JP2017056406A - Vacuum evaporation type concentrator and operation method of the same - Google Patents

Vacuum evaporation type concentrator and operation method of the same Download PDF

Info

Publication number
JP2017056406A
JP2017056406A JP2015183276A JP2015183276A JP2017056406A JP 2017056406 A JP2017056406 A JP 2017056406A JP 2015183276 A JP2015183276 A JP 2015183276A JP 2015183276 A JP2015183276 A JP 2015183276A JP 2017056406 A JP2017056406 A JP 2017056406A
Authority
JP
Japan
Prior art keywords
compressor
steam
vacuum
raw material
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015183276A
Other languages
Japanese (ja)
Other versions
JP6576755B2 (en
Inventor
恵理 鈴木
Eri Suzuki
恵理 鈴木
濱村 秀樹
Hideki Hamamura
秀樹 濱村
圭 片山
Kei Katayama
圭 片山
西村 靖史
Yasushi Nishimura
靖史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2015183276A priority Critical patent/JP6576755B2/en
Publication of JP2017056406A publication Critical patent/JP2017056406A/en
Application granted granted Critical
Publication of JP6576755B2 publication Critical patent/JP6576755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time of start operation from operation start-up to steady operation while suppressing running cost and equipment cost in a vacuum evaporation type concentrator equipped with a vacuum pump.SOLUTION: A concentrator is driven on heat pump system having a root type compressor 3 and a vacuum pump 4. Upon start operation, while the vacuum pump 4 is being rotated in the same condition as steady operation, the root type compressor 3 is rotated at low speed with a bypass passage 23 full-opened. Since the mixture of air in the root type compressor 3 is prevented, the root type compressor 3 is maintained to a standby state while preventing overload. When the temperature or the like of a raw liquid gets closer to a steady operation state, a bypass valve 24 is closed to switch the root type compressor 3 into high-speed rotation, which shifts into steady operation. The root type compressor 3 can be operated stably toward steady operation while the decompression of an evaporation container 1 is being progressed, so that the start operation time can be shortened.SELECTED DRAWING: Figure 3

Description

本願発明は、各種の液体を濃縮するための真空蒸発式濃縮装置(ヒートポンプ式濃縮装置)及びその運転方法(制御方法)に関するものである。なお、ここにいう液体とは、水分を含んでいる流動体という意味であり、粘度は問わない。また、固形物を含んでいることは差し支えない。   The present invention relates to a vacuum evaporation type concentrator (heat pump type concentrator) for concentrating various liquids and an operation method (control method) thereof. In addition, the liquid here means the fluid containing moisture, and the viscosity is not limited. Moreover, it does not interfere with containing a solid substance.

液体の濃縮は、加熱(加温)して水分を除去することによって行われるが、発生した蒸気をそのまま廃棄してしまうとエネルギのロスが甚だしく、運転コストも嵩むことになる。そこで、発生した蒸発を圧縮して昇温させて、これを原料液の加熱に再利用するヒートポンプ方式が行われており、定常運転に至ると、外部からの熱エネルギの供給は殆ど不要になって、圧縮加熱された蒸気のみで原料液を加熱できるサイクルになる(例えば特許文献1)。   Concentration of the liquid is performed by heating (heating) to remove moisture. However, if the generated steam is discarded as it is, the loss of energy is significant and the operation cost is increased. Therefore, a heat pump system is used in which the generated evaporation is compressed and heated to be reused for heating the raw material liquid. When steady operation is reached, it is almost unnecessary to supply heat energy from the outside. Thus, a cycle in which the raw material liquid can be heated only with the compressed and heated steam (for example, Patent Document 1).

特許文献1は蒸発容器や蒸気流路を真空ポンプによって減圧しており、このように減圧すると原料液の沸点が低下するため、ヒートポンプの機能は一層高まる。他方、真空ポンプを使用せずに蒸気圧縮機のみを使用したタイプの例が特許文献2に開示されている。この特許文献2には、蒸気圧縮機としてルーツ圧縮器を使用すると共に、加熱源として電熱ヒータを使用した場合において、ルーツ式圧縮機の上流側と下流側とを繋ぐバイパス通路を設けて、バイパス通路に、これを開閉するバイパス弁を設けた装置が開示されている。   In Patent Document 1, the evaporation container and the steam flow path are decompressed by a vacuum pump. When the pressure is reduced in this way, the boiling point of the raw material liquid is lowered, so that the function of the heat pump is further enhanced. On the other hand, Patent Document 2 discloses an example of a type using only a vapor compressor without using a vacuum pump. In this Patent Document 2, when a roots compressor is used as a steam compressor and an electric heater is used as a heating source, a bypass passage is provided to connect the upstream side and the downstream side of the roots type compressor. An apparatus in which a bypass valve for opening and closing the passage is provided in a passage is disclosed.

この特許文献2では、起動運転時と定常運転時とで電力使用量を一定にすることを目的にしており、運転開始時にはバイパス弁を全開状態にすることにより、ルーツ式圧縮機が低速回転であっても過負荷になることを防止している。そして、電熱ヒータによって原料液が昇温していくのに連れて、電熱ヒータへの電力は低減して、ルーツ式圧縮機の回転数を徐々に上げると共に、バイパス通路に設けた開閉弁の開度は徐々に低下させていき、蒸発容器内での蒸気の発生量が所定量に至ると、バイパス弁は全閉してルーツ式圧縮機は定常回転数に切り替え、かつ、蒸気の供給も遮断している。   This Patent Document 2 aims to make the amount of power used constant during start-up operation and steady operation, and at the start of operation, the Roots compressor can be rotated at low speed by opening the bypass valve fully. Even if it exists, it is prevented from becoming overloaded. As the temperature of the raw material liquid is increased by the electric heater, the electric power to the electric heater is reduced, the rotational speed of the Roots compressor is gradually increased, and the on-off valve provided in the bypass passage is opened. When the amount of steam generated in the evaporation container reaches a predetermined amount, the bypass valve is fully closed and the Roots compressor is switched to the steady rotation speed, and the steam supply is shut off. doing.

この特許文献2は、既述のとおり、装置の運転開始から終了まで電力使用量を一定にすることを目的にしており、起動運転時には、蒸気の発生量に比例して、ヒータの使用電力は減らしてルーツ式圧縮機の使用電力が多くなるように両者の使用電力比率を変えていき、最後に、ヒータへの通電をOFFにしてルーツ式圧縮機をフル回転させるものである。従って、起動運転時に大きな電力は必要はなく、それだけ電源設備を簡素化することができるといえる。   As described above, this Patent Document 2 aims to make the amount of electric power used constant from the start to the end of the operation of the apparatus. During the start-up operation, the electric power used by the heater is proportional to the amount of steam generated. The power consumption ratio of both is changed so that the power consumption of the roots compressor is increased, and finally, the power supply to the heater is turned off and the roots compressor is fully rotated. Therefore, it can be said that a large amount of electric power is not required during the start-up operation, and the power supply facility can be simplified accordingly.

特開2008−111320号公報JP 2008-111320 A 特許第180329号明細書Japanese Patent No. 180329

特許文献1のような真空蒸発式濃縮装置において、定常運転時には安定した濃縮作用が成されるが、運転開始から定常運転に至るまでの起動運転が不安定で、結果として起動運転時間も長くなるという問題がある。   In a vacuum evaporation type concentrator as in Patent Document 1, a stable concentration action is achieved during steady operation, but the start-up operation from the start of operation to the steady operation is unstable, resulting in a long start-up operation time. There is a problem.

つまり、真空ポンプの運転開始によって装置内部は徐々に真空度が上がっていき、真空度の上昇と原料液の加熱とによって定常運転に以降していくが、起動運転時には蒸発容器に希薄空気が残っていることから、蒸気圧縮機を運転すると、希薄空気が蒸気圧縮機に吸引されることにより、蒸気圧縮機が過負荷になって運転が安定しないのであり、そこで、蒸気圧縮機の運転開始を遅らせて真空度の上昇を待たねばならず、このため起動運転時間が長くなるのであった。   In other words, the vacuum inside the device gradually increases with the start of the vacuum pump operation, and continues to the steady operation by increasing the vacuum degree and heating the raw material liquid, but lean air remains in the evaporation container at the start-up operation Therefore, when the steam compressor is operated, lean air is sucked into the steam compressor, the steam compressor is overloaded and the operation is not stable. It was necessary to delay and wait for the vacuum to rise, and this increased the startup operation time.

この点については、真空ポンプの容量を大きくして、短時間で真空度を上昇させたらよいといえるが、これでは、起動運転のために高価な真空ポンプを用意せねばならないため、設備コストが嵩むという新たな問題が発生する。また、蒸気圧縮機による蒸気の安定した圧縮・昇温状態を得るには、蒸気圧縮機をある程度の時間運転し続けて安定化させる助走運転が必要があるため、蒸気圧縮機を運転開始してもすぐに定常運転に至ることにはならないのであり、この面でも起動運転時間の短縮ができなかった。   In this regard, it can be said that the vacuum degree should be increased in a short time by increasing the capacity of the vacuum pump. However, this requires an expensive vacuum pump for the start-up operation, so that the equipment cost is reduced. A new problem of bulkiness occurs. In addition, in order to obtain a stable compression / temperature increase state of the steam by the steam compressor, it is necessary to run the steam compressor for a certain period of time to stabilize it. However, it does not lead to steady operation immediately, and the start-up operation time cannot be shortened in this respect as well.

