JP2017048509A - Shroud - Google Patents

Shroud Download PDF

Info

Publication number
JP2017048509A
JP2017048509A JP2015170213A JP2015170213A JP2017048509A JP 2017048509 A JP2017048509 A JP 2017048509A JP 2015170213 A JP2015170213 A JP 2015170213A JP 2015170213 A JP2015170213 A JP 2015170213A JP 2017048509 A JP2017048509 A JP 2017048509A
Authority
JP
Japan
Prior art keywords
photocatalyst
film
resin
negatively charged
shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015170213A
Other languages
Japanese (ja)
Other versions
JP6953107B2 (en
Inventor
隆治 藤井
Takaharu Fujii
隆治 藤井
行治 宮原
Yukiharu Miyahara
行治 宮原
亜由美 野本
Ayumi Nomoto
亜由美 野本
健人 公文
Taketo Kumon
健人 公文
秀成 城水
Hidenari Shiromizu
秀成 城水
浩一 森岡
Koichi Morioka
浩一 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KON Corp KK
Toso Sangyo Co Ltd
Original Assignee
KON Corp KK
Toso Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KON Corp KK, Toso Sangyo Co Ltd filed Critical KON Corp KK
Priority to JP2015170213A priority Critical patent/JP6953107B2/en
Publication of JP2017048509A publication Critical patent/JP2017048509A/en
Application granted granted Critical
Publication of JP6953107B2 publication Critical patent/JP6953107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a shroud on which a photocatalytic film with excellent photocatalytic activity and the like is stuck.SOLUTION: In a shroud, a photocatalytic film is positioned on a surface. The photocatalytic film is formed by curing a photocatalyst coating liquid including photocatalytic particles of a nano-order size, a negatively charged substance with a zeta potential from -30 mV to -70 mV, which mutually repels the photocatalytic particles in a solvent including the photocatalytic particles, and resin in an uncured state.SELECTED DRAWING: None

Description

本発明は、囲い板に関し、特に、光触媒フィルムが貼付された囲い板に関する。   The present invention relates to an enclosure plate, and more particularly, to an enclosure plate to which a photocatalytic film is attached.

特許文献1には、重量運搬車やダンプカー等の大型車両が排出する排気ガス中に含まれる有害成分や悪臭を除去するのに有効であり、さらに板本体の表面に塗布した装飾のための各種の模様、色彩、絵、宣伝広告のための文字等の視認可能な表示要素をはげ落ちにくくし、繰り返し使用して、長期間、風雨にさらされても、その視認可能な表示要素を再塗布しなおさなくてもよく、揮発性有機化合物(VOC)の発生の問題もない仮囲い板について開示されている。   Patent Document 1 is effective in removing harmful components and bad odors contained in exhaust gas exhausted by large vehicles such as heavy-duty vehicles and dump trucks, and various kinds of decorations applied to the surface of the plate body. Makes visible display elements such as patterns, colors, pictures, letters for advertisements, etc. difficult to peel off. A temporary enclosure that does not have to be repeated and does not have the problem of generation of volatile organic compounds (VOC) is disclosed.

この仮囲い板は、板本体の表裏面の少なくとも一方の面に、光触媒活性を有する塗膜を形成したものとしている。さらに、板本体の表面に視認可能な表示要素を塗布し、少なくともこの塗布面に、光触媒活性を有する塗膜を形成したものとしている。また、板本体の表裏面の少なくとも一方の面に、光触媒活性を有する塗膜を形成したフィルムを貼り替え自在として貼着したものとしている。
特開2008−291617号公報
This temporary enclosure has a coating film having photocatalytic activity formed on at least one of the front and back surfaces of the plate body. Further, a visible display element is applied to the surface of the plate body, and a coating film having photocatalytic activity is formed on at least the application surface. Moreover, the film which formed the coating film which has a photocatalytic activity on at least one surface of the front and back of a board main body shall be pasted as it can be replaced freely.
JP 2008-291617 A

しかし、特許文献1に開示されている発明は、光触媒活性を有する塗膜について十分に検証されておらず、とりわけ、塗膜の剥離防止の観点、NOx又はSOxなどの有機物の分解能力の観点、光触媒の親水性の発現の観点、光触媒の塗膜の劣化防止の観点についての考察がされていない。   However, the invention disclosed in Patent Document 1 has not been sufficiently verified for a coating film having photocatalytic activity, and in particular, from the viewpoint of preventing peeling of the coating film, from the viewpoint of the ability to decompose organic substances such as NOx or SOx, No consideration has been given to the viewpoint of the hydrophilicity of the photocatalyst and the viewpoint of preventing the deterioration of the coating film of the photocatalyst.

そこで、本発明は、優れた光触媒活性等を有する光触媒フィルムが貼付された囲い板を提供することを課題とする。   Then, this invention makes it a subject to provide the enclosure board on which the photocatalyst film which has the outstanding photocatalytic activity etc. was stuck.

上記課題を解決するために、本発明の囲い板は、
ナノオーダーサイズの光触媒粒子と、前記光触媒粒子を含む溶媒中で当該光触媒粒子との間で相互に反発しあうゼータ電位が−30mV〜−70mVの負帯電物質と、未硬化状態の樹脂とを含む光触媒塗工液を硬化させてなる光触媒フィルムが貼付される。
In order to solve the above problems, the shroud of the present invention is
A nano-order photocatalyst particle, a negatively charged substance having a zeta potential of −30 mV to −70 mV repelling each other in the solvent containing the photocatalyst particle, and an uncured resin A photocatalyst film obtained by curing the photocatalyst coating solution is attached.

本発明の囲い板に貼付される光触媒フィルムとなる光触媒塗工液は、生活環境下の光により光触媒活性を有していて、煩雑な工程を経ずにコートすることにより得られる、セルフクリーニング性を備えた、有機無機ハイブリッド光触媒塗工液である。すなわち、本発明に係る光触媒塗工液は、典型的には、シリカ粒子及び樹脂、光触媒をハイブリッド化させることにより、光触媒フィルムを形成したときに密着性を得られるようにしている。   The photocatalyst coating liquid to be a photocatalyst film attached to the shroud of the present invention has photocatalytic activity by light in a living environment, and can be obtained by coating without a complicated process. Is an organic-inorganic hybrid photocatalyst coating solution. That is, the photocatalyst coating liquid according to the present invention typically has a silica particle, a resin, and a photocatalyst that are hybridized to obtain adhesion when a photocatalyst film is formed.

例えば、前記光触媒粒子は光触媒塗工液を用いて製造した光触媒フィルムに対して3wt%〜70wt%、前記負帯電物質は光触媒塗工液を用いて製造した光触媒フィルムに対して19wt%〜80wt%、前記樹脂は光触媒塗工液を用いて製造した光触媒フィルムに対して3wt%〜60wt%の中から選択するとよい。なお、本明細書において光触媒塗工液に関して「wt%」という表記を用いた説明箇所は、これを乾燥させて光触媒フィルムとした場合の量に換算した値としている。したがって、例えば、水分の多い光触媒含有体を用いて光触媒塗工液を製造した場合であっても、光触媒塗工液における当該光触媒含有体は上記のものよりも多くなる点に留意されたい。   For example, the photocatalyst particles are 3 wt% to 70 wt% with respect to the photocatalyst film manufactured using the photocatalyst coating liquid, and the negatively charged substance is 19 wt% to 80 wt% with respect to the photocatalyst film manufactured using the photocatalyst coating liquid. The resin may be selected from 3 wt% to 60 wt% with respect to the photocatalyst film produced using the photocatalyst coating solution. In addition, the description location using the notation “wt%” with respect to the photocatalyst coating liquid in the present specification is a value converted into an amount when the photocatalyst film is dried. Therefore, it should be noted that, for example, even when a photocatalyst coating liquid is produced using a photocatalyst-containing body having a high water content, the photocatalyst-containing body in the photocatalyst coating liquid is larger than the above.

前記負帯電物質は、pHが7以上9未満であり、平均1次粒子径で1nm以上、かつ、平均2次粒子径で4000nm以下の範囲であり、シリカを含むとよい。   The negatively charged substance has a pH of 7 or more and less than 9, and has an average primary particle diameter of 1 nm or more and an average secondary particle diameter of 4000 nm or less, and may contain silica.

前記樹脂は、アクリル樹脂、シリコン樹脂、シリコーン樹脂、ウレタン樹脂、フッ素樹脂のいずれかを含むとよい。   The resin may include any of acrylic resin, silicon resin, silicone resin, urethane resin, and fluororesin.

前記光触媒粒子は、扁平形状の結晶粒子と、それに比較して厚みがある立体形状の結晶粒子とが結合した光触媒粒子とするとよい。   The photocatalyst particles are preferably photocatalyst particles in which flat crystal particles and three-dimensional crystal particles having a thickness are combined with each other.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本実施形態の囲い板に貼付される光触媒フィルムとなる光触媒塗工液の概要について説明する。ここでは、まず、本実施形態に係る光触媒塗工液の組成物について説明し、次いで、その製造方法及び塗工方法、更に光触媒フィルムの製造方法について説明する。   First, the outline | summary of the photocatalyst coating liquid used as the photocatalyst film stuck on the enclosure board of this embodiment is demonstrated. Here, first, the composition of the photocatalyst coating liquid according to the present embodiment will be described, and then the manufacturing method and coating method thereof, and further the manufacturing method of the photocatalytic film will be described.

