JP2017047398A - Anaerobic fluidized bed wastewater treatment apparatus - Google Patents

Anaerobic fluidized bed wastewater treatment apparatus Download PDF

Info

Publication number
JP2017047398A
JP2017047398A JP2015174640A JP2015174640A JP2017047398A JP 2017047398 A JP2017047398 A JP 2017047398A JP 2015174640 A JP2015174640 A JP 2015174640A JP 2015174640 A JP2015174640 A JP 2015174640A JP 2017047398 A JP2017047398 A JP 2017047398A
Authority
JP
Japan
Prior art keywords
water
fluidized bed
treated water
treated
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015174640A
Other languages
Japanese (ja)
Inventor
永森 泰彦
Yasuhiko Nagamori
泰彦 永森
卓巳 小原
Takumi Obara
卓巳 小原
雄一 村中
Yuichi Muranaka
雄一 村中
伸行 足利
Nobuyuki Ashikaga
伸行 足利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015174640A priority Critical patent/JP2017047398A/en
Publication of JP2017047398A publication Critical patent/JP2017047398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic fluidized bed wastewater treatment apparatus capable of stably removing organic matter contained in water to be treated with a high removal rate even when the concentration of the organic matter is lowered.SOLUTION: An anaerobic fluidized bed waste water treatment apparatus of an embodiment has a raw water tank, an organic matter concentration meter, a fluidized bed type reaction vessel, a treated water tank, a treated water supply part, and a control part. The raw water tank stores water to be treated containing organic matter. The organic matter concentration meter is disposed in the raw water tank. The fluidized bed type reaction vessel is provided with a water introduction port for the water to be treated at a lower part thereof, and a water discharge port for treated water from which the organic matter has been removed by bringing the water to be treated and a carrier into contact with each other. The treated water tank stores the treated water. The treated water supply part supplies the treated water to the fluidized bed type reaction vessel. The control part controls the amount of the treat water supplied to the fluidized bed type reaction vessel by the treated water supply part on the basis of the organic matter concentration of the water to be treated measured by the organic matter concentration meter and the amount of the water to be treated supplied to the fluidized bed type reaction vessel.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、嫌気性流動床排水処理装置に関する。   Embodiments of the present invention relate to an anaerobic fluidized bed wastewater treatment apparatus.

下水や産業排水等の排水に含まれている有機物を、嫌気性微生物を利用して除去する処理装置として、嫌気性流動床排水処理装置及びUASB(Upflow Anaerobic Sludge Blanket:上向流式嫌気性汚泥床)排水処理装置が知られている。嫌気性流動床排水処理装置は、有機物除去用の反応槽として流動床型反応槽を用い、流動床を形成している担体の表面に嫌気性微生物を付着させることによって、嫌気性微生物を高濃度に保持する。一方、UASB排水処理装置は、反応槽内にて嫌気性微生物を自己造粒させ、沈降性が高いグラニュールを形成させることによって、嫌気性微生物を高濃度に保持する。   Anaerobic fluidized bed wastewater treatment equipment and UASB (Upflow Anaerobic Sludge Blanket: Upflow Anaerobic Sludge) Floor) Wastewater treatment equipment is known. Anaerobic fluidized bed wastewater treatment equipment uses a fluidized bed type reaction vessel as a reaction vessel for organic matter removal, and adheres anaerobic microorganisms to the surface of the carrier forming the fluidized bed, thereby increasing the concentration of anaerobic microorganisms. Hold on. On the other hand, the UASB wastewater treatment apparatus keeps the anaerobic microorganisms at a high concentration by causing the anaerobic microorganisms to self-granulate in the reaction tank and forming granules with high sedimentation properties.

