JP2017053819A - コンクリートのひび割れ検出方法及び検出プログラム - Google Patents

コンクリートのひび割れ検出方法及び検出プログラム Download PDF

Info

Publication number
JP2017053819A
JP2017053819A JP2015179973A JP2015179973A JP2017053819A JP 2017053819 A JP2017053819 A JP 2017053819A JP 2015179973 A JP2015179973 A JP 2015179973A JP 2015179973 A JP2015179973 A JP 2015179973A JP 2017053819 A JP2017053819 A JP 2017053819A
Authority
JP
Japan
Prior art keywords
crack
width
processing
concrete
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015179973A
Other languages
English (en)
Other versions
JP6620477B2 (ja
Inventor
亮 笹木
Akira Sasaki
亮 笹木
昌宏 舩戸
Masahiro Funato
昌宏 舩戸
豊嘉 中田
Yutaka Nakada
豊嘉 中田
弘彦 可部谷
Hirohiko Kabeya
弘彦 可部谷
巨生 寺口
Norio Teraguchi
巨生 寺口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Sato Tekko Co Ltd
Original Assignee
Toyama University
Sato Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University, Sato Tekko Co Ltd filed Critical Toyama University
Priority to JP2015179973A priority Critical patent/JP6620477B2/ja
Publication of JP2017053819A publication Critical patent/JP2017053819A/ja
Application granted granted Critical
Publication of JP6620477B2 publication Critical patent/JP6620477B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 コンクリートのひび割れ幅をカメラ画素の分解能との関係やその特徴から調整しながら高精度にひび割れを計測する。【解決手段】 コンクリートのひび割れ幅を所定条件でエッジ処理するエッジ処理S6と、ひび割れの幅に対応した所定間隔のスリット溝が複数形成されたクラックスケールを所定条件で撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する輝度スケール検出処理S7を備え、撮像手段の分解能以上では、エッジ処理S6を用いてひび割れを測定し、撮像手段の分解能以下ではクラックスケールの輝度を用いた輝度スケール検出処理S7を用いて測定する。【選択図】 図2

