhaust chamber and the hollow space of the hollow rotary shaft.
  • a labyrinth seal is formed in the path, and therefore, it is possible to suppress exhaust air from flowing from the exhaust chamber into the hollow space of the hollow rotary shaft.
  • the cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotary shaft, and becomes a non-contact seal between the outer peripheral surface and the inner peripheral surface of the hollow rotary shaft. Since the narrow clearance is formed, it is possible to suppress the exhaust air from flowing into the hollow space of the hollow rotary shaft through the leaked air inflow space or the pressure relief passage.
  • the pressure of the leaked air inflow space is synchronized with the pressure of the exhaust chamber with relatively little fluctuation, There is no disturbance in the pressure distribution, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.
  • Explanatory drawing which shows the principal part of the coating machine which concerns on this invention.
  • the partial perspective view Explanatory drawing which shows the principal part of the other Example which concerns on this invention.
  • Explanatory drawing which shows the principal part of the further another Example which concerns on this invention.
  • Explanatory drawing which shows the structure of a common coating machine.
  • Explanatory drawing which shows the principal part of the conventional coating machine.
  • Explanatory drawing which shows the principal part of the conventional coating machine.
  • the present invention prevents paint atomization failure by suppressing the flow rate of exhaust air flowing into the hollow space of the hollow rotary shaft from the exhaust space composed of the exhaust passage, the exhaust port, and the exhaust chamber without using a seal ring.
  • the following configuration is provided.
  • a rotary atomizing head for atomizing paint is attached to the tip of the hollow rotary shaft of an air motor built in the coating machine body,
  • an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor.
  • the rear cover is attached to cover the air turbine,
  • the rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is a leak into which exhaust air leaks.
  • the rear cover is formed with a cylindrical opening through which a feed tube that supplies paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side.
  • a base opposite to the cylindrical opening is formed at the proximal end of the feed tube, at least one annular protrusion formed on one of the cylindrical opening and the base, and at least one formed on the other
  • a labyrinth seal formed by meshing the annular grooves in a non-contact state is formed,
  • the cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft.
  • a narrow clearance is formed, Near the center of the exhaust port of the back cover, a pressure relief passage that penetrates the cover and opens into the leakage air inflow space and the exhaust chamber is formed.
  • FIG. 1 is an explanatory view showing a main part of a painting machine T1 according to the present invention, and common components are common to the painting machine shown in FIG.
  • the cylindrical opening 21 formed in the back cover 11 of the motor housing 7 is formed to protrude forward so as to be inserted in a non-contact state from the rear end side of the hollow rotary shaft 4.
  • the cylindrical opening 21 may be formed integrally with the back cover 11 or may be attached and fixed integrally to the back cover 11 as an accessory.
  • a base 22 facing the cylindrical opening 21 is formed at the base end of the feed tube 6, at least one annular protrusion 23 a formed on the base 22, and at least one annular formed on the cylindrical opening 21.
  • a labyrinth seal 23 is formed by engaging the concave grooves 23b in a non-contact state.
  • the base 22 may be formed integrally with the feed tube 6 or may be attached and fixed integrally to the base end of the feed tube 6 as an accessory.
  • the annular protrusion 23a and the annular concave groove 23b are formed so as to surround the feed tube 6 in a circular shape, and the width, height, and depth thereof are respectively In the state where the feed tube 6 is assembled at an appropriate position, each gap is designed to be 0.3 mm or less. Thereby, a part of the flow path from the exhaust chamber 13 to the hollow space 4 s of the hollow rotary shaft 4 through the gap between the inner peripheral surface 21 a of the cylindrical opening 21 and the feed tube 6 is formed as the labyrinth seal 23. It will be.
  • annular concave groove 23b is formed in the base 22 may be sufficient, and the shape is not restricted to circular ring shape.
  • the feed tube 6 may be formed in a square ring surrounding the square.
  • FIG.1 and FIG.3 demonstrated the case where a pair of annular protrusion 23a and the annular groove 23b were formed, the number is also arbitrary.
  • the narrow clearance that forms a non-contact seal 24 is formed between the outer peripheral surface 21 b of the cylindrical opening 21 and the inner peripheral surface 4 a of the hollow rotary shaft 4. Since the back cover 11 is fixed to the motor housing 7, the cylindrical opening 21 formed in the back cover 11 can be centered with high accuracy with respect to the inner peripheral surface 4 a of the hollow rotary shaft 4. Therefore, the narrow clearance that becomes the non-contact seal 24 can be designed with an accuracy of 0.1 mm or less. In this example, the gap is designed to be 0.3 mm or less according to the pressure loss caused by the non-contact seal 24. ing.
  • the gap between the back cover 11 and the turbine wheel 9a is a leakage air inflow space 25 into which the leakage air of the exhaust air that has not been discharged from the exhaust port 12 flows, and is closer to the center than the exhaust port 12 of the back cover 11,
  • a plurality of pressure relief passages F are formed through the cover 11 and open to the leakage air inflow space 25 and the exhaust chamber 13.
  • the pressure relief flow path F is formed through the back cover 11 so as to be substantially parallel to the axial direction of the feed tube 6.
  • the exhaust chamber 13 and the leaked air inflow space 25 are communicated with each other via the pressure relief flow path F, and the volume of the exhaust chamber 13 is sufficiently larger than the leaked air inflow space 25. It synchronizes with the pressure of the exhaust chamber 13 with relatively little fluctuation, and there is no disturbance in the pressure distribution of the leaking air inflow space 25, and abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotational speed. It does not occur.
  • FIG. 4 is an explanatory view showing a main part of another embodiment. 3 and 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cylindrical opening 21 is formed so as to protrude rearward of the back cover 11, and the back side outer periphery of the cylindrical opening 21 is formed on the base 22 formed at the base end of the feed tube 6.
  • a cylindrical cover 26 surrounding the surface 21c is formed.
  • the cylindrical cover 26 may be integrally formed with the base 22 of the feed tube 6 or may be integrally attached to the base 22 as an accessory.
  • the front end of the cylindrical cover 26 is formed as an annular protrusion 27a that reaches the back cover 11, and an annular groove 27b is formed in the back cover 11 at a portion facing the annular protrusion 27a.
  • at least one annular protrusion 28 a is formed on the rear end surface of the cylindrical opening 21, and at least one annular concave groove 28 b is formed on the base 22 at a portion facing this.
  • the labyrinth seal 29 is formed by meshing the annular protrusions 27a and 28a and the annular concave grooves 27b and 28b in a non-contact state.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • the labyrinth seal 29 with high pressure loss is formed in the flow path from the exhaust chamber 13 to the hollow rotary shaft 4, the inflow of exhaust air from the exhaust chamber 13 to the hollow space 4s is suppressed, Since the non-contact seal 24 is formed between the outer peripheral surface of the cylindrical opening 21 and the inner peripheral surface of the hollow rotary shaft 4, the exhaust air flowing into the leaked air inflow space 25 flows into the hollow rotary shaft 4. It is suppressed, thereby preventing atomization failure.
  • the pressure of the leakage air inflow space 25 is synchronized with the pressure of the exhaust chamber 13 with relatively little fluctuation. There is no disturbance in the pressure distribution in the inflow space 25, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.
  • the present invention can be applied to the application of a coating machine in which a rotary atomizing head that atomizes paint is rotated by an air motor built in the main body of the coating machine.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