嫌気性流動床排水処理装置やUASB排水処理装置では、反応槽内に嫌気性微生物を高濃度に保持することにより、排水中の有機物を非常に高い負荷でも効率よく処理することが可能となる。UASB排水処理装置では、嫌気性微生物の自己造粒物であるグラニュールを用いるため、嫌気性流動床排水処理装置で使用する担体は不要である。しかし、UASB排水処理装置では、低濃度排水の場合、排水流量が多くなるため、微生物が反応槽から流出しやすくなって、グラニュールの形成が阻害されたり、排水の種類によってはグラニュールが維持できず解体して反応槽から流出するなどして処理性能が低下する場合がある。   In the anaerobic fluidized bed wastewater treatment device and the UASB wastewater treatment device, it is possible to efficiently treat the organic matter in the wastewater even at a very high load by keeping the anaerobic microorganisms in the reaction tank at a high concentration. In the UASB wastewater treatment apparatus, granules that are self-granulated products of anaerobic microorganisms are used, so that a carrier used in the anaerobic fluidized bed wastewater treatment apparatus is unnecessary. However, in the UASB wastewater treatment equipment, in the case of low-concentration wastewater, the wastewater flow rate increases, so that microorganisms easily flow out of the reaction tank, and the formation of granules is hindered, or the granules are maintained depending on the type of wastewater. In some cases, the processing performance may deteriorate due to dismantling and outflowing from the reaction vessel.

これに対して、嫌気性流動床排水処理装置では、低濃度排水の場合であっても、担体の比重の制御によって担体の流出を防止でき、また、材料や形状の制御によって排水の種類に適した微生物の付着性を高くすることが可能である。このため、嫌気性流動床排水処理装置は、低濃度排水中の有機物を処理するのに有利な装置である。   In contrast, anaerobic fluidized bed wastewater treatment equipment can prevent the outflow of the carrier by controlling the specific gravity of the carrier even in the case of low-concentration wastewater, and is suitable for the type of wastewater by controlling the material and shape. It is possible to increase the adherence of microorganisms. For this reason, the anaerobic fluidized bed wastewater treatment device is an advantageous device for treating organic substances in low-concentration wastewater.

嫌気性流動床排水処理装置において用いられる流動床型反応槽は、一般に、内部に嫌気性微生物を付着させた担体が充填されていて、流動床を形成している担体(嫌気性微生物)と被処理水とが接触することによって有機物が除去された処理水が生成する。流動床型反応槽の下部には、被処理水を内部に導入する導水口が、上部には、処理水を外部に放出する放水口が備えられている。また、この流動床型反応槽の放水口から放出された処理水の一部を、担体を流動させて流動床を形成させるための水として流動床型反応槽の導水口に供給する構成の嫌気性流動床排水処理装置は知られている。   In general, a fluidized bed type reaction vessel used in an anaerobic fluidized bed wastewater treatment apparatus is filled with a carrier having anaerobic microorganisms attached to the inside, and a carrier (anaerobic microorganism) forming a fluidized bed and a coating. Treated water from which organic substances have been removed is produced by contact with the treated water. The lower part of the fluidized bed type reaction tank is provided with a water inlet for introducing the water to be treated inside, and the upper part is provided with a water outlet for releasing the treated water to the outside. In addition, anaerobic structure in which a part of the treated water discharged from the water outlet of the fluidized bed type reaction tank is supplied to the water inlet of the fluidized bed type reaction tank as water for causing the carrier to flow to form a fluidized bed. Fluidized bed wastewater treatment equipment is known.

上述の通り、嫌気性流動床排水処理装置は、低濃度排水中の有機物を処理するのに有利な装置である。しかしながら、嫌気性流動床排水処理装置を用いて、低濃度の有機物を高い除去率で除去処理するためには、反応槽のBOD容積負荷や流動床の膨張比などの処理条件を厳密に最適化する必要がある。処理条件が異なる場合、特に排水中の有機物の濃度が低下した場合には、有機物の除去率が大きく低下することがある。例えば、有機物濃度が2000mg/Lの排水に対して、処理条件を最適化した嫌気性流動床排水処理装置に、有機物濃度が1000mg/Lの排水が流れ込むと、有機物の除去率が大きく低下する場合があった。このように、嫌気性流動床排水処理装置では、排水の排出元となる工場の操業状態や排水への雨水の混入などの周囲の状況により、排水の有機物濃度が変動した場合、特に排水の有機物濃度が低下した場合には処理性能が低下することが懸念される。   As described above, the anaerobic fluidized bed wastewater treatment device is an advantageous device for treating organic substances in low-concentration wastewater. However, in order to remove low-concentration organic substances with a high removal rate using an anaerobic fluidized bed wastewater treatment device, the processing conditions such as the BOD volume load of the reaction tank and the expansion ratio of the fluidized bed are strictly optimized. There is a need to. When the treatment conditions are different, especially when the concentration of organic matter in the wastewater is reduced, the organic matter removal rate may be greatly reduced. For example, when wastewater with an organic matter concentration of 1000 mg / L flows into an anaerobic fluidized bed wastewater treatment device with optimized treatment conditions for wastewater with an organic matter concentration of 2000 mg / L, the removal rate of organic matter is greatly reduced. was there. In this way, in anaerobic fluidized bed wastewater treatment equipment, when the concentration of organic matter in the wastewater fluctuates due to the operating conditions of the factory from which the wastewater is discharged and the surrounding conditions such as the incorporation of rainwater into the wastewater, especially the organic matter in the wastewater When the concentration is lowered, there is a concern that the processing performance is lowered.