Description

本発明はコンクリート構造物に生じるひび割れを画像により検出し,その幅の計測を行うコンクリートのひび割れ検出方法及び検出プログラムに関するものである.
近年,高度経済成長期に作られた公共インフラが一斉に老朽化を迎え,トンネルや橋梁等の公共インフラの点検が急務となっている.これらの点検作業には点検作業員の人手不足や労賃の高騰により,多くの費用と人的コストが必要である。現在の公共インフラの点検作業のほとんどは作業者による近接目視と打音検査によって行われている.近接目視においてクラックスケールと呼ばれる目視用ゲージを用いて,作業者が目視によりひび割れ幅を測定する。最終的に,この検査で得たコンクリート表面のひび割れや剥離等の損傷の程度と位置を記録する。これらの点検作業の省人化と作業の効率化とコストを削減することが望まれている。橋梁点検において床版下部にレールを敷設し,その上を移動する自動点検作業車により点検作業を簡易化するものや、構造部材にモニタリング装置を埋め込み,経年的な変化を観測するシステムなどが開発されているが、いずれも既存の構造物については組み込むのが難しい問題がある。
しかし、従来の点検作業では,作業者が構造物に近づいて点検を行う.このため解決すべき問題点としては、1.足場の接地や点検用車両の導入が必要であり、点検作業に多くの時間とコストを要してしまう。また、2.作業者によって判断基準に違いがあり、個人差による精度のばらつきを生じてしまう問題がある。
このため、特許文献1〜3に示す技術が既に公開されている。
特許文献1は、「コンクリート構造物を撮像した画像から、コンクリート構造物の表面に生じたひび割れを画像処理によって自動検出するひび割れ検出装置であって、 コンクリート構造物を撮像した画像を入力してコンクリート構造物の表面に生じたひび割れの候補画像を生成するひび割れ探査部と、該ひび割れの候補画像からコンクリート構造物の表面に生じたひび割れを抽出するひび割れ判定部とを備え、 前記ひび割れ探査部は、 前記コンクリート構造物を撮像した画像に対して方向及び幅の異なる複数種類の2次元エッジフィルタを個別に適用し、画素ごとに、複数種類のエッジフィルタ適用後の画素値をそれぞれ比較し、最大の画素値をひび割れ特徴量として選定するひび割れ特徴量抽出部と、前記ひび割れ特徴量からなる画素値を有する処理対象画像に対してニューラルネットの動作式を用いてニューラル収束演算を実行し、ひび割れ候補画像を生成するひび割れ収束部とを備えることを特徴とする、ひび割れ検出装置。」が開示されている。特許文献2には、コンクリート等の構造物表面に染みや汚れが付着していても、構造物表面に生じているひび割れを明瞭に把握するというものであり、「コンクリート構造物の表面を撮像した原画像データに対し、ウェーブレット変換を用いて低周波成分を除去する処理を行うことにより、空間変化率が小さいコンクリート表面の染みや汚れを除去した二値化画像データを作成するとともに、かかる二値化画像データを用いて原画像データを広義の意味で線形補間する、すなわち、ひび割れに該当する画素を隣接する画素の平均輝度値で置換することによって背景画像データを作成し、かかる背景画像データで原画像を除算することにより、染みや汚れあるいは光ムラを確実に除去しながら、ひび割れだけを明瞭に抽出することができる。」というコンクリート表面のひび割れ検出方法が開示されている。 特許文献3は、「構造物表面などを撮像して、ひび割れ計測の対象となる原画像データを作成し、前記原画像データを画像処理して、前記ひび割れの面積を求めるひび割れの計測方法において、前記原画像データをピクセル毎に2値化した後に、ひび割れ領域を判定し、前記ひび割れ領域内の各画素の輝度値を求めて、これを前記ひび割れの見掛面積とし、前記見掛面積から前記ひび割れ面積を求めることを特徴とする画像処理によるひび割れの計測方法。」(請求項1) と、構造物表面などを撮像して、ひび割れ計測の対象となる原画像データを作成し、前記原画像データを画像処理して、前記ひび割れの面積を求めるひび割れの計測方法において、前記原画像データをピクセル毎に2値化した後に、ひび割れ領域を判定し、前記ひび割れ領域の外周縁に沿って、その外側を周回する1ピクセル分以上の外周回領域を設定し、前記ひび割れ領域内の各画素の輝度値と、前記外周回領域の輝度値との加算値を求めて、これを前記ひび割れの見掛面積とし、前記見掛面積から前記ひび割れ面積を求めることを特徴とする請求項1記載の画像処理によるひび割れの計測方法。」(請求項2)と、構造物表面などを撮像して、ひび割れ計測の対象となる原画像データを作成し、得られた前記原画像データを画像処理して、前記ひび割れの面積を求めるひび割れの計測方法において、前記原画像データをピクセル毎に2値化した後に、ひび割れ領域を判定し、前記ひび割れ領域の外周縁に沿って、その外側を周回する1ピクセル分以上の外周回領域を設定するとともに、前記ひび割れ領域の内側を周回する1ピクセル分の内周回領域を設定して、前記ひび割れ領域から前記内周回領域を除去した完全ひび割れ領域を設定し、前記完全ひび割れ領域内の各画素の実測輝度値にかかわらず、その全輝度値が一定輝度値とみなして、前記完全ひび割れ領域内の輝度値を求め、この輝度値と、前記内,外周回領域の輝度値との加算値を求めて、これを前記ひび割れの見掛面積とし、前記見掛面積から前記ひび割れ面積を求めることを特徴とする請求項1記載の画像処理によるひび割れの計測方法。」(請求項3)と、「前記ひび割れ面積は、予め値が既知面積のひび割れを撮像して、前記見掛面積との間の関連値を求めて、この関連値に基づいて前記見掛面積を校正することで求めることを特徴とする請求項1〜3のいずれか1項記載の画像処理によるひび割れの計測方法。」(請求項4)と、「前記ひび割れ測定対象を撮像する際に、長さが既知の複数のマーク(スリット溝)が表示されたクラックスケールを同時撮影し、前記原画像データに撮像された前記クラックスケールから前記ひび割れの長さを求め、前記ひび割れ面積を前記ひび割れ長さで除算することにより、前記ひび割れ幅を求めることを特徴とする請求項1〜4のいずれか1項記載の画像処理によるひび割れの計測方法。」(請求項5)が開示されている。
特開2011−242365号公報 特許第4488308号公報 特開2003−214827号公報
ところで、橋梁の鉄筋コンクリートの床版(RC床版)の点検作業等のコンクリートのひび割れ検出方法においては、コンクリート床板のように色むら(染みや汚れによる)や、陰になる部分(ひび割れ以外の汚れや配管・配線など)がある環境にあることや風雨によって劣化・損傷を受けることから、正確にひび割れを検出し、その幅をカメラ画素の分解能以下の値まで高精度に計測することは難しいのが実情である。
この点、上記特許文献1ないし3における前記2値化処理では、ひび割れの測定がピクセル値までしか検出できない。また、上記特許文献1や2では、シェーディング補正という処理を撮影画像毎の輝度のばらつきを補正するために行っているが、現在のほとんどのカメラはカメラ自体の機能として輝度補正を行うので、シェーディング補正はあまり有用でない。
このような問題は、高精度のCCDカメラ等の撮像手段が出現することで解消する可能性を有するが、現在の測定可能なひび割れ測定という限られた条件のなかで測定可能であることが望ましい。
また、橋梁のコンクリート構造物の場合、橋梁の幅方向にひび割れが生じることが多く、そのひび割れを高精度に検出することが求められるが、0.5mm以下のひび割れ幅というような微細なひび割れ測定になると、橋梁の幅方向のひび割れに影響を与えるひび割れなのか、それとも影響を与えないひび割れなのかの判断が難しくなる問題を有する。そして、橋梁の幅方向のひび割れのように、測定対象のひび割れの特徴に影響を与えるひび割れなのかについては、その特徴を抽出しないと、信頼性の高いひび割れの測定にはならない場合がある。また、橋梁のコンクリート構造物の場合、車両の通過などにより、ひび割れは日々刻々と変化する。
この点、特許文献3のクラックスケールをひび割れ測定に用いる方法では(クラックスケールの複数のマーク(スリット溝)の各輝度のみを用いる方法では)、画面解像度が良い状態(ひび割れ幅が4ピクセル以上ある場合)では、逆に精度が悪くなるおそれがある(本願発明者の実験による。)。しかも、特許文献3では、ひび割れ対象を撮像する際に、長さが既知の複数のマーク(スリット溝)が表示されたクラックスケールを同時撮影し、原画像データに撮像された前記クラックスケールからひび割れ長さを求めるとするが、上記同時撮像だけでは、クラックスケールの複数のマーク(スリット溝)の各輝度の測定に十分ではないことが、本願発明者の実験により明らかになった(図2(a)(b)を参照)。