他方、特許文献2は、蒸発缶から蒸気がルーツ式圧縮機によって吸引されるため、蒸発缶の内圧は大気圧よりは低くなっていると解される。従って、原料液の沸点を低くして蒸発を促進していると云えるが、ルーツ式圧縮機の吸引のみによる減圧であるため、大型のルーツ式圧縮機を使用しないと必要な真空度と蒸気昇温とを確保し難く、このため、設備コストが嵩むおそれがあるといえる。   On the other hand, Patent Document 2 is understood that the internal pressure of the evaporator is lower than the atmospheric pressure because the vapor is sucked from the evaporator by the roots compressor. Therefore, it can be said that evaporation is promoted by lowering the boiling point of the raw material liquid. However, since the pressure is reduced only by the suction of the roots compressor, the necessary degree of vacuum and steam are required without using a large roots compressor. It can be said that it is difficult to ensure the temperature rise, and thus the equipment cost may increase.

また、特許文献2は、電熱ヒータとルーツ式圧縮機との使用電力の和を一定に維持しつつ、両者の使用電力の比率を徐々に変えるものであるため、電熱ヒータ及びルーツ式圧縮機への給電の制御が面倒である。   Moreover, since patent document 2 changes the ratio of the electric power of both gradually while maintaining the sum of the electric power of an electric heater and a roots type compressor constant, it is to an electric heater and a roots type compressor. The power supply control is troublesome.

更に、起動運転時間について見ると、特許文献2では、定常運転状態では蒸気圧縮機によって蒸発缶は減圧されるが、起動運転時にはルーツ式圧縮機の上流側と下流側とがバイパス通路を介して連通しているため、起動運転時には蒸発缶は殆ど減圧されないと思われることから、定常運転に至るには電熱ヒータによる昇温が達成されるのを待たねばならず、従って、起動運転時間の短縮は期待できないと推測される。   Further, regarding the start-up operation time, in Patent Document 2, in the steady operation state, the evaporator is decompressed by the vapor compressor, but during the start-up operation, the upstream side and the downstream side of the Roots-type compressor are connected via the bypass passage. Because it is connected, it seems that the evaporator is hardly depressurized during start-up operation, so it is necessary to wait for the temperature rise by the electric heater to reach steady operation, thus shortening the start-up operation time. Is not expected.

本願発明は、このような現状の下、真空蒸発式濃縮装置において、設備コストをかけることなく起動運転時間を短縮化することを目的とするものである。   The present invention has an object to shorten the start-up operation time in the vacuum evaporation type concentrator under such a current situation without incurring equipment costs.

本願発明は、真空蒸発式濃縮装置とその運転方法とを含んでおり、これらの典型は各請求項で特定している。   The present invention includes a vacuum evaporation type concentrator and a method for operating the same, the typical of which is specified in each claim.

このうち請求項1の発明は真空蒸発式濃縮装置に関するものであり、この真空蒸発式濃縮装置は、原料液が投入される蒸発容器と、前記蒸発容器に投入される原料液の加熱手段と、前記蒸発容器で発生した蒸気を圧縮して昇温させる蒸気圧縮機と、前記蒸発容器の内部及び蒸気の排出経路を減圧するための真空ポンプとを備えており、前記蒸気圧縮機で圧縮された蒸気が前記加熱手段に送られる、という基本構成である。   Among these, the invention of claim 1 relates to a vacuum evaporation type concentrating device, the vacuum evaporation type concentrating device comprising an evaporation container into which a raw material liquid is charged, a heating means for the raw material liquid to be charged into the evaporation container, A vapor compressor that compresses and raises the temperature of the vapor generated in the evaporation container; and a vacuum pump that depressurizes the inside of the evaporation container and the discharge path of the vapor, and is compressed by the vapor compressor The basic configuration is that steam is sent to the heating means.

そして、前記蒸気圧縮機の上流側と下流側とを連通させるバイパス通路を設けて、前記バイパス通路に、前記真空ポンプを始動させての運転開始から定常運転に至るまでの起動運転時のみ開いて定常運転時には閉じているバイパス弁を設けており、前記起動運転時に、前記真空ポンプの真空吸引作用によって前記バイパス通路を減圧状態に保持することにより、前記蒸気圧縮機の上流側と下流側との負圧を均一化しつつ、前記蒸気圧縮機が定常運転時の回転数よりも低い起動時回転数で運転されるようになっている。   Then, a bypass passage is provided to connect the upstream side and the downstream side of the steam compressor, and the bypass passage is opened only during the start-up operation from the start of operation after starting the vacuum pump to the steady operation. A bypass valve that is closed during steady operation is provided, and during the start-up operation, the bypass passage is held in a reduced pressure state by the vacuum suction action of the vacuum pump, so that the upstream side and the downstream side of the steam compressor While making the negative pressure uniform, the steam compressor is operated at a starting rotation speed lower than the rotation speed during steady operation.

請求項2の発明は、請求項1の発明を好適に具体化したもので、この発明では、前記バイパス弁は、全開と全閉との2段階に切り替えられる方式である一方、前記蒸気圧縮機は、定常運転回転数とこれより低い起動時回転数との2段階の回転数に切り替えられる方式である。   The invention of claim 2 is a preferred embodiment of the invention of claim 1, and in this invention, the bypass valve is a system that can be switched between two stages of full open and full close, while the steam compressor Is a system that can be switched to a two-stage rotation speed, a steady operation rotation speed and a lower startup rotation speed.

請求項3は、請求項1又は請求項2を好適に具体化したもので、前記蒸気圧縮機はルーツ式圧縮機である一方、前記加熱手段は薄膜上昇流方式になっており、蒸発容器が減圧されることによって、原料液が供給通路から蒸発容器に自動的に吸い上げられるようになっている。   A third aspect of the present invention is a preferred embodiment of the first or second aspect, wherein the vapor compressor is a Roots type compressor, while the heating means is a thin film upflow system, By reducing the pressure, the raw material liquid is automatically sucked into the evaporation container from the supply passage.

請求項4の発明は真空蒸発式濃縮装置の運転方法を対象にしており、まず、真空蒸発式濃縮装置は、原料液が投入される蒸発容器と、前記蒸発容器に投入される原料液の加熱手段と、前記蒸発容器で発生した蒸気を圧縮して昇温させる蒸気圧縮機と、前記蒸発容器の内部及び蒸気の排出経路を減圧するための真空ポンプと、前記蒸気圧縮機の上流側と下流側とを連通させるバイパス通路と、前記バイパス通路を開閉するバイパス弁とを備えており、前記真空ポンプは常時一定の回転数で運転される、という構成になっている。   The invention of claim 4 is directed to a method for operating a vacuum evaporation type concentrator. First, the vacuum evaporation type concentrator includes an evaporation container into which a raw material liquid is charged, and heating of the raw material liquid into the evaporation container. Means, a vapor compressor for compressing and raising the temperature of the vapor generated in the evaporation container, a vacuum pump for depressurizing the inside of the evaporation container and the discharge path of the vapor, and upstream and downstream of the vapor compressor And a bypass valve that opens and closes the bypass passage, and the vacuum pump is always operated at a constant rotational speed.

そして、運転開始から定常運転に移行するまでの起動運転が、
a:前記真空ポンプの運転開始と相前後してバイパス弁を開くか、又は、前記バイパス弁を予め開いた状態で真空ポンプを運転開始する、
b:前記バイパス弁を空けて真空ポンプを運転している状態で原料液を前記蒸発容器に供給開始する、
c:前記原料液の供給開始後に前記蒸気圧縮機を定常運転時の回転数よりも低い起動時回転数で運転開始する、
d:前記蒸気圧縮機の運転開始後に、前記加熱手段による原料液の加熱を開始する、
という手順を含んでおり、
前記蒸発容器の内圧又は温度若しくは両方が予め設定した基準値に達したら、前記バイパス弁を全閉して蒸気圧縮機を定常運転回転数に切り替えるものである。
And the start-up operation from the start of operation to the transition to steady operation is
a: The bypass valve is opened before or after the start of operation of the vacuum pump, or the vacuum pump is started with the bypass valve opened in advance.
b: Start supplying the raw material liquid to the evaporation container in a state where the bypass valve is opened and the vacuum pump is operated.
c: Start operation of the vapor compressor at a starting rotational speed lower than the rotational speed during steady operation after the supply of the raw material liquid is started.
d: After the operation of the vapor compressor is started, heating of the raw material liquid by the heating means is started.
Including the procedure
When the internal pressure and / or temperature of the evaporation container reaches a preset reference value, the bypass valve is fully closed and the steam compressor is switched to a steady operation rotational speed.

請求項5の発明は、請求項4を好適に具体化したもので、この発明では、前記バイパス弁は、起動運転時には全開状態が維持されて、前記蒸発容器の内圧又は温度若しくは両方が予め設定した基準値に達したら全閉される一方、前記蒸気圧縮機は、前記起動運転時には一定の起動時回転数で運転されている。   The invention of claim 5 is a preferred embodiment of claim 4 in which the bypass valve is kept fully open during start-up operation, and the internal pressure and / or temperature of the evaporation container is preset. When the reference value is reached, the steam compressor is fully closed, while the steam compressor is operated at a constant starting rotation speed during the starting operation.