A spraying apparatus comprising: a rotary atomizing head for atomizing paint, said rotary atomizing head being attached at the tip of a hollow rotary shaft of an air motor built into the body of the spraying apparatus; an air motor having an air turbine provided at the rear end side of the hollow rotary shaft, said air turbine having turbine blades formed on the outer periphery of a turbine wheel; a rear surface cover in which are formed exhaust ports for discharging exhaust air from the air motor rearward, and a cylindrical opening through which a feed tube for feeding paint to the rotary atomizing head is inserted inside a hollow space of the hollow rotary shaft from an exhaust chamber side; an air motor housing to which the rear surface cover is attached so as to cover the air turbine; a rearward space in the rear surface cover, said space being formed in an exhaust chamber for discharging exhaust air from the air motor outside of the body of the spraying apparatus; and a gap between the rear surface cover and the turbine wheel, said gap being a leaky air inflow space into which leaky air from the exhaust air flows. In the spraying apparatus: a base, which faces the cylindrical opening, is formed at the base end of the feed tube, and a labyrinth seal is formed, said seal being formed through the meshing, in a contactless state, of at least one annular projection, which is formed on one of the cylindrical opening and the base so as to surround the periphery of the feed tube, and at least one annular recess formed in the other of the opening and the base; the cylindrical opening is formed so as to project forward so as to be inserted in the hollow space from the rear end side of the hollow rotary shaft, and a narrow clearance, which serves as a contactless seal, is formed between the outer peripheral surface of the opening and the inner peripheral surface of the hollow rotary shaft; and a pressure escape flow path is formed closer to the center of the rear surface cover than the exhaust port, and allows the leaky air inflow space and the exhaust chamber to communicate.

