JP2017050195A - Negative electrode active material for power storage device - Google Patents

Negative electrode active material for power storage device Download PDF

Info

Publication number
JP2017050195A
JP2017050195A JP2015173528A JP2015173528A JP2017050195A JP 2017050195 A JP2017050195 A JP 2017050195A JP 2015173528 A JP2015173528 A JP 2015173528A JP 2015173528 A JP2015173528 A JP 2015173528A JP 2017050195 A JP2017050195 A JP 2017050195A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
storage device
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015173528A
Other languages
Japanese (ja)
Other versions
JP6749037B2 (en
Inventor
剛 本間
Takeshi Honma
剛 本間
高行 小松
Takayuki Komatsu
高行 小松
英郎 山内
Hideo Yamauchi
英郎 山内
佐藤 史雄
Fumio Sato
史雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Nagaoka University of Technology NUC
Original Assignee
Nippon Electric Glass Co Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Nagaoka University of Technology NUC filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015173528A priority Critical patent/JP6749037B2/en
Publication of JP2017050195A publication Critical patent/JP2017050195A/en
Application granted granted Critical
Publication of JP6749037B2 publication Critical patent/JP6749037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for a power storage device, having good cycle characteristics.SOLUTION: A negative electrode active material for a power storage device is characterized to contain at least one selected from the group consisting of SiO, BO, and PO, and FeO, as a composition in terms of oxides.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池、ナトリウムイオン二次電池、ハイブリッドキャパシタ等の蓄電デバイスに用いられる負極活物質に関する。   The present invention relates to a negative electrode active material used for power storage devices such as lithium ion secondary batteries, sodium ion secondary batteries, and hybrid capacitors.

近年、携帯型電子機器や電気自動車等の普及に伴い、リチウムイオン二次電池等の蓄電デバイスの開発が進められている。蓄電デバイスに用いられる負極活物質として、理論容量の高いSiまたはSnを含有する材料が研究されている。また、同じく理論容量が高く、しかも資源的に豊富で低廉な鉄酸化物(α−Fe)の使用も提案されている(例えば特許文献1参照)。 In recent years, with the widespread use of portable electronic devices and electric vehicles, development of power storage devices such as lithium ion secondary batteries has been promoted. As a negative electrode active material used for an electricity storage device, a material containing Si or Sn having a high theoretical capacity has been studied. In addition, the use of iron oxide (α-Fe 2 O 3 ) that has a high theoretical capacity, is rich in resources, and is inexpensive has been proposed (see, for example, Patent Document 1).

特開2012−28248号公報JP 2012-28248 A

上記の負極活物質を負極に使用した場合、リチウムイオンやナトリウムイオンの挿入脱離反応の際に生じる負極活物質の膨張収縮による体積変化が大きいため、繰り返し充放電に伴う負極活物質の崩壊が激しく、サイクル特性が低下しすいという問題がある。   When the negative electrode active material described above is used for the negative electrode, the volume change due to the expansion and contraction of the negative electrode active material that occurs during the lithium ion or sodium ion insertion / desorption reaction is large. There is a problem that the cycle characteristics are severely deteriorated.

従って、本発明は、良好なサイクル特性を有する蓄電デバイス用負極活物質を提供することを目的とする。   Therefore, an object of this invention is to provide the negative electrode active material for electrical storage devices which has favorable cycling characteristics.

本発明の蓄電デバイス用負極活物質は、酸化物表記の組成として、SiO、B及びPの群から選択される少なくとも一種、並びに、Feを含有することを特徴とする。 The negative electrode active material for an electricity storage device of the present invention contains at least one selected from the group of SiO 2 , B 2 O 3 and P 2 O 5 as a composition represented by an oxide, and Fe 2 O 3. Features.

Feイオンは、本発明の負極活物質中において、リチウムイオンやナトリウムイオン等のアルカリイオンを吸蔵する前は3価で存在し、充電に伴いアルカリイオンを吸蔵した後は2価に変化する。さらに、アルカリイオンを再び放出するとFeイオンは3価に戻る。このように、Feイオンは充放電に伴うアルカリイオンの吸蔵及び放出により価数が変化するが、この際体積の膨張及び収縮を伴う。本発明の負極活物質においては、SiO、B及びPの群から選択される少なくとも一種を含有するマトリクス中に、活物質成分であるFeイオンが分散した構造が形成される。当該マトリクスは、充放電に伴うFeイオンの体積変化を緩和する役割を果たすため、サイクル特性に優れた負極活物質となる。 In the negative electrode active material of the present invention, Fe ions exist trivalent before occlusion of alkali ions such as lithium ions and sodium ions, and change to divalent after occlusion of alkali ions accompanying charging. Further, when alkali ions are released again, Fe ions return to trivalent. Thus, Fe ions change in valence due to occlusion and release of alkali ions associated with charge and discharge, but this involves expansion and contraction of volume. In the negative electrode active material of the present invention, a structure in which Fe ions as active material components are dispersed in a matrix containing at least one selected from the group of SiO 2 , B 2 O 3 and P 2 O 5 is formed. The Since the matrix plays a role of relaxing the volume change of Fe ions accompanying charge / discharge, it becomes a negative electrode active material having excellent cycle characteristics.

本発明の蓄電デバイス用負極活物質は、酸化物表記のモル%で、Fe 10〜90%、SiO+B+P 5〜85%を含有することが好ましい。なお、本発明において「○+○+・・・」は各成分の含有量の合量を意味する。 The negative electrode active material for an electricity storage device according to the present invention preferably contains 10 to 90% of Fe 2 O 3 and 5 to 85% of SiO 2 + B 2 O 3 + P 2 O 5 in terms of mol% in terms of oxide. In the present invention, “◯ + ◯ +...” Means the total content of each component.

本発明の蓄電デバイス用負極活物質において、モル比で、Fe/(SiO+B+P)が0.1〜5であることが好ましい。 In the negative electrode active material for an electricity storage device of the present invention, the molar ratio of Fe 2 O 3 / (SiO 2 + B 2 O 3 + P 2 O 5 ) is preferably 0.1 to 5.

本発明の蓄電デバイス用負極活物質は、酸化物表記のモル%で、LiO+NaO 1〜50%を含有することが好ましい。 The negative electrode active material for an electricity storage device of the present invention preferably contains 1 to 50% of Li 2 O + Na 2 O in mol% expressed as an oxide.

本発明の蓄電デバイス用負極活物質は、酸化物表記のモル%で、NaO 1〜50%を含有することが好ましい。 The negative electrode active material for an electricity storage device of the present invention preferably contains 1 to 50% of Na 2 O in mol% in oxide notation.

本発明の蓄電デバイス用負極活物質は、非晶質相を含有することが好ましい。非晶質相は、充放電に伴うFeイオンの体積変化を緩和する作用を有するため、サイクル特性を向上させることが可能となる。   The negative electrode active material for an electricity storage device of the present invention preferably contains an amorphous phase. Since the amorphous phase has a function of relaxing the volume change of Fe ions accompanying charging / discharging, it becomes possible to improve cycle characteristics.

本発明の蓄電デバイス用負極活物質は、ナトリウムイオン二次電池用として好適である。   The negative electrode active material for an electricity storage device of the present invention is suitable for a sodium ion secondary battery.

本発明によれば、良好なサイクル特性を有する蓄電デバイス用負極活物質を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the negative electrode active material for electrical storage devices which has favorable cycling characteristics.