本実施形態に係る光触媒塗工液は、典型的には、以下説明する、TiOなどの光触媒含有体と、アクリル樹脂等の樹脂と、シリカ粒子等の負帯電物質とを含む。 The photocatalyst coating liquid according to the present embodiment typically includes a photocatalyst-containing body such as TiO 2 described below, a resin such as an acrylic resin, and a negatively charged substance such as silica particles.

[光触媒含有体]
本実施形態に係る光触媒塗工液を組成する「光触媒含有体」とは、それ自体が光触媒作用を有する化合物をいい、また、それのみならず、所要の行程を経ることで光触媒に転換しうる光触媒前駆体を含むものをいう。
[Photocatalyst-containing body]
The “photocatalyst-containing body” that constitutes the photocatalyst coating liquid according to the present embodiment refers to a compound that itself has a photocatalytic action, and can also be converted into a photocatalyst through a required process. The thing containing a photocatalyst precursor is said.

本実施形態に係る光触媒含有体は、例えば、扁平形状の結晶粒子と、それに比較して厚みがある立体形状の結晶粒子とが結合した光触媒粒子を含む、いわゆる可視光応答型のTiO光触媒含有体としている。具体的には、これらに限定されるものではないが、鯤コーポレーション株式会社製のサガンコートTOsol85、TPX、TPX−HP、TPX−HL、TPX−VB、TPX−AD、TPX−ID、TPX−FxFC、TPX−FxSP、TPX−FxFA、TPX−FxFNなどのいずれか用いることができる(いずれも製品名)。加えて、これらのいずれかに対して、水系塗料である光触媒塗料を基材表面に密着させるために、例えば、イソプロピルアルコール(IPA)を溶剤として混合している。これらの混合比としては、例えば、100:1〜100:100のとすればよく、好ましくは、光触媒塗工液の種別にもよるが、100:55〜100:75である。 The photocatalyst-containing body according to the present embodiment includes, for example, a so-called visible light responsive TiO 2 photocatalyst containing photocatalyst particles in which flat crystal particles and solid crystal particles having a thickness compared to the flat crystal particles are combined. The body. Specifically, although not limited to these, Sagan Coat TOsol 85, TPX, TPX-HP, TPX-HL, TPX-VB, TPX-AD, TPX-ID, TPX-FxFC manufactured by Sakai Corporation , TPX-FxSP, TPX-FxFA, TPX-FxFN, etc. can be used (all are product names). In addition, for example, isopropyl alcohol (IPA) is mixed as a solvent with any of these in order to bring the photocatalyst paint that is a water-based paint into close contact with the substrate surface. The mixing ratio may be, for example, 100: 1 to 100: 100, and preferably 100: 55 to 100: 75, although it depends on the type of photocatalyst coating liquid.

もっとも、本実施形態に係る光触媒含有体の材料は、TiOのみならず、ZnO、SrTiO、CdS、CdO、InP、In、BaTiO、KNbO、Fe、Ta、WO、Bi、NiO、CuO、SiO、MoS、MoS、InPb、RuO、CeO、GaP、ZrO、SnO、V、KTaO、Nb、CuO、MoO、Cr、GaAs、Si、CdSe、CdFeO、RaRhOなどを用いることができる。 However, the material of the photocatalyst-containing body according to the present embodiment, not only the TiO 2, ZnO, SrTiO 3, CdS, CdO, InP, In 2 O 3, BaTiO 3, K 2 NbO 3, Fe 2 O 3, Ta 2 O 5 , WO 3 , Bi 2 O 3 , NiO, Cu 2 O, SiO 2 , MoS 2 , MoS 3 , InPb, RuO 2 , CeO 2 , GaP, ZrO 2 , SnO 2 , V 2 O 5 , KTaO 3 Nb 2 O 5 , CuO, MoO 3 , Cr 2 O 3 , GaAs, Si, CdSe, CdFeO 3 , RaRhO 3, or the like can be used.

ここで、可視光応答型の光触媒含有体とは、例えば約400nm〜約800nmの波長の光が照射されたときに、光触媒活性や親水性といった光触媒作用を発揮することができる光触媒含有体をいう。この種の光触媒含有体を用いた光触媒塗工液は、主として、太陽光に含まれる紫外線が十分に照射されない室内等の場所においても、環境浄化効果や防汚効果が得られるといった利点がある。   Here, the visible light responsive photocatalyst-containing body refers to a photocatalyst-containing body that can exhibit photocatalytic activity such as photocatalytic activity and hydrophilicity when irradiated with light having a wavelength of about 400 nm to about 800 nm, for example. . The photocatalyst coating liquid using this kind of photocatalyst-containing body has an advantage that an environmental purification effect and an antifouling effect can be obtained mainly in a place such as a room where ultraviolet rays contained in sunlight are not sufficiently irradiated.

また、本実施形態に係る光触媒含有体は、異なる2種類の結晶粒子が結合された光触媒粒子を含んでいる点がユニークであるが、1種類の結晶粒子からなる光触媒粒子を含む光触媒塗工液が、本発明の範囲から排除されることではない点に留意されたい。   In addition, the photocatalyst-containing body according to this embodiment is unique in that it contains photocatalyst particles in which two different types of crystal particles are combined, but a photocatalyst coating liquid containing photocatalyst particles composed of one type of crystal particles. It should be noted that is not excluded from the scope of the present invention.

TEM写真で確認したところ、上記の2種類の結晶粒子のうち、扁平形状の結晶粒子は、その平均的な大きさが板面方向には、おおよそ3nm〜40nm程度の範囲に収まり、平均では10nm〜20nm程度である。また、扁平形状の光触媒粒子の厚みは、おおよそ0.3nm〜5.0nm程度の範囲に収まり、平均では1.0nm〜3.0nm程度である。本実施形態に係る光触媒含有体は、ナノオーダーサイズである点が特徴的な点の一つである。   As confirmed by a TEM photograph, of the above two types of crystal particles, the flat crystal particles have an average size within the range of about 3 nm to 40 nm in the plate surface direction, and an average of 10 nm. About 20 nm. Further, the thickness of the flat photocatalyst particles falls within the range of about 0.3 nm to 5.0 nm, and is about 1.0 nm to 3.0 nm on average. The photocatalyst-containing body according to this embodiment is one of the characteristic points that it is nano-order size.

なお、扁平形状とは、面方向に相対的に広く、かつ、厚み方向の相対的に薄い形状の総称と定義する。面は平滑面のみでなく、多少の凹凸状、曲面状のものも含む。面の形状も限定されず、円、楕円、六角形、四角形等の多角形など何でもよい。   The flat shape is defined as a generic name of a shape that is relatively wide in the surface direction and relatively thin in the thickness direction. The surface includes not only a smooth surface but also a slightly uneven or curved surface. The shape of the surface is not limited, and may be any shape such as a circle, an ellipse, a hexagon, or a polygon such as a quadrangle.

扁平形状の結晶粒子は、例えば、以下のようにして製造する。まず、例えば、四塩化チタンの約50wt%〜70wt%水溶液約10mLを、蒸留水で約1000mLに希釈した分散液に対して、約2.0wt%〜2.5wt%アンモニア水を約10mL程度滴下して、水酸化チタンの沈殿物を生成する。   Flat crystal particles are produced, for example, as follows. First, about 10 mL of about 2.0 wt% to 2.5 wt% aqueous ammonia is dropped into a dispersion obtained by diluting about 10 mL of an aqueous solution of about 50 wt% to 70 wt% of titanium tetrachloride to about 1000 mL with distilled water. Thus, a precipitate of titanium hydroxide is produced.

そして、上記分散液の中から沈殿物を遠心分離や濾別等によって抽出して、その後、水酸化チタンゲル自体を、不純物除去のために、純水、イオン交換水、蒸留水などで水洗する。水酸化チタンゲルに純水、イオン交換水、又は蒸留水を加えて100mL〜500mLとした水酸化チタン懸濁液を製造する。   Then, the precipitate is extracted from the dispersion by centrifugation, filtration or the like, and then the titanium hydroxide gel itself is washed with pure water, ion-exchanged water, distilled water or the like for removing impurities. Pure water, ion-exchanged water, or distilled water is added to the titanium hydroxide gel to produce a titanium hydroxide suspension having a volume of 100 mL to 500 mL.

つぎに、水酸化チタン懸濁液に30wt%過酸化水素水を10mL〜20mL加えて攪拌してから、例えば2時間〜15時間、65℃〜400℃の温度で加熱する。この結果、鏃型形状のアナターゼ結晶の酸化チタンを含む光触媒原液を得ることができる。なお、この光触媒原液には、5nm以下の結晶化が不完全な酸化チタンも残存している。   Next, 10 to 20 mL of 30 wt% hydrogen peroxide solution is added to the titanium hydroxide suspension and stirred, and then heated at a temperature of 65 to 400 ° C. for 2 to 15 hours, for example. As a result, a stock solution of photocatalyst containing titanium oxide of an anatase crystal having a bowl shape can be obtained. In this photocatalyst stock solution, incompletely crystallized titanium oxide of 5 nm or less remains.