そこで本発明の目的は、現在の汎用的なCCDカメラ等の撮像手段を用いて、コンクリートのひび割れ幅をカメラ画素の分解能との関係やその特徴から調整しながら高精度にひび割れを計測することができるコンクリートのひび割れ検出方法及び検出プログラムを提供することにある。
本発明のコンクリートのひび割れ検出方法は、コンクリート床板などのコンクリート表面を撮像して、ひび割れ計測の対象となる原画像データを作成し、前記原画像データを画像処理して、ひび割れを検出するコンクリートのひび割れ検出方法において、コンクリートのひび割れ幅を所定条件でエッジ処理するエッジ処理と、ひび割れの幅に対応した所定間隔のスリット溝が複数形成されたクラックスケールを所定条件で撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する輝度スケール検出処理を備え、前記エッジ処理を用いた測定結果ではひび割れ測定の精度が低いと判定手段で判定される場合は、前記輝度スケール検出処理を用いてひび割れ幅を測定することを特徴とする。前記判定手段としては、撮像手段の分解能以上では、エッジ処理を用いてひび割れを測定し、撮像手段の分解能以下ではクラックスケールの輝度を用いた輝度スケール検出処理を用いてひび割れを測定することを特徴とする。
ここで、前記エッジ処理と輝度スケール検出処理とは、エッジ処理を行なった後に輝度スケール検出処理を行なっても良く、エッジ処理と輝度スケール検出処理とを同時処理(並行処理)するように行なっても良い。
本発明によれば、コンクリートのひび割れをエッジ処理により検出するので、サブピクセル値まで検出できる。しかも、これよりも微細なひび割れは、クラックスケールの複数のスリット溝の輝度を撮像して測定した補正値を用いて測定する。例えば、画面解像度が良い状態(ひび割れ幅が4ピクセル以上ある場合)では、エッジ処理でひび割れ幅を側定して、画面解像度が悪い状態(ひび割れ幅が4ピクセル以下である場合)では、輝度スケール検出処理によりひび割れ幅を側定するので、現在汎用性あるCCDカメラ等の撮像手段を用いて高精度にひび割れ幅を計測することができる。このため、コンクリート床板のように色むらや陰になる部分、ひび割れ以外の汚れ等に影響され難い高精度の測定が可能になる。
また、エッジ処理と輝度スケール検出処理の両方を用いることも可能であり、この両方の検出を用いることにより、コンクリートの色むら等に影響され難い高精度の測定が可能になるほか、幅の広いひび割れと、その周辺に生じる微細なひび割れや、幅の広いひび割れから派生する微細なひび割れとの関連性をもたせた測定も可能になる。
本発明としては、 クラックスケールのスリット溝の輝度の測定において、ひび割れ幅がピクセル値の2倍以下の値を得た場合には,輝度値よりひび割れ幅P’を求める補正式(1)を用いて測定することを特徴とする。
ここで、Pはエッジ処理による測定幅、Gaveは輝度値が変化しない幅以上での輝度差平均、Gは測定したひび割れの輝度である。
本発明によれば、ピクセル値の2倍以下でもひび割れ幅を測定することが出来る手法である。例えば、橋梁の鉄筋コンクリートの床版(RC床版)の点検作業において、ひび割れ測定対象を撮像する際に、複数のスリット溝が形成されたクラックスケールを撮影し、その撮像データとの関連を求めると、撮像手段の解像度よりも微細なひび割れ幅を原画像データに撮像されたクラックスケールの輝度の値からひび割れ幅の長さを求めることができる。本発明によれば、Gaveは輝度値が変化しない0.4mm幅の輝度差平均を基準にして検出できることになる。この測定検出方法は、コンクリートの色むらや陰になる部分との関係などの影響を与えずに高精度な測定が可能である。
本発明としては、前記原画像データを画像処理として、ひび割れ箇所のある同一箇所を同時間に撮影した複数枚の画像より、画像画素の平均値を求める時間平均法による画像の平滑化を行い、画像ノイズを除去することを特徴とする。
本発明によれば、時間平均法を用いた方法により、コンクリートの色むら等がある微細なひび割れ幅を抽出することができるようになる。
本発明としては、前記原画像データを画像処理として、原画像データからひび割れを含む所定領域を抽出するために動的閾値法による2値化処理を用いることを特徴とする。
本発明によれば、画像データからひび割れを含む暗い部分を抽出するための処理として、動的閾値法を用いた2値化処理を行なうので、橋梁のコンクリートの色むら等(染みや汚れや配管等により陰になる場合を含む)に対しても微細なひび割れ幅を抽出することができるようになる。
本発明としては、クラックスケールを使用した輝度スケール検出処理が、前記原画像処理のときと同じ条件で撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件として測定することを特徴とする。ここで、「前記原画像処理のときと同じ条件」とは、橋梁の床をその下方側からある日時に撮像するとした場合のそのときの位置や日照条件等の一致であることを前提として、そして、原画像データをノイズ処理や2値化処理するものであれば、これらの処理も行なった同じ条件が「前記原画像処理のときと同じ条件」である。
本発明によれば、クラックスケールによる前記輝度スケール検出処理が、前記原画像処理のときと同じ条件で撮像しているので、現画像にクラックスケールによる前記輝度スケール検出処理の計測を忠実に反映させることが出来る。しかも、原画像データをノイズ処理や2値化処理するものであれば、これらの処理も行なった「前記原画像処理のときと同じ条件」であるので、エッジ処理と並行処理するときでも、エッジ処理との均衡が図られることは勿論、エッジ処理の後に輝度スケール処理検出を行なう場合においても、高精度の輝度スケール処理検出が行なわれる。
本発明としては、コンクリートのひび割れが橋梁の幅方向に生じたひび割れであり、その領域のアスペクト比(横x:縦y)を基準にしてこのアスペクト比(横x:縦y)を1:5〜1:7以下としてひび割れ幅を測定して特徴量とするか、又は、ひび割れ幅の橋梁の幅方向における所定角度を±15度以下のひび割れを測定してこれを特微量として測定することを特徴とする。上記アスペクト比(横X:縦Y)として最も好ましい値は、1:6である。また、前記所定角度としては、橋梁の幅方向をX軸として、そこから±15度以内のものである。これら両方のデータを重ね合わせると、更に高い特徴量の検出になる。
本発明によれば、前記エッジ処理や輝度スケール検出処理の前に、ひび割れの特徴量を検出するために、例えば橋梁の鉄筋コンクリートの床版(RC床版)に特有のひび割れ(橋梁の幅方向に走るひび割れ)を予め特徴付けした状態で、前記エッジ処理や輝度スケール検出処理ができるので、高精度なひび割れの検出ができるようになる。
本発明によれば、コンクリートのひび割れ幅を所定条件でエッジ処理するエッジ処理と、ひび割れの幅に対応した所定間隔のスリット溝が複数形成されたクラックスケールを所定条件で撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する輝度スケール検出処理を備え、撮像手段の分解能以上では、エッジ処理を用いてひび割れを測定し、撮像手段の分解能以下ではクラックスケールの輝度を用いた輝度スケール検出処理を用いて測定することにより、汎用的な撮像手段により精度の高いひび割れ幅の検出が可能になる。
また、ひび割れ幅がピクセル値の2倍以下の値を得た場合には、輝度値よりひび割れ幅P’を求める補正式(1)を用いて測定したり、また、実際のコンクリート表面のひび割れにクラックスケールを当てて、目視によるひび割れ幅の一番近い幅のスリット溝の輝度を基準にして撮像手段でクラックスケールの複数のスリット溝を撮像して、それよりもひび割れ幅の広いひび割れは前記エッジ処理により測定し、それよりもひび割れ幅の狭いひび割れは、クラックスケールのスリット溝の狭いスリット溝の輝度を測定条件としたり、橋梁のひび割れの特徴的なひび割れを予め特徴量として検出すると、その周辺に生じる微細なひび割れとの関連性をもたせた高精度な測定が可能になる。