特開平3−154694号公報Japanese Patent Laid-Open No. 3-154694

本発明が解決しようとする課題は、下水や産業排水等の排水(被処理水)に含まれる有機物を、その有機物の濃度が低下した場合でも、安定して高い除去率で除去処理を行うことができる嫌気性流動床排水処理装置を提供することである。   The problem to be solved by the present invention is to stably remove organic matter contained in wastewater (treated water) such as sewage and industrial wastewater at a high removal rate even when the concentration of the organic matter is reduced. It is to provide an anaerobic fluidized bed wastewater treatment device capable of performing the above.

実施形態の嫌気性流動床排水処理装置は、原水槽と、有機物濃度計と、流動床型反応槽と、処理水槽と、処理水供給部と、制御部とを持つ。
原水槽は、有機物を含む被処理水を貯留する。有機物濃度計は、前記原水槽に設置されている。流動床型反応槽は、内部に嫌気性微生物を付着させた担体が充填され、下部に前記被処理水の導水口が備えられ、上部に、前記被処理水と前記担体とが接触することによって有機物が除去された処理水の放水口が備えられている。処理水槽は、前記流動床型反応槽の前記放水口に接続され、前記放水口から放出された処理水を貯留する。処理水供給部は、前記処理水槽に接続され、前記処理水を前記流動床型反応槽の前記導水口に供給する。制御部は、前記有機物濃度計にて測定された前記被処理水の有機物濃度、及び前記流動床型反応槽の前記導水口に供給される前記被処理水の量に基づいて、前記処理水供給部が前記流動床型反応槽の前記導水口に供給する前記処理水の量を制御する。
The anaerobic fluidized bed wastewater treatment apparatus of the embodiment includes a raw water tank, an organic substance concentration meter, a fluidized bed type reaction tank, a treated water tank, a treated water supply unit, and a control unit.
The raw water tank stores water to be treated containing organic matter. The organic substance concentration meter is installed in the raw water tank. The fluidized bed type reaction tank is filled with a carrier having anaerobic microorganisms attached inside, and has a water inlet for the treated water at the lower part, and the treated water and the carrier are in contact at the upper part. An outlet for treated water from which organic substances have been removed is provided. The treated water tank is connected to the water outlet of the fluidized bed type reaction tank and stores treated water discharged from the water outlet. The treated water supply unit is connected to the treated water tank and supplies the treated water to the water inlet of the fluidized bed type reaction tank. The control unit supplies the treated water based on the organic matter concentration of the treated water measured by the organic matter concentration meter and the amount of the treated water supplied to the water inlet of the fluidized bed type reaction tank. The section controls the amount of the treated water supplied to the water inlet of the fluidized bed reactor.

実施形態の嫌気性流動床排水処理装置の構成を示すブロック図。The block diagram which shows the structure of the anaerobic fluidized bed waste water treatment equipment of embodiment. 実施形態の嫌気性流動床排水処理装置に用いられる流動床型反応槽に導入された水の上向流速LVと流動床の膨張比との関係を示すグラフ。The graph which shows the relationship between the upward flow velocity LV of the water introduce | transduced into the fluidized bed type | mold reaction tank used for the anaerobic fluidized bed wastewater treatment equipment of embodiment, and the expansion ratio of a fluidized bed.

以下、実施形態の嫌気性流動床排水処理装置を、図面を参照して説明する。   Hereinafter, the anaerobic fluidized bed waste water treatment equipment of an embodiment is explained with reference to drawings.