上記酸化チタンの表面には、ペルオキソ基が修飾されることになる。このため、光触媒原液中では、ペルオキソ基の分極によって粒子間の電気的斥力が働き、酸化チタンが相互に反発しあうので凝集することがない。なお、光触媒原液中におけるアンモニウムイオンなども上記分散に寄与している。このため、光触媒原液は、酸化チタンが均一に分散した液体となる。また、こうして製造した酸化チタンは、1個以上のOH基を有することになる。   A peroxo group is modified on the surface of the titanium oxide. For this reason, in the stock solution of photocatalyst, electric repulsion between particles works due to the polarization of the peroxo group, and titanium oxides repel each other so that they do not aggregate. Note that ammonium ions and the like in the photocatalyst stock solution also contribute to the dispersion. For this reason, the photocatalyst stock solution is a liquid in which titanium oxide is uniformly dispersed. In addition, the titanium oxide thus produced has one or more OH groups.

つぎに、本実施形態に係る光触媒含有体に含まれている立体形状の結晶粒子について説明する。立体形状の結晶粒子とは、例えば、略球型形状、断面が略楕円型形状、円型形状、角型形状、これらの折れ線型形状などの立体的な種々の形状のものを意味する。立体形状の結晶粒子は、上述の扁平形状の結晶粒子とは異なり、面方向と厚み方向との相対差が小さい形状の総称と定義する。   Next, the three-dimensional crystal particles included in the photocatalyst-containing body according to the present embodiment will be described. The three-dimensional crystal particles mean various three-dimensional shapes such as a substantially spherical shape, a substantially elliptical cross section, a circular shape, a square shape, and a polygonal shape thereof. The three-dimensional crystal particle is defined as a generic name of a shape having a small relative difference between the plane direction and the thickness direction, unlike the above-described flat crystal particle.

また、本実施形態では、扁平形状の結晶粒子の平均サイズを、立体形状の結晶粒子の平均サイズ以上としている。こうすると、扁平形状の結晶粒子の隙間に、立体形状の結晶粒子が入りこむことになり、しかも、後述するように両酸化チタンは相互に混合される。   In the present embodiment, the average size of the flat crystal particles is equal to or greater than the average size of the three-dimensional crystal particles. If it carries out like this, a solid-shaped crystal particle will enter into the clearance gap between flat crystal particles, and also both titanium oxides will mutually be mixed so that it may mention later.

立体形状の結晶粒子は、例えば、以下のようにして製造する。まず、酸化鉄及び酸化チタンが主成分であるイルメナイト鉱石と硫酸とを反応させることによって硫酸塩を製造する。つぎに、硫酸塩から不純物を除去してから、その硫酸塩を加水分解して、不溶性の白色含水酸化チタンを沈澱させる。この際、一つ以上のOH基が形成される。   The solid crystal particles are produced, for example, as follows. First, a sulfate is produced by reacting ilmenite ore whose main components are iron oxide and titanium oxide with sulfuric acid. Next, after removing impurities from the sulfate, the sulfate is hydrolyzed to precipitate insoluble white hydrous titanium oxide. At this time, one or more OH groups are formed.

その後、これを中和洗浄し、乾燥又は焼成して、平均サイズが6nm程度で大きさにばらつきが少ない略球型となるまで微粒子化する。このように製造した酸化チタンは、1個以上のOH基を有することになる。   Thereafter, this is neutralized and washed, dried or baked, and fine particles are formed until the average size becomes about 6 nm and becomes a substantially spherical shape with little variation in size. The titanium oxide produced in this way will have one or more OH groups.

なお、上記製造方法は、いわゆる硫酸法と称されている手法であるが、これに限定されず、塩素法、フッ酸法塩化チタンカリ法、四塩化チタン水溶液法、アルコキシド加水分解法など他の製造方法を用いてもよい。   The above production method is a so-called sulfuric acid method, but is not limited to this, and other production methods such as chlorine method, hydrofluoric acid method titanium potassium chloride method, titanium tetrachloride aqueous solution method, alkoxide hydrolysis method, etc. A method may be used.

また、本実施形態に係る光触媒含有体は、可視光照射によって光触媒作用が得られるように、可視光域の吸収が可能なバンドギャップとすべく、酸化チタンに対する各種ドーパントの導入、酸化チタンの高温還元、酸化チタンに対するX線などの高エネルギー照射などを行ってもよい。   In addition, the photocatalyst-containing body according to the present embodiment introduces various dopants with respect to titanium oxide, the high temperature of titanium oxide so as to obtain a band gap capable of absorbing visible light so that a photocatalytic action can be obtained by irradiation with visible light. Reduction, irradiation with high energy such as X-rays with respect to titanium oxide may be performed.

つぎに、扁平形状の結晶粒子と立体形状の結晶粒子とが結合した光触媒粒子を含む、いわゆる可視光応答型のTiO光触媒含有体の製造方法について説明する。 Next, a method for producing a so-called visible light responsive TiO 2 photocatalyst-containing body including photocatalyst particles in which flat crystal particles and three-dimensional crystal particles are combined will be described.

まず、扁平形状の結晶粒子を含む光触媒原液に対して、立体形状の結晶粒子を混ぜて、必要に応じて、この光触媒原液を攪拌して両者を結合させる。ここで、既述のように、扁平形状の結晶粒子は、ペルオキソ基で修飾されていて光触媒原液中で分散しているので、この状態を維持しながら立体形状の結晶粒子を添加するとよい。   First, three-dimensional crystal particles are mixed with a photocatalyst stock solution containing flat crystal particles, and if necessary, the photocatalyst stock solution is agitated to combine them. Here, as described above, since the flat crystal particles are modified with peroxo groups and dispersed in the photocatalyst stock solution, it is preferable to add the three-dimensional crystal particles while maintaining this state.

この添加の際には、ペルオキソ基の減少を回避する、又は、光触媒原液中における上記分散に寄与するアンモニウムイオン濃度などの不純物の減少を回避するために、ペルオキソチタン酸の濃度が例えば5wt%以下とならないようにする、又は、アンモニウムイオンなど不純物が例えば100ppm以下とならないようするとよい。   In this addition, the concentration of peroxotitanic acid is, for example, 5 wt% or less in order to avoid a decrease in peroxo groups or to avoid a decrease in impurities such as ammonium ion concentration contributing to the dispersion in the photocatalyst stock solution. It is preferable that impurities such as ammonium ions do not become 100 ppm or less.

こうして、扁平形状の結晶粒子を含む光触媒原液に対して、立体形状の結晶粒子を混ぜると、扁平形状の結晶粒子も立体形状の結晶粒子も、双方ともに1個以上のOH基を有しているため、両結晶粒子は、互いのOH基部分で水素結合される。   Thus, when three-dimensional crystal particles are mixed with a photocatalyst stock solution containing flat crystal particles, both the flat crystal particles and the three-dimensional crystal particles have one or more OH groups. Therefore, both crystal grains are hydrogen-bonded at the OH group portion of each other.

[樹脂]
つぎに、本実施形態に係る光触媒塗工液を組成する樹脂について説明する。本実施形態に係る樹脂は、光触媒フィルムを製造したときに、透光性がある仕上がりとなるようにする、好ましくは、透明性が高い仕上がりとなるようにすると、光触媒フィルムの用途が限定されないという点で利点がある。
[resin]
Next, the resin constituting the photocatalyst coating liquid according to this embodiment will be described. The resin according to the present embodiment is such that when the photocatalyst film is produced, the use of the photocatalyst film is not limited when the photocatalyst film is produced, and preferably, when the photocatalyst film has a highly transparent finish. There are advantages in terms.

本実施形態に係る樹脂は、水系樹脂とすることもできるし、溶剤系樹脂とすることもできるが、環境配慮の観点から水系樹脂を用いることが好ましい。水系樹脂として、一例を挙げると、アクリル樹脂、アクリルウレタン(アクリルポリオール)、アクリルシリコン樹脂、水性シリコーン、シリコーン樹脂とアクリルとの樹脂とのブロック重合体、アクリルスチレン樹脂、ソルビタン脂肪酸エチレンオキサイド、ソルビタン脂肪酸エステル、ウレタン系アセテート、ポリカーボネートジオールおよび/又はポリイソシアネートの架橋型ウレタン、ウレタンディスパージョン、ポリアクリル酸アクリルエステル架橋体などがある。   The resin according to this embodiment may be a water-based resin or a solvent-based resin, but it is preferable to use a water-based resin from the viewpoint of environmental considerations. Examples of water-based resins include acrylic resin, acrylic urethane (acrylic polyol), acrylic silicone resin, aqueous silicone, block polymer of silicone resin and acrylic resin, acrylic styrene resin, sorbitan fatty acid ethylene oxide, sorbitan fatty acid Examples include ester, urethane acetate, polycarbonate diol and / or polyisocyanate cross-linked urethane, urethane dispersion, and cross-linked polyacrylic acid acrylic ester.