そして、本発明によれば、原画像データをノイズ処理や2値化処理したものと「前記原画像処理のときと同じ条件」であるので、エッジ処理と並行処理するときでも、エッジ処理との均衡が図られることは勿論、エッジ処理の後に輝度スケール処理検出を行なう場合においても、高精度の輝度スケール処理検出が行なわれる。
本発明の一実施形態に係るコンクリート表面のひび割れ検出方法の実施手順を示したフローチャートである。 本発明の他の実施形態に係るコンクリート表面のひび割れ検出方法の実施手順を示したフローチャートである。 上記実施形態に係るコンクリート表面の画像データを撮像する状態を説明する図である。 上記実施形態に係るコンクリート表面の画像データ処理において、時間平均法によるノイズ除去を説明する画像処理画面であり、(a)は元画像であり、(b)はノイズ除去後の画像である。 上記実施形態に係るコンクリート表面の画像データ処理において、動的閾値法による2値化抽出を行なった結果を表す図である。 上記実施形態に係るコンクリート表面の画像データ処理において、特徴量によるひび割れ検出を行なった結果を表す図である。 上記実施形態のエッジ処理を説明する図である。 図8(a)は、上記実施形態のクラックスケールの輝度ヒストグラムである。図8(b)は、上記実施の形態の補正式(1)によるひび割れ幅の計算値をグラフ化した図である。 上記実施形態に係るコンクリート表面のひび割れ幅を検出した結果を画像表示した図である。 本発明の一実施形態に係るひび割れ検出プログラムを示すブロック図である。
以下、本発明に係るコンクリート表面のひび割れ検出方法の実施の形態について、添付図面を参照して説明する。なお、本実施の形態に係る構造物表面のひび割れ検出方法では、橋梁のひび割れを検出する例で説明するが、コンクリート構造物一般のひび割れにも適用可能である。
図1と図2(a)(b)は、本実施形態に係る構造物表面のひび割れ検出方法を示したフローチャートである。
まず、コンクリート構造物の表面を撮像して原画像データを得る(ステップS1)。次に、原画像データからノイズが除去された画像処理データを作成する(ステップS2)。ノイズを除去すると、コンクリート構造物表面の染みや汚れは、原画像データから除去されるとともに、空間変化率が大きいひび割れだけが原画像に残る。量子化ノイズに対して、時間平均法による画像の平滑化を行い、画像ノイズを除去する。次に、ステップS3で(Blurring process S3)を行なってから、次に、ノイズを除去した画像データからひび割れを含む暗い部分を抽出するための処理として、動的閾値法を用いた2値化処理を行なう(ステップS4)。2値化処理が終了すると、次のステップS5で、2値化された原画像データから形状特徴ひび割れ特徴を抽出する。次に、コンクリートのひび割れを所定条件でエッジ処理して検出するエッジ処理S6と、輝度スケール検出処理S7を行なう。輝度スケール検出処理とは、ひび割れの幅に対応した所定間隔のスリット溝が複数形成されたクラックスケールを撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する検出法である。これらエッジ処理(S6)と輝度スケール検出処理(S7)を行なった後は、ステップS8で(luminance correction S8)を行なってから、その結果を画像表示手段で表示する(ステップS9)。
ここで、図1と図2(a)(b)のフローチャートの違いは、エッジ処理S6と輝度スケール検出処理S7とを並行処理するときの例が図2(b)であり、エッジ処理S6の後に輝度スケール処理検出S7を行なう場合が図1の場合である。また、図2(b)では、特徴量の抽出処理(5)を行なわれない場合も説明している。また、図1では、ぼかし処理や輝度補正(Blurring process S3,S8)を行なう工程が図2の工程よりも追加される。
(画像データの撮影方法 S1)
鉄筋コンクリートで作られた橋梁の床板下面を地上からカメラで撮影し、画像処理を用いてひび割れを検出して、幅と長さを計測する(図3(a))。目標とするひび割れの測定幅は補修対象となる0.2mm以上とする。また、橋梁の床版は地上から数mから十数m あるためひび割れ検出するためには望遠レンズによる拡大が必要となる。撮影した画像の解析を行うことでひび割れの検出及び測定を行う。撮影に使用したカメラはCMOS カメラ(カラー,500 万画,2592×1944pixel)に高倍率レンズ(F2.5、焦点距離75mm)にリヤコンバータレンズを用い、分解能は撮影距離6m で0.13mm/pixel となった。一般的にコンクリート構造物におけるひび割れは幅0.2mm以上が補修対象となるため充分な解像度を有するといえる。図3(b)は、幅0.2mmで長さが100mmのひび割れ(亀裂、クラック)を撮像した状態のイメージである。遠隔操作による撮影を可能とするためロボットに小型PC(CPU: Intel Core i3, OS: Windous7 Pro,RAM:4GB)と充電池を搭載して撮像した。操作者はモニタ用PC(CPU: Intel Core i3, OS: Windous7 Pro, RAM:4GB)から無線LAN によりリモートコントロールを行い撮影する。撮影後、解析用PC(CPU: Intel Core i7, OS: Windous7 Pro,RAM:16GB)を用いて画像処理を行い、撮影画像からひび割れの長さと幅を計測した。橋梁床板の撮影は地上から行い、撮影距離は6.5mであった。ストロボや照明は用いず、自然光で行い明るさは2100Lxであった。これらの条件が後述するクラックスケールのスリット溝の撮影条件と同じになる。
ここで、画像合成手法としては、初めに拡大撮影画像からき裂領域の抽出とき裂の計測を行い、抽出したき裂領域に赤色レーザポインタ座標を基点としてアフィン変換を行い,拡大撮影画像を俯瞰撮影画像に合成させる手法を採用した。この画像合成法により、レーザポインタを互いのカメラで撮影することで、ひび割れの相対位置と姿勢(角度)が分かる(図6参照:図6の丸い反射箇所がポインタの位置である。)。
(ノイズ処理 S2)
量子化ノイズに対して、時間平均法による画像の平滑化を行い、画像ノイズを除去する。図4(a)は元画像であり、図2(b)にノイズ除去した画像処理後の画像を示す。時間平均法では、ひび割れ箇所のある同一箇所を同時間に撮影した10枚程度の画像より画像画素の平均値を求める。メディアンフィルターなどの平均化に比べ、微細なひび割れの輝度変化が平滑化され難く、ノイズのみを除去することが可能である。ノイズを除去すると、コンクリート構造物表面の染みや汚れは、原画像データから除去されるとともに、空間変化率が大きいひび割れだけが原画像に残る。なお、ノイズ処理S2の後にBlurring処理(ぼかし処理) を行なっても良い。
(動的閾値法による2値化 S4)
次に、前記画像処理データを二値化処理して二値化画像データを作成する(ステップS4)。
コンクリート表面の色むらなどの影響を避けるため、動的閾値法による2値化を行い、ひび割れ部分の領域A1を抽出する(図5、図6を参照)。画像をいくつかの小領域に分割し、各小領域ごとに濃度ヒストグラムを調べ、そこにエッジが含まれていると判断された場合は,その小領域の性質に最もあった閾値を設定する.このように小領域ごとに閾値を帰る2値化処理を動的閾値処理と言う。2 値化処理における動的しきい値法の一つである可変しきい値処理を用いても良い。可変しきい値処理は、しきい値を固定するのでは無く、また単純に局所領域の平均値をしきい値にするものでも無い、前の処理結果によって閾値に変化を与える方法である。
図5に動的閾値法による抽出結果を示す。ひび割れは、画像上は黒く映るため、閾値を固定する2値化処理において領域A1を抽出できるが、コンクリートの色むら(染み、汚れや配管等で陰になる部分)により局所的な輝度の変化が生じる。また点検作業は屋外で行うため、日光の向きや構造物の影などの影響を受けやすい。しかし本測定においては、ひび割れの領域を抽出するには動的閾値法を用いることが最も有効である。二値化処理して得られた二値化画像データは、構造物表面の染みや汚れが概ね除去され、ひび割れが主として抽出された画像データとなる。
(特徴量を用いたひび割れ検出 S5)
次に、前記二値化画像データから特徴量を作成する(ステップS5)。