請求項6の発明は、請求項4又は5の好適な展開例であり、前記蒸気圧縮機にはルーツ式圧縮機が使用されて、前記加熱手段は薄膜上昇流方式が使用されている。請求項7の発明は、請求項4〜6のうちのいずれかにおいて、前記バイパス弁の全閉への切り替え及び蒸気圧縮機の定常運転回転数への切り替えが、蒸発容器の内圧又は原料液の温度若しくは両方が定常運転時の定常運転時の内圧又は温度若しくは両方に至る前のタイミングで行われる。   The invention of claim 6 is a preferred development of claim 4 or 5, wherein a roots compressor is used as the vapor compressor, and a thin film upflow system is used as the heating means. The invention of a seventh aspect is the invention according to any one of the fourth to sixth aspects, wherein the switching of the bypass valve to the fully closed state and the switching to the steady operation rotational speed of the steam compressor are performed by the internal pressure of the evaporation container or the raw material liquid. The temperature or both are performed at the timing before reaching the internal pressure and / or temperature during steady operation.

さて、真空蒸発式濃縮装置において、定常運転において真空ポンプの容量はさほど必要はなく、真空ポンプの駆動に要するランニングコストはさほどかからない。これが真空蒸発式濃縮装置の利点の一つである。しかし、既述のとおり、起動運転時間を短縮するために大きな容量の真空ポンプを使用すると、それだけ設備コストが嵩む。また、蒸気圧縮機を定常運転時の回転数でいきなり運転開始すると、蒸発容器に溜まっている空気が蒸気圧縮機に吸引されるため、蒸気圧縮機が過負荷になって、蒸気圧縮機が損傷したり運転が不安定化したりする虞がある。   Now, in the vacuum evaporation type concentrator, the capacity of the vacuum pump is not so much required in the steady operation, and the running cost required for driving the vacuum pump is not so much. This is one of the advantages of the vacuum evaporation type concentrator. However, as described above, if a large-capacity vacuum pump is used to shorten the start-up operation time, the equipment cost increases accordingly. In addition, if the steam compressor is suddenly started at the rotation speed during steady operation, the air accumulated in the evaporation container is sucked into the steam compressor, which overloads the steam compressor and damages the steam compressor. Or the operation may become unstable.

これに対して本願発明では、起動運転時には、真空ポンプは定常回転数で運転しつつ、蒸発容器の空気はバイパス通路から排除することにより、蒸気圧縮機を過負荷によりトリップしない程度の起動時回転数で回転させることができるため、その後の定常運転時の回転数に達する時間が短くなり起動運転時間を短縮することができる。つまり、バイパス通路が真空ポンプによって減圧状態に維持されていて、蒸発容器に溜まっていた空気はバイパス通路から速やかに排除されることにより、蒸気圧縮機への空気の混入を防止できるため、蒸気圧縮機を負担がない状態で安定的に運転しつつ定常運転のフル回転状態に速やかに移行できるのである。   In contrast, in the present invention, during start-up operation, the vacuum pump is operated at a steady rotational speed, and the air in the evaporation container is excluded from the bypass passage so that the steam compressor does not trip due to overload. Since the number of rotations can be increased, the time to reach the number of rotations in the subsequent steady operation is shortened, and the startup operation time can be shortened. In other words, the bypass passage is maintained in a reduced pressure state by a vacuum pump, and air accumulated in the evaporation container is quickly removed from the bypass passage, thereby preventing air from entering the steam compressor. It is possible to quickly shift to the full rotation state of steady operation while stably operating the machine without any load.

付言すると、特許文献2は、蒸気圧縮機によって蒸発缶を減圧するものであり、起動運転時にはバイパス通路が連通していることから、蒸気圧縮機による蒸発缶の減圧作用は基本的には生じないといえるが、本願発明では、真空ポンプの吸引作用がバイパス通路にも働いているため、蒸気圧縮機の運転によって蒸発容器の減圧が促進されており、これにより、定常運転への移行を促進できるといえる。   In addition, in Patent Document 2, the evaporator is depressurized by a steam compressor, and since the bypass passage is in communication during start-up operation, basically the depressurizing action of the evaporator by the steam compressor does not occur. However, in the present invention, since the suction action of the vacuum pump is also working in the bypass passage, the vapor pressure reduction of the evaporation container is promoted by the operation of the vapor compressor, thereby promoting the transition to the steady operation. It can be said.

このように、本願発明は、起動運転時には装置内部の真空度を経時的に高めつつ、蒸気圧縮機は安定した助走運転を経由して定常運転に移行させるものであり、このため、定常運転に対応した小型の真空ポンプのみを使用しつつ、起動運転時間を短縮しつつ定常運転にスムースに移行させることができる。その結果、設備コストとランニングコストとを抑制することができると共に、稼働率を高めて生産性も向上できる。   As described above, the invention of the present application is to increase the degree of vacuum inside the apparatus over time during the start-up operation, and the steam compressor shifts to the steady operation via the stable run-up operation. It is possible to smoothly shift to steady operation while shortening the start-up operation time while using only a compatible small vacuum pump. As a result, equipment costs and running costs can be suppressed, and the operating rate can be increased to improve productivity.

なお、バイパス通路は、蒸気圧縮機の上流側と下流側との圧力を均等化するためのものであるので、本願発明では、バイパス通路を均圧通路と呼んで、バイパス弁を均圧弁と呼ぶことも可能である。   Since the bypass passage is for equalizing the pressure on the upstream side and the downstream side of the steam compressor, in the present invention, the bypass passage is called a pressure equalizing passage, and the bypass valve is called a pressure equalizing valve. It is also possible.

請求項1,4では、バイパス弁は、例えば、全開・中開(中閉)・全閉のように3段階又はそれ以上に切り替えることも可能であり、また、蒸気圧縮機も、起動運転回転数を低速回転と中速回転との2段階やそれ以上に切り替えることが可能であるが、請求項2,5のように、バイパス弁は全開と全閉との2段階の切り替え方式を採用すると共に、蒸気圧縮機は、起動運転回転数を1種類の回転数に設定しておくと、蒸発容器の内圧(真空度)や温度を検知するセンサーやスイッチ類に連動させて、バイパス弁や蒸気圧縮機を切り替える単純な制御方式(例えばリレーを使用した制御)も採用できるため、装置の制御態様をシンプル化することが可能になる。   In the first and fourth aspects, the bypass valve can be switched to three or more stages, for example, fully open, intermediate open (intermediate close), and fully closed, and the steam compressor is also rotated in the starting operation. The number can be switched between two or more speeds of low speed rotation and medium speed rotation, but the bypass valve adopts a two-stage switching method of full opening and full closing as in claims 2 and 5. At the same time, if the start-up operation speed is set to one kind of speed, the steam compressor is linked to a sensor or switch for detecting the internal pressure (vacuum level) or temperature of the evaporation container, and a bypass valve or steam. Since a simple control method (for example, control using a relay) for switching the compressor can also be adopted, the control mode of the apparatus can be simplified.

この場合、真空ポンプは定常運転と同じ回転数で定速駆動されているが、蒸気圧縮機は定常運転回転数よりも低い回転数で駆動されているため、空気を吸引しても過負荷になることはない。このため、蒸気圧縮機を定速で回転させつつ装置内部の真空度を速やかに高めることができ、しかも、既述のとおり、蒸気圧縮機によって蒸発容器の減圧も促進できる。従って、蒸気圧縮機を安定的に駆動しつつ、蒸気圧縮機の能力をフルに引き出して起動運転時間を短縮できるのである。   In this case, the vacuum pump is driven at a constant speed at the same rotational speed as in the steady operation, but the steam compressor is driven at a rotational speed lower than the steady operation rotational speed, so that even if air is sucked, it is overloaded. Never become. For this reason, the degree of vacuum inside the apparatus can be quickly increased while rotating the steam compressor at a constant speed, and as described above, the decompression of the evaporation container can be promoted by the steam compressor. Accordingly, it is possible to reduce the start-up operation time by fully driving the steam compressor while stably driving the steam compressor.

請求項3,6のように、蒸気圧縮機にルーツ式圧縮機を使用すると、高い圧縮比により、 蒸発器で発生した蒸気を昇温させるときの温度差を大きくできるため、沸点上昇の高い原料液にも適用できる。また、薄膜上昇流方式を採用する事で、原料液への熱負荷による品質変化を少なくできるため、食品分野にも好適となり、比較的大きな温度差が求められる薄膜上昇式と、高い昇温機能を有するルーツ式圧縮機との組み合わせにより、高い濃縮効率を実現することができる。更に、原料液の吸い上げは真空作用で行われるため、圧送ポンプは要せず、それだけ設備コストを抑制できるのみならず、起動運転から定常運転への移行も滑らかになる。   If a roots compressor is used for the steam compressor as in claims 3 and 6, the temperature difference when raising the temperature of the steam generated in the evaporator can be increased by a high compression ratio. It can also be applied to liquids. In addition, by adopting the thin film ascending flow method, the quality change due to the heat load on the raw material liquid can be reduced, making it suitable for the food field, and a thin film ascending method that requires a relatively large temperature difference and a high temperature rising function. A high concentration efficiency can be realized by a combination with a roots type compressor having Furthermore, since the suction of the raw material liquid is performed by a vacuum action, a pumping pump is not required, and not only can the equipment cost be reduced, but also the transition from start-up operation to steady operation becomes smooth.