[負帯電物質]
本実施形態では、負帯電物質として、例えば、シリカ粒子が水又は有機溶媒中にコロイド状に分散されたコロイダルシリカ、珪酸ソーダ(例えば高モル珪酸ソーダ)、シリカ化合物(例えば、ケイ酸アンモニウム)など、シリカを含むものを用いることができる。なお、負帯電物質は、光触媒塗工液の塗工面とのバインダーとしても機能するものを用いるとよい。こうすると、光触媒塗工液を用いて製造した光触媒フィルムを、その貼付対象に貼付する場合に、光触媒塗工液の塗工面との間に接着層などを形成する必要がなくなるという利点がある。本実施形態に係る負帯電物質は、ゼータ電位(界面動電電位)が−30mV〜−70mV程度のものを用いている。
[Negatively charged substance]
In the present embodiment, as the negatively charged substance, for example, colloidal silica in which silica particles are colloidally dispersed in water or an organic solvent, sodium silicate (for example, high molar sodium silicate), silica compound (for example, ammonium silicate), or the like. A material containing silica can be used. As the negatively charged substance, a substance that also functions as a binder with the coating surface of the photocatalyst coating liquid may be used. If it carries out like this, when sticking the photocatalyst film manufactured using the photocatalyst coating liquid to the sticking object, there exists an advantage that it becomes unnecessary to form an adhesive layer etc. between the coating surfaces of a photocatalyst coating liquid. As the negatively charged substance according to this embodiment, a substance having a zeta potential (electrokinetic potential) of about −30 mV to −70 mV is used.

本実施形態に係る負帯電物質は、光触媒含有体を含む液体中において負に帯電している光触媒含有体内の光触媒粒子と反発しあう結果、樹脂については正帯電物質と負帯電物質とが存在しているが、光触媒粒子についてはTi−OとTi−Oとが反発しあいながら安定化していて、負帯電物質についてはSi−OとSi−Oとが反発しあいながら安定化している。すなわち、樹脂は、相対的に分子量の小さい負帯電物質との軽い水素結合が図られ、これらの結合は、光触媒粒子が近傍にくると、負帯電物質がマイナスイオンを有するため反発しあうことで安定化し、光触媒粒子が樹脂を分解することを鈍化させている。 The negatively charged substance according to this embodiment repels the photocatalyst particles in the photocatalyst-containing body that is negatively charged in the liquid containing the photocatalyst-containing body. As a result, the resin has a positively charged substance and a negatively charged substance. and which, but for the photocatalyst particles Ti-O - If you are a stabilizing while repel is, Si-O for negatively charged substances - - and Ti-O is stabilized while the can repel - and Si-O . In other words, the resin has a light hydrogen bond with a negatively charged substance having a relatively low molecular weight, and these bonds repel each other because the negatively charged substance has negative ions when the photocatalyst particles are in the vicinity. Stabilizes and slows down the photocatalytic particles decomposing the resin.

これにより、具体的には、光触媒フィルム上においては、基材表層に易接着処理を施した+イオンを比較的有する樹脂層が電気二重層を有して荷電子が界面近傍にてシュテルン層を形成する。これにより、光触媒フィルムの表面には、負帯電物質と光触媒粒子とが反発しあう状態で多く存在することになる。   Thus, specifically, on the photocatalyst film, the resin layer having a relatively + ion obtained by subjecting the substrate surface layer to an easy adhesion treatment has an electric double layer, and the valence electrons have a Stern layer near the interface. Form. Thereby, many negatively charged substances and photocatalyst particles are present on the surface of the photocatalyst film in a state of repulsion.

光触媒が表面に位置する光触媒フィルムは、可視光等が照射されると、光触媒の能力を十分に活かした光触媒活性が得られる。換言すると、負帯電物質を用いずに光触媒フィルムを製造しようとすると、樹脂中に多くの光触媒粒子が位置することになり、光触媒フィルムに可視光等が照射されても電子がその近傍に飛び出すことができず、十分な光触媒活性が得られなくなってしまう。   When the photocatalyst film on which the photocatalyst is located is irradiated with visible light or the like, photocatalytic activity that fully utilizes the ability of the photocatalyst is obtained. In other words, if an attempt is made to produce a photocatalytic film without using a negatively charged substance, many photocatalytic particles will be located in the resin, and even if the photocatalytic film is irradiated with visible light or the like, electrons will jump out to the vicinity. Cannot be obtained and sufficient photocatalytic activity cannot be obtained.

また、本実施形態に係る負帯電物質は、pHの下限を7程度とするとよい。これを下回ると、光触媒塗工液がゲル化してしまうためである。一方、負帯電物質のpHの上限は、9以下であることが好ましい。これを上回ると、光触媒塗工液が白濁化してしまい、透光性を有する光触媒フィルムが得られないためである。換言すると、本実施形態に係る光触媒フィルムが透光性を有しなくてもよい場合には、負帯電物質のpHは9を上回ってもよいということになる。   The negatively charged substance according to the present embodiment may have a lower pH limit of about 7. This is because below this value, the photocatalyst coating solution will gel. On the other hand, the upper limit of the pH of the negatively charged substance is preferably 9 or less. If it exceeds this, the photocatalyst coating solution becomes white turbid, and a photocatalytic film having translucency cannot be obtained. In other words, when the photocatalyst film according to the present embodiment does not need to have translucency, the pH of the negatively charged substance may exceed 9.

なお、本実施形態に係る負帯電物質は、平均1次粒子径での粒径サイズの下限を1nm、好ましくは5nmとするとよい。粒径サイズが小さくなるほど光触媒塗工液の保存安定性が低下する傾向にあり、1nmを下回ると、本実施形態に係る光触媒塗工液の保存安定性が確保しづらいためである。換言すると、光触媒塗工液を製造後、あまり長期に保存せずに使用する場合には、上記の粒径サイズ未満の負帯電物質を採用することもできる。負帯電物質の一次粒子径の測定は、G.W.Sears,Jr.による「Analytical Chemistry 28,1981〜1983(1956)」に記載されているシアーズ法を用いて行っている。   In the negatively charged substance according to this embodiment, the lower limit of the particle size with an average primary particle size is 1 nm, preferably 5 nm. This is because the storage stability of the photocatalyst coating solution tends to decrease as the particle size decreases, and if it is less than 1 nm, it is difficult to ensure the storage stability of the photocatalyst coating solution according to the present embodiment. In other words, when the photocatalyst coating solution is used without being stored for a long period of time after production, a negatively charged substance having a particle size smaller than the above can be employed. The measurement of the primary particle size of negatively charged substances is described in G. W. Sears, Jr. By using the Sears method described in "Analytical Chemistry 28, 1981-1983 (1956)".

また、負帯電物質の粒径サイズの上限は、400nm、好ましくは100nm、より好ましくは50nmとするとよい。粒径サイズが大きくなるほど、光触媒フィルムの透明性が低下するためである。換言すると、本実施形態に係る光触媒フィルムが透光性を有しなくてもよい場合には、負帯電物質の粒径サイズは400nmを上回ってもよく、具体的には、平均2次粒子径で4000nm程度を上限とすることができる。   The upper limit of the particle size of the negatively charged substance is 400 nm, preferably 100 nm, and more preferably 50 nm. This is because the transparency of the photocatalytic film decreases as the particle size increases. In other words, when the photocatalytic film according to the present embodiment does not have to be translucent, the particle size of the negatively charged substance may exceed 400 nm, specifically, the average secondary particle size. The upper limit can be about 4000 nm.

上記各要件を満たす負帯電物質は、水性分散液の状態で、酸性、塩基性のいずれであっても用いることができる。どのような性質の負帯電物質を用いるかは、混合する光触媒含有体及び樹脂の安定領域に応じて適宜選択すればよい。   The negatively charged substance that satisfies the above requirements can be used in the form of an aqueous dispersion, whether it is acidic or basic. What type of negatively charged substance is used may be appropriately selected according to the photocatalyst-containing body to be mixed and the stable region of the resin.

[光触媒塗工液の製造方法]
既述のように各々製造した光触媒含有体と樹脂と負帯電物質とを混合する。具体的には、まず、光触媒含有体を例えば100rpm〜700rpm程度の回転数で撹拌しながら、ここに負帯電物質を投入する。
[Method for producing photocatalyst coating solution]
As described above, each of the photocatalyst-containing bodies produced, the resin, and the negatively charged substance are mixed. Specifically, first, a negatively charged substance is charged into the photocatalyst-containing body while stirring the photocatalyst-containing body at, for example, about 100 rpm to 700 rpm.

なお、撹拌時間は、光触媒含有体に対する負帯電物質の投入速度、光触媒含有体と負帯電物質との総量、撹拌翼のサイズ等にもよるが、常温下であれば、例えば、光触媒含有体と負帯電物質との総量が40kL程度の場合であれば、30分程度とすればよい。   The stirring time depends on the charging speed of the negatively charged substance with respect to the photocatalyst-containing body, the total amount of the photocatalyst-containing body and the negatively charged substance, the size of the stirring blade, and the like. If the total amount with the negatively charged substance is about 40 kL, it may be about 30 minutes.

つづいて、上記撹拌後の負帯電物質入りの光触媒含有体を例えば100rpm〜700rpm程度の回転数で撹拌しながら、ここに樹脂を投入する。   Subsequently, while stirring the photocatalyst-containing body containing a negatively charged substance after stirring at a rotational speed of, for example, about 100 rpm to 700 rpm, a resin is added thereto.