本発明の蓄電デバイス用負極活物質は、酸化物表記の組成として、SiO、B及びPの群から選択される少なくとも一種、並びに、Feを含有することを特徴とする。具体的には、本発明の蓄電デバイス用負極活物質は、酸化物表記のモル%で、Fe 10〜90%、SiO+B+P 5〜85%を含有することが好ましい。各成分の含有量をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、特に断りのない限り「%」は「モル%」を意味する。 The negative electrode active material for an electricity storage device of the present invention contains at least one selected from the group of SiO 2 , B 2 O 3 and P 2 O 5 as a composition represented by an oxide, and Fe 2 O 3. Features. Specifically, the negative electrode active material for an electricity storage device of the present invention contains 10% to 90% of Fe 2 O 3 and 5 % to 85% of SiO 2 + B 2 O 3 + P 2 O 5 in terms of mol% of oxide. It is preferable. The reason for limiting the content of each component in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified.

Feはアルカリイオンを吸蔵及び放出するサイトとなる活物質成分である。Feの含有量は10〜90%であることが好ましく、さらに15〜85%、20〜80%、特に25〜75%であることが好ましい。Feの含有量が少なすぎると、負極活物質の単位質量当たりの放電容量が小さくなり、かつ、初回充放電時の充放電効率が低下する傾向がある。一方、Feの含有量が多すぎると、充放電時のアルカリイオンの吸蔵及び放出に伴う体積変化を緩和できずに、サイクル特性が低下する傾向がある。 Fe 2 O 3 is an active material component that serves as a site for occluding and releasing alkali ions. The content of Fe 2 O 3 is preferably 10 to 90%, more preferably 15 to 85%, 20 to 80%, and particularly preferably 25 to 75%. When the content of Fe 2 O 3 is too small, the anode active discharge capacity per unit mass of the material is reduced, and tends to decrease the charge-discharge efficiency at initial charge and discharge. On the other hand, when the content of Fe 2 O 3 is too large, unable alleviate the volume change associated with insertion and extraction of the charging and discharging time of the alkali ions, the cycle characteristics tend to be lowered.

SiO、B及びPは網目形成酸化物であり、Feにおけるアルカリイオンの吸蔵及び放出サイトを取り囲み、サイクル特性を向上させる作用がある。SiO+B+Pの含有量は5〜85%であることが好ましく、さらに10〜80%、特に15〜75%であることが好ましい。SiO+B+Pの含有量が少なすぎると、充放電時のアルカリイオンの吸蔵及び放出に伴うFeイオンの体積変化を緩和できず構造破壊を起こすため、サイクル特性が低下しやすくなる。一方、SiO+B+Pの含有量が多すぎると、相対的にFeイオンの含有量が少なくなり、負極活物質の単位質量当たりの充放電容量が小さくなる傾向がある。 SiO 2 , B 2 O 3, and P 2 O 5 are network-forming oxides that surround the alkali ion occlusion and release sites in Fe 2 O 3 and have the effect of improving cycle characteristics. The content of SiO 2 + B 2 O 3 + P 2 O 5 is preferably 5 to 85%, more preferably 10 to 80%, and particularly preferably 15 to 75%. If the content of SiO 2 + B 2 O 3 + P 2 O 5 is too small, the volume change of Fe ions that accompanies occlusion and release of alkali ions during charge / discharge cannot be mitigated, resulting in structural destruction, resulting in reduced cycle characteristics. It becomes easy. On the other hand, when the content of SiO 2 + B 2 O 3 + P 2 O 5 is too large, relatively Fe content decreases the ions tend to charge and discharge capacity per unit mass of the negative electrode active material is reduced.

SiOはサイクル特性を向上させる効果が高い。また、アルカリイオンの伝導性に優れるため、急速充放電特性を向上させる効果もある。SiOの含有量は5〜85%であることが好ましく、さらに10〜78%、15〜60%、特に18〜50%であることが好ましい。SiOの含有量が少なすぎると、上記効果が得られにくくなる。一方、SiOの含有量が多すぎると、SiP等の異種結晶が析出しやすくなり、サイクル特性が低下する傾向がある。 SiO 2 has a high effect of improving cycle characteristics. Moreover, since it is excellent in alkali ion conductivity, it also has the effect of improving rapid charge / discharge characteristics. The content of SiO 2 is preferably 5 to 85%, more preferably 10 to 78%, 15 to 60%, and particularly preferably 18 to 50%. If the content of SiO 2 is too small, the above effect is difficult to obtain. On the other hand, when the content of SiO 2 is too large, heterogeneous crystals such as SiP 2 O 7 tend to precipitate, and the cycle characteristics tend to deteriorate.

また、Pもサイクル特性を向上させる効果が高い。また、アルカリイオンの伝導性に優れるため、急速充放電特性を向上させる効果もある。Pの含有量は0〜55%であることが好ましく、さらに5〜45%、特に7〜35%であることが好ましい。Pの含有量が多すぎると、耐水性が低下しやすくなる。また、水系電極ペーストを作製した場合に望まない異種結晶が生じやすく、当該異種結晶によりPネットワークが切断されるためサイクル特性が低下しやすくなる。 P 2 O 5 is also highly effective in improving cycle characteristics. Moreover, since it is excellent in alkali ion conductivity, it also has the effect of improving rapid charge / discharge characteristics. The content of P 2 O 5 is preferably 0 to 55%, more preferably 5 to 45%, and particularly preferably 7 to 35%. When the content of P 2 O 5 is too large, the water resistance tends to lower. In addition, when a water-based electrode paste is produced, unwanted heterogeneous crystals are likely to be generated, and the P 2 O 5 network is cut by the heterogeneous crystals, so that the cycle characteristics are liable to deteriorate.

なお、Bの含有量は特に限定されないが、他成分とのバランスを考慮し、0〜50%であることが好ましく、特に3〜40%であることが好ましい。 Although not limited particularly content of B 2 O 3, in consideration of the balance with other components, it is preferable preferably from 0-50%, in particular 3-40%.

FeとSiO+B+Pの含有量のモル比(Fe/(SiO+B+P))は0.1〜5であることが好ましく、さらに0.2〜4、0.3〜3、特に0.4〜2であることが好ましい。Fe/(SiO+B+P)が小さすぎると、負極活物質の単位質量当たりの放電容量が小さくなり、かつ、初回充放電時の充放電効率が低下する傾向がある。一方、Fe/(SiO+B+P)が大きすぎると、充放電に伴うFeイオンの体積変化を緩和できなくなり、サイクル特性が低下する傾向がある。 The molar ratio of the content of Fe 2 O 3 and SiO 2 + B 2 O 3 + P 2 O 5 (Fe 2 O 3 / (SiO 2 + B 2 O 3 + P 2 O 5 )) is 0.1 to 5 More preferably, it is 0.2-4, 0.3-3, especially 0.4-2. If Fe 2 O 3 / (SiO 2 + B 2 O 3 + P 2 O 5 ) is too small, the discharge capacity per unit mass of the negative electrode active material tends to be small, and the charge / discharge efficiency during the initial charge / discharge tends to decrease. There is. On the other hand, if Fe 2 O 3 / (SiO 2 + B 2 O 3 + P 2 O 5 ) is too large, the volume change of Fe ions accompanying charge / discharge cannot be relaxed, and the cycle characteristics tend to deteriorate.