上述までのプロセスにより抽出された領域はひび割れ以外のコンクリート表面の凹凸による影なども含んでいる。そのため、特徴量を用いてひび割れの領域A1のみを抽出し、ひび割れの検出を行う。橋梁である構造物に生じるひび割れは細長い特徴形状を有し、さらに橋梁にかかる応力によりひび割れの生じる方向や角度は指向性を持つ。そのため、橋梁の幅方向に生じたひび割れである場合は、その領域のアスペクト比(横x:縦y)を基準にしてこのアスペクト比(横x:縦y)を1:5〜1:7としてひび割れ幅を測定して特徴量とする。そのため領域のアスペクト比と長軸の方向を特徴量として処理することにより、図4のようにひび割れのみを抽出することが可能になり、コンクリート床板のように色むらや陰になる部分、更にはひび割れ以外の汚れや配管・配線などがある環境においても、コンクリートの色むら等を除去することができる。前記アスペクト比(横x:縦y)が1:5以下では、橋梁のひび割れ方向における特徴が現われず、また、1:7以上では、微小になり過ぎることから、前記アスペクト比(横x:縦y)を1:5〜1:7としてひび割れ幅を測定して特徴量とする。
また、ひび割れ幅の橋梁の幅方向における所定角度のひび割れを測定してこれを特微量として画像データ処理しても良い。前記所定角度としては、橋梁の幅方向をX軸として、そこから±15度以内のものである。それ以外の角度のものは、特徴量としては検出しない。±15度以上になると、橋梁の幅方向における特徴が現われず、また、橋梁の長さ方向(垂直方向)との区別が付き難くなる。
本実施の形態での特徴量は、縦と横(橋梁の幅)の比を1:5〜1:7とする。これらの処理は、例えば、2値化されたデータにおいて、ひび割れであると判断された部分のピクセル間の連続性を求めて、ピクセルが前後左右や斜め方向のいずれにも連続していない場合や、連続性が短く断続的である場合などは、ひび割れではないと判断して、これを除外する。
ここで、特徴量処理(S5)を行なわない測定も可能である(図2(a)(b)参照)。すなわち、2値化処理S4の後にエッジ処理S6や輝度スケール検出処理S7を行なっても良い。なお、輝度スケール検出処理S7のときのクラックスケールKsのスリット溝Kmの輝度測定では、特徴量処理(S5)を行なわない画像処理データを用いる(図2(a)(b)参照)。
(ひび割れ幅の測定 エッジ処理 S6)
ひび割れ領域の短軸方向にエッジ処理S6を行い、ひび割れの幅を求める(図1)。なお、エッジ処理S6と輝度スケール検出処理S7を同時に行なっていずれかを表示しても良い(図2(b))。
エッジ処理(エッジ検出)S6は、輝度が大きく変化しているところ(境界)を微分して検出するものであり、コンクリート表面の色むらなどの影響を受ける橋梁のコンクリートのひび割れ測定に有利である。横方向と縦方向に微分する方法や、微分の微分を行なう(差分の微分)を行なう2回微分などがある。エッジ処理S6では、直線状のものは数ピクセル幅の色が異なる部分が背景と違っている。この場合、その物体の両サイドにエッジを検出することになる。本実施の形態では、2回微分により、ひび割れ幅を測定した(図7(a)(b))。このように、撮像された画像はエッジ処理されて、コンピュータ8の記憶部D2へ記憶される(図10参照)。
(ひび割れの測定 輝度スケール検出処理 S7)
本実施の形態で、ひび割れ幅がピクセル値の2倍以下の値を得た場合には、さらにクラックスケールの輝度を基準とした輝度による幅測定を行う(この輝度の測定を「輝度スケール検出処理S7」と称する。)。点検作業者が目視において、ひび割れ幅を測定するのに用いるクラックスケールKsの輝度を測定した結果を図8に示す。ゲージ目盛り幅が0.4mm以下ではエッジ間隔が4pixel付近に収束する(図8(b)の輝度ヒストグラムKiを参照)。スリット溝Kmの幅が0.4mmから0.5mm以下になると輝度差が減少することを利用したエッジの補正である。これにより、クラックスケールKsの幅が狭くなると輝度値きKiが減少することから、輝度値Kiよりひび割れ幅P’を求める補正式(1式)が得られる(図8(b))。
ここでPはエッジ処理による測定幅、Gaveは輝度値が変化しない幅以上での輝度差平均であり、Gは測定したひび割れの輝度差である。図6にエッジ処理によるひび割れ幅の測定結果Pを黒色で(符号F3)、各ひび割れの輝度差Gを赤色で(符号F2)、補正を行った結果P’を青色(符号F1)で示す。なお、上記輝度値Kiの測定では、クラックスケールのスリット溝kmが0.05mmまで測定可能である。
ここで、クラックスケールKsとは、定規に複数のスリット溝Kmが設けられて、各スリット溝Kmの太さ別にメモリがついており、その使い方は外壁のクラック箇所(ひび割れ箇所)にこの定規を当てて一番近い太さのところのスリット溝Kmで測定を行う(図8(a))。コンクリートの構造体部分にクラック(微細なひび割れ)が入っている場合、このクラックスケールを使い測定を行い補修方法を判断する。本実施形態では、予め、構造物表面にクラックスケールを貼着した上、これを撮像して原画像データとして処理するとともに、前記ノイズ処理S2と2値化処理S3を行なっている。
図8(b)は、補正式(1)を用いてクラックスケールのスリット溝の輝度値とひび割れ幅との関係を示すグラフである。輝度値とクラックスケールの値とが直線性の関係が保たれていることが判る(図8のcollection value 参照)。従って、原画像データに撮像されたクラックスケールからひび割れ幅の長さを求め、この補正式(1)により正確なひび割れ幅を得ることができる。補正式(1)を用いることで0.5〜0.4mmm以下でもエッジ間隔が推定可能である。
本実施の形態では、橋梁の鉄筋コンクリートの床版(RC床版)にひび割れがあり、CCDカメラで取り込まれるコンクリート画像は、CCD上で画像認識される。このCCDは、本実施の形態では512画素×512画素の大きさとしてある。そして、CCDの水平方向をX軸方向、垂直方向をY軸方向とするとき、X軸方向に並んだ各画素群(幅方向の画素群)上のグレイ値を算出し、これをY軸方向に並んだ画素群毎に行う。グレイ値とは、白が“0”、黒が“255”、中間はその濃淡に応じて決定される値である。例えば、ひび割れは、他のコンクリートより黒ずんでいるため、ひび割れ部分のグレイ値は他のコンクリートのグレイ値より大きくなる。 次に、算出されたグレイ値から、X軸方向におけるエッジを算出する。エッジとは、算出されたグレイ値の微分値として定義したもので、色調の変化が発生した箇所で検出されることとなる。 そして、エッジの発生した箇所におけるグレイ値の絶対値(グレイ値レベル)を算出し、その結果は、制御周期毎にコンピュータ8の記憶部D2へ記憶される(図10参照)。
また、本発明としては、クラックスケールによる前記輝度スケール検出処理が、前記原画像処理のときと同じ条件で撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件として測定する。同じ条件とは、橋梁の床をその下方側からある日時に撮像するとした場合のそのときの位置や日照条件等の一致であるが、これを前提として、ノイズ処理S2や2値化処理S3も行なう(図2参照)。また、輝度スケール検出処理S7に際して、クラックスケールを用いてひび割れを実際に測定するときの測定が、原画画像撮影とクラックスケールKsの複数のスリット溝Kmにおける輝度の撮像とを同時に行なったものを使用して、前記ノイズ処理S2や2値化処理S3を行ない、更に前記エッジ処理S6を行なった画像処理を起こったものを使用しても良い(図2参照)。
そして、例えば、撮像手段の分解能以上では(CCD撮像手段の1ピクセルを基準にする。)、エッジ処理を用いてひび割れ幅を測定し、撮像手段の分解能以下では、クラックスケールの輝度を用いた輝度スケール検出処理を用いてひび割れ幅を測定する(図2(b)参照)。その値は撮像手段の撮像処理によって異なるが、Gaveが輝度の変化が見られない0.4mmでの輝度を基準にしても良い。
また、図2(a)に示すように、クラックスケールのスリット溝の輝度の測定において、ひび割れ幅がピクセル値の2倍以下の値を得た場合には、輝度値よりひび割れ幅P’を求める補正式(1)を用いて測定し、ひび割れ幅がピクセル値の2倍よりも大きな値を得た場合には、前記エッジ処理により測定しても良い。