なお、撹拌時間は、負帯電物質入りの光触媒含有体に対する樹脂の投入速度等にもよるが、常温下であれば、例えば、約40kLの負帯電物質入りの光触媒含有体に対して、約20kLの樹脂を投入する場合には20分程度とすればよい。   The stirring time depends on the charging rate of the resin with respect to the photocatalyst-containing body containing the negatively charged substance, but at room temperature, for example, about 20 kL with respect to the photocatalyst-containing body containing about 40 kL of the negatively charged substance. When the resin is added, it may be about 20 minutes.

本実施形態に係る光触媒塗工液には、さらに、Ag、Cu、Znのような金属を添加することができる。このような金属が添加された表面層は、表面に付着した細菌や黴や藻を暗所でも死滅させることができ、よって抗菌性をより向上させることができる。添加量は、1wt%〜5wt%程度でよい。   A metal such as Ag, Cu, or Zn can be further added to the photocatalyst coating liquid according to the present embodiment. The surface layer to which such a metal is added can kill bacteria, sputum and algae attached to the surface even in the dark, and thus can further improve antibacterial properties. The amount added may be about 1 wt% to 5 wt%.

本実施形態に係る光触媒塗工液には、さらに、Pt、Pd、Ru、Rh、Ir、Osのような白金族金属を添加することができる。このような金属が添加された表面層は、光触媒の酸化還元活性を増強でき、有機物汚れの分解性、有害気体や悪臭の分解性を向上させることができる。添加量は、1wt%〜5wt%程度でよい。   A platinum group metal such as Pt, Pd, Ru, Rh, Ir, and Os can be further added to the photocatalyst coating liquid according to the present embodiment. The surface layer to which such a metal is added can enhance the redox activity of the photocatalyst, and can improve the degradability of organic contaminants and the decomposability of harmful gases and odors. The amount added may be about 1 wt% to 5 wt%.

[光触媒塗工液の塗工方法]
本実施形態に係る光触媒塗工液は、各種基材表面に塗工し、硬化させることで高い親水性を有する光触媒塗膜を形成することが可能である。基材は、光触媒塗膜を形成することができる限り、特に限定されるものではない。基材の材料としては、例えば、木、紙を含む有機材料、金属を含む無機材料、及び、これらの混合物或いは化合物など様々なものが挙げられる。
[Coating method of photocatalyst coating solution]
The photocatalyst coating liquid which concerns on this embodiment can form the photocatalyst coating film which has high hydrophilicity by coating on the surface of various base materials, and making it harden | cure. The substrate is not particularly limited as long as a photocatalytic coating film can be formed. Examples of the base material include various materials such as wood, organic materials including paper, inorganic materials including metal, and mixtures or compounds thereof.

例えば、有機材料としては、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、アクリル樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン−酢酸ビニル共重合体(EVA)、アクリロニトリル−ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、エチレン−ビニルアルコール共重合体(EVOH)、ポリイミド樹脂、ポリフェニレンサルファイド(PPS)、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、メラミン樹脂等の合成樹脂材料、天然、合成もしくは半合成の繊維材料および繊維製品が挙げられるが、特に耐候性、強度、価格面でバランスのよいポリ塩化ビニル樹脂製を用いることが好ましい。また仮囲いという用途の性質上、不透明で隠蔽性能のある基材を使用することが好ましい。これらは、光触媒フィルム、その他の成型品、積層体などの所要の形状、構成に製品化されていてよい。   Examples of organic materials include vinyl chloride resin, polyethylene, polypropylene, polycarbonate, acrylic resin, polyacetal, fluorine resin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate ( PET), ethylene-vinyl alcohol copolymer (EVOH), polyimide resin, polyphenylene sulfide (PPS), acrylonitrile-butadiene-styrene (ABS) resin, synthetic resin material such as melamine resin, natural, synthetic or semi-synthetic fiber material In particular, it is preferable to use a product made of polyvinyl chloride having a good balance in weather resistance, strength and price. Moreover, it is preferable to use the base material which is opaque and has concealment performance from the property of the temporary enclosure. These may be commercialized into a required shape and configuration such as a photocatalyst film, other molded products, and laminates.

基材が有機材料からなる場合には、予め、基材を表面活性化処理しておくことが好ましい。この処理により、本実施形態に係る光触媒塗工液の基体への濡れ性および塗工性が向上する。表面活性化処理としては、例えば、コロナ処理、常圧(もしくは大気圧)プラズマ処理、低圧低温プラズマ処理、易接着処理などを用いることができる。   When the base material is made of an organic material, it is preferable that the base material is surface activated in advance. This treatment improves the wettability and coating properties of the photocatalyst coating liquid according to the present embodiment to the substrate. As the surface activation treatment, for example, corona treatment, normal pressure (or atmospheric pressure) plasma treatment, low-pressure low-temperature plasma treatment, easy adhesion treatment, or the like can be used.

無機材料としては、例えば、ガラス、セラミック材料等が挙げられる。これらはタイル、碍子、ミラー等の様々な形に製品化されうる。また、無機材料としては金属が挙げられる。これには、鋳鉄、鋼材、鉄、鉄合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が含まれ、それらはメッキが施され、有機塗料が塗布されていてもよい。また、無機または有機の材料表面に施された金属メッキ被覆であってもよい。   Examples of inorganic materials include glass and ceramic materials. These can be commercialized in various forms such as tiles, insulators, mirrors and the like. Moreover, a metal is mentioned as an inorganic material. This includes cast iron, steel, iron, iron alloy, aluminum, aluminum alloy, nickel, nickel alloy, zinc die cast, etc., which may be plated and coated with organic paint. Further, it may be a metal plating coating applied to the surface of an inorganic or organic material.

[光触媒フィルムの製造方法]
つぎに、本実施形態に係る光触媒フィルムを製造する方法について説明する。本実施形態に係る光触媒フィルムは、まず、基材となる樹脂フィルムの厚さが例えば10μm〜300μm、好ましくは50μm〜250μm、より好ましくは50μm〜150μmの範囲となる条件で選定し、選定された基材表層に、その厚さが例えば0.1μm〜100μm、好ましくは0.1μm〜50μm、より好ましくは0.1μm〜5.0μmの範囲となる条件で、光触媒塗工液をフィルム製造装置台に塗布する。
[Method for producing photocatalytic film]
Below, the method to manufacture the photocatalyst film which concerns on this embodiment is demonstrated. The photocatalyst film according to the present embodiment is selected and selected under the condition that the thickness of the resin film serving as the base material is in the range of, for example, 10 μm to 300 μm, preferably 50 μm to 250 μm, more preferably 50 μm to 150 μm. On the surface of the base material, the photocatalyst coating solution is applied to the film production apparatus on the condition that the thickness is, for example, 0.1 μm to 100 μm, preferably 0.1 μm to 50 μm, more preferably 0.1 μm to 5.0 μm. Apply to.

この塗布方法は、既知のものでよく、具体的には、ディップコーティング法、スピンコーティング法、スプレーコーティング法、刷毛塗り法、含浸法、ロール法、ワイヤーバー法、ダイコーティング法、ダイレクトグラビアコーティング法、マイクログラビアコーティング法、インクジェット法、リバースコーティング法等を利用すればよい。さらに、塗工速度は、1mpm〜100mpm、好ましくは10mpm〜70mpmとすればよい。また、塗布量は、10g/mwet〜300g/mwet、好ましくは10g/mwet〜50g/mwetとなる条件とすればよい。 This coating method may be a known one, specifically, dip coating method, spin coating method, spray coating method, brush coating method, impregnation method, roll method, wire bar method, die coating method, direct gravure coating method. A micro gravure coating method, an ink jet method, a reverse coating method, or the like may be used. Furthermore, the coating speed may be 1 mpm to 100 mpm, preferably 10 mpm to 70 mpm. Further, coating amount, 10g / m 2 wet~300g / m 2 wet, it may be preferably a condition to be 10g / m 2 wet~50g / m 2 wet.

つづいて、光触媒塗工液が塗布されたフィルム製造装置台を乾燥炉内に搬送して、熱風乾燥、遠赤外線ヒーター又はパネルヒータ等によって加熱乾燥させることによって、光触媒塗工液を硬化させる。このとき、乾燥温度は30℃〜160℃、好ましくは40℃〜100℃とすればよい。   Subsequently, the film production apparatus base coated with the photocatalyst coating liquid is conveyed into a drying furnace, and is heated and dried by hot air drying, a far infrared heater, a panel heater or the like, thereby curing the photocatalyst coating liquid. At this time, the drying temperature may be 30 ° C. to 160 ° C., preferably 40 ° C. to 100 ° C.

なお、光触媒フィルムの厚さが上記の範囲となる条件で光触媒塗工液を塗布する理由は、その塗布厚が上記下限を下回ると、光触媒フィルムとしての光触媒活性が十分に得られないことになるし、一方で上記上限を上回ると、光触媒フィルム又はその製造中の前駆体がフィルム製造装置台から剥離したり、割れたり、そりが生じたりする可能性があり、結果として薄膜の耐久性が低下することになるためである。   The reason for applying the photocatalyst coating solution under the condition that the thickness of the photocatalyst film falls within the above range is that the photocatalytic activity as a photocatalyst film cannot be sufficiently obtained when the coating thickness is lower than the lower limit. On the other hand, if the above upper limit is exceeded, the photocatalyst film or the precursor during production thereof may be peeled off from the film production equipment table, cracked, or warped, resulting in a decrease in durability of the thin film. This is to do.