図1は、実施形態の嫌気性流動床排水処理装置の構成を示すブロック図である。図1において、嫌気性流動床排水処理装置は、原水槽10と、流動床型反応槽20と、処理水槽30と、第1ポンプ(被処理水供給部)40と、第2ポンプ(処理水供給部)50と、制御部60とを持つ。   Drawing 1 is a block diagram showing the composition of the anaerobic fluidized bed waste water treatment equipment of an embodiment. In FIG. 1, an anaerobic fluidized bed wastewater treatment apparatus includes a raw water tank 10, a fluidized bed type reaction tank 20, a treated water tank 30, a first pump (treated water supply unit) 40, and a second pump (treated water). Supply unit) 50 and a control unit 60.

原水槽10は、有機物を含む被処理水を貯留する槽である。有機物を含む被処理水の例としては、下水、食品工場や畜産場などの施設にて発生した産業排水を挙げることができる。
原水槽10には、被処理水用の有機物濃度計11が設置されている。被処理水用有機物濃度計11は、原水槽10内の被処理水の有機物濃度を測定する。被処理水用有機物濃度計11の例としては、TOC(全有機炭素)計を挙げることができる。被処理水用有機物濃度計11にて測定された有機物濃度は制御部60に送られる。
The raw water tank 10 is a tank for storing treated water containing organic matter. Examples of water to be treated containing organic substances include sewage, industrial wastewater generated in facilities such as food factories and livestock farms.
The raw water tank 10 is provided with an organic substance concentration meter 11 for water to be treated. The organic matter concentration meter 11 for treated water measures the organic matter concentration of the treated water in the raw water tank 10. As an example of the organic substance concentration meter 11 for to-be-processed water, a TOC (total organic carbon) meter can be mentioned. The organic substance concentration measured by the organic substance concentration meter 11 for water to be treated is sent to the control unit 60.

流動床型反応槽20は、内部に嫌気性微生物を付着させた担体21が充填されている。流動床型反応槽20の下部には導水口23が備えられている。導水口23には、原水槽10内の被処理水と処理水槽30内の処理水とが供給される。流動床型反応槽20の上部には、放水口24が備えられている。放水口24は、被処理水と担体21(嫌気性微生物)とが接触することによって有機物が除去された処理水が外部に放出する。   The fluidized bed type reaction tank 20 is filled with a carrier 21 having anaerobic microorganisms attached to the inside thereof. A water inlet 23 is provided in the lower part of the fluidized bed reaction tank 20. The water to be treated in the raw water tank 10 and the treated water in the treated water tank 30 are supplied to the water inlet 23. A water outlet 24 is provided in the upper part of the fluidized bed reaction tank 20. The treated water from which the organic matter is removed is discharged to the outside through the water outlet 24 when the water to be treated and the carrier 21 (anaerobic microorganism) come into contact with each other.

処理水槽30は、流動床型反応槽20の放水口24から取り出された処理水を貯留する槽である。処理水槽30には、処理水の有機物濃度を測定する処理水用有機物濃度計31が配置されている。処理水用有機物濃度計31にて測定された有機物濃度は制御部60に送られる。処理水槽30にはまた、所定の水位に達した処理水を外部に取り出す取出口32が備えられている。   The treated water tank 30 is a tank for storing treated water taken out from the water outlet 24 of the fluidized bed type reaction tank 20. The treated water tank 30 is provided with a treated water organic matter concentration meter 31 for measuring the treated matter organic matter concentration. The organic matter concentration measured by the treated water organic matter concentration meter 31 is sent to the control unit 60. The treated water tank 30 is also provided with an outlet 32 for taking out treated water that has reached a predetermined water level to the outside.

第1ポンプ(被処理水供給部)40は、原水槽10に貯留されている被処理水を流動床型反応槽20の導水口23に供給するポンプである。第1ポンプ40によって供給される被処理水の量は、制御部60に送られる。   The first pump (treated water supply unit) 40 is a pump that supplies the treated water stored in the raw water tank 10 to the water inlet 23 of the fluidized bed type reaction tank 20. The amount of water to be treated supplied by the first pump 40 is sent to the control unit 60.