Description

塗装機Painting machine
 本発明は、エアモータにより回転駆動される回転霧化頭で塗料を微粒化させて噴霧する塗装機に関する。 The present invention relates to a coating machine that atomizes and sprays paint with a rotary atomizing head that is rotationally driven by an air motor.
 この種の一般的な塗装機Aは、図5に示すように、塗装機本体2に内蔵されたエアモータ3で高速回転駆動される中空回転軸4の先端に回転霧化頭5が取り付けられ、中空回転軸4の中空空間4sに挿通されたフィードチューブ6を介して供給された塗料を回転霧化頭5で遠心霧化させて噴霧するようになっている。 As shown in FIG. 5, this type of general coating machine A has a rotary atomizing head 5 attached to the tip of a hollow rotary shaft 4 that is driven to rotate at high speed by an air motor 3 built in the coating machine body 2. The paint supplied through the feed tube 6 inserted into the hollow space 4 s of the hollow rotary shaft 4 is sprayed by being atomized by the rotary atomizing head 5.
 塗装機本体2に搭載されたエアモータ3は、モータハウジング7の先端側から突出させた中空回転軸4がラジアル軸受8で支持されると共に、当該中空回転軸4の後端側にはタービンホイール9aの外周部にタービンブレード9bを形成したエアタービン9が一体的に形成されている。 The air motor 3 mounted on the coating machine main body 2 has a hollow rotary shaft 4 protruding from the front end side of the motor housing 7 supported by a radial bearing 8, and a turbine wheel 9 a on the rear end side of the hollow rotary shaft 4. The air turbine 9 in which the turbine blade 9b is formed is integrally formed on the outer peripheral portion.
 エアタービン9の周囲には、タービンブレード9bに対しドライブエア(圧縮空気)を吹き付ける給気口10が形成され、エアタービン9を覆うようにモータハウジング7に固定される背面カバー11には、タービンブレード9bの内周面に形成される排気路9cを通って排出される排気エアを後方に排出する排気口12が形成されている。
 さらに、塗装機本体2内部には、エアモータ3の背面カバー11を隔てた後方に排気室13が形成され、この排気室13に排気ホース(図示せず)等が接続されて、排気エアを塗装機本体2外部に排出するようになっている。
An air supply port 10 for blowing drive air (compressed air) to the turbine blade 9 b is formed around the air turbine 9, and the rear cover 11 fixed to the motor housing 7 so as to cover the air turbine 9 includes a turbine An exhaust port 12 is formed through which exhaust air discharged through the exhaust passage 9c formed on the inner peripheral surface of the blade 9b is discharged rearward.
Further, an exhaust chamber 13 is formed in the interior of the coating machine 2 behind the back cover 11 of the air motor 3, and an exhaust hose (not shown) or the like is connected to the exhaust chamber 13 to paint the exhaust air. The machine body 2 is discharged outside.
 また、図6に示すように、前記背面カバー11には、回転霧化頭5(図5参照)に塗料を供給するフィードチューブ6を排気室13側から中空回転軸4の中空空間4sに挿通する筒状開口部31が後方に突出するように形成されている。 Further, as shown in FIG. 6, a feed tube 6 for supplying paint to the rotary atomizing head 5 (see FIG. 5) is inserted into the back cover 11 from the exhaust chamber 13 side into the hollow space 4s of the hollow rotary shaft 4. A cylindrical opening 31 is formed so as to protrude rearward.
 ここで、エアモータ3にドライブエアを供給して回転霧化頭5を通常回転数(例えば、2~40000rpm程度)で駆動させながら、フィードチューブ6を介して塗料を供給すると、塗料が回転霧化頭5で遠心霧化されて噴霧される。
 また、塗料を大吐出量で噴霧する場合は、微粒化を維持するために回転霧化頭5をより高速の回転数(例えば、4~60000rpm程度)で駆動させる必要があり、そのためにはドライブエアも高圧で大量供給する必要がある。
Here, when the coating air is supplied through the feed tube 6 while driving air is supplied to the air motor 3 and the rotary atomizing head 5 is driven at a normal rotational speed (for example, about 2 to 40,000 rpm), the coating is rotated and atomized. Centrifugal atomization at the head 5 and spraying.
When spraying paint with a large discharge amount, it is necessary to drive the rotary atomizing head 5 at a higher speed (for example, about 4 to 60000 rpm) in order to maintain atomization. It is necessary to supply a large amount of air at high pressure.
 しかしながら、ドライブエアの供給量が増大すると、排気経路の圧損が大きくなって、排気路9cと排気口12と排気室13で形成される空間(以下「排気空間」と呼ぶ。)の圧力が上昇するため、排気エアの一部が前記排気空間から中空回転軸4の中空空間4sを通って回転霧化頭5内に流入することで、回転霧化頭5内の圧力を上昇させ、塗料の微粒化不良を発生させる。 However, when the amount of drive air supplied increases, the pressure loss in the exhaust path increases, and the pressure in the space formed by the exhaust path 9c, the exhaust port 12, and the exhaust chamber 13 (hereinafter referred to as “exhaust space”) increases. Therefore, a part of the exhaust air flows from the exhaust space through the hollow space 4s of the hollow rotary shaft 4 into the rotary atomizing head 5 to increase the pressure in the rotary atomizing head 5, Causes atomization defects.
 このため、中空回転軸の側面に、中空回転軸の内外を連通させる排気口を設け、その中空空間の圧力を解放する機構が提案されている(特許文献1参照)。
 しかしながら、本発明者の実験によれば、中空回転軸に排気口を設けても中空空間への流入量が多くなったときに、排気空間及び中空空間の圧力が十分に低下せず、したがって、前述の問題を解決することができなかった。
For this reason, a mechanism has been proposed in which an exhaust port for communicating the inside and the outside of the hollow rotary shaft is provided on the side surface of the hollow rotary shaft to release the pressure in the hollow space (see Patent Document 1).
However, according to the experiment of the present inventor, even when an exhaust port is provided in the hollow rotating shaft, when the amount of inflow into the hollow space increases, the pressure of the exhaust space and the hollow space does not sufficiently decrease. The above problem could not be solved.
 このため本発明者らは、排気空間と中空回転軸4の中空空間4sとの間の空気の流通を遮断することを着想した。
 排気室13と中空空間4sは、図6に示すように、フィードチューブ6の外周面と、筒状開口部31の内周面との隙間に形成される環状流路32を介して連通されているが、環状流路32となる隙間は、塗装機の組立工程において、長いフィードチューブ6を挿入する作業の都合上、その半径方向にある程度の大きさ(1mm間隔程度)を確保しておく必要がある。
For this reason, the present inventors have conceived of blocking the air flow between the exhaust space and the hollow space 4 s of the hollow rotary shaft 4.