[囲い板への光触媒フィルムの貼付方法]
本実施形態では、囲い板に対して、光触媒フィルムを容易に貼付できるようにするために、光触媒フィルムとなる光触媒塗工液をポリ塩化ビニルフィルム等の一方の面に設け、ポリ塩化ビニルフィルム等の他方の面に粘着層を設け、かつ、その粘着層の表面をシリコーン又はその他の離型剤の剥離紙又は剥離フィルムで覆われている。
[Attaching method of photocatalytic film to shroud]
In the present embodiment, a photocatalyst coating liquid to be a photocatalyst film is provided on one surface of a polyvinyl chloride film or the like so that the photocatalyst film can be easily attached to the shroud. An adhesive layer is provided on the other surface, and the surface of the adhesive layer is covered with a release paper or release film of silicone or other release agent.

こうすると、場所を選ばず、囲い板に対して光触媒フィルムを貼付する際に、剥離紙等を取って、粘着層を囲い板に貼付することができる。もっとも、本実施形態に係る光触媒フィルムは、剥離紙等を設けることは必須ではなく、したがって、直接、紙などの基材に対して塗工することも可能である。   If it carries out like this, when sticking a photocatalyst film with respect to a surrounding board regardless of a place, a release paper etc. can be taken and an adhesive layer can be stuck to a surrounding board. However, the photocatalytic film according to the present embodiment is not necessarily provided with release paper or the like, and thus can be directly applied to a substrate such as paper.

ここで、粘着層の製造にあたり、溶剤型、エマルジョン型、無溶剤型アクリル系、ゴム系、ウレタン系、又は、シリコーン系のものなど、各種樹脂等を用いる。これらのいずれか又はこれらの幾つかを混合したものを剥離紙等に塗布する。この際、コンマ法、グラビア法、メイヤーバー法、ダイコーティング法、ロール法、リバースコーティング法、ディップ法等を利用することができる。塗工速度は、1mpm〜100mpm、好ましくは10mpm〜70mpmとすればよい。また、塗布量は、10g/mdry〜300g/mdry、好ましくは20g/mdry〜60g/mdryとなる条件とすればよい。 Here, in the production of the adhesive layer, various resins such as a solvent type, an emulsion type, a solventless acrylic type, a rubber type, a urethane type, or a silicone type are used. Any one of these or a mixture of some of them is applied to release paper or the like. At this time, a comma method, a gravure method, a Mayer bar method, a die coating method, a roll method, a reverse coating method, a dip method, or the like can be used. The coating speed may be 1 mpm to 100 mpm, preferably 10 mpm to 70 mpm. Further, coating amount, 10g / m 2 dry~300g / m 2 dry, may be preferably a condition to be 20g / m 2 dry~60g / m 2 dry.

つづいて、上記各種樹脂等が塗布された剥離紙等を乾燥炉内に搬送して、熱風乾燥、遠赤外線ヒーター又はパネルヒータ等によって加熱乾燥させることによって硬化させる。このとき、乾燥温度は30℃〜150℃、好ましくは60℃〜110℃とすればよい。   Subsequently, the release paper coated with the above-mentioned various resins is conveyed into a drying furnace and cured by hot air drying, a far infrared heater, a panel heater, or the like. At this time, the drying temperature may be 30 ° C to 150 ° C, preferably 60 ° C to 110 ° C.

本実施形態に係る光触媒フィルムは、後述の各実施例で説明するように、
(1)密着性に優れているため、一般的には密着性が確保しにくいポリ塩化ビニルフィルム等からも剥離しにくいという利点があり、たとえ、囲い板の運搬時などに外力が掛かっても剥離しにくく、
(2)加えて、有機物の分解能力に優れているので効果的な空気浄化が可能で、また、可視光応答型でもあるため、屋外工事現場での使用する囲い板のみならず、屋内工事現場で使用する囲い板としても好適であり、
(3)光触媒の親水性の発現が見られ、セルフクリーニング性も優れているので、屋外工事現場での使用にももちろん好適であり、
(4)光触媒の塗膜が劣化しにくいということから、密着性及び屋外使用時の点で利点がある。
The photocatalytic film according to the present embodiment, as will be described in each example described later,
(1) Since it has excellent adhesion, it has the advantage that it is generally difficult to peel off from a polyvinyl chloride film, etc., which is difficult to ensure adhesion, even if an external force is applied during transportation of the shroud, etc. Hard to peel off,
(2) In addition, because it has an excellent ability to decompose organic matter, it can effectively purify air and is also a visible light responsive type, so it can be used not only for fences used at outdoor construction sites, but also indoor construction sites. It is also suitable as a shroud used in
(3) Since the hydrophilicity of the photocatalyst is observed and the self-cleaning property is excellent, it is of course suitable for use at an outdoor construction site.
(4) Since the coating film of the photocatalyst is hardly deteriorated, there are advantages in terms of adhesion and outdoor use.

本実施形態の囲い板は、例えば、定期的に又は不定期に、表面の光触媒フィルムを張り替えるとよい。これにより、使用により光触媒フィルムが多少剥離したとしても、新品状態に戻すことができるためである。これは、焼き付け塗装をするタイプの囲い板の場合には得られない利点でもある。   The enclosure plate of this embodiment is good to replace the photocatalyst film on the surface regularly or irregularly, for example. Thereby, even if the photocatalyst film is somewhat peeled off due to use, it can be returned to a new state. This is also an advantage that cannot be obtained in the case of a type of shroud type shroud.

また、見方を変えると、焼き付け塗装をするタイプの囲い板の場合には、定期的に又は不定期に、囲い板を洗浄し、乾燥し、必要に応じて塗装場所まで運搬して再塗装するなどの、種々の作業が必要となる。これに対して、光触媒フィルムを張替作業は、簡易に行うことができ、コストも低廉とすることができるし、運搬時に運搬車を用いることによって生じる二酸化炭素の排出低減ができるといった利点もある。   Also, from a different perspective, in the case of the type of shroud-type shroud, the shroud is cleaned regularly or irregularly, dried, transported to the painting site as necessary, and repainted. Various operations are required. On the other hand, the photocatalytic film can be easily replaced, the cost can be reduced, and the emission of carbon dioxide generated by using a transportation vehicle during transportation can be reduced. .

なお、光触媒フィルムの塗布対象は、ポリ塩化ビニルフィルムに限定されるものではなく、実施例に記載の各種樹脂フィルムであったり、それ以外の樹脂フィルムであったり、更には金属等が含まれることは言うまでもない。   In addition, the application object of a photocatalyst film is not limited to a polyvinyl chloride film, It is various resin films as described in an Example, It is other resin films, Furthermore, a metal etc. should be included. Needless to say.

本発明の囲い板の実施例として、樹脂フィルムに関して説明するが、本発明の範囲はこれらの実施例に限定されるものではない点に留意されたい。   Although the resin film will be described as examples of the shroud of the present invention, it should be noted that the scope of the present invention is not limited to these examples.

(実施例1)
本実施例では、まず、光触媒塗工液(TPX−FxFC 鯤コーポレーション社製)とイソプロピルアルコール(和光純薬社製)とを、例えば100:55〜75の割合で配合する。また、基材表面に対して当該イソプロピルアルコールを下地材として塗工することによって表面活性化処理を施し、上記イソプロピルアルコールを配合した光触媒塗工液等との密着性を高める。それから、塩ビフィルム基材(東和合成工業社製)に対して、ダイレクトグラビアコーティング法にて、塗布量を例えば10g/mdry〜50g/mwet、乾燥温度を例えば40℃〜100℃、塗工速度を例えば10mpm〜70mpmとする条件で塗工処理を行った。
Example 1
In this example, first, a photocatalyst coating liquid (TPX-FxFC manufactured by Sakai Corporation) and isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) are blended at a ratio of, for example, 100: 55 to 75. In addition, the surface activation treatment is performed by applying the isopropyl alcohol as a base material to the surface of the base material, and the adhesion to the photocatalyst coating solution containing the isopropyl alcohol is increased. Then, for the polyvinyl chloride film substrate (manufactured by Towa Gosei Kogyo Co., Ltd.), the direct gravure coating method, the application amount is, for example, 10 g / m 2 dry to 50 g / m 2 wet, and the drying temperature is, for example, 40 ° C. to 100 ° C. The coating treatment was performed under the condition that the coating speed was, for example, 10 mpm to 70 mpm.