蒸気圧縮機を起動時回転数で運転している状態で装置内を完全に定常運転状態まで移行させてから、蒸気圧縮機の回転数を定常回転数に上げると、装置内部が一時的に過剰な負圧状態・蒸気加熱状態になって、大きな圧力変動が発生する可能性がある。   When the steam compressor is operating at the starting rotational speed and the inside of the device is completely moved to the steady operating state and then the steam compressor speed is increased to the steady rotational speed, the inside of the device is temporarily excessive. There is a possibility that a large pressure fluctuation occurs due to a negative pressure state or steam heating state.

これに対し、請求項7のように、定常運転時に負圧・温度よりも少し前の状態(例えば定常運転への到達度が90〜95%の状態)で蒸気圧縮機をフル回転状態に移行させると、蒸気圧縮機がフル回転することによって大きな減圧と蒸気圧縮とがあっても、減圧余力がある状態で定常運転に移行するため、大きな圧力変動や温度変化は発生せずに、定常運転にごくスムースに移行させることができる。この点、本願発明の特徴の一つである。   On the other hand, as in claim 7, the steam compressor is shifted to the full rotation state in a state slightly before the negative pressure and temperature during the steady operation (for example, the degree of reach to the steady operation is 90 to 95%). Then, even if there is a large pressure reduction and steam compression due to the full rotation of the steam compressor, it shifts to a steady operation with sufficient decompression capacity, so there is no large pressure fluctuation or temperature change, and steady operation Very smooth transition. This is one of the features of the present invention.

本願発明の定常運転状態での模式的な構成図である。It is a typical block diagram in the steady operation state of this invention. 本願発明の起動運転時初期での模式的な構成図である。It is a typical block diagram in the initial stage at the time of start-up operation of this invention. 本願発明の起動運転時中期での模式的な構成図である。It is a typical block diagram in the middle period at the time of starting operation of this invention. 本願発明の起動運転時終期での模式的な構成図である。It is a typical block diagram in the last stage at the time of start-up operation of this invention. 起動運転のフローチャートである。It is a flowchart of starting operation.

(1).装置の構成
次に、本願発明の実施形態を図面に基づいて説明する。まず、真空蒸発式濃縮装置の構成を、図1に基づいて説明する。真空蒸発式濃縮装置は、主要要素として、原料液(被濃縮液)を蒸発させる蒸発容器(蒸発タンク、蒸発缶)1と、原料液の加熱手段の一例としてのスチーム式加熱ユニット2と、蒸発容器1で発生した蒸気を圧縮・昇温させるための圧縮機の一例としてのルーツ式圧縮機3と、蒸発容器1及び蒸気排出経路を減圧するための真空ポンプ4とを備えている。
(1). Configuration of Apparatus Next, an embodiment of the present invention will be described with reference to the drawings. First, the configuration of the vacuum evaporation type concentrator will be described with reference to FIG. The vacuum evaporation type concentrator includes, as main elements, an evaporation container (evaporation tank, evaporator) 1 for evaporating a raw material liquid (concentrated liquid), a steam heating unit 2 as an example of a heating means for the raw material liquid, and evaporation A Roots type compressor 3 as an example of a compressor for compressing and raising the temperature of steam generated in the container 1 and a vacuum pump 4 for decompressing the evaporation container 1 and the steam discharge path are provided.

ルーツ式圧縮機3は、定常運転回転数と、これより低い起動時回転数との2段段階の回転数とに切り替えることができる。但し、定常運転回転数と起動時回転数との具体的な数字はまちまちであり、例えば、定常運転回転数は、3000rpmの場合も2500rpmの場合も1500rpmの場合もある。従って、定常運転回転数と起動時回転数とは相対的な概念であり、好適な絶対値が存在するものではない。また、真空ポンプ4の能力によっても、定常運転回転数と起動時回転数との関係は相違している。例えば、定常運転回転数が1200rpmの場合は起動時回転数を600rpmに設定するというように、大まかには、起動時回転数は、定常運転回転数の40〜60%でよいと云える。   The Roots compressor 3 can be switched between a steady operation rotational speed and a two-stage rotational speed that is lower than the starting rotational speed. However, the specific numbers of the steady operation rotational speed and the startup rotational speed vary, and for example, the steady operational rotational speed may be 3000 rpm, 2500 rpm, or 1500 rpm. Therefore, the steady operation rotational speed and the startup rotational speed are relative concepts, and no suitable absolute value exists. The relationship between the steady operation rotational speed and the startup rotational speed is also different depending on the capability of the vacuum pump 4. For example, when the steady operation rotational speed is 1200 rpm, the startup rotational speed is set to 600 rpm. Thus, it can be said that the startup rotational speed may be 40 to 60% of the steady operation rotational speed.

蒸発容器1は円筒状の縦型であり、内部は空洞になっている。スチーム式加熱ユニット2は、流入ヘッダー6と流出ヘッダー7との間に薄膜上昇式の熱交換部8を配置した構成であり、原料液は、流入ヘッダー6から流出ヘッダー7に流れる過程で、蒸気によって間接的に加熱(加温)される。なお、加熱・蒸発手段は、シェルアンドチューブ式やプレート式等の他の様々なシステムを採用できる。   The evaporation container 1 is a cylindrical vertical type, and the inside is hollow. The steam heating unit 2 has a configuration in which a thin film rising heat exchange unit 8 is disposed between the inflow header 6 and the outflow header 7, and the raw material liquid is vaporized in the process of flowing from the inflow header 6 to the outflow header 7. Is indirectly heated (heated). As the heating / evaporating means, various other systems such as a shell and tube type and a plate type can be adopted.

スチーム式加熱ユニット2の流入ヘッダー6には、原料液供給管(原料液供給通路)9が接続されており、原料液供給管9には、原料液供給弁10を設けている。また、スチーム式加熱ユニット2の流入ヘッダー6と蒸発容器1の下端とは、原料液戻り管11によって接続されて、スチーム式加熱ユニット2の流出ヘッダー7と蒸発容器1の上下中途高さ位置とは、原料液送り管12によって接続されている。   A raw material liquid supply pipe (raw material liquid supply passage) 9 is connected to the inflow header 6 of the steam type heating unit 2, and the raw material liquid supply pipe 9 is provided with a raw material liquid supply valve 10. In addition, the inflow header 6 of the steam type heating unit 2 and the lower end of the evaporation container 1 are connected by the raw material liquid return pipe 11, and the outflow header 7 of the steam type heating unit 2 and the vertical halfway height position of the evaporation container 1 are Are connected by a raw material liquid feed pipe 12.

原料液戻り管11の中途部には濃縮液取り出し管13が接続されていて、濃縮液取り出し管13に、濃縮液取り出し制御弁14を設けている。濃縮液取り出し制御弁14は、図示しない制御装置からの制御信号によって開閉が制御される。   A concentrated liquid take-out pipe 13 is connected to the middle part of the raw material liquid return pipe 11, and a concentrated liquid take-out control valve 14 is provided in the concentrated liquid take-out pipe 13. The concentrate extraction control valve 14 is controlled to be opened and closed by a control signal from a control device (not shown).

スチーム式加熱ユニット2における熱交換部8の上部には外部蒸気導入管15が接続されており、外部蒸気導入管15に外部蒸気導入弁16を設けている。敢えて述べるまでもないが、外部蒸気導入管15は、ボイラー等の外部の蒸気発生源に接続されている。また、スチーム式加熱ユニット2における熱交換部8の下部には、凝縮水排出管17が接続されており、凝縮水排出管17には、凝縮水ポット18と凝縮水ポンプ19とを設けている。凝縮水ポット18の内部、水位は自動弁によって一定の範囲に維持される。   An external steam introduction pipe 15 is connected to the upper part of the heat exchange unit 8 in the steam heating unit 2, and an external steam introduction valve 16 is provided in the external steam introduction pipe 15. Needless to say, the external steam introduction pipe 15 is connected to an external steam generation source such as a boiler. Further, a condensed water discharge pipe 17 is connected to the lower part of the heat exchanging unit 8 in the steam heating unit 2, and the condensed water discharge pipe 17 is provided with a condensed water pot 18 and a condensed water pump 19. . The water level inside the condensate pot 18 is maintained within a certain range by an automatic valve.