As shown in FIG. 6, the exhaust chamber 13 and the hollow space 4 s are communicated with each other via an annular flow path 32 formed in a gap between the outer peripheral surface of the feed tube 6 and the inner peripheral surface of the cylindrical opening 31. However, the gap that becomes the annular flow path 32 needs to have a certain size (about 1 mm interval) in the radial direction for the convenience of inserting the long feed tube 6 in the assembly process of the coating machine. There is.
 そこで、フィードチューブ6の外周面と、筒状開口部31の内周面の間隔の大きさを維持したまま環状流路32を遮断するために、図7に示すように、Oリングなどのシールリング33を設けて、排気室13と中空空間4sとを遮断した塗装機Bを試作した。
 シールリング33を環状流路32に設けて遮断した場合は、フィードチューブ6や筒状開口部31の剛性部材同士が当接するわけではないので塗装機Bの組立作業に不都合を生じることがなく、ドライブエアを高圧で大量供給することにより排気空間が高圧になったとしても、中空空間4sに排気エアが大量に流入することがないので塗料の微粒化不良を生じることがなくなった。
Therefore, in order to block the annular flow path 32 while maintaining the distance between the outer peripheral surface of the feed tube 6 and the inner peripheral surface of the cylindrical opening 31, as shown in FIG. A coating machine B in which the ring 33 was provided and the exhaust chamber 13 and the hollow space 4s were shut off was prototyped.
When the seal ring 33 is provided in the annular flow path 32 and blocked, the rigid members of the feed tube 6 and the cylindrical opening 31 do not come into contact with each other. Even if the exhaust space becomes high pressure by supplying a large amount of drive air at a high pressure, a large amount of exhaust air does not flow into the hollow space 4s, so that the fine atomization of the paint does not occur.
 しかし、回転霧化頭の回転数をさらに許容最大回転数(例えば、6~80000rpm程度)まで上昇させるべく、ドライブエアを、より高圧且つ大供給量で供給したところ、稀ではあるが、異常振動が観察されることがあった。
 この異常振動の原因は、背面カバー11とタービンホイール9aとの隙間に形成される漏れ空気流入空間34を流通する空気量の増加と、当該空間34の圧力分布の乱れによるものと考えられる。
 すなわち、シールリング33が装着されていない従来構造の塗装機においては、排気空間よりも中空空間4sの圧力が低いため、排気空間から中空空間4sに向かって空気が流れるが、このとき流れる流量の多くは、漏れ空気流入空間34よりも隙間が大きい環状流路32を流れていた。
 しかし、排気室13と中空空間4sを連通する環状流路32をシールリング33により遮断することで、中空空間4sへの流路が漏れ空気流入空間34に限定されたため、ここを流れる流量が増加すると共に圧力が上昇し、さらにエアタービン9の回転の影響で、漏れ空気流入空間34の圧力分布に乱れが生じ、異常振動が発生し易い状態になっていたものと推測される。
However, when drive air is supplied at a higher pressure and a larger supply rate in order to further increase the rotation speed of the rotary atomizing head to the maximum allowable rotation speed (for example, about 6 to 80000 rpm), abnormal vibration is rare. Was sometimes observed.
The cause of this abnormal vibration is thought to be due to an increase in the amount of air flowing through the leaked air inflow space 34 formed in the gap between the back cover 11 and the turbine wheel 9a and the disturbance of the pressure distribution in the space 34.
That is, in the coating machine having a conventional structure in which the seal ring 33 is not mounted, air flows from the exhaust space toward the hollow space 4s because the pressure in the hollow space 4s is lower than the exhaust space. Many of them flowed through the annular flow path 32 having a larger gap than the leakage air inflow space 34.
However, the annular flow path 32 that communicates the exhaust chamber 13 and the hollow space 4s is blocked by the seal ring 33, so that the flow path to the hollow space 4s is limited to the leakage air inflow space 34, so that the flow rate flowing therethrough increases. At the same time, the pressure increases, and it is presumed that the pressure distribution in the leaked air inflow space 34 is disturbed due to the rotation of the air turbine 9, and abnormal vibration is likely to occur.
国際公開第2015/004966号パンフレットInternational Publication No. 2015/004966 Pamphlet
 そこで本発明は、シールリングを使用することなく、排気路と排気口と排気室で形成される排気空間から中空回転軸の中空空間へ流入する排気エアの流量を抑制することで塗料の微粒化不良を防止すると共に、漏れ空気流入空間の圧力分布の乱れを抑制することで異常振動を防止することを技術的課題としている。 Therefore, the present invention reduces the flow rate of the exhaust air flowing from the exhaust space formed by the exhaust path, the exhaust port, and the exhaust chamber to the hollow space of the hollow rotary shaft without using a seal ring, thereby atomizing the paint. In addition to preventing defects, it is a technical subject to prevent abnormal vibrations by suppressing the disturbance of the pressure distribution in the leakage air inflow space.
 この課題を解決するために、本発明は、塗装機本体に内蔵されたエアモータの中空回転軸の先端に塗料を霧化する回転霧化頭が取り付けられ、
 前記エアモータは、タービンホイールの外周部にタービンブレードを形成したエアタービンが中空回転軸の後端側に設けられると共に、当該エアモータのハウジングには、エアモータの排気エアを後方に排出する排気口を形成した背面カバーがエアタービンを覆うように取り付けられて成り、
 前記背面カバーの後方空間が、エアモータの排気エアを塗装機本体外部に排出する排気室として形成されると共に、前記背面カバーと前記タービンホイールに挟まれた隙間は排気エアの漏れ空気が流入する漏れ空気流入空間になっており、 前記背面カバーには、前記回転霧化頭に塗料を供給するフィードチューブを前記排気室側から中空回転軸の中空空間内に挿通する筒状開口部が形成された塗装機において、
 前記フィードチューブの基端部には前記筒状開口部と対向するベースが形成され、前記筒状開口部及びベースの一方に形成された少なくとも一つの環状突起と、他方に形成された少なくとも一つの環状凹溝を非接触状態で噛み合わせてなるラビリンスシールが形成され、
 前記筒状開口部は、中空回転軸の後端側から前記中空空間に挿入されるように前方に突出して形成されると共に、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成され、
 背面カバーの排気口より中央寄りに、当該カバーを貫通して前記漏れ空気流入空間と前記排気室に開口された圧力逃し流路が形成されたことを特徴とする。
In order to solve this problem, the present invention is provided with a rotary atomizing head for atomizing paint at the tip of a hollow rotating shaft of an air motor built in the coating machine body,
In the air motor, an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor. The rear cover is attached to cover the air turbine,
The rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is a leak into which exhaust air leaks. The rear cover is formed with a cylindrical opening through which a feed tube that supplies paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side. In the painting machine
A base opposite to the cylindrical opening is formed at the proximal end of the feed tube, at least one annular protrusion formed on one of the cylindrical opening and the base, and at least one formed on the other A labyrinth seal formed by meshing the annular grooves in a non-contact state is formed,
The cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft. A narrow clearance is formed,
A pressure relief flow path that penetrates through the cover and is opened to the exhaust air chamber and the exhaust chamber is formed closer to the center than the exhaust port of the back cover.
 本発明によれば、フィードチューブのベースと、背面カバーの筒状開口部が互いに対向形成され、その間がラビリンスシールに形成されているので、排気室と中空回転軸の中空空間とを連通する流路にラビリンスシールが形成されることとなり、したがって、排気エアが排気室から中空回転軸の中空空間に流入することを抑制できる。 According to the present invention, since the base of the feed tube and the cylindrical opening of the back cover are formed to face each other and the space therebetween is formed in the labyrinth seal, the flow that communicates the exhaust chamber and the hollow space of the hollow rotary shaft. A labyrinth seal is formed in the path, and therefore, it is possible to suppress exhaust air from flowing from the exhaust chamber into the hollow space of the hollow rotary shaft.
 また、筒状開口部が、中空回転軸の後端側から中空空間に挿入されるように前方に突出して形成され、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成されているので、漏れ空気流入空間や圧力逃し流路を通って排気エアが中空回転軸の中空空間に流入することを抑制できる。 Further, the cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotary shaft, and becomes a non-contact seal between the outer peripheral surface and the inner peripheral surface of the hollow rotary shaft. Since the narrow clearance is formed, it is possible to suppress the exhaust air from flowing into the hollow space of the hollow rotary shaft through the leaked air inflow space or the pressure relief passage.
 さらに、排気室と漏れ空気流入空間は圧力逃し流路を介して連通されているので、漏れ空気流入空間の圧力は比較的変動の少ない排気室の圧力に同調することとなり、漏れ空気流入空間の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。 Further, since the exhaust chamber and the leaked air inflow space are communicated with each other via a pressure relief passage, the pressure of the leaked air inflow space is synchronized with the pressure of the exhaust chamber with relatively little fluctuation, There is no disturbance in the pressure distribution, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.
本発明に係る塗装機の要部を示す説明図。Explanatory drawing which shows the principal part of the coating machine which concerns on this invention. その部分斜視図。The partial perspective view. 本発明に係る他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the other Example which concerns on this invention. 本発明に係るさらに他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the further another Example which concerns on this invention. 一般的な塗装機の構造を示す説明図。Explanatory drawing which shows the structure of a common coating machine. 従来の塗装機の要部を示す説明図。Explanatory drawing which shows the principal part of the conventional coating machine. 従来の塗装機の要部を示す説明図。Explanatory drawing which shows the principal part of the conventional coating machine.
 本発明は、シールリングを使用することなく、排気路と排気口と排気室で成る排気空間から中空回転軸の中空空間へ流入する排気エアの流量を抑制することで塗料の微粒化不良を防止するとともに、漏れ空気流入空間の圧力分布の乱れを抑制することで異常振動を防止するという目的を達成するため、以下の構成を有する。
 すなわち、塗装機本体に内蔵されたエアモータの中空回転軸の先端に塗料を霧化する回転霧化頭が取り付けられ、
 前記エアモータは、タービンホイールの外周部にタービンブレードを形成したエアタービンが中空回転軸の後端側に設けられると共に、当該エアモータのハウジングには、エアモータの排気エアを後方に排出する排気口を形成した背面カバーがエアタービンを覆うように取り付けられて成り、
 前記背面カバーの後方空間が、エアモータの排気エアを塗装機本体外部に排出する排気室として形成されると共に、前記背面カバーと前記タービンホイールに挟まれた隙間は排気エアの漏れ空気が流入する漏れ空気流入空間になっており、 前記背面カバーには、前記回転霧化頭に塗料を供給するフィードチューブを前記排気室側から中空回転軸の中空空間内に挿通する筒状開口部が形成された塗装機において、
 前記フィードチューブの基端部には前記筒状開口部と対向するベースが形成され、前記筒状開口部及びベースの一方に形成された少なくとも一つの環状突起と、他方に形成された少なくとも一つの環状凹溝を非接触状態で噛み合わせてなるラビリンスシールが形成され、
 前記筒状開口部は、中空回転軸の後端側から前記中空空間に挿入されるように前方に突出して形成されると共に、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成され、
 背面カバーの排気口より中央寄りに、当該カバーを貫通して前記漏れ空気流入空間と前記排気室に開口された圧力逃し流路が形成した。
The present invention prevents paint atomization failure by suppressing the flow rate of exhaust air flowing into the hollow space of the hollow rotary shaft from the exhaust space composed of the exhaust passage, the exhaust port, and the exhaust chamber without using a seal ring. In addition, in order to achieve the object of preventing abnormal vibration by suppressing the disturbance of the pressure distribution in the leakage air inflow space, the following configuration is provided.
That is, a rotary atomizing head for atomizing paint is attached to the tip of the hollow rotary shaft of an air motor built in the coating machine body,
In the air motor, an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor. The rear cover is attached to cover the air turbine,
The rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is a leak into which exhaust air leaks. The rear cover is formed with a cylindrical opening through which a feed tube that supplies paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side. In the painting machine
A base opposite to the cylindrical opening is formed at the proximal end of the feed tube, at least one annular protrusion formed on one of the cylindrical opening and the base, and at least one formed on the other A labyrinth seal formed by meshing the annular grooves in a non-contact state is formed,
The cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft. A narrow clearance is formed,
Near the center of the exhaust port of the back cover, a pressure relief passage that penetrates the cover and opens into the leakage air inflow space and the exhaust chamber is formed.
 図1は、本発明に係る塗装機T1の要部を示す説明図であって、一般的な構成部分については、図5に示す塗装機と共通である。
 モータハウジング7の背面カバー11に形成された筒状開口部21は、中空回転軸4の後端側から非接触状態で挿入されるように前方に突出して形成されている。この筒状開口部21は、背面カバー11に一体成形されている場合であっても、付属部品として背面カバー11に一体的に装着固定される場合であってもよい。