(実施例2)
本実施例は、実施例1と対比すると、表面活性化処理していない点のみ相違する。すなわち、本実施例では、光触媒塗工液(TPX−FxFC 鯤コーポレーション社製)とイソプロピルアルコール(和光純薬社製)とを、例えば100:55〜75の割合で配合し、塩ビフィルム基材(東和合成工業社製)に対して、ダイレクトグラビアコーティング法にて、塗布量を例えば10g/mwet〜50g/mwet、乾燥温度を例えば40℃〜100℃、塗工速度を例えば10mpm〜70mpmとする条件で塗工処理を行った。
(Example 2)
The present embodiment is different from the first embodiment only in that the surface activation treatment is not performed. That is, in this example, a photocatalyst coating liquid (TPX-FxFC manufactured by Sakai Corporation) and isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) are blended at a ratio of, for example, 100: 55 to 75, and a polyvinyl chloride film substrate ( Towa respect Gosei Co., Ltd.) at a direct gravure coating method, the coating amount for example 10g / m 2 wet~50g / m 2 wet, drying temperature, for example 40 ° C. to 100 ° C., the coating speed for example 10mpm~ The coating treatment was performed under the condition of 70 mpm.

(実施例3)
本実施例は、実施例1と対比すると、表面活性化処理を施していない点に加えて、光触媒塗工液の種別が相違する。すなわち、本実施例では、光触媒塗工液(TPX−FxFA 鯤コーポレーション社製)とイソプロピルアルコール(和光純薬社製)とを、例えば100:55〜75の割合で配合し、塩ビフィルム基材(東和合成工業社製)に対して、ダイレクトグラビアコーティング法にて、塗布量を例えば10g/mwet〜50g/mwet、乾燥温度を例えば40℃〜100℃、塗工速度を例えば10mpm〜70mpmとする条件で塗工処理を行った。
Example 3
In contrast to Example 1, this example is different in the type of photocatalyst coating liquid in addition to the fact that the surface activation treatment is not performed. That is, in this example, a photocatalyst coating liquid (TPX-FxFA manufactured by Sakai Corporation) and isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) are blended at a ratio of, for example, 100: 55 to 75, and a vinyl chloride film substrate ( Towa respect Gosei Co., Ltd.) at a direct gravure coating method, the coating amount for example 10g / m 2 wet~50g / m 2 wet, drying temperature, for example 40 ° C. to 100 ° C., the coating speed for example 10mpm~ The coating treatment was performed under the condition of 70 mpm.

(実施例4)
本実施例は、実施例1と対比すると種々の点が相違する。すなわち、本実施例では、光触媒塗工液(TPX−FxFA 鯤コーポレーション社製)とイソプロピルアルコールとを約100:65の割合で配合し、塩ビフィルム基材(東和合成工業社製)に対して、手塗りで例えば20g/m、乾燥温度を例えば100℃、乾燥時間を例えば5分間とする条件で塗工処理を行った。
Example 4
The present embodiment is different from the first embodiment in various points. That is, in this example, a photocatalyst coating liquid (TPX-FxFA made by Sakai Corporation) and isopropyl alcohol were blended at a ratio of about 100: 65, and a vinyl chloride film base material (manufactured by Towa Gosei Kogyo Co., Ltd.) For example, the coating process was performed by hand coating under the conditions of 20 g / m 2 , a drying temperature of 100 ° C., and a drying time of 5 minutes, for example.

(比較例1)
本比較例として、既述のような光触媒塗工液の塗工処理を行っていない塩ビフィルム基材(東和合成工業社製)を用意した。
(Comparative Example 1)
As this comparative example, a vinyl chloride film base material (manufactured by Towa Gosei Kogyo Co., Ltd.) that was not subjected to the coating treatment of the photocatalyst coating solution as described above was prepared.

(比較例2)
本実施例は、相対的に見ると実施例4における条件と近いが、光触媒塗工液の種別と、光触媒塗工液に対してイソプロピルアルコールを配合していない点と、表面活性化処理を施していない点とが相違する。すなわち、本比較例では、光触媒塗工液(TPX−FxFC 鯤コーポレーション社製)を、塩ビフィルム基材(東和合成工業社製)に対して、手塗りで20g/m、乾燥温度を100℃、乾燥時間を5分間とする条件で塗工処理を行った。
(Comparative Example 2)
This example is relatively close to the conditions in Example 4, but the type of photocatalyst coating liquid, the point that isopropyl alcohol is not blended in the photocatalyst coating liquid, and the surface activation treatment were performed. The difference is not. That is, in this comparative example, the photocatalyst coating liquid (manufactured by TPX-FxFC鯤Corporation), relative to vinyl chloride film substrate (manufactured by Towa Gosei Co., Ltd.), hand painted with 20 g / m 2, the drying temperature 100 ° C. The coating treatment was performed under the condition that the drying time was 5 minutes.

つぎに、各実施例及び各比較例の光触媒塗工液を用いて、実施形態で説明した方法によって、厚みが1μmとなる光触媒フィルムを形成した。これらの光触媒フィルムについて、下記項目について各々測定又は評価した。   Next, a photocatalyst film having a thickness of 1 μm was formed by the method described in the embodiment using the photocatalyst coating liquid of each example and each comparative example. About these photocatalyst films, the following items were measured or evaluated, respectively.

1.外観の見た目の評価
2.分解活性:JIS R1703に準じた分解活性評価
1. Appearance evaluation of appearance 1. Decomposition activity: Evaluation of decomposition activity according to JIS R1703

なお、分解活性については、本塗工液に使用した酸化チタンは可視光応答性が認められるため、紫外光を照射することに代えて可視光を照射した。   In addition, about the decomposition activity, since the titanium oxide used for this coating liquid had visible light responsiveness, it replaced with irradiating with ultraviolet light, and irradiated visible light.

表1は、既述の各実施例及び各比較例の各種前提条件及び測定結果をまとめたものである。

Figure 2017048509
Table 1 summarizes various preconditions and measurement results of the above-described examples and comparative examples.
Figure 2017048509

まず、比較例について考察してみる。
比較例1では、そもそも塩ビフィルム基材に対して光触媒塗工液を塗布していないため、分解活性が−0.07という結果になった。つまり、比較例1のものは、分解活性といった光触媒活性が得られないということがわかる。
First, consider a comparative example.
In Comparative Example 1, since the photocatalyst coating solution was not applied to the polyvinyl chloride film substrate, the decomposition activity was -0.07. That is, it can be seen that the photocatalytic activity such as decomposition activity cannot be obtained in Comparative Example 1.

また、比較例2では、塩ビフィルム基材に対して光触媒塗工液を塗布しているものの、当該光触媒塗工液にはイソプロピルアルコールが配合されていない。このため、塩ビフィルム基材に対して光触媒塗工液が十分に濡れ広がらず、結果的には、外観上、塩ビフィルム基材には所望の光触媒塗膜が形成されていなかった。したがって、比較例2のものも、結果的に、所望の光触媒作用が得られるものではないことがわかる。   In Comparative Example 2, although the photocatalyst coating liquid is applied to the polyvinyl chloride film substrate, isopropyl alcohol is not blended in the photocatalyst coating liquid. For this reason, the photocatalyst coating liquid did not sufficiently wet and spread with respect to the polyvinyl chloride film substrate, and as a result, a desired photocatalyst coating film was not formed on the polyvinyl chloride film substrate. Therefore, it can be seen that the result of Comparative Example 2 does not result in the desired photocatalytic action.

これらに対して、実施例1〜4のものは、いずれも外観異常も見受けられず、また、優れた分解活性効果が確認できた。付言すると、分解活性は、5.0以上の数値であれば、光触媒工業会で設定されている所定のセルフクリーニング性能があるといえるので、本実施例のいずれのものも、セルフクリーニング性能を有していることになる。   On the other hand, none of Examples 1 to 4 showed any abnormal appearance, and an excellent decomposition activity effect could be confirmed. In other words, if the decomposition activity is a numerical value of 5.0 or more, it can be said that there is a predetermined self-cleaning performance set by the photocatalyst industry association, so that all of the examples have self-cleaning performance. Will be.

加えて、実施例1では、表面活性化処理を施しているため、そうでない実施例2に比して、高い分解活性が得られることがわかる。もっとも、実施例3では、表面活性化処理を施していないが、光触媒塗工液の種別を変更することで、実施例2のものよりは、高い分解活性が得られることがわかる。さらに、実施例4では、表面活性化処理を施していないが、光触媒塗工液の種別に応じて、これに適した割合でイソプロピルアルコールを配合したものを用いることで、高い分解活性が得られることがわかる。   In addition, in Example 1, since the surface activation treatment is performed, it can be seen that higher decomposition activity can be obtained as compared to Example 2 that is not. However, in Example 3, surface activation treatment is not performed, but it can be seen that higher decomposition activity than that in Example 2 can be obtained by changing the type of the photocatalyst coating liquid. Further, in Example 4, the surface activation treatment was not performed, but depending on the type of the photocatalyst coating solution, a high decomposition activity can be obtained by using a blend of isopropyl alcohol at a ratio suitable for this. I understand that.

なお、本実施例では、光触媒塗工液に配合する溶剤の例として、イソプロピルアルコールを挙げたが、これに限定されるものではなく、エタノール、水などを用いることもできる。

In this example, isopropyl alcohol was used as an example of the solvent to be blended in the photocatalyst coating solution, but the solvent is not limited to this, and ethanol, water, and the like can also be used.