蒸発容器1の上端部とルーツ式圧縮機3の吸込み室とは、蒸気取り出し管21で接続されており、ルーツ式圧縮機3の吐出室とスチーム式加熱ユニット2の熱交換部8とは、蒸気戻し管22で接続されている。これら、蒸気取り出し管21と蒸気戻し管22とは、蒸気排出通路を構成している。そして、蒸気取り出し管21と蒸気戻し管22とがバイパス通路23で接続されており、このバイパス通路23に開閉用のバイパス弁24を設けている。バイパス弁24は、全開と全閉との2段階に切り替えられるものであり、ソレノイドバルブや空圧シリンダ、電動モータのような単純なアクチェータで操作できる。   The upper end portion of the evaporation container 1 and the suction chamber of the roots compressor 3 are connected by a steam take-out pipe 21, and the discharge chamber of the roots compressor 3 and the heat exchange unit 8 of the steam heating unit 2 are They are connected by a steam return pipe 22. The steam take-out pipe 21 and the steam return pipe 22 constitute a steam discharge passage. The steam take-out pipe 21 and the steam return pipe 22 are connected by a bypass passage 23, and a bypass valve 24 for opening and closing is provided in the bypass passage 23. The bypass valve 24 can be switched between two stages of fully open and fully closed, and can be operated with a simple actuator such as a solenoid valve, a pneumatic cylinder, or an electric motor.

バイパス通路23は、起動運転時に主として空気を蒸気戻し管22に排除するものであり、蒸気戻し管22の上流部に接続されている。バイパス通路23の始端は、蒸気取り出し管21に接続せずに蒸発容器1に接続することも可能である。また、バイパス通路23は、蒸発容器1に残留した空気の除去を目的にしたものであるが、残留空気の量は少なく、また、空気は蒸気よりも流動性が高くて吸引されやすいので、蒸気取り出し管21及び蒸気戻し管22よりは遥かに小径でよい。   The bypass passage 23 mainly removes air to the steam return pipe 22 during the start-up operation, and is connected to an upstream portion of the steam return pipe 22. The starting end of the bypass passage 23 can be connected to the evaporation container 1 without being connected to the vapor take-out pipe 21. The bypass passage 23 is intended to remove air remaining in the evaporation container 1, but the amount of residual air is small, and air is more fluid than steam and is easily sucked. The diameter may be much smaller than that of the take-out pipe 21 and the steam return pipe 22.

ルーツ式圧縮機3と真空ポンプ4とは、第1真空通路25によって接続されている。また、真空ポンプ4は、第2真空通路26を介して凝縮水ポット18にも接続されている。なお、第1真空通路25はルーツ式圧縮機2のケーシングのうち軸受け部に接続されており、回転軸を装着したオイルシールの外側を減圧することにより、オイルシールの負荷を低減している。第2真空通路26には、真空通路を大気に解放させるための真空切替弁27を設けている。真空切替弁27は、真空経路のうちどの部分に設けてもよい。   The roots compressor 3 and the vacuum pump 4 are connected by a first vacuum passage 25. The vacuum pump 4 is also connected to the condensed water pot 18 through the second vacuum passage 26. The first vacuum passage 25 is connected to a bearing portion of the casing of the Roots-type compressor 2, and reduces the load on the oil seal by reducing the pressure outside the oil seal to which the rotary shaft is attached. The second vacuum passage 26 is provided with a vacuum switching valve 27 for releasing the vacuum passage to the atmosphere. The vacuum switching valve 27 may be provided in any part of the vacuum path.

蒸発容器1の下部は下窄まりのコーン部1a(円錐状部)になっており、その下端部には温度センサ28を設けて、上端部には液位センサ29を設けている。更に、蒸発容器1の上端部には圧力センサ(真空度センサ)30を設けている。   The lower portion of the evaporation container 1 is a conical portion 1a (conical portion) with a narrowed bottom, a temperature sensor 28 is provided at the lower end portion, and a liquid level sensor 29 is provided at the upper end portion. Further, a pressure sensor (vacuum degree sensor) 30 is provided at the upper end of the evaporation container 1.

温度センサ28により、外部蒸気導入弁16とバイパス通路23とが制御されて、圧力センサ30により、原料液供給弁10が制御され、更に、圧力センサ30によってルーツ式圧縮機3の回転が制御される。これらの制御関係を点線で表示している。但し、各センサ28〜30や各弁10,13,16,23のアクチェータは、実際には、図示しない制御装置に接続されており、センサ28〜30からの入力信号に基づいて、各弁10,13,16,23が制御装置を介して制御される。   The temperature sensor 28 controls the external steam introduction valve 16 and the bypass passage 23, the pressure sensor 30 controls the raw material supply valve 10, and the pressure sensor 30 controls the rotation of the Roots compressor 3. The These control relationships are indicated by dotted lines. However, the actuators of the sensors 28 to 30 and the valves 10, 13, 16, and 23 are actually connected to a control device (not shown), and each valve 10 is based on an input signal from the sensors 28 to 30. , 13, 16, and 23 are controlled via the control device.

(2).制御態様
本願発明は、起動運転時の制御に特徴を有している。この点を、図5のフローチャートを中心にしつつ、図2〜4も参照して説明する。図2〜4において、白抜き矢印は原料液の流れ方向を示し、黒抜き矢印は、蒸発容器1で発生した蒸気の流れ方向を示している。ルーツ式圧縮機3の回転については、便宜的に、起動時回転を低速回転、定常時回転を高速回転と呼んでいる。また、弁については、開き状態は白い四角で表示し、閉じた状態は黒の四角で表示している。
(2). Control Mode The present invention is characterized by control during start-up operation. This point will be described with reference to FIGS. 2 to 4 while focusing on the flowchart of FIG. 2 to 4, the white arrow indicates the flow direction of the raw material liquid, and the black arrow indicates the flow direction of the vapor generated in the evaporation container 1. Regarding the rotation of the Roots compressor 3, for the sake of convenience, the rotation at start-up is called low-speed rotation, and the rotation at steady state is called high-speed rotation. As for the valve, the open state is indicated by a white square, and the closed state is indicated by a black square.

本実施形態では、運転停止中には、バイパス弁23は閉じて、真空制御弁27は開いていると想定している。但し、これらは任意の設定であり、バイパス弁23は開いたままとして、真空制御弁27は閉じたままでもよい。   In the present embodiment, it is assumed that the bypass valve 23 is closed and the vacuum control valve 27 is open during operation stop. However, these are arbitrary settings, and the bypass valve 23 may remain open and the vacuum control valve 27 may remain closed.

まず、運転が開始されると、真空制御弁27が閉じられ(ステップ1)、次いで、バイパス弁24が開かれ(ステップ2)、それから、真空ポンプ4の運転が開始される(ステップ3)。運転開始前からバイパス弁24が開いている場合は、当然ながらステップ2は不要になる。真空ポンプ4の運転が開始されてから、原料液供給弁10が開かれる(ステップ4)。   First, when the operation is started, the vacuum control valve 27 is closed (step 1), then the bypass valve 24 is opened (step 2), and then the operation of the vacuum pump 4 is started (step 3). Of course, when the bypass valve 24 is open before the start of operation, step 2 is not necessary. After the operation of the vacuum pump 4 is started, the raw material liquid supply valve 10 is opened (step 4).

図2は、ステップ4の後の起動運転時初期状態を示している。すなわち、この状態で、濃縮液取り出し制御弁14、真空制御弁27及び外部蒸気切替弁16は閉じて、原料液供給弁10とバイパス弁24とを開いた状態で、真空ポンプ4が駆動されている。この状態で、蒸発容器1は減圧されているため、原料液は徐々に吸い上げられて蒸発容器1に流入している。   FIG. 2 shows the initial state during start-up operation after step 4. That is, in this state, the concentrate pump control valve 14, the vacuum control valve 27, and the external steam switching valve 16 are closed, and the vacuum pump 4 is driven with the raw material liquid supply valve 10 and the bypass valve 24 opened. Yes. In this state, since the evaporation container 1 is depressurized, the raw material liquid is gradually sucked up and flows into the evaporation container 1.

原料液供給弁10が開いた後は、液面制御がセットとして成される(ステップ4)。この、液面制御は、液位センサ29からの信号に基づいて原料液供給弁10を制御することで行われて、一定範囲の液面が維持される。この液面制御は、定常運転中においても継続して行われる。   After the raw material liquid supply valve 10 is opened, the liquid level control is performed as a set (step 4). This liquid level control is performed by controlling the raw material liquid supply valve 10 based on a signal from the liquid level sensor 29, and a liquid level within a certain range is maintained. This liquid level control is continuously performed even during steady operation.

液面制御に併せて、圧力センサ30で検知した値を予め設定した値と比較することにより、蒸発容器1の内部の内圧(真空度)が予め設定した圧力(負圧)よりも低いか(真空側に高いか)否かが判断されて(ステップ5)、内圧が設定圧よりも低くなっている(減圧されている)場合は、ルーツ式圧縮機3が低速で駆動される(ステップ6)。図3は、ステップ6の後の状態を示している。蒸発容器1の内部の内圧が設定圧よりも大気圧側に高い場合は、ステップ5の判断が繰り返される。   Whether the internal pressure (vacuum) inside the evaporation container 1 is lower than a preset pressure (negative pressure) by comparing the value detected by the pressure sensor 30 with a preset value in conjunction with the liquid level control ( It is determined whether or not the pressure is high (step 5). If the internal pressure is lower than the set pressure (reduced pressure), the Roots compressor 3 is driven at a low speed (step 6). ). FIG. 3 shows the state after step 6. If the internal pressure inside the evaporation container 1 is higher than the set pressure on the atmospheric pressure side, the determination in step 5 is repeated.