第2ポンプ(処理水供給部)50は、処理水槽30に貯留されている処理水を、流動床型反応槽20の導水口23に供給するポンプである。流動床型反応槽20の導水口23に供給された処理水は、担体21を流動させて流動床22を形成させるための水として作用する。第2ポンプ50による被処理水の供給量は、通常は、流動床型反応槽20の担体21が形成する流動床22の膨張比が1よりも大きく、2よりも小さくなる量である。ここで、流動床22の膨張比とは、担体21が流動床を形成していないときの高さHと、担体21が流動床22を形成しているときの高さHとの比H/Hを意味する。 The second pump (treated water supply unit) 50 is a pump that supplies the treated water stored in the treated water tank 30 to the water inlet 23 of the fluidized bed type reaction tank 20. The treated water supplied to the water inlet 23 of the fluidized bed reaction tank 20 acts as water for causing the carrier 21 to flow to form the fluidized bed 22. The supply amount of water to be treated by the second pump 50 is usually an amount in which the expansion ratio of the fluidized bed 22 formed by the carrier 21 of the fluidized bed type reaction tank 20 is larger than 1 and smaller than 2. Here, the expansion ratio of the fluidized bed 22 is the ratio H between the height H 0 when the carrier 21 does not form the fluidized bed and the height H when the carrier 21 forms the fluidized bed 22. / H means 0 .

流動床22の膨張比は、流動床型反応槽20に導入された水の上向流速の増加に伴って大きくなるが、膨張比が大きくなる度合いは、担体21の比重や形状などの物性によって異なる。それぞれ物性が異なる担体Aと担体Bとについて、水の上向流速LVと流動床の膨張比との関係を測定した結果を、図2に示す。この図2のグラフから、流動床22の膨張比が大きくなる度合いは、担体21の物性によって異なることが分かる。従って、第2ポンプ50による被処理水の供給量は、流動床型反応槽20に充填される担体21の種類毎に水の上向流速LVと流動床の膨張比との関係を予め測定して、その測定結果を考慮して決定することが好ましい。   The expansion ratio of the fluidized bed 22 increases as the upward flow rate of the water introduced into the fluidized bed reaction tank 20 increases. The degree to which the expansion ratio increases depends on the physical properties such as the specific gravity and shape of the carrier 21. Different. The results of measuring the relationship between the upward flow velocity LV of water and the expansion ratio of the fluidized bed for carrier A and carrier B having different physical properties are shown in FIG. From the graph of FIG. 2, it can be seen that the degree to which the expansion ratio of the fluidized bed 22 increases depends on the physical properties of the carrier 21. Therefore, the supply amount of the water to be treated by the second pump 50 is determined in advance by measuring the relationship between the upward flow rate LV of water and the expansion ratio of the fluidized bed for each type of carrier 21 filled in the fluidized bed type reaction tank 20. Therefore, it is preferable to determine in consideration of the measurement result.

被処理水と処理水とは、それぞれを混合して混合水として流動床型反応槽20の導水口23に供給してもよいし、それぞれを別に流動床型反応槽20の導水口23に供給してもよい。   The water to be treated and the treated water may be mixed and supplied to the water inlet 23 of the fluidized bed type reaction tank 20 as mixed water, or separately supplied to the water inlet 23 of the fluidized bed type reaction tank 20. May be.

制御部60は、被処理水用有機物濃度計11にて測定された被処理水の有機物濃度、及び第1ポンプ40によって流動床型反応槽20の導水口23に供給される被処理水の量に基づいて、第2ポンプ50による流動床型反応槽20の導水口23に供給される処理水の量を制御する。但し、処理水の量は、流動床型反応槽20の担体21が形成する流動床22の膨張比が1よりも大きく、2よりも小さくなる量とする必要がある。   The control unit 60 uses the organic matter concentration of the treated water measured by the treated water organic matter concentration meter 11 and the amount of treated water supplied to the water inlet 23 of the fluidized bed type reaction tank 20 by the first pump 40. Based on the above, the amount of treated water supplied to the water inlet 23 of the fluidized bed type reaction tank 20 by the second pump 50 is controlled. However, the amount of the treated water needs to be an amount in which the expansion ratio of the fluidized bed 22 formed by the carrier 21 of the fluidized bed reaction tank 20 is larger than 1 and smaller than 2.