また、本発明の蓄電デバイス用負極活物質は、アルカリ金属酸化物成分としてLiOまたはNaOを含有することが好ましい。本発明の蓄電デバイス用負極活物質は、充放電にともないアルカリイオンを吸蔵及び放出するが、アルカリイオンの一部は負極活物質中に吸蔵されたまま放出されない場合がある。当該アルカリイオンは不可逆容量につながり、初回放電容量の低下の原因となる。そこで、負極活物質中にLiOまたはNaOを予め含有させることにより、初回充電時に負極活物質中にアルカリイオンを吸収させにくくし(アルカリイオンが吸蔵されたまま放出されないような状態となりにくくし)、初回放電容量を向上させることが可能となる。また、負極活物質がLiOまたはNaOを含有することにより、アルカリイオン伝導性を高め、サイクル特性を改善することが可能となる。LiO+NaOの含有量は1〜50%であることが好ましく、さらに2〜45%、3〜40%、特に4〜35%であることが好ましい。LiO+NaOの含有量が少なすぎると、上記効果が得られにくくなる。一方、LiO+NaOの含有量が多すぎると、LiPO、LiSiO、NaPO等の異種結晶が多量に形成され、サイクル特性が低下しやすくなる。なお、LiOとNaOの各成分の含有量は、それぞれ1〜50%であることが好ましく、さらに2〜45%、3〜40%、特に4〜35%であることが好ましい。 The negative electrode active material for an electricity storage device of the present invention preferably contains a Li 2 O or Na 2 O as alkali metal oxide component. The negative electrode active material for an electricity storage device of the present invention occludes and releases alkali ions with charge / discharge, but some of the alkali ions may not be released while being occluded in the negative electrode active material. The alkali ions lead to irreversible capacity and cause a decrease in initial discharge capacity. Therefore, by previously containing Li 2 O or Na 2 O in the negative electrode active material, it becomes difficult for the negative electrode active material to absorb alkali ions during the initial charge (a state in which the alkali ions are not released while being occluded). It is possible to improve the initial discharge capacity. Further, since the anode active material contains Li 2 O or Na 2 O, enhanced alkali ion conductivity, it is possible to improve the cycle characteristics. The content of Li 2 O + Na 2 O is preferably 1 to 50%, more preferably 2 to 45%, 3 to 40%, and particularly preferably 4 to 35%. When li 2 O + Na content 2 O is too small, the effect is difficult to obtain. On the other hand, if the content of Li 2 O + Na 2 O is too large, a large amount of different crystals such as Li 3 PO 4 , Li 4 SiO 4 , Na 3 PO 4 are formed, and the cycle characteristics are likely to deteriorate. The content of each component of Li 2 O and Na 2 O is preferably 1 to 50%, more preferably 2 to 45%, 3 to 40%, and particularly preferably 4 to 35%.

LiOとNaOは、単独で含有していても良く、両者を含有していても良い。なお、充放電に伴い吸蔵及び放出されるイオンがリチウムイオンである場合(即ちリチウムイオン二次電池用負極活物質である場合)はLiOを含有することが好ましく、充放電に伴い吸蔵及び放出されるイオンがナトリウムイオンである場合(即ちナトリウムイオン二次電池用負極活物質である場合)はNaOを含有することが好ましい。 Li 2 O and Na 2 O may be contained alone or may contain both. The ion to be occluded and released along with the charging and discharging (when the negative electrode active material i.e. for a lithium ion secondary battery) when a lithium ion is preferable to contain Li 2 O, occlusion due to charge and discharge and When the ions to be released are sodium ions (that is, a negative electrode active material for a sodium ion secondary battery), it is preferable to contain Na 2 O.

また、本発明の効果を損なわない範囲で、上記成分に加えてさらに種々の成分を添加することができる。例えば、ガラス化を容易にするため、MgO、CaO、SrO、BaO、ZnO、CuO、Al、Bi、GeO、ZrO、V等を合量で好ましくは0〜40%、0.1〜36%、さらには0.5〜30%含有させてもよい。 Further, various components can be added in addition to the above components within the range not impairing the effects of the present invention. For example, in order to facilitate vitrification, the total amount of MgO, CaO, SrO, BaO, ZnO, CuO, Al 2 O 3 , Bi 2 O 3 , GeO 2 , ZrO 2 , V 2 O 5 and the like is preferably 0. You may make it contain -40%, 0.1-36%, Furthermore, 0.5-30%.

本発明の蓄電デバイス用負極活物質は非晶質相を含有することが好ましい。非晶質相は、充放電に伴うFeイオンの体積変化を緩和する作用を有するため、サイクル特性を向上させることが可能となる。また、非晶質相はアルカリイオン伝導性に優れるため、急速充放電特性を向上させる働きも有する。   The negative electrode active material for an electricity storage device of the present invention preferably contains an amorphous phase. Since the amorphous phase has a function of relaxing the volume change of Fe ions accompanying charging / discharging, it becomes possible to improve cycle characteristics. Further, since the amorphous phase is excellent in alkali ion conductivity, it also has a function of improving rapid charge / discharge characteristics.

基本的に、結晶化度が小さいほど非晶質相の割合が大きくなるため好ましい。具体的には、本発明の蓄電デバイス用負極活物質の結晶化度は95%以下であることが好ましく、さらに80%以下、50%以下、30%以下、特に10%以下であることが好ましい。   Basically, the smaller the degree of crystallinity, the greater the proportion of the amorphous phase, which is preferable. Specifically, the crystallinity of the negative electrode active material for an electricity storage device of the present invention is preferably 95% or less, more preferably 80% or less, 50% or less, 30% or less, and particularly preferably 10% or less. .

結晶化度は、CuKα線を用いた粉末X線回折測定によって得られる、2θ値で10〜60°の回折線プロファイルを、結晶性回折線と非晶質ハローとにピーク分離することで求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10〜45°におけるブロードな回折線(非晶質ハロー)をピーク分離して求めた積分強度をIa、10〜60°において検出される各結晶性回折線をピーク分離して求めた積分強度の総和をIcとした場合、結晶化度Xcは次式から求められる。   The degree of crystallinity is obtained by separating a diffraction line profile of 10 to 60 ° with 2θ value obtained by powder X-ray diffraction measurement using CuKα ray into a crystalline diffraction line and an amorphous halo. . Specifically, the integrated intensity obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 45 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile is Ia, 10 When the total integrated intensity obtained by peak separation of each crystalline diffraction line detected at ˜60 ° is Ic, the crystallinity Xc can be obtained from the following equation.

Xc=[Ic/(Ic+Ia)]×100(%)     Xc = [Ic / (Ic + Ia)] × 100 (%)

本発明の蓄電デバイス用負極活物質が粉末状である場合、平均粒子径は0.1〜20μmであることが好ましく、さらに0.2〜15μm、0.3〜10μm、特に0.5〜5μmであることが好ましい。また最大粒子径は150μm以下であることが好ましく、さらに100μm以下、75μm以下、特に55μm以下であることが好ましい。負極活物質の平均粒子径や最大粒子径が大きすぎると、充放電した際にアルカリイオンの吸蔵及び放出に伴う負極活物質の体積変化を緩和できず、集電体から剥れやすくなり、サイクル特性が著しく低下する傾向がある。一方、負極活物質の平均粒子径が小さすぎると、電極形成用のペーストを製造するためにペースト化した際に粉末の分散状態が悪化し、均質な電極を製造することが困難になる傾向がある。また、比表面積が大きくなりすぎて、電極形成用のペーストを製造する際に負極活物質粉末の分散状態に劣るため、多量の結着剤や溶剤が必要となる。さらに、電極形成用ペーストの塗布性に劣り、均一な厚みを有する負極を形成しにくくなる。   When the negative electrode active material for an electricity storage device of the present invention is in a powder form, the average particle size is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, 0.3 to 10 μm, particularly 0.5 to 5 μm. It is preferable that The maximum particle size is preferably 150 μm or less, more preferably 100 μm or less, 75 μm or less, and particularly preferably 55 μm or less. If the average particle size or the maximum particle size of the negative electrode active material is too large, the volume change of the negative electrode active material accompanying occlusion and release of alkali ions during charge / discharge cannot be mitigated, and it becomes easy to peel off from the current collector. There is a tendency for the properties to decrease significantly. On the other hand, if the average particle size of the negative electrode active material is too small, the dispersion state of the powder tends to deteriorate when it is made into a paste for producing an electrode forming paste, and it tends to be difficult to produce a homogeneous electrode. is there. In addition, since the specific surface area becomes too large and the dispersion of the negative electrode active material powder is inferior when producing a paste for forming an electrode, a large amount of a binder and a solvent are required. Furthermore, it is inferior to the applicability of the electrode forming paste, and it becomes difficult to form a negative electrode having a uniform thickness.