さらに、前記エッジ処理と前記輝度スケール検出処理とを同時並行処理を行い(図2(b)参照)、撮像条件や目視策定条件等の所定の値を基準にして、前記エッジ処理S7と前記輝度スケール検出処理S8との判定する閾値としても良い。
最終的に得られたひび割れの位置と幅を撮影画像に合成した結果を図9に示す。図9において、青色で描かれた線(Correction value)がひび割れB1〜B4である。このひび割れが損傷箇所の程度と位置を図示する。
(コンピュータプログラム)
図10は、本発明の第1の実施形態に係るコンピュータシステム(ひび割れ検出装置)1を機能的に説明するブロック図である。本実施形態のひび割れ検出システム1は、コンピュータ8と、当該コンピュータ8上で動作する画像データ作成プログラムD12と、ひび割れ検出プログラムD13からなる。コンピュータ3には、第1のディスプレイ71、第2のディスプレイ72、キーボードやマウス等の入力手段、プリンタやプロッタ等の印刷手段15が接続される。
本実施形態のひび割れ検出プログラム(ひび割れ検出装置)1は、符号D11〜D24で示す各種処理手段を有し、CG作成プログラムに組み込まれている。CG作成プログラムには、CPU4を介して、データベース5とCG表示プログラム21とでデータのやりとり等を制御する制御プログラムを備えている。
前記ひび割れ検出プログラムD21には、コンクリートのひび割れを所定条件でエッジ処理するエッジ処理のステップD21と、ひび割れの幅に対応した所定間隔のスリット溝Kmが複数形成されたクラックスケールを所定条件で撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する輝度スケール検出処理のステップD22と、比較決定ステップD23を備える。また、前記クラックスケールの測定(輝度スケース処理)は、前記原画像処理D10のときと同じ条件で撮像されているか否かを検出する条件検出ステップ(処理)D24を備え、ひび割れ箇所を自動作成する。
また、原画像データのノイズを除去するに際して、量子化ノイズに対して時間平均法による画像の平滑化を行い、画像ノイズを除去するノイズ除去ステップ(処理)D11と、原画像データからひび割れを含む暗い部分を抽出するために行なう動的閾値法による2値化ステップD12と、特徴量の抽出処理(ステップ)D13を備える。この特徴量の抽出処理(ステップ)D13では、コンクリートのひび割れが橋梁の幅方向に生じたひび割れであるときは、そのひび割れのアスペクト比(横x:縦y)を基準にして、このアスペクト比(横x:縦y)を1:5〜1:7としてひび割れ幅を測定して特徴量としたり、ひび割れ幅の橋梁の幅方向における所定角度のひび割れを測定してこれを特微量として画像データ処理したり、さらに、所定方向に伸びるひび割れのいくつかの距離間隔C1,C2(図6参照)を、橋梁コンクリートの幅方向のひび割れの特徴と見立てて画像データ処理したりして、前記エッジ処理(S6)や輝度スケール検出処理(S7)の測定精度を高める。
なお、原画像処理D10から、特徴量処理ステップ(処理)S5を行なわずに、エッジ処理D21を行なうことが可能である(図2参照)。
コンピュータ8に備わっている記憶部D2は、橋梁の種類や、橋梁の建築物としての各種データを保存している。なお、コンピュータ8の読取り装置を介して接続されるUSBメモリ、フレキシブルディスク、メモリカード等の記憶媒体も含まれる。入力手段は、例えば、キーボード、マウス、赤外線リモートコントローラ、或いはプッシュボタンといった、ユーザインターフェースとして図示しない所定の操作デバイスを介した入力操作を受付けて、CPU4に所定の制御信号を送出する。
コンピュータ8には、入力操作制御部が備わっており、ディスプレイ71,72に表示された画像に数値・文字・記号等の情報やライン(線)を施すと互いに対応する位置に数値・文字・記号情報を施すことができる機能を有する。また、特徴量データとして特定し得る状態になっている。
本実施形態では、ディスプレイ71,72は、エッジ処理D21(S6)の画像と、輝度スケール検出処理D22(S7)した画像とを別々に表示することも可能である。そして、ディスプレイ71,72は、ひとつのディスプレイ71として、これらの表示を切換え表示するようにしてもよいし、一つのディスプレイ71に、重ね合わせるように表示したり、複数のウインドウ表示をして同時に表示することができる。
次に、本実施形態のひび割れ検出方法により、実際にひび割れ検出した結果を説明する。
図5と図6に示した部分が、本実施形態でひび割れであると判断されたひび割れ領域A1であり(A2領域は、A1を拡大表示した領域である)、ひび割れを青色(符号B1〜B4)で画像表示している。ひび割れB1〜B4であると判断された領域A1の各ピクセルの輝度値(Brightness)を、エッジ処理S6と輝度スケール検出処理S7により求めている。
図6からは、本実施形態のひび割れ検出方法により、波形状にひび割れB1のみが検出表示されることとなる(拡大したA2領域では、検出したひび割れB1のみが表示され、それ以外の色むら等は生じていない。)。
その他にも、その検出されたたひび割れB1と、その連続方向にあるひび割れB2,B3との間隔の距離C1,C2を測定することも可能である。図6に示す例では、検査対象のひび割れB1と、その近傍において所定間隔をおいて連続するような間隔のひび割れB2,B3との距離C1,C2との関連性などを検査するとき、ここでは、例えば上記間隔C1,C2が30mm以下では、検出した画像処理領域A1のひび割れB1との関連性(直線性、連続性)を有するひび割れは、前記特徴量抽出のひび割れとして検出するものである。なお、検査対象のひび割れB1と、その位置から離れたひび割れB4との間では、その距離から関連性を有しないとして、ここでは検査している。
以上、本発明は、上述した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更が可能である。
例えば、本実施の形態の応用例としては、コンクリート表面のひび割れにクラックスケールKsを当てて、目視によるひび割れ幅の一番近い幅のスリット溝の輝度を基準にして撮像手段でクラックスケールの複数のスリット溝を撮像して、それよりもひび割れ幅の広いひび割れは前記エッジ処理により測定し、それよりもひび割れ幅の狭いひび割れは前記輝度スケール検出処理により測定することも可能である。ここでの実施形態では、コンクリート表面のひび割れにクラックスケールKsを当てて、目視によるひび割れ幅の一番近い橋梁のひび割れの特徴的な幅のスリット溝の輝度を基準にしても良い。
この場合の実施の形態によれば、目視によるひび割れ幅の一番近い幅のスリット溝の輝度を基準にするので、目視による一番近いスリット溝幅Kmのひび割れと、その周辺に生じる微細なひび割れや、目視による一番近いスリット溝幅のひび割れから派生する幅方向にひび割れ(延長したひび割れ)との関連性をもたせた高精度な測定が可能になる。
また、上記実施の形態では、縦と横(橋梁の幅)の比を1:5〜1:7としたり、橋梁の幅方向の所定角度に生じるひび割れを特徴量としたが、例えば、2値化されたデータにおいて、ひび割れであると判断された部分のピクセル間の連続性を求めて、ピクセルが前後左右,斜め方向のいずれにも連続していない場合や、連続性が短く断続的である場合などは、ひび割れではないと判断して、これを除外しても良い。
また、特徴量の検出としては、図6に示すように、ひび割れB2とひび割れB3との間隔の距離C1,C2を測定することも可能である。図6に示す例では、ひび割れB2とひび割れB3との間隔の距離C1,C2が30mm以下では、検出した画像処理領域A1のひび割れB1との関連性(直線性、連続性)を有するひび割れであるとして検出するものである。
1 本発明のひび割れ検出プログラム装置、
A1 画像処理領域、
B1〜B4 ひび割れ(ひび割れ幅、クラック、き裂、橋梁の幅方向のひび割れ)、
Ks クラックスケール、
Ki クラックスケールのスリット溝の輝度値、
Km クラックスケールのスリット溝、
S1 原画像データの撮像処理(画像データの撮影方法:画像撮影処理ステップ)、
S2 ノイズ処理(ノイズ処理ステップ)、
S4 動的閾値法による2値化(2値化処理ステップ)、
S5 特徴量を用いたひび割れ検出(特徴量の抽出処理:ステップ)
S6 エッジ処理(エッジ処理ステップ)、
S7 輝度スケール検出処理(輝度スケール検出処理ステップ)、