Claims (8)

ナノオーダーサイズの光触媒粒子と、前記光触媒粒子を含む溶媒中で当該光触媒粒子との間で相互に反発しあうゼータ電位が−30mV〜−70mVの負帯電物質と、未硬化状態の樹脂とを含む光触媒塗工液を硬化させてなる光触媒フィルムが貼付された囲い板。   A nano-order photocatalyst particle, a negatively charged substance having a zeta potential of −30 mV to −70 mV repelling each other in the solvent containing the photocatalyst particle, and an uncured resin A shroud to which a photocatalyst film obtained by curing a photocatalyst coating solution is attached. 前記光触媒粒子は光触媒塗工液を用いて製造した光触媒フィルムに対して3wt%〜70wt%、
前記負帯電物質は光触媒塗工液を用いて製造した光触媒フィルムに対して19wt%〜80wt%、
前記樹脂は光触媒塗工液を用いて製造した光触媒フィルムに対して3wt%〜60wt%の中から選択される請求項1記載の囲い板。
The photocatalyst particles are 3 wt% to 70 wt% with respect to the photocatalyst film produced using the photocatalyst coating solution,
The negatively charged substance is 19 wt% to 80 wt% with respect to the photocatalyst film produced using the photocatalyst coating solution,
The shroud according to claim 1, wherein the resin is selected from 3 wt% to 60 wt% with respect to a photocatalyst film manufactured using a photocatalyst coating solution.
前記負帯電物質は、pHが7以上9以下である、請求項1記載の囲い板。   The enclosure plate according to claim 1, wherein the negatively charged substance has a pH of 7 or more and 9 or less. 前記負帯電物質は、平均1次粒子径で1nm以上、かつ、平均2次粒子径で4000nm以下の範囲である、請求項1記載の囲い板。   The shroud according to claim 1, wherein the negatively charged substance has an average primary particle diameter of 1 nm or more and an average secondary particle diameter of 4000 nm or less. 前記負帯電物質は、シリカを含む、請求項1記載の囲い板。   The shroud of claim 1, wherein the negatively charged material includes silica. 前記樹脂は、アクリル樹脂、シリコン樹脂、シリコーン樹脂、ウレタン樹脂のいずれかを含む、請求項1記載の囲い板。   The enclosure plate according to claim 1, wherein the resin includes any one of an acrylic resin, a silicone resin, a silicone resin, and a urethane resin. 前記光触媒粒子は、扁平形状の結晶粒子と、それに比較して厚みがある立体形状の結晶粒子とが結合した光触媒粒子である、請求項1記載の囲い板。   2. The shroud according to claim 1, wherein the photocatalyst particles are photocatalyst particles in which flat crystal particles and solid crystal particles having a thickness larger than that are combined. 請求項1記載の光触媒塗工液を硬化させた、囲い板用光触媒フィルム。


A photocatalytic film for a shroud, wherein the photocatalyst coating liquid according to claim 1 is cured.


JP2015170213A 2015-08-31 2015-08-31 Enclosure Active JP6953107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015170213A JP6953107B2 (en) 2015-08-31 2015-08-31 Enclosure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015170213A JP6953107B2 (en) 2015-08-31 2015-08-31 Enclosure

Publications (2)

Publication Number Publication Date
JP2017048509A true JP2017048509A (en) 2017-03-09
JP6953107B2 JP6953107B2 (en) 2021-10-27

Family

ID=58278185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015170213A Active JP6953107B2 (en) 2015-08-31 2015-08-31 Enclosure

Country Status (1)

Country Link
JP (1) JP6953107B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107940A (en) * 1996-06-25 1998-01-13 Chuo Rika Kogyo Kk Coating composition
JPH11279446A (en) * 1998-03-27 1999-10-12 Tokushu Paper Mfg Co Ltd Photocatalytic coating material, its production and photocatalytic deodorizing paper produced by using the coating material
JP2001010877A (en) * 1999-06-21 2001-01-16 Sumitomo Osaka Cement Co Ltd Photocatalytic coating composition and its production
JP2003003090A (en) * 2001-04-17 2003-01-08 Touso Sangyo Kk Photocatalytic coating composition
JP2003226842A (en) * 2002-02-01 2003-08-15 Toto Ltd Photocatalytic coating agent
JP2004051644A (en) * 2001-08-30 2004-02-19 Toto Ltd Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP2004143452A (en) * 2002-09-30 2004-05-20 Toto Ltd Self-cleaning aqueous coating composition and self- cleaning member
JP2007084742A (en) * 2005-09-26 2007-04-05 Chuo Rika Kogyo Corp Resin composition for water dispersive low stain type coating material
JP2008208272A (en) * 2007-02-27 2008-09-11 Johnson Diversey Co Ltd Floor polish composition for flooring floor
JP2008291617A (en) * 2007-05-28 2008-12-04 Nikko Planning Kk Temporary enclosure board
JP2011078916A (en) * 2009-10-07 2011-04-21 Toto Ltd External structure and coating fluid for external structure
JP2012117007A (en) * 2010-12-03 2012-06-21 Adeka Corp Aqueous polishing agent composition for floor
JP2012233051A (en) * 2011-04-28 2012-11-29 Asahi Kasei Chemicals Corp Coating composition
JP2013007831A (en) * 2011-06-23 2013-01-10 Hitachi Chem Co Ltd Low-refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film
JP2013107926A (en) * 2011-11-17 2013-06-06 Kaneka Corp Coating film forming composition, method of preparing the same and solar cell module using the same
JP2013169493A (en) * 2012-02-20 2013-09-02 Pioneer Electronic Corp Photocatalyst member, method for manufacturing the same, and optical device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107940A (en) * 1996-06-25 1998-01-13 Chuo Rika Kogyo Kk Coating composition
JPH11279446A (en) * 1998-03-27 1999-10-12 Tokushu Paper Mfg Co Ltd Photocatalytic coating material, its production and photocatalytic deodorizing paper produced by using the coating material
JP2001010877A (en) * 1999-06-21 2001-01-16 Sumitomo Osaka Cement Co Ltd Photocatalytic coating composition and its production
JP2003003090A (en) * 2001-04-17 2003-01-08 Touso Sangyo Kk Photocatalytic coating composition
JP2004051644A (en) * 2001-08-30 2004-02-19 Toto Ltd Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP2003226842A (en) * 2002-02-01 2003-08-15 Toto Ltd Photocatalytic coating agent
JP2004143452A (en) * 2002-09-30 2004-05-20 Toto Ltd Self-cleaning aqueous coating composition and self- cleaning member
JP2007084742A (en) * 2005-09-26 2007-04-05 Chuo Rika Kogyo Corp Resin composition for water dispersive low stain type coating material
JP2008208272A (en) * 2007-02-27 2008-09-11 Johnson Diversey Co Ltd Floor polish composition for flooring floor
JP2008291617A (en) * 2007-05-28 2008-12-04 Nikko Planning Kk Temporary enclosure board
JP2011078916A (en) * 2009-10-07 2011-04-21 Toto Ltd External structure and coating fluid for external structure
JP2012117007A (en) * 2010-12-03 2012-06-21 Adeka Corp Aqueous polishing agent composition for floor
JP2012233051A (en) * 2011-04-28 2012-11-29 Asahi Kasei Chemicals Corp Coating composition
JP2013007831A (en) * 2011-06-23 2013-01-10 Hitachi Chem Co Ltd Low-refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film
JP2013107926A (en) * 2011-11-17 2013-06-06 Kaneka Corp Coating film forming composition, method of preparing the same and solar cell module using the same
JP2013169493A (en) * 2012-02-20 2013-09-02 Pioneer Electronic Corp Photocatalyst member, method for manufacturing the same, and optical device

Also Published As

Publication number Publication date
JP6953107B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2015133316A1 (en) Photocatalyst coating liquid and photocatalyst film using same
JP5213021B2 (en) Metal surface coating, process for its production and its use as a self-cleaning protective layer, in particular for automotive rims
US20040224145A1 (en) Self-decontaminating or self-cleaning coating for protection against hazardous bio-pathogens and toxic chemical agents
TW200904527A (en) Photocatalyst coated body and photocatalytic coating liquid for the same
TW201006550A (en) Object with photo-catalyst coating
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP2012250134A (en) Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2017523913A (en) Photocatalytic functional film and method for producing the same
JP2013032474A (en) Photocatalyst coating liquid, and photocatalyst thin film obtained therefrom
EP2145678A1 (en) TiO2-ZnO Nanocomposite film
JP2017526523A (en) Photocatalytic functional film and method for producing the same
JP2001064582A (en) Photocatalytic hydrophilic coating composition and preparation of photocatalytic hydrophilic composite by using the same
JPH1192689A (en) Inorganic coating
JP4295037B2 (en) Film or sheet with photocatalyst for wallpaper
JP4509718B2 (en) Photocatalyst layer transfer body
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
JP6953107B2 (en) Enclosure
JP2016150329A (en) Organic substrate having photocatalyst layer
JP6112975B2 (en) Precoated metal plate with excellent contamination resistance
JP2005131552A (en) Transparent photocatalyst layer formation composition and use thereof
JP2001181535A (en) Photocatalytic coating material for environmental cleaning
JP4381558B2 (en) Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof
JP3866147B2 (en) Painted metal plate with excellent processability, concealability and photocatalytic activity, and method for producing the same
JP2005137977A (en) Composition for forming transparent photocatalyst layer
US20160346775A1 (en) Photocatalytic thermal barrier coating

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200608

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210202

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210601

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210824

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210928

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6953107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150