ここで、平均粒子径と最大粒子径は、それぞれ一次粒子のメジアン径でD50(50%体積累積径)とD90(90%体積累積径)を示し、レーザー回折式粒度分布測定装置により測定された値をいう。   Here, the average particle size and the maximum particle size are D50 (50% volume cumulative diameter) and D90 (90% volume cumulative diameter), respectively, as the median diameter of primary particles, and were measured by a laser diffraction particle size distribution analyzer. Value.

また、粉末状の負極活物質のBET法による比表面積は0.1〜20m/gであることが好ましく、さらに0.15〜15m/g、特に0.2〜10m/gであることが好ましい。負極活物質の比表面積が小さすぎると、アルカリイオンの吸蔵及び放出が迅速に行えず、充放電時間が長くなる傾向がある。一方、負極活物質の比表面積が大きすぎると、電極形成用のペーストを製造する際、分散状態に劣り、多量の結着剤や溶剤が必要となる傾向がある。また、電極形成用ペーストの塗布性に劣り、均一な厚みを有する負極を形成しにくくなる。 Moreover, it is preferable that the specific surface area by BET method of a powdered negative electrode active material is 0.1-20 m < 2 > / g, Furthermore, it is 0.15-15 m < 2 > / g, Especially it is 0.2-10 m < 2 > / g. It is preferable. If the specific surface area of the negative electrode active material is too small, alkali ions cannot be absorbed and released quickly, and the charge / discharge time tends to be long. On the other hand, when the specific surface area of the negative electrode active material is too large, when the paste for forming an electrode is produced, the dispersion state is inferior, and a large amount of binder and solvent tend to be required. Moreover, it is inferior to the applicability | paintability of the electrode formation paste, and it becomes difficult to form the negative electrode which has uniform thickness.

なお、本発明の蓄電デバイス用負極活物質を用いた蓄電デバイスを充放電した後は、リチウム酸化物、ナトリウム酸化物、鉄とリチウムの複合酸化物、鉄とナトリウムの複合酸化物または金属鉄を含有する場合がある。例えば、本発明の負極活物質を用いた蓄電デバイスの放電完了時において、蓄電デバイス用負極活物質は、酸化物表記のモル%で、Fe 10〜90%、SiO+B+P 5〜85%、LiO+NaO 1〜80%を含有する。ここで「放電完了時」とは、本発明の蓄電デバイス用負極活物質を含む蓄電デバイス用負極材料を負極に用い、正極に金属ナトリウム、電解液に1M NaPF溶液/EC:DEC=1:1(EC=エチレンカーボネート、DEC=ジエチルカーボネート、容積比)を用いた試験電池において0.5Vまで0.2mAの定電流で充電し、その後2.5Vまで放電した状態を指す。 In addition, after charging / discharging the electricity storage device using the negative electrode active material for the electricity storage device of the present invention, lithium oxide, sodium oxide, iron-lithium composite oxide, iron-sodium composite oxide, or metallic iron May contain. For example, when the discharge of the electricity storage device using the negative electrode active material of the present invention is completed, the negative electrode active material for the electricity storage device is mol% in oxide notation, Fe 2 O 3 10 to 90%, SiO 2 + B 2 O 3 + P 2 O 5 5~85%, containing 1~80% Li 2 O + Na 2 O. Here, “when discharging is completed” means that the negative electrode material for an electricity storage device including the negative electrode active material for an electricity storage device of the present invention is used for the negative electrode, metallic sodium as the positive electrode, and 1M NaPF 6 solution / EC: DEC = 1 as the electrolytic solution. In a test battery using 1 (EC = ethylene carbonate, DEC = diethyl carbonate, volume ratio), it is charged at a constant current of 0.2 mA up to 0.5 V and then discharged to 2.5 V.

本発明の蓄電デバイス用負極活物質は、例えば原料粉末を加熱溶融してガラス化し、その後必要に応じて粉砕、分級することにより製造することができる。粉砕及び分級には、乳鉢、ボールミル、振動ボールミル、衛星ボールミル、遊星ボールミル、ジェットミル、篩、遠心分離機、空気分級機等が用いられる。   The negative electrode active material for an electricity storage device of the present invention can be produced, for example, by heating and melting raw material powder to vitrify, and then pulverizing and classifying as necessary. For pulverization and classification, a mortar, ball mill, vibrating ball mill, satellite ball mill, planetary ball mill, jet mill, sieve, centrifuge, air classifier, or the like is used.

本発明の蓄電デバイス用負極活物質には結着剤や導電助剤等を添加することにより、蓄電デバイス用負極材料として使用される。結着剤としては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロース等のセルロース誘導体、ポリビニルアルコール等の水溶性高分子;ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;ポリフッ化ビニリデン等が挙げられる。   The negative electrode active material for an electricity storage device of the present invention is used as an anode material for an electricity storage device by adding a binder, a conductive auxiliary agent or the like. As binders, cellulose derivatives such as carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, ethylcellulose, hydroxymethylcellulose, water-soluble polymers such as polyvinyl alcohol; polyimide resins, phenol resins, epoxy resins, urea resins, Thermosetting resins such as melamine resin, unsaturated polyester resin and polyurethane; and polyvinylidene fluoride.

導電助剤としては、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、グラファイト等のカーボン粉末、炭素繊維等が挙げられる。   Examples of the conductive assistant include highly conductive carbon black such as acetylene black and ketjen black, carbon powder such as graphite, and carbon fiber.

蓄電デバイス用負極材料を、集電体としての役割を果たす金属箔等の表面に塗布することで蓄電デバイス用負極として用いることができる。   The negative electrode material for an electricity storage device can be used as an anode for an electricity storage device by applying it to the surface of a metal foil or the like that serves as a current collector.

水系電解質は、水に電解質塩を溶解してなるものである。電解質塩としては、正極から供給されるアルカリイオンがリチウムである場合、LiNO、LiOH、LiF、LiCl、LiBr、LiI、LiClO、LiSO、CHCOOLi、LiBF、LiPF等が挙げられ、ナトリウムである場合、NaNO、NaSO、NaOH、NaCl、CHCOONa等が挙げられ、カリウムイオンである場合、KNO、KOH、KF、KCl、KBr、KI、KClO、KSO、CHCOOK、KBF、KPF等が挙げられる。これらの電解質塩は単独で使用してもよいし二種類以上を混合して用いてもよい。電解質塩濃度は、一般的には0.1M以上飽和濃度以下の範囲内で適宜調整される。 The aqueous electrolyte is obtained by dissolving an electrolyte salt in water. Examples of the electrolyte salt include LiNO 3 , LiOH, LiF, LiCl, LiBr, LiI, LiClO 4 , Li 2 SO 4 , CH 3 COOLi, LiBF 4 , LiPF 6, and the like when the alkali ion supplied from the positive electrode is lithium. In the case of sodium, NaNO 3 , Na 2 SO 4 , NaOH, NaCl, CH 3 COONa and the like are mentioned. In the case of potassium ion, KNO 3 , KOH, KF, KCl, KBr, KI, KClO 4 , K 2 SO 4, CH 3 COOK , KBF 4, KPF 6 , and the like. These electrolyte salts may be used alone or in combination of two or more. In general, the electrolyte salt concentration is appropriately adjusted within a range of 0.1 M or more and a saturation concentration or less.