ルーツ式圧縮機3の低速運転(起動時回転数での運転)を開始する真空度の具体的な値は、例えば、20〜30kPa程度でよい。真空ポンプ4による真空吸引はバイパス通路23を介して蒸発容器1に作用しているので、ルーツ式圧縮機3の運転前の状態でも、蒸発容器1の真空度は時間の経過と共に上昇していく。   The specific value of the degree of vacuum for starting the low-speed operation (operation at the rotation speed at startup) of the Roots compressor 3 may be, for example, about 20 to 30 kPa. Since the vacuum suction by the vacuum pump 4 acts on the evaporation container 1 via the bypass passage 23, the degree of vacuum of the evaporation container 1 increases with time even before the operation of the Roots compressor 3. .

なお、真空ポンプ4とルーツ式圧縮機3との回転を同時に開始したり、ルーツ式圧縮機3を先に運転開始して、これに少し遅れて真空ポンプ4の運転を開始することも不可能とは云えないが、ルーツ式圧縮機3への空気の吸込みを抑制して運転を安定化させるという点では、ルーツ式圧縮機3の運転開始は、フローチャートのとおり、真空ポンプ4の運転開始後で、かつ、蒸発容器1の内部がある程度の真空度に達した後であるのが好ましい。   It is impossible to start rotation of the vacuum pump 4 and the Roots compressor 3 at the same time, or start the operation of the Roots compressor 3 first, and start the operation of the vacuum pump 4 slightly later than this. However, in terms of stabilizing the operation by suppressing the suction of air into the Roots compressor 3, the operation of the Roots compressor 3 is started after the operation of the vacuum pump 4 as shown in the flowchart. In addition, it is preferable that the inside of the evaporation container 1 has reached a certain degree of vacuum.

ルーツ式圧縮機3の駆動により、蒸発容器1の減圧が助長される。すなわち、蒸発容器1の内部は、真空ポンプ1による吸引作用とルーツ式圧縮機3による吸引作用との両方で減圧される。このため、原料液の供給も促進されて、定常運転への移行が促進される。   By driving the roots type compressor 3, decompression of the evaporation container 1 is promoted. That is, the inside of the evaporation container 1 is depressurized by both the suction action by the vacuum pump 1 and the suction action by the roots compressor 3. For this reason, the supply of the raw material liquid is also promoted, and the transition to the steady operation is promoted.

ルーツ式圧縮機3の低速運転を開始してから、外部蒸気導入弁16を開いて、スチーム式加熱ユニット2の熱交換部8に外部蒸気を導入する(ステップ7)。外部蒸気の導入はルーツ式圧縮機3の運転と相前後して行うことも可能であるが、原料液の溜まりが少ない状態で蒸気を導入すると、原料液が過剰に加熱されるおそれがあるので、フローチャートのとおり、ルーツ式圧縮機3の運転後で、原料液が蒸発容器1に定常運転時とほぼ同量溜まった後に導入するのが好ましい。   After starting the low speed operation of the Roots compressor 3, the external steam introduction valve 16 is opened to introduce external steam into the heat exchange section 8 of the steam heating unit 2 (step 7). The introduction of the external steam can be performed in tandem with the operation of the roots compressor 3, but if the steam is introduced in a state where the raw material liquid is not accumulated, the raw material liquid may be excessively heated. As shown in the flowchart, after the operation of the roots compressor 3, it is preferable that the raw material liquid is introduced into the evaporation container 1 after the same amount of water has accumulated in the evaporation container 1 as in the steady operation.

外部蒸気導入弁16が開かれてから、原料液の温度が温度センサ28によって監視されており、蒸発容器1の内部での原料液の温度(保有液温度)が、予め設定している第1設定温度との差が判断される(ステップ8)、保有液温度が第1設定温度と等しいか高くなっていると、バイパス弁24が全閉され(ステップ9)、次いで、ルーツ式圧縮機3が定常運転と同じ高速運転に切替えられる(ステップ10)。保有液温度が第1設定温度よりも低い場合は、ステップ8が連続的に繰り返される。図4は、ステップ10の後の状態を示している。   Since the external steam introduction valve 16 is opened, the temperature of the raw material liquid is monitored by the temperature sensor 28, and the temperature of the raw material liquid (retained liquid temperature) inside the evaporation container 1 is set in advance. The difference from the set temperature is determined (step 8). If the retained liquid temperature is equal to or higher than the first set temperature, the bypass valve 24 is fully closed (step 9), and then the roots compressor 3 Is switched to the same high-speed operation as in the steady operation (step 10). If the retained liquid temperature is lower than the first set temperature, step 8 is continuously repeated. FIG. 4 shows the state after step 10.

ステップ8において、第1設定温度は、定常運転される蒸発温度よりも少し低い温度に設定している。具体的には、蒸発温度よりも5℃程度低い値に設定している。蒸発温度は真空度によって相違するが、例えば、真空度が20〜30kPaの場合であると、蒸発温度(飽和蒸気温度)は60〜70℃程度になるので、第1設定温度は、これよりも5℃程度低い55〜65℃程度に設定しておくことになる(より具体的な例として、真空度が30kPaの場合には第1設定温度を60℃に設定する。)。   In Step 8, the first set temperature is set to a temperature slightly lower than the evaporation temperature at which steady operation is performed. Specifically, it is set to a value about 5 ° C. lower than the evaporation temperature. Although the evaporation temperature differs depending on the degree of vacuum, for example, when the degree of vacuum is 20 to 30 kPa, the evaporation temperature (saturated vapor temperature) is about 60 to 70 ° C. Therefore, the first set temperature is higher than this. The temperature is set to about 55 to 65 ° C. which is lower by about 5 ° C. (As a more specific example, when the degree of vacuum is 30 kPa, the first set temperature is set to 60 ° C.).

ステップ8において、蒸発容器1の内部で原料液は沸点に至る寸前の状態になっており、若干の蒸気は発生している。また、蒸発容器1の内部の空気は既に排除されている。そして、バイパス弁24を閉じてルーツ式圧縮機3を高速回転させると、ルーツ式圧縮機3は大量の蒸気を吸引して圧縮可能な状態にスタンバイするが、この段階で空気は存在していないため,ルーツ式圧縮機3は高速回転させてもトリップするようなことはない。なお、バイパス弁24の閉じ操作とルーツ式圧縮機3の高速運転切替とは、殆どタイムラグなしで行ってもよい。   In step 8, the raw material liquid is in a state immediately before reaching the boiling point inside the evaporation container 1, and some steam is generated. Moreover, the air inside the evaporation container 1 has already been excluded. When the bypass valve 24 is closed and the Roots compressor 3 is rotated at a high speed, the Roots compressor 3 stands by in a compressible state by sucking a large amount of steam, but no air is present at this stage. Therefore, the Roots type compressor 3 does not trip even if it is rotated at a high speed. Note that the closing operation of the bypass valve 24 and the high-speed operation switching of the Roots compressor 3 may be performed with almost no time lag.

そして、ルーツ式圧縮機3を高速回転に切り替えたあと、外部蒸気による原料液の加熱が進んで原料液が蒸発温度(沸点)に達すると、蒸発容器1の内部では蒸気が大量に発生して、これがルーツ式圧縮機3で圧縮されて、蒸気は昇温した状態でスチーム式加熱ユニット2に送られ、蒸気は原料液の昇温に供される。そこで、ルーツ式圧縮機3が高速回転に移行してから、定常運転への移行確認という意味で、ルーツ式圧縮機3の駆動電流値(HP電流値)が設定値と等しいか又は大きいかの判断と、前記した保有温度が予め設定した第2設定温度と等しいか又は高いかが判断される(ステップ11)。いずれかがYESの場合は、外部蒸気導入弁16を閉じて(ステップ12)、定常運転に移行する。いずれもNOである場合は、ステップ11が連続的に繰り返される。   After the root compressor 3 is switched to high speed rotation, when the raw material liquid is heated by the external steam and the raw material liquid reaches the evaporation temperature (boiling point), a large amount of steam is generated inside the evaporation container 1. This is compressed by the Roots compressor 3, and the steam is sent to the steam heating unit 2 in a heated state, and the steam is used to raise the temperature of the raw material liquid. Therefore, whether the drive current value (HP current value) of the Roots compressor 3 is equal to or larger than the set value in the sense of confirming the transition to steady operation after the Roots compressor 3 has shifted to high speed rotation. It is determined whether the held temperature is equal to or higher than the preset second set temperature (step 11). If either of them is YES, the external steam introduction valve 16 is closed (step 12), and the routine shifts to a steady operation. If both are NO, step 11 is repeated continuously.

HP電流値が設定値になること、及び、保有液温度が第2設定温度に至ることは、定常状態になって所定の蒸発が開始されたこと(所定の蒸発量となったこと)を意味している。従って、これ以降は、定常運転として管理される。既述のとおり、真空度が20〜30kPaの場合であると、第2設定温度は60〜70℃程度になる(より具体的な例として,真空度が30kPaの場合は,第2設定温度を70℃に設定する。)。   When the HP current value becomes the set value and the retained liquid temperature reaches the second set temperature, it means that the predetermined evaporation is started in a steady state (the predetermined evaporation amount is reached). doing. Accordingly, the subsequent operation is managed as a steady operation. As described above, when the degree of vacuum is 20 to 30 kPa, the second set temperature is about 60 to 70 ° C. (As a more specific example, when the degree of vacuum is 30 kPa, the second set temperature is Set to 70 ° C.).