FIG. 1 is an explanatory view showing a main part of a painting machine T1 according to the present invention, and common components are common to the painting machine shown in FIG.
The cylindrical opening 21 formed in the back cover 11 of the motor housing 7 is formed to protrude forward so as to be inserted in a non-contact state from the rear end side of the hollow rotary shaft 4. The cylindrical opening 21 may be formed integrally with the back cover 11 or may be attached and fixed integrally to the back cover 11 as an accessory.
 フィードチューブ6の基端部には筒状開口部21と対向するベース22が形成され、ベース22に形成された少なくとも一つの環状突起23aと、筒状開口部21に形成された少なくとも一つの環状凹溝23bが非接触状態で噛み合わせてなるラビリンスシール23が形成されている。
 なお、ベース22は、フィードチューブ6と一体成形される場合であっても、付属部品としてフィードチューブ6基端部に一体的に装着固定される場合であってもよい。
A base 22 facing the cylindrical opening 21 is formed at the base end of the feed tube 6, at least one annular protrusion 23 a formed on the base 22, and at least one annular formed on the cylindrical opening 21. A labyrinth seal 23 is formed by engaging the concave grooves 23b in a non-contact state.
The base 22 may be formed integrally with the feed tube 6 or may be attached and fixed integrally to the base end of the feed tube 6 as an accessory.
 また、前記環状突起23a及び環状凹溝23bは、図2に示すように、フィードチューブ6を中心とし、その周囲を円形に囲むように形成されており、それぞれの幅、高さ、深さは、フィードチューブ6を適正位置に組み付けた状態で、それぞれの隙間が0.3mm以下となるように設計されている。
 これにより、排気室13から、筒状開口部21の内周面21aとフィードチューブ6の隙間を通り、中空回転軸4の中空空間4sに至る流路の一部がラビリンスシール23として形成されることとなる。
Further, as shown in FIG. 2, the annular protrusion 23a and the annular concave groove 23b are formed so as to surround the feed tube 6 in a circular shape, and the width, height, and depth thereof are respectively In the state where the feed tube 6 is assembled at an appropriate position, each gap is designed to be 0.3 mm or less.
Thereby, a part of the flow path from the exhaust chamber 13 to the hollow space 4 s of the hollow rotary shaft 4 through the gap between the inner peripheral surface 21 a of the cylindrical opening 21 and the feed tube 6 is formed as the labyrinth seal 23. It will be.
 なお、図3に示すように、環状突起23aが筒状開口部21に形成され、環状凹溝23bがベース22に形成されている場合であってもよく、その形状も、円形環状に限らず、フィードチューブ6の周囲を例えば方形に囲む方形環状に形成する場合であってもよい。
 また、図1及び図3では、一対の環状突起23a及び環状凹溝23bを形成した場合について説明したが、その数も任意である。
In addition, as shown in FIG. 3, the case where the cyclic | annular protrusion 23a is formed in the cylindrical opening part 21 and the cyclic | annular concave groove 23b is formed in the base 22 may be sufficient, and the shape is not restricted to circular ring shape. For example, the feed tube 6 may be formed in a square ring surrounding the square.
Moreover, although FIG.1 and FIG.3 demonstrated the case where a pair of annular protrusion 23a and the annular groove 23b were formed, the number is also arbitrary.
 筒状開口部21の外周面21bと中空回転軸4の内周面4aとの間には、非接触シール24となる狭小クリアランスが形成されている。
 背面カバー11は、モータハウジング7に固定されるので、その背面カバー11に形成された筒状開口部21を中空回転軸4の内周面4aに対して高精度に心出しすることができる。
 したがって、非接触シール24となる狭小クリアランスを0.1mm以下の精度で設計することができ、本例では、非接触シール24で生じさせる圧力損失に応じてその隙間が0.3mm以下に設計されている。
Between the outer peripheral surface 21 b of the cylindrical opening 21 and the inner peripheral surface 4 a of the hollow rotary shaft 4, a narrow clearance that forms a non-contact seal 24 is formed.
Since the back cover 11 is fixed to the motor housing 7, the cylindrical opening 21 formed in the back cover 11 can be centered with high accuracy with respect to the inner peripheral surface 4 a of the hollow rotary shaft 4.
Therefore, the narrow clearance that becomes the non-contact seal 24 can be designed with an accuracy of 0.1 mm or less. In this example, the gap is designed to be 0.3 mm or less according to the pressure loss caused by the non-contact seal 24. ing.
 背面カバー11とタービンホイール9aとの隙間は、排気口12から排出されなかった排気エアの漏れ空気が流入する漏れ空気流入空間25になっており、背面カバー11の排気口12より中央寄りに、当該カバー11を貫通して、漏れ空気流入空間25と排気室13に開口された複数の圧力逃し流路Fが形成されている。
 本例では、圧力逃し流路Fは、フィードチューブ6の軸方向と略平行になるように背面カバー11に貫通形成されている。
The gap between the back cover 11 and the turbine wheel 9a is a leakage air inflow space 25 into which the leakage air of the exhaust air that has not been discharged from the exhaust port 12 flows, and is closer to the center than the exhaust port 12 of the back cover 11, A plurality of pressure relief passages F are formed through the cover 11 and open to the leakage air inflow space 25 and the exhaust chamber 13.
In this example, the pressure relief flow path F is formed through the back cover 11 so as to be substantially parallel to the axial direction of the feed tube 6.
 以上が本発明の一構成例であって、次にその作用について説明する。
 エアモータ3にドライブエアを供給すると、ドライブエアが給気口10からタービンブレード9bに吹き付けられてタービン9が回転され、これによって中空回転軸4及び回転霧化頭5が高速回転駆動される。
 排気エアは、そのほとんどが排気口12から後方に排出され、排気室13を通り、排気ホース(図示せず)などで外部に導出される。
 また、排気エアの一部が、タービンホイール9aと背面カバー11の隙間の漏れ空気流入空間25に流入される。
The above is one configuration example of the present invention, and the operation thereof will be described next.
When drive air is supplied to the air motor 3, the drive air is blown from the air supply port 10 to the turbine blade 9b and the turbine 9 is rotated, whereby the hollow rotary shaft 4 and the rotary atomizing head 5 are driven to rotate at high speed.
Most of the exhaust air is discharged rearward from the exhaust port 12, passes through the exhaust chamber 13, and is led to the outside by an exhaust hose (not shown) or the like.
A part of the exhaust air flows into the leaked air inflow space 25 in the gap between the turbine wheel 9 a and the back cover 11.
 このとき、排気室13から中空回転軸4の中空空間4sに至る流路中、フィードチューブ6のベース22と筒状開口部21の間がラビリンスシール23に形成されているので、当該流路を通り排気エアが排気室13から中空空間4sに流入することを抑制できる。