非水電解質は、非水溶媒である有機溶媒及び/またはイオン液体と、当該非水溶媒に溶解した電解質塩とを含む。以下に、有機溶媒、イオン液体、電解質塩の具体例を列挙する。なお、下記の化合物名の後の[ ]内は略称を示す。   The non-aqueous electrolyte includes an organic solvent and / or ionic liquid that is a non-aqueous solvent, and an electrolyte salt dissolved in the non-aqueous solvent. Specific examples of the organic solvent, ionic liquid, and electrolyte salt are listed below. In addition, an abbreviation is shown in [] after the following compound name.

有機溶媒としては、プロピレンカーボネート[PC]、エチレンカーボネート[EC]、1,2−ジメトキシエタン[DME]、γ−ブチロラクトン[GBL]、テトラヒドロフラン[THF]、2−メチルテトラヒドロフラン[2−MeHF]、1,3−ジオキソラン、スルホラン、アセトニトリル[AN]、ジエチルカーボネート[DEC]、ジメチルカーボネート[DMC]、メチルエチルカーボネート[MEC]、ジプロピルカーボネート[DPC]等が挙げられる。これらの有機溶媒は単独で使用してもよいし、二種類以上を混合して用いてもよい。なかでも、低温特性に優れるプロピレンカーボネートが好ましい。   Examples of the organic solvent include propylene carbonate [PC], ethylene carbonate [EC], 1,2-dimethoxyethane [DME], γ-butyrolactone [GBL], tetrahydrofuran [THF], 2-methyltetrahydrofuran [2-MeHF], 1 , 3-dioxolane, sulfolane, acetonitrile [AN], diethyl carbonate [DEC], dimethyl carbonate [DMC], methyl ethyl carbonate [MEC], dipropyl carbonate [DPC] and the like. These organic solvents may be used alone or in combination of two or more. Of these, propylene carbonate having excellent low-temperature characteristics is preferable.

イオン液体としては、N,N,N−トリメチル−N−プロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド[TMPA−TFSI]、N−メチル−N−プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド[PP13−TFSI]、N−メチル−N−プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド[P13−TFSI]、N−メチル−N−ブチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド[P14−TFSI]等の脂肪族4級アンモニウム塩;1−メチル−3−エチルイミダゾリウムテトラフルオロボレート[EMIBF4]、1−メチル−3−エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[EMITFSI]、1−アリル−3−エチルイミダゾリウムブロマイド[AEImBr]、1−アリル−3−エチルイミダゾリウムテトラフルオロボラート[AEImBF4]、1−アリル−3−エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[AEImTFSI]、1,3−ジアリルイミダゾリウムブロマイド[AAImBr]、1,3−ジアリルイミダゾリウムテトラフルオロボラート[AAImBF4]、1,3−ジアリルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[AAImTFSI]等のアルキルイミダゾリウム4級塩等が挙げられる。   Examples of ionic liquids include N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide [TMPA-TFSI], N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide [PP13- TFSI], N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide [P13-TFSI], N-methyl-N-butylpyrrolidinium bis (trifluoromethanesulfonyl) imide [P14-TFSI], etc. Aliphatic quaternary ammonium salts; 1-methyl-3-ethylimidazolium tetrafluoroborate [EMIBF4], 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide [EMITFSI], 1-allyl-3-ethyli Dazolium bromide [AEImBr], 1-allyl-3-ethylimidazolium tetrafluoroborate [AEImBF4], 1-allyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide [AEImTFSI], 1,3-diallylimidazolo Alkyl imidazolium quaternary salts such as lithium bromide [AAImBr], 1,3-diallylimidazolium tetrafluoroborate [AAImBF4], 1,3-diallylimidazolium bis (trifluoromethanesulfonyl) imide [AAImTFSI] .

電解質塩としては、PF 、BF 、(CFSO[TFSI]、CFSO [TFS]、(CSO[BETI]、ClO 、AsF 、SbF 、B(C [BOB]、BFOCOOC(CF [B(HHIB)]等のリチウム塩、ナトリウム塩、カリウム塩が挙げられる。これらの電解質塩は単独で使用してもよいし二種類以上を混合して用いてもよい。特に、安価であるPF 、BF のリチウム塩、ナトリウム塩、カリウム塩が好ましい。電解質塩濃度は、一般的には0.5〜3M以下の範囲内で適宜調整される。 As the electrolyte salt, PF 6 -, BF 4 - , (CF 3 SO 2) 2 N - [TFSI], CF 3 SO 3 - [TFS], (C 2 F 5 SO 2) 2 N - [BETI], ClO 4 -, AsF 6 -, SbF 6 -, B (C 2 O 4) 2 - [BOB], BF 2 OCOOC (CF 3) 3 - lithium salts such as [B (HHIB)], sodium salt, potassium salt Is mentioned. These electrolyte salts may be used alone or in combination of two or more. In particular, inexpensive lithium salts, sodium salts, and potassium salts of PF 6 and BF 4 are preferable. In general, the electrolyte salt concentration is appropriately adjusted within a range of 0.5 to 3 M or less.

なお、非水電解質には、ビニレンカーボネート[VC]、ビニレンアセテート[VA]、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、カテコールカーボネート等の添加剤を含有してもよい。これらの添加剤は、負極活物質表面に保護膜(LiCOx等)を形成する役割を有する。添加剤の量は、非水電解質100質量部に対して0.1〜3質量部であることが好ましく、特に0.5〜1質量部であることが好ましい。添加剤の量が少なすぎると、上記効果が得られにくくなる。一方、添加剤の量が多すぎても、さらなる効果が得られにくい。   In addition, you may contain additives, such as vinylene carbonate [VC], vinylene acetate [VA], vinylene butyrate, vinylene hexanate, vinylene crotonate, catechol carbonate, in a nonaqueous electrolyte. These additives have a role of forming a protective film (such as LiCOx) on the surface of the negative electrode active material. The amount of the additive is preferably 0.1 to 3 parts by mass, and particularly preferably 0.5 to 1 part by mass with respect to 100 parts by mass of the nonaqueous electrolyte. If the amount of the additive is too small, it is difficult to obtain the above effect. On the other hand, even if the amount of the additive is too large, it is difficult to obtain further effects.