Claims (11)

  1. コンクリート表面を撮像手段で撮像して原画像データを作成し、前記原画像データを画像処理して、ひび割れを検出するコンクリートのひび割れ検出方法において、
    コンクリートのひび割れ幅を所定条件でエッジ処理して検出するエッジ検出処理と、
    ひび割れの幅に対応した所定間隔のスリット溝が複数形成されたクラックスケールを撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する輝度スケール検出処理を備え、
    前記エッジ処理を用いた測定結果ではひび割れ測定の精度が低いと判定手段で判定される場合は、前記輝度スケール検出処理を用いてひび割れ幅を測定することを特徴とするコンクリートのひび割れ検出方法。
  2. クラックスケールのスリット溝の輝度の測定において、ひび割れ幅がピクセル値の2倍以下の値を得た場合には、輝度値よりひび割れ幅P’を求める補正式(1式)を用いて測定し、ひび割れ幅がピクセル値の2倍よりも大きな値を得た場合には、前記エッジ処理によりひび割れを測定することを特徴とする請求項1記載のコンクリートのひび割れ検出方法。
    ここで、Pはエッジ処理による測定幅であり、Gaveは輝度値が変化しない幅以上での輝度差平均であり、Gは測定したひび割れの輝度である。
  3. 前記判定手段として、
    前記撮像手段の分解能以上では、前記エッジ処理を用いてひび割れ幅を測定し、前記撮像手段の分解能以下ではクラックスケールの輝度を用いた輝度スケール検出処理を用いてひび割れ幅を測定することを特徴とする請求項1記載のコンクリートのひび割れ検出方法。
  4. 前記原画像データを画像処理として、ひび割れ箇所のある同一箇所を同時間に撮影した複数枚の画像より、画像画素の平均値を求める時間平均法による画像の平滑化を行い、画像ノイズを除去することを特徴とする請求項1ないし3のいずれか1項記載のコンクリートのひび割れ検出方法。
  5. 前記原画像データを画像処理として、原画像データからひび割れを含む所定領域を抽出するために動的閾値法による2値化処理を用いることを特徴とする請求項1ないし4のいずれか1項記載のコンクリートのひび割れ検出方法。
  6. 前記クラックスケールのスリット溝の輝度測定は、前記画像を撮像するときの処理と同じ条件で撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件として測定することを特徴とする請求項1ないし5のいずれか1項記載のコンクリートのひび割れ検出方法。
  7. コンクリートのひび割れが橋梁の幅方向に生じたひび割れであり、その領域のアスペクト比(横x:縦y)を基準にしてこのアスペクト比(横x:縦y)を1:5〜1:7としてひび割れ幅を測定して特徴量とするか、又は、ひび割れ幅の橋梁の幅方向における所定角度を±15度以下のひび割れを測定して、これを特微量として画像データ処理をすることを特徴とする請求項1ないし6のいずれか1項記載のコンクリートのひび割れ検出方法。
  8. コンクリート表面を撮像して、ひび割れ計測の対象となる原画像データを作成し、前記原画像データを画像処理して、ひび割れを検出するコンクリートのひび割れ検出プログラムにおいて、
    コンクリートのひび割れ幅を所定条件でエッジ処理するエッジ処理ステップと、
    ひび割れの幅に対応した所定間隔のスリット溝が複数形成されたクラックスケールを所定条件で撮像手段により撮像して、クラックスケールの複数のスリット溝の各輝度を測定条件としてひび割れ幅を測定する輝度スケール検出処理ステップと、
    エッジ処理を用いたひび割れ測定結果と、輝度スケール検出処理を用いた測定結果とを比較してひび割れ精度を決定する比較決定ステップを備えることを特徴とするコンクリートのひび割れ検出プログラム。
  9. 原画像データのノイズを除去するに際して、量子化ノイズに対して時間平均法による画像の平滑化を行い、画像ノイズを除去するノイズ除去ステップと、原画像データからひび割れを含む暗い部分を抽出するために行なう動的閾値法による2値化処理ステップとを備えることを特徴とする請求項8記載のコンクリートのひび割れ検出プログラム。
  10. 前記クラックスケールの測定は、前記原画像処理のときと同じ条件で撮像されているか否かを検出する条件検出ステップを備えることを特徴とする請求項8記載のコンクリートのひび割れ検出プログラム。
  11. コンクリートのひび割れが橋梁の幅方向に生じたひび割れを測定するコンクリートのひび割れ検出プログラムであり、そのひび割れのアスペクト比(横x:縦y)を基準にしてこのアスペクト比(横x:縦y)を1:5〜1:7としてひび割れ幅を測定して特徴量とするか、又は、ひび割れ幅の橋梁の幅方向における所定角度を±15度以下のひび割れを測定してこれを特微量として画像データ処理をすることを特徴とする請求項8ないし10のいずれか1項記載のコンクリートのひび割れ検出プログラム。