制御部60にはまた、有機物の除去率を測定する測定部(不図示)が更に備えられている。測定部は、被処理水用有機物濃度計11より測定された被処理水の有機物濃度と処理水用有機物濃度計31より測定された処理水の有機物濃度とから下記の式より、有機物の除去率を算出する。
有機物除去率(%)=(被処理水の有機物濃度−処理水の有機物濃度)/被処理水の有機物濃度×100
The control unit 60 is further provided with a measurement unit (not shown) that measures the organic substance removal rate. The measuring unit calculates the organic matter removal rate from the following equation from the organic matter concentration of the treated water measured by the treated water organic matter concentration meter 11 and the treated water organic matter concentration measured by the treated water organic matter concentration meter 31. Is calculated.
Organic substance removal rate (%) = (organic substance concentration of treated water−organic substance concentration of treated water) / organic substance concentration of treated water × 100

測定部にて測定された有機物の除去率が所定値よりも低い場合には、制御部60は、第2ポンプ50によって流動床型反応槽20の導水口23に供給される処理水の量を低減させる。   When the organic substance removal rate measured by the measurement unit is lower than a predetermined value, the control unit 60 determines the amount of treated water supplied to the water inlet 23 of the fluidized bed reaction tank 20 by the second pump 50. Reduce.

処理水の供給量を低減させることによって、有機物の除去率が向上する理由は、流動床型反応槽20に導入される水(被処理水と処理水)に含まれる有機物の濃度が増加して、担体21の表面に付着している嫌気性微生物の基質利用速度(dS/dt)が大きくなるためであると考えられる。すなわち、嫌気性微生物による排水処理を、嫌気性微生物の動力学の面から検討すると、嫌気性微生物の基質利用速度(dS/dt)は、Monad式によれば下記の式(1)で表現される。
dS/dt=kmaxSX/(KsS) ・・・・ (1)
ここで、
max:最大比基質利用速度
S:増殖律速基質濃度
X:バイオマス濃度
Ks:半飽和定数
The reason why the organic matter removal rate is improved by reducing the supply amount of the treated water is that the concentration of the organic matter contained in the water (treated water and treated water) introduced into the fluidized bed reactor 20 is increased. This is considered to be because the substrate utilization rate (dS / dt) of the anaerobic microorganisms adhering to the surface of the carrier 21 is increased. That is, when the wastewater treatment by anaerobic microorganisms is studied from the viewpoint of the kinetics of the anaerobic microorganisms, the substrate utilization rate (dS / dt) of the anaerobic microorganisms is expressed by the following equation (1) according to the Monad equation. The
dS / dt = k max SX / (Ks + S) (1)
here,
k max : Maximum specific substrate utilization rate S: Growth rate limiting substrate concentration X: Biomass concentration Ks + : Half-saturation constant

式(1)において、kmaxとKsは定数である。式(1)によれば、微生物の基質利用速度(dS/dt)は、増殖律速基質濃度(S)とバイオマス濃度(X)とに相関する。バイオマス濃度(X)は担体に付着している嫌気性微生物の量を意味し、この値は変化しないと考えられる。一方、増殖律速基質濃度(S)は、流動床型反応槽20に導入される水に含まれる有機物の濃度を意味するので、流動床型反応槽20に導入される処理水の供給量を低減させることによって大きくなる。従って、式(1)によれば、処理水の供給量を低減させることによって、増殖律速基質濃度(S)が大きくなり、嫌気性微生物の基質利用速度(dS/dt)が上がることにより、有機物の除去率が向上すると考えられる。 In Equation (1), k max and Ks + are constants. According to equation (1), the substrate utilization rate (dS / dt) of the microorganism correlates with the growth-limiting substrate concentration (S) and the biomass concentration (X). The biomass concentration (X) means the amount of anaerobic microorganisms adhering to the carrier, and this value is considered not to change. On the other hand, the growth rate-limiting substrate concentration (S) means the concentration of organic substances contained in the water introduced into the fluidized bed type reaction tank 20, so that the amount of treated water introduced into the fluidized bed type reaction tank 20 is reduced. To make it bigger. Therefore, according to the formula (1), by reducing the supply amount of the treated water, the growth rate-limiting substrate concentration (S) is increased, and the substrate utilization rate (dS / dt) of the anaerobic microorganisms is increased. It is thought that the removal rate of the is improved.