固体電解質としては、正極から負極に供給されるアルカリイオンがリチウムイオンである場合、リチウムβ−アルミナ、リチウムβ”−アルミナ、LiS−Pガラスまたは結晶化ガラス、Li1+xAlGe2−x(PO結晶または結晶化ガラス、Li14Al0.4(Ge2−xTi1.6(PO結晶または結晶化ガラス、Li3xLa2/3−xTiO結晶または結晶化ガラス、Li0.8La0.6Zr(PO結晶または結晶化ガラス、Li1+xTi2−xAl(PO結晶または結晶化ガラス、Li1+x+yTi2−xAlSi(PO3−y結晶または結晶化ガラス、LiTiZr2−x(PO結晶または結晶化ガラス等が挙げられ、ナトリウムイオンである場合、ナトリウムβ−アルミナ、ナトリウムβ”−アルミナ、Na1+xZrSi3−x12結晶または結晶化ガラス、Na3.12SiZr1.880.12PO12結晶または結晶化ガラス、Na5.9Sm0.6Al0.10.3Si3.6結晶化ガラス等が挙げられ、カリウムイオンである場合、カリウムβ−アルミナ、カリウムβ”−アルミナ等が挙げられる。 As the solid electrolyte, when the alkali ions supplied from the positive electrode to the negative electrode are lithium ions, lithium β-alumina, lithium β ″ -alumina, Li 2 S—P 2 S 5 glass or crystallized glass, Li 1 + x Al x Ge 2−x (PO 4 ) 3 crystal or crystallized glass, Li 14 Al 0.4 (Ge 2−x Ti x ) 1.6 (PO 4 ) 3 crystal or crystallized glass, Li 3x La 2/3 x TiO 3 crystal or crystallized glass, Li 0.8 La 0.6 Zr 2 (PO 4 ) 3 crystal or crystallized glass, Li 1 + x Ti 2-x Al x (PO 4 ) 3 crystal or crystallized glass, Li 1 + x + y Ti 2- x Al x Si y (PO 4) 3-y crystal or crystalline glass, LiTi x Zr 2-x ( PO 4) 3 crystal or crystallization moth It scans and the like, when a sodium ion, sodium β- alumina, sodium beta "- alumina, Na 1 + x Zr 2 Si x P 3-x O 12 crystalline or crystallized glass, Na 3.12 Si 2 Zr 1. 88 Y 0.12 PO 12 crystal or crystallized glass, Na 5.9 Sm 0.6 Al 0.1 P 0.3 Si 3.6 O 9 crystallized glass, and the like. β-alumina, potassium β ″ -alumina and the like can be mentioned.

上記電解質のうち、非水系電解質及び固体電解質は電位窓が広いため好ましい。特に、アルカリイオン伝導性を有する固体電解質は電位窓が広いため、充放電時における電解質の分解に伴うガスの発生がほとんど生じることがなく、安全性に優れた蓄電デバイスとなる。   Of the above electrolytes, non-aqueous electrolytes and solid electrolytes are preferred because of their wide potential windows. In particular, since the solid electrolyte having alkali ion conductivity has a wide potential window, the generation of gas accompanying the decomposition of the electrolyte during charging and discharging hardly occurs, and the power storage device is excellent in safety.

以上、主に蓄電デバイスがリチウムイオン二次電池またはナトリウムイオン二次電池の場合について説明してきたが、本発明の蓄電デバイス用負極活物質はこれに限定されるものではなく、他の非水系二次電池や、水系電解液を用いた水系二次電池、固体電解質を用いた全固体電池、さらには、リチウムイオン二次電池またはナトリウムイオン二次電池に用いられる負極活物質と非水系電気二重層キャパシタ用の正極材料とを組み合わせたハイブリットキャパシタ等にも適用できる。   As described above, the case where the power storage device is mainly a lithium ion secondary battery or a sodium ion secondary battery has been described. However, the negative electrode active material for the power storage device of the present invention is not limited to this, and other non-aqueous secondary batteries. Secondary battery, aqueous secondary battery using aqueous electrolyte, all solid battery using solid electrolyte, and negative electrode active material and non-aqueous electric double layer used for lithium ion secondary battery or sodium ion secondary battery The present invention can also be applied to a hybrid capacitor combined with a positive electrode material for a capacitor.

ハイブリットキャパシタであるリチウムイオンキャパシタ及びナトリウムイオンキャパシタは、正極と負極の充放電原理が異なる非対称キャパシタの一種である。リチウムイオンキャパシタは、リチウムイオン二次電池用の負極と電気二重層キャパシタ用の正極を組み合わせた構造を有している。ナトリウムイオンキャパシタは、ナトリウムイオン二次電池用の負極と電気二重層キャパシタ用の正極を組み合わせた構造を有している。リチウムイオンキャパシタ及びナトリウムイオンキャパシタの正極には、活性炭、ポリアセン、メソフェーズカーボン等の高比表面積の炭素質粉末等からなる正極活物質が用いられる。一方、負極には、本発明の蓄電デバイス用負極活物質を含む負極材料を用いることができる。ここで、正極は表面に電気二重層を形成し、物理的な作用(静電気作用)を利用して充放電するのに対し、負極はリチウムイオン二次電池またはナトリウムイオン二次電池と同様に、リチウムイオンまたはナトリウムイオンの化学反応(吸蔵及び放出)により充放電する。   A lithium ion capacitor and a sodium ion capacitor, which are hybrid capacitors, are a kind of asymmetric capacitors having different positive and negative charge / discharge principles. The lithium ion capacitor has a structure in which a negative electrode for a lithium ion secondary battery and a positive electrode for an electric double layer capacitor are combined. The sodium ion capacitor has a structure in which a negative electrode for a sodium ion secondary battery and a positive electrode for an electric double layer capacitor are combined. A positive electrode active material made of a carbonaceous powder having a high specific surface area such as activated carbon, polyacene, or mesophase carbon is used for the positive electrode of the lithium ion capacitor and the sodium ion capacitor. On the other hand, a negative electrode material containing the negative electrode active material for an electricity storage device of the present invention can be used for the negative electrode. Here, the positive electrode forms an electric double layer on the surface and is charged and discharged by utilizing a physical action (electrostatic action), whereas the negative electrode is similar to a lithium ion secondary battery or a sodium ion secondary battery, It is charged and discharged by a chemical reaction (occlusion and release) of lithium ions or sodium ions.

なお、リチウムイオンキャパシタまたはナトリウムイオンキャパシタに本発明の負極活物質を使用する場合、負極活物質には予めリチウムイオンまたはナトリウムイオンと電子を吸蔵する必要がある。その手段は特に限定されず、例えば、リチウムイオンやナトリウムイオンと電子の供給源である金属リチウム極や金属ナトリウム極をキャパシタセル内に配置し、本発明の負極活物質を含む負極と直接または導電体を通じて接触させてもよいし、別のセルで本発明の負極活物質に予めリチウムイオンやナトリウムイオンと電子を吸蔵させたうえで、キャパシタセルに組み込んでもよい。   In addition, when using the negative electrode active material of this invention for a lithium ion capacitor or a sodium ion capacitor, it is necessary to occlude lithium ion or sodium ion and an electron beforehand in a negative electrode active material. The means is not particularly limited. For example, a metal lithium electrode or a metal sodium electrode, which is a supply source of lithium ions or sodium ions and electrons, is arranged in the capacitor cell, and directly or electrically conductive with the negative electrode containing the negative electrode active material of the present invention. The negative electrode active material of the present invention may be preliminarily occluded with lithium ions, sodium ions, and electrons in another cell and then incorporated into a capacitor cell.

以下、本発明の蓄電デバイス用負極活物質の一例として、ナトリウムイオン二次電池に適用した実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, examples applied to a sodium ion secondary battery will be described as an example of the negative electrode active material for an electricity storage device of the present invention, but the present invention is not limited to these examples.

表1及び2は、実施例1〜10及び比較例を示す。   Tables 1 and 2 show Examples 1 to 10 and Comparative Examples.

Figure 2017050195
Figure 2017050195

Figure 2017050195
Figure 2017050195

(1)負極活物質の作製
表1及び2に示す組成となるように、各種酸化物、炭酸塩等を用いて原料粉末を調製した。原料粉末を白金ルツボに投入し、電気炉を用いて大気中にて1500℃、60分間の溶融を行い、ガラス化した。
(1) Preparation of negative electrode active material Raw material powders were prepared using various oxides, carbonates and the like so as to have the compositions shown in Tables 1 and 2. The raw material powder was put into a platinum crucible and melted at 1500 ° C. for 60 minutes in the atmosphere using an electric furnace to vitrify it.