HP電流値(ヒートポンプ電流値)は、圧縮する蒸気量に応じてルーツ式圧縮機3の電流値が変化することを利用して、電流値から蒸発を監視しているものである。但し、ルーツ式圧縮機3で消費される電流値は諸条件によって大きく相違するため、一般的な好適値が存在するというわけではない。一例として、定格電流の1/3の電流値をHP電流値として設定することができる。   The HP current value (heat pump current value) monitors evaporation from the current value by utilizing the fact that the current value of the Roots compressor 3 changes according to the amount of steam to be compressed. However, since the current value consumed by the Roots-type compressor 3 varies greatly depending on various conditions, a general preferable value does not exist. As an example, a current value that is 1/3 of the rated current can be set as the HP current value.

定常運転中において、何らかの理由で原料液の温度が下がり、ルーツ式圧縮機3(ヒートポンプ)だけでは原料液を必要な温度に加熱できなくなった場合は、従来と同様に、外部蒸気導入弁16を開いて外部蒸気を供給する。濃縮液の取り出しは、図示しない濃度センサに基づいて行ってもよいし、経験値に基づいて間欠的に行ってもよい。   During the steady operation, if the temperature of the raw material liquid decreases for some reason and the raw material liquid cannot be heated to a required temperature only by the roots compressor 3 (heat pump), the external steam introduction valve 16 is turned on as in the conventional case. Open to supply external steam. The concentrated liquid may be taken out based on a concentration sensor (not shown) or intermittently based on experience values.

(4).その他
本願発明は、上記の実施形態の他にも様々に具体化できる。例えば、蒸発促進手段は薄膜上昇流方式である必要はなく、多段フラッシュ方式や薄膜流下方式など、各種の蒸発手段を採用できる。また、圧縮機としては、ブロワー式圧縮機やトロコイド式圧縮機、ベーン式圧縮機、ギア式圧縮機なとの各種の圧縮機を採用できる。外部加熱手段も、スチーム式に代えて、電熱式や熱風式などの各種のものを採用できる。
(4). Others The present invention can be embodied in various ways other than the above embodiment. For example, the evaporation promoting means does not need to be a thin film upward flow method, and various evaporation means such as a multistage flash method and a thin film flow method can be employed. As the compressor, various compressors such as a blower compressor, a trochoid compressor, a vane compressor, and a gear compressor can be adopted. As the external heating means, various types such as an electric heating type and a hot air type can be adopted instead of the steam type.

バイパス通路を複数本並設して、両バイパス通路に設けたバイパス弁を個別に開閉制御することも可能である。この場合は、ON・OFF式の単純なバイパス弁を使用しつつ、空気の排除をきめ細かく調節できる。圧縮機を複数台並列配置して、定常運転時には全部を全速回転させて、起動運転時には一部を全速回転させるといったことも可能である。   It is also possible to provide a plurality of bypass passages side by side and individually control the opening and closing of the bypass valves provided in both bypass passages. In this case, the exclusion of air can be finely adjusted while using a simple ON / OFF bypass valve. It is also possible to arrange a plurality of compressors in parallel so that all of them are rotated at full speed during steady operation and part of them are rotated at full speed during start-up operation.

複数の濃縮装置を並設して、1台の真空ポンプを各濃縮装置で共用することも可能である。更に、蒸発容器を他の構造の濃縮装置と本願発明の濃縮装置とで共用して、通常は他の構造の濃縮装置を使用して、他の構造の濃縮装置が故障したときに本願発明の濃縮装置を非常用として使用する(或いはその逆の態様に使用する)、といったことも可能である。   It is also possible to arrange a plurality of concentrators in parallel and share one vacuum pump with each concentrator. In addition, the evaporator vessel is shared between the concentrator of another structure and the concentrator of the present invention. Usually, the concentrator of another structure is used, and when the concentrator of the other structure fails, the concentrator of the present invention is used. It is also possible to use the concentrator as an emergency (or vice versa).

加熱手段は蒸発容器の内部でも外部でも配置できるが、上記の実施形態のように、加熱手段を蒸発容器の外に設けると(すなわち、蒸発容器と加熱手段とは別体に構成すると)、蒸発容器を簡単な構造にできて、製造やメンテナンスの手間を軽減できる利点がある。   The heating means can be arranged inside or outside the evaporation container, but if the heating means is provided outside the evaporation container as in the above embodiment (that is, if the evaporation container and the heating means are configured separately), the evaporation means There is an advantage that the structure of the container can be simplified and the labor of manufacturing and maintenance can be reduced.

本願発明は、実際に濃縮装置に具体化できる。従って、産業上利用できる。   The present invention can actually be embodied in a concentrator. Therefore, it can be used industrially.

1 蒸発容器
2 加熱手段の一例であるスチーム式加熱ユニット
3 圧縮機の一例であるルーツ式圧縮機
4 真空ポンプ
8 薄膜上昇式熱交換ユニット
9 原料液供給管(供給通路)
10 原料液供給弁
11 原料液戻り管
12 原料液送り管
15 外部蒸気導入管
16 外部蒸気導入弁
17 凝縮水排出管
19 凝縮水ポンプ
21 蒸気排出通路を構成する蒸気取り出し管
22 蒸気排出通路を構成する蒸気戻し管
23 バイパス通路
24 バイパス弁
25 第1真空通路
26 第2真空通路
DESCRIPTION OF SYMBOLS 1 Evaporation container 2 Steam type heating unit which is an example of heating means 3 Roots type compressor which is an example of a compressor 4 Vacuum pump 8 Thin film rising type heat exchange unit 9 Raw material liquid supply pipe (supply passage)
DESCRIPTION OF SYMBOLS 10 Raw material liquid supply valve 11 Raw material liquid return pipe 12 Raw material liquid feed pipe 15 External steam introduction pipe 16 External steam introduction valve 17 Condensate water discharge pipe 19 Condensate water pump 21 Steam extraction pipe 22 constituting steam discharge passage 22 Construct steam discharge passage Steam return pipe 23 bypass passage 24 bypass valve 25 first vacuum passage 26 second vacuum passage

Claims (7)