 また、筒状開口部21の外周面と中空回転軸4の内周面との隙間を通り中空空間4sに至る流路には非接触シール24が形成されているので、漏れ空気流入空間25や圧力逃し流路Fに流入した排気エアが中空回転軸4へ流入することを抑制できる。
 したがって、中空空間4sに排気エアが大量に流入することがなく、塗料の微粒化不良が防止される。
At this time, since the space between the base 22 of the feed tube 6 and the cylindrical opening 21 is formed in the labyrinth seal 23 in the flow path from the exhaust chamber 13 to the hollow space 4 s of the hollow rotary shaft 4, It is possible to suppress the passage of exhaust air from the exhaust chamber 13 into the hollow space 4s.
In addition, since the non-contact seal 24 is formed in the flow path that passes through the gap between the outer peripheral surface of the cylindrical opening 21 and the inner peripheral surface of the hollow rotary shaft 4 and reaches the hollow space 4s, The exhaust air that has flowed into the pressure relief flow path F can be prevented from flowing into the hollow rotary shaft 4.
Accordingly, a large amount of exhaust air does not flow into the hollow space 4s, and poor atomization of the paint is prevented.
 さらに、排気室13と漏れ空気流入空間25は圧力逃し流路Fを介して連通され、排気室13の容積は漏れ空気流入空間25に比して十分大きいので、漏れ空気流入空間25の圧力は比較的変動の少ない排気室13の圧力に同調することとなり、漏れ空気流入空間25の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。 Further, the exhaust chamber 13 and the leaked air inflow space 25 are communicated with each other via the pressure relief flow path F, and the volume of the exhaust chamber 13 is sufficiently larger than the leaked air inflow space 25. It synchronizes with the pressure of the exhaust chamber 13 with relatively little fluctuation, and there is no disturbance in the pressure distribution of the leaking air inflow space 25, and abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotational speed. It does not occur.
 図4は他の実施例の要部を示す説明図である。なお、図3及び図7と共通する部分は同一符号を付して詳細説明を省略する。
 本例の塗装機T2は、筒状開口部21が背面カバー11の後方に突出して形成され、フィードチューブ6の基端部に形成されたベース22に、その筒状開口部21の背面側外周面21cを囲う筒状カバー26が形成されている。
 筒状カバー26は、フィードチューブ6のベース22と一体成形される場合であっても、付属部品としてベース22に一体的に装着固定される場合であってもよい。
FIG. 4 is an explanatory view showing a main part of another embodiment. 3 and 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the coating machine T2 of this example, the cylindrical opening 21 is formed so as to protrude rearward of the back cover 11, and the back side outer periphery of the cylindrical opening 21 is formed on the base 22 formed at the base end of the feed tube 6. A cylindrical cover 26 surrounding the surface 21c is formed.
The cylindrical cover 26 may be integrally formed with the base 22 of the feed tube 6 or may be integrally attached to the base 22 as an accessory.
 筒状カバー26の先端は、背面カバー11に達する環状突起27aとして形成され、背面カバー11には前記環状突起27aと対向する部分に環状凹溝27bが形成されている。
 また、筒状開口部21の後端面には、少なくとも一つの環状突起28aが形成され、ベース22には、これと対向する部分に、少なくとも一つの環状凹溝28bが形成されている。
 そして、各環状突起27a及び28aと、環状凹溝27b及び28bが、非接触状態で噛み合わされてラビリンスシール29が形成されている。その他の構成は図1に示す実施例1と同様である。
The front end of the cylindrical cover 26 is formed as an annular protrusion 27a that reaches the back cover 11, and an annular groove 27b is formed in the back cover 11 at a portion facing the annular protrusion 27a.
In addition, at least one annular protrusion 28 a is formed on the rear end surface of the cylindrical opening 21, and at least one annular concave groove 28 b is formed on the base 22 at a portion facing this.
Then, the labyrinth seal 29 is formed by meshing the annular protrusions 27a and 28a and the annular concave grooves 27b and 28b in a non-contact state. Other configurations are the same as those of the first embodiment shown in FIG.
 本例も、排気室13から中空回転軸4に至る流路に圧力損失の高いラビリンスシール29が形成されているので、排気室13から中空空間4sへの排気エアの流入が抑制され、また、筒状開口部21の外周面と中空回転軸4の内周面との間に非接触シール24が形成されているので漏れ空気流入空間25に流入した排気エアの中空回転軸4への流入が抑制され、これによって微粒化不良が防止される。 Also in this example, since the labyrinth seal 29 with high pressure loss is formed in the flow path from the exhaust chamber 13 to the hollow rotary shaft 4, the inflow of exhaust air from the exhaust chamber 13 to the hollow space 4s is suppressed, Since the non-contact seal 24 is formed between the outer peripheral surface of the cylindrical opening 21 and the inner peripheral surface of the hollow rotary shaft 4, the exhaust air flowing into the leaked air inflow space 25 flows into the hollow rotary shaft 4. It is suppressed, thereby preventing atomization failure.
 さらに、漏れ空気流入空間25と排気室13が圧力逃し流路Fにより連通されているので、漏れ空気流入空間25の圧力は比較的変動の少ない排気室13の圧力に同調することとなり、漏れ空気流入空間25の圧力分布に乱れを生ずることがなく、回転霧化頭を許容最大回転数で回転させたときに異常振動を生じることもない。 Further, since the leakage air inflow space 25 and the exhaust chamber 13 are communicated with each other by the pressure relief flow path F, the pressure of the leakage air inflow space 25 is synchronized with the pressure of the exhaust chamber 13 with relatively little fluctuation. There is no disturbance in the pressure distribution in the inflow space 25, and no abnormal vibration occurs when the rotary atomizing head is rotated at the maximum allowable rotation speed.
 本発明は、塗料を微粒化する回転霧化頭を、塗装機本体に内蔵されたエアモータにより回転駆動する塗装機の用途に適用し得る。 The present invention can be applied to the application of a coating machine in which a rotary atomizing head that atomizes paint is rotated by an air motor built in the main body of the coating machine.
 T1、T2 塗装機
 2  塗装機本体 
 3  エアモータ 
 4  中空回転軸 
 4s 中空空間
 5  回転霧化頭 
 6  フィードチューブ 
 7  ハウジング
 9  エアタービン
 9a タービンホイール
 9b タービンブレード
11  背面カバー
12  排気口
13  排気室
21  筒状開口部
22  ベース
23  ラビリンスシール 
23a 環状突起
23b 環状凹溝
24  非接触シール 
25  漏れ空気流入空間 
F   圧力逃し流路 
27a 28a 環状突起
27b 28b 環状凹溝
29  ラビリンスシール 
 