次いで、溶融ガラスを一対の回転ローラー間に流し出し、急冷しながら成形し、厚み0.1〜2mmのフィルム状のサンプルを得た。このフィルム状サンプルをボールミルで粉砕した後、目開き20μmの篩に通過させ、平均粒子径3μmのガラス粉末を得た。   Next, the molten glass was poured out between a pair of rotating rollers and molded while rapidly cooling to obtain a film-like sample having a thickness of 0.1 to 2 mm. This film sample was pulverized by a ball mill and then passed through a sieve having an opening of 20 μm to obtain a glass powder having an average particle diameter of 3 μm.

上記で得られたガラス粉末85質量部に対して、導電助剤としてアセチレンブラック(デンカブラック)15質量部を添加し、遊星ボールミルを用いて800rpmで40分間混合することにより、炭素で被覆された負極活物質粉末を得た。   15 parts by weight of acetylene black (Denka Black) was added as a conductive aid to 85 parts by weight of the glass powder obtained above, and the mixture was coated with carbon by mixing at 800 rpm for 40 minutes using a planetary ball mill. A negative electrode active material powder was obtained.

得られた負極活物質粉末について、粉末X線回折測定を行うことにより構造を同定した。結果を表1及び2に示す。実施例1〜3については、表1に記載の結晶由来の結晶性回折線と非晶質ハローがそれぞれ確認された。また、実施例4〜10については、非晶質ハローが検出され、結晶性回折線は検出されなかった。一方、比較例1の粉末については、非晶質ハローが検出されず、結晶性回折線のみが検出された。   About the obtained negative electrode active material powder, the structure was identified by performing powder X-ray-diffraction measurement. The results are shown in Tables 1 and 2. For Examples 1 to 3, crystalline diffraction lines and amorphous halos derived from the crystals shown in Table 1 were confirmed. Moreover, about Examples 4-10, the amorphous halo was detected and the crystalline diffraction line was not detected. On the other hand, for the powder of Comparative Example 1, no amorphous halo was detected, and only crystalline diffraction lines were detected.

(2)ナトリウムイオン二次電池用負極の作製
上記で得られた負極活物質に対し、導電助剤として導電性カーボンブラック(SuperC65、Timcal社製)、結着剤としてポリフッ化ビニリデンを、粉末:導電助剤:結着剤=80:5:15(質量比)となるように秤量し、N−メチルピロリドンに分散した後、自転・公転ミキサーで十分に撹拌してスラリー(負極材料)を得た。次に、隙間125μmのドクターブレードを用いて、得られたスラリーを負極集電体である厚さ20μmの銅箔上にコートし、70℃の乾燥機で真空乾燥後、一対の回転ローラー間に通してプレスすることにより電極シートを得た。この電極シートを電極打ち抜き機で直径11mmに打ち抜き、温度150℃にて8時間、減圧下で乾燥させて円形の負極を得た。
(2) Production of negative electrode for sodium ion secondary battery For the negative electrode active material obtained above, conductive carbon black (SuperC65, manufactured by Timcal) as a conductive auxiliary agent, polyvinylidene fluoride as a binder, powder: Conductive aid: binder = 80: 5: 15 (mass ratio), weighed to be dispersed in N-methylpyrrolidone, and then sufficiently stirred with a rotation / revolution mixer to obtain a slurry (negative electrode material) It was. Next, using a doctor blade with a gap of 125 μm, the obtained slurry was coated on a copper foil with a thickness of 20 μm as a negative electrode current collector, vacuum-dried with a dryer at 70 ° C., and then between a pair of rotating rollers. An electrode sheet was obtained by pressing through. This electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and dried under reduced pressure at a temperature of 150 ° C. for 8 hours to obtain a circular negative electrode.

(3)試験電池(ナトリウムイオン二次電池)の作製
上記で得られた負極を、銅箔面を下に向けてコインセルの下蓋に載置し、その上に70℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜からなるセパレータ、及び、対極である金属ナトリウムを積層し、試験電池を作製した。電解液としては、1M NaPF溶液/EC:DEC=1:1(容積比)を用いた。なお試験電池の組み立ては露点温度−70℃以下の環境で行った。
(3) Production of test battery (sodium ion secondary battery) The negative electrode obtained above was placed on the lower lid of the coin cell with the copper foil surface facing downward, and dried under reduced pressure at 70 ° C. for 8 hours. A test battery was fabricated by laminating a separator made of a polypropylene porous membrane with a diameter of 16 mm and metal sodium as a counter electrode. As the electrolytic solution, 1M NaPF 6 solution / EC: DEC = 1: 1 (volume ratio) was used. The test battery was assembled in an environment with a dew point temperature of −70 ° C. or lower.

(4)充放電試験
上記試験電池に対し、30℃で開回路電圧から0.5VまでCC(定電流)充電(負極活物質へのナトリウムイオン吸蔵)を行った。次に、0.5Vから2.5VまでCC放電(負極活物質からのナトリウムイオン放出)させ、単位質量当たりの負極活物質から放電された電気量(初回放電容量)を求めた。Cレートは0.1Cとした。以降、同様の条件で充放電サイクルを繰り返した。表1及び2に充放電特性の結果を示す。なお、放電容量維持率は、初回放電容量に対する50サイクル目の放電容量の割合で評価した。
(4) Charge / Discharge Test The test battery was subjected to CC (constant current) charge (sodium ion occlusion in the negative electrode active material) at 30 ° C. from an open circuit voltage to 0.5V. Next, CC discharge (sodium ion release from the negative electrode active material) was performed from 0.5 V to 2.5 V, and the amount of electricity discharged from the negative electrode active material per unit mass (initial discharge capacity) was determined. The C rate was 0.1C. Thereafter, the charge / discharge cycle was repeated under the same conditions. Tables 1 and 2 show the results of the charge / discharge characteristics. The discharge capacity retention rate was evaluated by the ratio of the discharge capacity at the 50th cycle to the initial discharge capacity.

表1及び2に示すように、実施例1〜10における初回放電容量は80.9mAh/g以上、放電容量維持率は92%以上と良好であった。一方、比較例では、初回放電容量は332mAh/gと高かったものの、放電容量維持率が48%と低かった。   As shown in Tables 1 and 2, the initial discharge capacities in Examples 1 to 10 were 80.9 mAh / g or more, and the discharge capacity retention rate was 92% or more. On the other hand, in the comparative example, the initial discharge capacity was as high as 332 mAh / g, but the discharge capacity retention rate was as low as 48%.

本発明の蓄電デバイス用負極活物質は、携帯型電子機器、電気自動車、電気工具、バックアップ用非常電源等に用いられるリチウムイオン二次電池、ナトリウムイオン二次電池、ハイブリッドキャパシタ等の蓄電デバイスにおける負極構成材料として好適である。   The negative electrode active material for an electricity storage device of the present invention is a negative electrode in an electricity storage device such as a lithium ion secondary battery, a sodium ion secondary battery, and a hybrid capacitor used for portable electronic devices, electric vehicles, electric tools, backup emergency power supplies, etc. Suitable as a constituent material.