原料液が投入される蒸発容器と、前記蒸発容器に投入される原料液の加熱手段と、前記蒸発容器で発生した蒸気を圧縮して昇温させる蒸気圧縮機と、前記蒸発容器の内部及び蒸気の排出経路を減圧するための真空ポンプとを備えており、前記蒸気圧縮機で圧縮された蒸気が前記加熱手段に送られる構成であって、
前記蒸気圧縮機の上流側と下流側とを連通させるバイパス通路を設けて、前記バイパス通路に、前記真空ポンプを始動させての運転開始から定常運転に至るまでの起動運転時のみ開いて定常運転時には閉じているバイパス弁を設けており、
前記起動運転時に、前記真空ポンプの真空吸引作用によって前記バイパス通路を減圧状態に保持することにより、前記蒸気圧縮機の上流側と下流側との負圧を均一化しつつ、前記蒸気圧縮機が定常運転時の回転数よりも低い起動時回転数で運転される、
真空蒸発式濃縮装置。
An evaporation container into which the raw material liquid is charged, a heating means for the raw material liquid to be charged into the evaporation container, a vapor compressor that compresses and raises the temperature of the vapor generated in the evaporation container, the inside of the evaporation container and the vapor A vacuum pump for reducing the pressure of the discharge path, and the steam compressed by the steam compressor is sent to the heating means,
A bypass passage is provided to connect the upstream side and the downstream side of the steam compressor, and the bypass passage is opened only during the start-up operation from the start of operation when the vacuum pump is started to the steady operation. There are sometimes bypass valves that are closed,
During the start-up operation, by maintaining the bypass passage in a reduced pressure state by the vacuum suction action of the vacuum pump, the steam compressor is kept steady while equalizing the negative pressure on the upstream side and the downstream side of the steam compressor. It is operated at the starting speed lower than the operating speed,
Vacuum evaporation type concentrator.
前記バイパス弁は、全開と全閉との2段階に切り替えられる方式である一方、前記蒸気圧縮機は、定常運転回転数とこれより低い起動時回転数との2段階の回転数に切り替えられる方式である、
請求項1に記載した真空蒸発式濃縮装置。
The bypass valve is a system that can be switched to two stages of full open and fully closed, while the steam compressor is a system that can be switched to a two-stage rotational speed of a steady operation rotational speed and a lower starting rotational speed. Is,
The vacuum evaporation type concentrator according to claim 1.
前記蒸気圧縮機はルーツ式圧縮機である一方、前記加熱手段は薄膜上昇流方式になっており、蒸発容器が減圧されることによって、原料液が供給通路から蒸発容器に自動的に吸い上げられる、
請求項1又は2に記載した真空蒸発式濃縮装置。
While the vapor compressor is a Roots type compressor, the heating means is a thin film upflow system, and when the evaporation container is depressurized, the raw material liquid is automatically sucked up from the supply passage to the evaporation container.
The vacuum evaporation type concentrator according to claim 1 or 2.
原料液が投入される蒸発容器と、前記蒸発容器に投入される原料液の加熱手段と、前記蒸発容器で発生した蒸気を圧縮して昇温させる蒸気圧縮機と、前記蒸発容器の内部及び蒸気の排出経路を減圧するための真空ポンプと、前記蒸気圧縮機の上流側と下流側とを連通させるバイパス通路と、前記バイパス通路を開閉するバイパス弁とを備えており、前記真空ポンプは常時一定の回転数で運転される、という構成の真空蒸発式濃縮装置の運転方法であって、
運転開始から定常運転に移行するまでの起動運転が、
a:前記真空ポンプの運転開始と相前後してバイパス弁を開くか、又は、前記バイパス弁を予め開いた状態で真空ポンプを運転開始する、
b:前記バイパス弁を空けて真空ポンプを運転している状態で原料液を前記蒸発容器に供給開始する、
c:前記原料液の供給開始後に前記蒸気圧縮機を定常運転時の回転数よりも低い起動時回転数で運転開始する、
d:前記蒸気圧縮機の運転開始後に、前記加熱手段による原料液の加熱を開始する、
という手順を含んでおり、
前記蒸発容器の内圧又は温度若しくは両方が予め設定した基準値に達したら、前記バイパス弁を全閉して蒸気圧縮機を定常運転回転数に切り替える、
真空蒸発式濃縮装置の運転方法。
An evaporation container into which the raw material liquid is charged, a heating means for the raw material liquid to be charged into the evaporation container, a vapor compressor that compresses and raises the temperature of the vapor generated in the evaporation container, the inside of the evaporation container and the vapor A vacuum pump for depressurizing the discharge path, a bypass passage communicating the upstream side and the downstream side of the steam compressor, and a bypass valve for opening and closing the bypass passage, the vacuum pump being always constant An operation method of a vacuum evaporation type concentrator configured to be operated at a rotational speed of
Start-up operation from start of operation to transition to steady operation
a: The bypass valve is opened before or after the start of operation of the vacuum pump, or the vacuum pump is started with the bypass valve opened in advance.
b: Start supplying the raw material liquid to the evaporation container in a state where the bypass valve is opened and the vacuum pump is operated.
c: Start operation of the vapor compressor at a starting rotational speed lower than the rotational speed during steady operation after the supply of the raw material liquid is started.
d: After the operation of the vapor compressor is started, heating of the raw material liquid by the heating means is started.
Including the procedure
When the internal pressure or temperature of the evaporation container or both reach a preset reference value, the bypass valve is fully closed to switch the steam compressor to a steady operation rotational speed.
Operation method of vacuum evaporation type concentrator.
前記バイパス弁は、起動運転時には全開状態が維持されて、前記蒸発容器の内圧又は温度若しくは両方が予め設定した基準値に達したら全閉される一方、
前記蒸気圧縮機は、前記起動運転時には一定の起動時回転数で運転されている、
請求項4に記載した真空蒸発式濃縮装置の運転方法。
The bypass valve is kept fully open during start-up operation, and is fully closed when the internal pressure and / or temperature of the evaporation container reaches a preset reference value,
The steam compressor is operated at a constant start-up rotation speed during the start-up operation.
The operation method of the vacuum evaporation type concentrator according to claim 4.
前記蒸気圧縮機にはルーツ式圧縮機が使用されて、前記加熱手段は薄膜上昇流方式が使用されている、
請求項4又は5に記載した真空蒸発式濃縮装置の運転方法。
A roots type compressor is used for the vapor compressor, and the heating means uses a thin film upflow system,
The operation method of the vacuum evaporation type concentrator according to claim 4 or 5.
前記バイパス弁の全閉への切り替え及び蒸気圧縮機の定常運転回転数への切り替えが、蒸発容器の内圧又は原料液の温度若しくは両方が定常運転時の内圧又は温度若しくは両方に至る前のタイミングで行われる、
請求項4〜6のうちのいずれかに記載した真空蒸発式濃縮装置の運転方法。
The switching of the bypass valve to fully closed and the switching to the steady operation rotational speed of the vapor compressor are performed at the timing before the internal pressure of the evaporation container and / or the temperature of the raw material liquid reach the internal pressure and / or temperature during steady operation. Done,
The operating method of the vacuum evaporation type concentrating device in any one of Claims 4-6.
JP2015183276A 2015-09-16 2015-09-16 Vacuum evaporation type concentrator and its operating method Active JP6576755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015183276A JP6576755B2 (en) 2015-09-16 2015-09-16 Vacuum evaporation type concentrator and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183276A JP6576755B2 (en) 2015-09-16 2015-09-16 Vacuum evaporation type concentrator and its operating method

Publications (2)

Publication Number Publication Date
JP2017056406A true JP2017056406A (en) 2017-03-23
JP6576755B2 JP6576755B2 (en) 2019-09-18

Family

ID=58388741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183276A Active JP6576755B2 (en) 2015-09-16 2015-09-16 Vacuum evaporation type concentrator and its operating method

Country Status (1)

Country Link
JP (1) JP6576755B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245912A (en) * 2018-01-04 2018-07-06 中石化上海工程有限公司 The process that multiple-effect evaporation and MVR systems mutually switch
CN110523098A (en) * 2019-09-23 2019-12-03 北京中洁蓝环保科技有限公司 A kind of secondary heat exchange MVR evaporation energy-saving process
KR102253752B1 (en) * 2020-07-24 2021-05-20 (주)월드에너지 Apparatus for concentrating vacuum evaporation with stable maintenance of water level
CN113546436A (en) * 2021-08-18 2021-10-26 深圳市蓝石环保科技有限公司 Vacuum system, control method and equipment of vacuum system and evaporation treatment system
CN114906894A (en) * 2022-05-31 2022-08-16 广州市心德实业有限公司 MVR steam-free starting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425092Y1 (en) * 1964-11-06 1967-03-15
JPS51130741U (en) * 1975-04-15 1976-10-21
JP2003053327A (en) * 2001-08-16 2003-02-25 Sasakura Engineering Co Ltd Equipment for separation treatment of volatile organic compound in waste water
JP2005111320A (en) * 2003-10-03 2005-04-28 Okawara Mfg Co Ltd Heat pump type concentration apparatus and operating method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425092Y1 (en) * 1964-11-06 1967-03-15
JPS51130741U (en) * 1975-04-15 1976-10-21
JP2003053327A (en) * 2001-08-16 2003-02-25 Sasakura Engineering Co Ltd Equipment for separation treatment of volatile organic compound in waste water
JP2005111320A (en) * 2003-10-03 2005-04-28 Okawara Mfg Co Ltd Heat pump type concentration apparatus and operating method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245912A (en) * 2018-01-04 2018-07-06 中石化上海工程有限公司 The process that multiple-effect evaporation and MVR systems mutually switch
CN110523098A (en) * 2019-09-23 2019-12-03 北京中洁蓝环保科技有限公司 A kind of secondary heat exchange MVR evaporation energy-saving process
KR102253752B1 (en) * 2020-07-24 2021-05-20 (주)월드에너지 Apparatus for concentrating vacuum evaporation with stable maintenance of water level
CN113546436A (en) * 2021-08-18 2021-10-26 深圳市蓝石环保科技有限公司 Vacuum system, control method and equipment of vacuum system and evaporation treatment system
CN113546436B (en) * 2021-08-18 2023-08-04 深圳市蓝石环保科技有限公司 Vacuum system, control method and equipment of vacuum system and evaporation treatment system
CN114906894A (en) * 2022-05-31 2022-08-16 广州市心德实业有限公司 MVR steam-free starting method

Also Published As

Publication number Publication date
JP6576755B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6576755B2 (en) Vacuum evaporation type concentrator and its operating method
JP5189842B2 (en) How the pump system works
JP5769722B2 (en) Low power consumption exhaust method and apparatus
TWI609131B (en) A vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
JP2007010243A (en) Heat pump device, and operating method for heat pump
US11725662B2 (en) Method of pumping in a system of vacuum pumps and system of vacuum pumps
JP2009047059A (en) Operating method of motor-driven compressor
KR20190116508A (en) Pump system with controller
JP2007232230A (en) Refrigerating device
WO2014154180A1 (en) Method and apparatus for vacuum dehydration of low volatility liquid
KR20210074368A (en) Method for controlling the temperature of a vacuum pump, and related vacuum pumps and equipment
JP6615132B2 (en) Vacuum pump system
AU2014406724B2 (en) Vacuum-generating pumping system and pumping method using this pumping system
CN113574277B (en) Dry vacuum pump and pumping device
JP5971964B2 (en) Turbo refrigerator
CN104958917B (en) Air dielectric pipeline start up by preheating MVR vapo(u)rization systems
WO2020026688A1 (en) Compressor and method of operating same
JP2014066384A (en) Vacuum cooling apparatus
AU2014392229A1 (en) Method of pumping in a pumping system and vacuum pump system
JP2021113632A (en) Compression system and method for controlling compression system
JP2018053724A (en) Water addition start method of water addition type compressor
KR102002066B1 (en) Improved Pumping Unit And Method For Controlling Such a Pumping Unit
JP2015048798A (en) Oil-cooled air compressor
JP2005241085A (en) Hot water storage type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190821

R150 Certificate of patent or registration of utility model

Ref document number: 6576755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250