JP2015179973A 2015-09-11 2015-09-11 コンクリートのひび割れ検出方法及び検出プログラム Active JP6620477B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179973A JP6620477B2 (ja) 2015-09-11 2015-09-11 コンクリートのひび割れ検出方法及び検出プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179973A JP6620477B2 (ja) 2015-09-11 2015-09-11 コンクリートのひび割れ検出方法及び検出プログラム

Publications (2)

Publication Number Publication Date
JP2017053819A true JP2017053819A (ja) 2017-03-16
JP6620477B2 JP6620477B2 (ja) 2019-12-18

Family

ID=58320707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179973A Active JP6620477B2 (ja) 2015-09-11 2015-09-11 コンクリートのひび割れ検出方法及び検出プログラム

Country Status (1)

Country Link
JP (1) JP6620477B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056679A (ja) * 2017-09-22 2019-04-11 株式会社大林組 表面評価方法、表面評価装置及び評価モデル記憶装置
JP2019066266A (ja) * 2017-09-29 2019-04-25 清水建設株式会社 ひび割れ検出装置、ひび割れ検出方法、および、コンピュータプログラム
JP2019066264A (ja) * 2017-09-29 2019-04-25 清水建設株式会社 ひび割れ検出装置、ひび割れ検出方法、および、コンピュータプログラム
JP2019074440A (ja) * 2017-10-18 2019-05-16 大斗有限会社 ひび割れ寸法測定装置及びひび割れ寸法測定方法
CN110085529A (zh) * 2018-01-25 2019-08-02 三星电子株式会社 检测方法、检测设备和计算机可读存储介质
JP2020135450A (ja) * 2019-02-20 2020-08-31 株式会社市川工務店 橋梁などの構造物を効率的に検査するための画像処理システム、画像処理方法及びプログラム
JP2021051022A (ja) * 2019-09-25 2021-04-01 株式会社イクシス 建物構造物診断システム
JP2021051597A (ja) * 2019-09-25 2021-04-01 株式会社イクシス 画像処理装置、画像処理方法、及びコンピュータプログラム
JP2021148719A (ja) * 2020-03-23 2021-09-27 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
JP2021148720A (ja) * 2020-03-23 2021-09-27 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
WO2021192627A1 (ja) * 2020-03-23 2021-09-30 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
WO2021199291A1 (ja) * 2020-03-31 2021-10-07 日本電気株式会社 検出装置、判定方法、及び非一時的なコンピュータ可読媒体
KR102355997B1 (ko) * 2021-05-17 2022-02-08 주식회사 한국건설 방재연구원 스마트글래스 기반의 콘크리트 구조물 건전도 모니터링 방법
US11331964B2 (en) 2018-05-25 2022-05-17 Bridgestone Corporation Tire damage detection system and tire damage detection program
CN115684272A (zh) * 2023-01-03 2023-02-03 广州市市政工程试验检测有限公司 一种基于红外摄像机的钢结构裂纹检测方法
CN116385434A (zh) * 2023-06-02 2023-07-04 同济检测(济宁)有限公司 一种用于预制梁裂缝的智能检测方法
CN116630321A (zh) * 2023-07-24 2023-08-22 铁正检测科技有限公司 基于人工智能的桥梁健康智能监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241471A (ja) * 2004-02-26 2005-09-08 Keisoku Kensa Kk 微細ひび割れ幅検量方法
KR100826153B1 (ko) * 2006-11-29 2008-04-30 한국표준과학연구원 영상의 농도치 히스토그램을 이용한 크랙의 폭 측정방법
JP2008267943A (ja) * 2007-04-19 2008-11-06 Taisei Corp ひび割れ検出方法
JP2012202858A (ja) * 2011-03-25 2012-10-22 Railway Technical Research Institute コンクリート表面の閉合ひび割れ検出方法
JP2013195074A (ja) * 2012-03-15 2013-09-30 Keisoku Res Consultant:Kk クラック検出方法、クラック表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241471A (ja) * 2004-02-26 2005-09-08 Keisoku Kensa Kk 微細ひび割れ幅検量方法
KR100826153B1 (ko) * 2006-11-29 2008-04-30 한국표준과학연구원 영상의 농도치 히스토그램을 이용한 크랙의 폭 측정방법
JP2008139285A (ja) * 2006-11-29 2008-06-19 Korea Research Inst Of Standards & Science 映像処理技法を利用した構造物及び製品のクラック幅測定方法
JP2008267943A (ja) * 2007-04-19 2008-11-06 Taisei Corp ひび割れ検出方法
JP2012202858A (ja) * 2011-03-25 2012-10-22 Railway Technical Research Institute コンクリート表面の閉合ひび割れ検出方法
JP2013195074A (ja) * 2012-03-15 2013-09-30 Keisoku Res Consultant:Kk クラック検出方法、クラック表示装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056679A (ja) * 2017-09-22 2019-04-11 株式会社大林組 表面評価方法、表面評価装置及び評価モデル記憶装置
JP6994890B2 (ja) 2017-09-29 2022-01-14 清水建設株式会社 ひび割れ検出装置、ひび割れ検出方法、および、コンピュータプログラム
JP2019066266A (ja) * 2017-09-29 2019-04-25 清水建設株式会社 ひび割れ検出装置、ひび割れ検出方法、および、コンピュータプログラム
JP2019066264A (ja) * 2017-09-29 2019-04-25 清水建設株式会社 ひび割れ検出装置、ひび割れ検出方法、および、コンピュータプログラム
JP2019074440A (ja) * 2017-10-18 2019-05-16 大斗有限会社 ひび割れ寸法測定装置及びひび割れ寸法測定方法
JP7286126B2 (ja) 2017-10-18 2023-06-05 大斗有限会社 ひび割れ寸法測定装置及びひび割れ寸法測定方法
CN110085529A (zh) * 2018-01-25 2019-08-02 三星电子株式会社 检测方法、检测设备和计算机可读存储介质
US11331964B2 (en) 2018-05-25 2022-05-17 Bridgestone Corporation Tire damage detection system and tire damage detection program
JP2020135450A (ja) * 2019-02-20 2020-08-31 株式会社市川工務店 橋梁などの構造物を効率的に検査するための画像処理システム、画像処理方法及びプログラム
JP7044331B2 (ja) 2019-02-20 2022-03-30 株式会社市川工務店 橋梁などの構造物を効率的に検査するための画像処理システム、画像処理方法及びプログラム
JP2021051022A (ja) * 2019-09-25 2021-04-01 株式会社イクシス 建物構造物診断システム
JP2021051597A (ja) * 2019-09-25 2021-04-01 株式会社イクシス 画像処理装置、画像処理方法、及びコンピュータプログラム
JP7471570B2 (ja) 2019-09-25 2024-04-22 株式会社イクシス 建物構造物診断システム
JP7385192B2 (ja) 2019-09-25 2023-11-22 株式会社イクシス 画像処理装置、画像処理方法、及びコンピュータプログラム
JP2021148720A (ja) * 2020-03-23 2021-09-27 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
JP2021148719A (ja) * 2020-03-23 2021-09-27 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
JP7449739B2 (ja) 2020-03-23 2024-03-14 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
WO2021192627A1 (ja) * 2020-03-23 2021-09-30 株式会社Lixil 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法
WO2021199291A1 (ja) * 2020-03-31 2021-10-07 日本電気株式会社 検出装置、判定方法、及び非一時的なコンピュータ可読媒体
KR102355997B1 (ko) * 2021-05-17 2022-02-08 주식회사 한국건설 방재연구원 스마트글래스 기반의 콘크리트 구조물 건전도 모니터링 방법
CN115684272A (zh) * 2023-01-03 2023-02-03 广州市市政工程试验检测有限公司 一种基于红外摄像机的钢结构裂纹检测方法
CN116385434A (zh) * 2023-06-02 2023-07-04 同济检测(济宁)有限公司 一种用于预制梁裂缝的智能检测方法
CN116385434B (zh) * 2023-06-02 2023-08-08 同济检测(济宁)有限公司 一种用于预制梁裂缝的智能检测方法
CN116630321A (zh) * 2023-07-24 2023-08-22 铁正检测科技有限公司 基于人工智能的桥梁健康智能监测系统
CN116630321B (zh) * 2023-07-24 2023-10-03 铁正检测科技有限公司 基于人工智能的桥梁健康智能监测系统

Also Published As

Publication number Publication date
JP6620477B2 (ja) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6620477B2 (ja) コンクリートのひび割れ検出方法及び検出プログラム
Kim et al. Comparative analysis of image binarization methods for crack identification in concrete structures
Galantucci et al. Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis
Li et al. Long-distance precision inspection method for bridge cracks with image processing
Shan et al. A stereovision-based crack width detection approach for concrete surface assessment
WO2019134252A1 (zh) 结构裂缝自动化描绘及宽度精准测量方法与设备
CN107014294B (zh) 一种基于红外图像的接触网几何参数检测方法及系统
JP5175528B2 (ja) トンネル覆工のひび割れ検査装置
JP4675949B2 (ja) 映像処理技法を利用した構造物及び製品のクラック幅測定方法および装置
CN104574393B (zh) 一种三维路面裂缝图像生成系统和方法
CN108416766B (zh) 双侧入光式导光板缺陷视觉检测方法
JP5421192B2 (ja) ひび割れ検出方法
CN112651968B (zh) 一种基于深度信息的木板形变与凹坑检测方法
CN111353993B (zh) 一种基于机器视觉的螺纹角度测量方法
JP6099479B2 (ja) ひび割れ検出方法
JP5894012B2 (ja) コンクリート表面の線状変状検出方法
CN104700395A (zh) 一种构造物外观裂缝检测方法及系统
CN107798293A (zh) 一种道路裂缝检测装置
JP4870016B2 (ja) ひび割れ検出方法
JP5705711B2 (ja) ひび割れ検出方法
CN112284260A (zh) 一种视觉位移监测方法、设备和系统
JP2013238449A (ja) ひび割れ検出方法
CN108470338A (zh) 一种水位监测方法
JP4906609B2 (ja) 撮像装置および方法
CN106530273B (zh) 高精度fpc直线线路检测与缺陷定位方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6620477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250