 
T1, T2 Painter 2 Painter body
3 Air motor
4 Hollow rotating shaft
4s hollow space 5 rotating atomizing head
6 Feed tube
7 Housing 9 Air turbine 9 a Turbine wheel 9 b Turbine blade 11 Back cover 12 Exhaust port 13 Exhaust chamber 21 Cylindrical opening 22 Base 23 Labyrinth seal
23a Annular projection 23b Annular groove 24 Non-contact seal
25 Leaky air inflow space
F Pressure relief passage
27a 28a Annular projection 27b 28b Annular groove 29 Labyrinth seal


Claims (3)

  1.  塗装機本体に内蔵されたエアモータの中空回転軸の先端に塗料を霧化する回転霧化頭が取り付けられ、
     前記エアモータは、タービンホイールの外周部にタービンブレードを形成したエアタービンが中空回転軸の後端側に設けられると共に、当該エアモータのハウジングには、エアモータの排気エアを後方に排出する排気口を形成した背面カバーがエアタービンを覆うように取り付けられて成り、
     前記背面カバーの後方空間が、エアモータの排気エアを塗装機本体外部に排出する排気室として形成されると共に、前記背面カバーと前記タービンホイールに挟まれた隙間は排気エアの漏れ空気が流入する漏れ空気流入空間になっており、 前記背面カバーには、前記回転霧化頭に塗料を供給するフィードチューブを前記排気室側から中空回転軸の中空空間内に挿通する筒状開口部が形成された塗装機において、
     前記フィードチューブの基端部には前記筒状開口部と対向するベースが形成され、フィードチューブの周囲を囲むように前記筒状開口部及びベースの一方に形成された少なくとも一つの環状突起と、他方に形成された少なくとも一つの環状凹溝を非接触状態で噛み合わせてなるラビリンスシールが形成され、
     前記筒状開口部は、中空回転軸の後端側から前記中空空間に挿入されるように前方に突出して形成されると共に、その外周面と中空回転軸内周面との間に非接触シールとなる狭小クリアランスが形成され、
     背面カバーの排気口より中央寄りに、当該カバーを貫通して、前記漏れ空気流入空間と前記排気室に開口された圧力逃し流路が形成されたことを特徴とする。
    A rotary atomizing head that atomizes the paint is attached to the tip of the hollow rotary shaft of the air motor built in the coating machine body,
    In the air motor, an air turbine having a turbine blade formed on the outer peripheral portion of the turbine wheel is provided on the rear end side of the hollow rotary shaft, and an exhaust port for exhausting the exhaust air of the air motor to the rear is formed in the housing of the air motor. The rear cover is attached to cover the air turbine,
    The rear space of the back cover is formed as an exhaust chamber for discharging the exhaust air of the air motor to the outside of the main body of the paint machine, and the gap between the back cover and the turbine wheel is a leak into which exhaust air leaks. The rear cover is formed with a cylindrical opening through which a feed tube that supplies paint to the rotary atomizing head is inserted into the hollow space of the hollow rotary shaft from the exhaust chamber side. In the painting machine
    A base facing the cylindrical opening is formed at the base end of the feed tube, and at least one annular protrusion formed on one of the cylindrical opening and the base so as to surround the periphery of the feed tube; A labyrinth seal formed by meshing at least one annular groove formed on the other side in a non-contact state is formed,
    The cylindrical opening is formed to protrude forward so as to be inserted into the hollow space from the rear end side of the hollow rotating shaft, and between the outer peripheral surface and the inner peripheral surface of the hollow rotating shaft. A narrow clearance is formed,
    A pressure relief passage is formed in the leaking air inflow space and the exhaust chamber so as to pass through the cover closer to the center than the exhaust port of the back cover.
  2.  前記環状突起が及び環状凹溝が、前記フィードチューブを囲む円形環状に形成された請求項1記載の塗装機。 The coating machine according to claim 1, wherein the annular protrusion and the annular groove are formed in a circular shape surrounding the feed tube.
  3.  前記ラビリンスシール及び非接触シールのクリアランスが0.3mm以下である請求項1記載の塗装機。
     

     
    The coating machine according to claim 1, wherein a clearance between the labyrinth seal and the non-contact seal is 0.3 mm or less.


PCT/JP2017/011335 2016-03-22 2017-03-22 Spraying apparatus WO2017164205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016056405A JP6725279B2 (en) 2016-03-22 2016-03-22 Painting machine
JP2016-056405 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017164205A1 true WO2017164205A1 (en) 2017-09-28

Family

ID=59899499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011335 WO2017164205A1 (en) 2016-03-22 2017-03-22 Spraying apparatus

Country Status (2)

Country Link
JP (1) JP6725279B2 (en)
WO (1) WO2017164205A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899765A (en) * 2017-11-30 2018-04-13 北京航空航天大学 A kind of high speed rotary atomizer based on air bearing
CN110080504B (en) * 2019-04-26 2020-07-31 安徽省徽腾智能交通科技有限公司泗县分公司 Coating whitewashes roller for building engineering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776520A (en) * 1987-05-11 1988-10-11 Binks Manufacturing Company Rotary atomizer
JPH0857374A (en) * 1994-08-19 1996-03-05 Mazda Motor Corp Rotary atomizing coating applicator provided with color changing mechanism
JP2007296435A (en) * 2006-04-28 2007-11-15 Anest Iwata Corp Atomization head of rotation spray coater
JP2014079715A (en) * 2012-10-17 2014-05-08 Honda Motor Co Ltd Coating gun
WO2015004966A1 (en) * 2013-07-12 2015-01-15 Abb株式会社 Rotating atomizer head coater
WO2015029763A1 (en) * 2013-08-26 2015-03-05 Abb株式会社 Coating machine having rotary atomizing head
WO2017051815A1 (en) * 2015-09-24 2017-03-30 トリニティ工業株式会社 Coating machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776520A (en) * 1987-05-11 1988-10-11 Binks Manufacturing Company Rotary atomizer
JPH0857374A (en) * 1994-08-19 1996-03-05 Mazda Motor Corp Rotary atomizing coating applicator provided with color changing mechanism
JP2007296435A (en) * 2006-04-28 2007-11-15 Anest Iwata Corp Atomization head of rotation spray coater
JP2014079715A (en) * 2012-10-17 2014-05-08 Honda Motor Co Ltd Coating gun
WO2015004966A1 (en) * 2013-07-12 2015-01-15 Abb株式会社 Rotating atomizer head coater
WO2015029763A1 (en) * 2013-08-26 2015-03-05 Abb株式会社 Coating machine having rotary atomizing head
WO2017051815A1 (en) * 2015-09-24 2017-03-30 トリニティ工業株式会社 Coating machine

Also Published As

Publication number Publication date
JP2017170287A (en) 2017-09-28
JP6725279B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US9687863B2 (en) Rotary atomizing head type coating machine
US8794177B2 (en) Coating method and coating apparatus
JP4347395B2 (en) Spindle driven by ejecting drive fluid from rotor side
WO2017164205A1 (en) Spraying apparatus
TW201627585A (en) Cooling structure of bearing device
US20180311686A1 (en) Rotational wave nozzle
TWI675149B (en) Screw compressor
US11041401B2 (en) Inlet guide vane and compressor
JP6559522B2 (en) Painting machine
JP5833426B2 (en) End contact type mechanical seal
TWI706826B (en) Rotating table device for working machinery
JP4655794B2 (en) Spindle device with air turbine
US11131246B2 (en) Gas turbine
JP6521702B2 (en) Turbo type fluid machine cleaning device and turbo type fluid machine
CN113164992A (en) Nozzle and gas ejection device
JP5891743B2 (en) Static pressure gas bearing spindle and electrostatic coating device
JP2022183053A (en) Rotary sprayer shaping air configuration and air cap apparatus
JP2001113439A (en) Air turbine spindle
CN109690026B (en) Air turbine drive spindle
JP2010036090A (en) Rotary spray coater
JP5402002B2 (en) Rotating shaft sealing device and sealing method
JP6525318B2 (en) Painting machine and rotary atomizing head used therefor
JP6809395B2 (en) Rotary atomization coating equipment
JPH0726633Y2 (en) Rotary joint of rotary drum type cutting machine
JP2013071050A (en) Coating apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770245

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770245

Country of ref document: EP

Kind code of ref document: A1