Claims (7)

酸化物表記の組成として、SiO、B及びPの群から選択される少なくとも一種、並びに、Feを含有することを特徴とする蓄電デバイス用負極活物質。 A negative electrode active material for an electricity storage device, comprising at least one selected from the group of SiO 2 , B 2 O 3 and P 2 O 5 and Fe 2 O 3 as a composition represented by an oxide. 酸化物表記のモル%で、Fe 10〜90%、SiO+B+P 5〜85%を含有することを特徴とする請求項1に記載の蓄電デバイス用負極活物質。 2. The negative electrode active for an electricity storage device according to claim 1, comprising 10% to 90% of Fe 2 O 3 and 5 % to 85% of SiO 2 + B 2 O 3 + P 2 O 5 in terms of mol% of oxide. material. モル比で、Fe/(SiO+B+P)が0.1〜5であることを特徴とする請求項1または2に記載の蓄電デバイス用負極活物質。 The negative electrode active material for an electricity storage device according to claim 1, wherein Fe 2 O 3 / (SiO 2 + B 2 O 3 + P 2 O 5 ) is 0.1 to 5 in terms of a molar ratio. 酸化物表記のモル%で、LiO+NaO 1〜50%を含有することを特徴とする請求項1〜3のいずれか一項に記載の蓄電デバイス用負極活物質。 Negative electrode active material for an electricity storage device according to any one of claims 1 to 3 in mole percent on the oxide notation characterized by containing Li 2 O + Na 2 O 1~50 %. 酸化物表記のモル%で、NaO 1〜50%を含有することを特徴とする請求項1〜3のいずれか一項に記載の蓄電デバイス用負極活物質。 Negative electrode active material for an electricity storage device according to any one of claims 1 to 3 in mole percent on the oxide notation characterized by containing Na 2 O 1 to 50%. 非晶質相を含有することを特徴とする請求項1〜5のいずれか一項に記載の蓄電デバイス用負極活物質。   The negative electrode active material for an electricity storage device according to claim 1, comprising an amorphous phase. ナトリウムイオン二次電池用であることを特徴とする請求項1〜6のいずれか一項に記載の蓄電デバイス用負極活物質。   It is for sodium ion secondary batteries, The negative electrode active material for electrical storage devices as described in any one of Claims 1-6 characterized by the above-mentioned.
JP2015173528A 2015-09-03 2015-09-03 Negative electrode active material for power storage devices Active JP6749037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173528A JP6749037B2 (en) 2015-09-03 2015-09-03 Negative electrode active material for power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173528A JP6749037B2 (en) 2015-09-03 2015-09-03 Negative electrode active material for power storage devices

Publications (2)

Publication Number Publication Date
JP2017050195A true JP2017050195A (en) 2017-03-09
JP6749037B2 JP6749037B2 (en) 2020-09-02

Family

ID=58279916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173528A Active JP6749037B2 (en) 2015-09-03 2015-09-03 Negative electrode active material for power storage devices

Country Status (1)

Country Link
JP (1) JP6749037B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045256A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2020045257A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2020045255A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary battery
JP2020077615A (en) * 2018-09-20 2020-05-21 国立大学法人長岡技術科学大学 Negative electrode active material for sodium ion secondary battery and manufacturing method thereof
WO2021187019A1 (en) * 2020-03-16 2021-09-23 株式会社クオルテック Battery and method for manufacturing said battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063745A1 (en) * 2010-11-08 2012-05-18 独立行政法人産業技術総合研究所 Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
JP2014022190A (en) * 2012-07-18 2014-02-03 Shinshu Univ Method for manufacturing negative electrode active material and negative electrode active material
JP2015035290A (en) * 2013-08-08 2015-02-19 日本電気硝子株式会社 Negative electrode active material for electric power storage device, and method for manufacturing the same
JP2015198000A (en) * 2014-04-01 2015-11-09 日本電気硝子株式会社 Negative electrode active material for power storage device, negative electrode material for power storage device, and power storage device
WO2017022460A1 (en) * 2015-08-04 2017-02-09 日本電気硝子株式会社 Negative electrode active material for power storage device
WO2017029945A1 (en) * 2015-08-20 2017-02-23 日本電気硝子株式会社 Negative electrode active material for power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063745A1 (en) * 2010-11-08 2012-05-18 独立行政法人産業技術総合研究所 Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
JP2014022190A (en) * 2012-07-18 2014-02-03 Shinshu Univ Method for manufacturing negative electrode active material and negative electrode active material
JP2015035290A (en) * 2013-08-08 2015-02-19 日本電気硝子株式会社 Negative electrode active material for electric power storage device, and method for manufacturing the same
JP2015198000A (en) * 2014-04-01 2015-11-09 日本電気硝子株式会社 Negative electrode active material for power storage device, negative electrode material for power storage device, and power storage device
WO2017022460A1 (en) * 2015-08-04 2017-02-09 日本電気硝子株式会社 Negative electrode active material for power storage device
WO2017029945A1 (en) * 2015-08-20 2017-02-23 日本電気硝子株式会社 Negative electrode active material for power storage device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020045257A1 (en) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
WO2020045255A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary battery
JPWO2020045255A1 (en) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JPWO2020045256A1 (en) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
CN112119519A (en) * 2018-08-30 2020-12-22 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
CN112119520A (en) * 2018-08-30 2020-12-22 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
CN112136234A (en) * 2018-08-30 2020-12-25 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
US20210167367A1 (en) * 2018-08-30 2021-06-03 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for secondary batteries and secondary battery
WO2020045256A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2020045257A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
JP7417902B2 (en) 2018-08-30 2024-01-19 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JP7417903B2 (en) 2018-08-30 2024-01-19 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JP7336690B2 (en) 2018-08-30 2023-09-01 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary battery and secondary battery
JP7405342B2 (en) 2018-09-20 2023-12-26 国立大学法人長岡技術科学大学 Negative electrode active material for sodium ion secondary battery and method for producing the same
JP2020077615A (en) * 2018-09-20 2020-05-21 国立大学法人長岡技術科学大学 Negative electrode active material for sodium ion secondary battery and manufacturing method thereof
JP2022007986A (en) * 2020-03-16 2022-01-13 株式会社クオルテック Capacitor, capacitor battery, regenerative braking device and regenerative braking method using secondary battery, charger, vehicle having motor, and method for controlling the vehicle
WO2021187019A1 (en) * 2020-03-16 2021-09-23 株式会社クオルテック Battery and method for manufacturing said battery
JP7477880B2 (en) 2020-03-16 2024-05-02 株式会社クオルテック Capacitor battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP6749037B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6873406B2 (en) Negative electrode active material for sodium secondary batteries
US11289703B2 (en) Positive electrode active material for sodium-ion secondary cell
JP6873405B2 (en) Negative electrode active material for power storage devices
CN107645013A (en) Compound quasi-solid electrolyte, its preparation method and the lithium battery or lithium ion battery containing it
JP6749037B2 (en) Negative electrode active material for power storage devices
JPWO2015128982A1 (en) Lithium secondary battery
JP7168915B2 (en) Positive electrode active material for sodium ion secondary battery
JP6300176B2 (en) Negative electrode active material for sodium secondary battery
JP2012182115A (en) Method for manufacturing negative electrode active material for electricity storage device
JP2014096289A (en) Electric power storage device
KR20130061682A (en) Negative-pole active substance for electricity storage device, and negative-pole material for electricity storage device and negative pole for electricity storage device which use the same
JP2013191296A (en) Power storage device
JP6873404B2 (en) Negative electrode active material for sodium secondary batteries
JP5482115B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
JP2020077615A (en) Negative electrode active material for sodium ion secondary battery and manufacturing method thereof
JP6241130B2 (en) Negative electrode active material for electricity storage devices
JP2013080664A (en) Power storage device
JP2016207577A (en) All-solid-state battery
CN116918105A (en) Negative electrode active material for sodium ion secondary battery
JP2014232680A (en) Negative electrode active material for electricity storage device and method for producing the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6749037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250