本実施形態の嫌気性流動床排水処理装置による被処理水中の有機物の除去処理は、次のように行われる。最初に、原水槽10に被処理水を貯留し、処理水槽30に有機物を実質的に含まない水を貯留する。次に、処理水槽30に貯留した水を第2ポンプ50を用いて流動床型反応槽20の導水口23に供給して、担体21に流動床22を形成させる。流動床21が形成された後、原水槽10に貯留した被処理水を第1ポンプ40を用いて流動床型反応槽20の導水口23に供給する。流動床型反応槽20に導入された被処理水は、担体21(嫌気性微生物)と接触して有機物が除去され、処理水が生成する。処理水は、放水口24を通って外部に放出される。外部に放出された処理水は、処理水槽30に貯留される。処理水槽30内の処理水の水位が取出口32に達すると、処理水の一部は取出口32を通って外部取り出される。一方、処理水槽30に貯留されている処理水は、第2ポンプにて、流動床型反応槽20の導水口23に供給される。   The removal processing of the organic matter in the water to be treated by the anaerobic fluidized bed wastewater treatment apparatus of the present embodiment is performed as follows. First, water to be treated is stored in the raw water tank 10, and water that does not substantially contain organic substances is stored in the treated water tank 30. Next, the water stored in the treated water tank 30 is supplied to the water inlet 23 of the fluidized bed type reaction tank 20 using the second pump 50, and the fluidized bed 22 is formed on the carrier 21. After the fluidized bed 21 is formed, the treated water stored in the raw water tank 10 is supplied to the water inlet 23 of the fluidized bed type reaction tank 20 using the first pump 40. The treated water introduced into the fluidized bed reaction tank 20 comes into contact with the carrier 21 (anaerobic microorganisms) to remove organic substances and produce treated water. The treated water is discharged to the outside through the water outlet 24. The treated water released to the outside is stored in the treated water tank 30. When the level of the treated water in the treated water tank 30 reaches the outlet 32, a part of the treated water is taken out through the outlet 32. On the other hand, the treated water stored in the treated water tank 30 is supplied to the water inlet 23 of the fluidized bed reaction tank 20 by the second pump.

制御部60は、原水槽10内の被処理水の有機物濃度、その被処理水の有機物濃度と処理水槽30内の処理水の有機物濃度とから算出される有機物除去率、そして第1ポンプ40により流動床型反応槽20の導水口23に送られる被処理水の供給量を監視する。そして、これらの値に異常があった場合には、第2ポンプ50により流動床型反応槽20の導水口23に送られる処理水の供給量を制御する。例えば、通常時よりも、被処理水の濃度が低下した場合、有機物除去率が低下した場合、被処理水の供給量が増加した場合には、制御部60は、処理水の供給量を通常時よりも減少させるように第2ポンプ50を制御する。その後、被処理水の濃度及び被処理水の供給量が通常時に戻った場合には、制御部60は、処理水の供給量を通常時の量に戻すように第2ポンプ50を制御する。   The control unit 60 controls the organic matter concentration in the raw water tank 10, the organic matter removal rate calculated from the organic matter concentration in the treated water and the organic matter concentration in the treated water tank 30, and the first pump 40. The supply amount of the water to be treated sent to the water inlet 23 of the fluidized bed reactor 20 is monitored. And when these values are abnormal, the supply amount of the treated water sent to the water inlet 23 of the fluidized bed type reaction tank 20 by the second pump 50 is controlled. For example, when the concentration of treated water is lower than normal, when the organic matter removal rate is lowered, or when the supply amount of treated water is increased, the control unit 60 normally sets the supply amount of treated water. The second pump 50 is controlled so as to reduce the time. Thereafter, when the concentration of the treated water and the supply amount of the treated water return to the normal time, the control unit 60 controls the second pump 50 to return the supplied amount of the treated water to the normal amount.

実施形態の嫌気性流動床排水処理装置によれば、被処理水の有機物濃度及び流動床型反応槽20の導水口23に供給される被処理水の量に基づいて、流動床型反応槽20の導水口23に供給する処理水の量を制御するので、被処理水(下水や産業排水等の排水)に含まれる有機物を、その有機物濃度が低下した場合でも、安定して高い除去率で除去処理を行うことができる。   According to the anaerobic fluidized bed wastewater treatment apparatus of the embodiment, the fluidized bed reaction tank 20 is based on the organic matter concentration of the treated water and the amount of treated water supplied to the water inlet 23 of the fluidized bed reaction tank 20. Since the amount of treated water supplied to the water inlet 23 is controlled, the organic matter contained in the water to be treated (drainage such as sewage and industrial wastewater) can be stably removed even when the concentration of the organic matter is reduced. A removal process can be performed.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

[実施例1]
図1に示す構成の嫌気性流動床排水処理装置を用意した。この嫌気性流動床排水処理装置は、有機物濃度が2000mg/Lの被処理水を、下記の処理条件にて処理したときの有機物除去率が95%であった。
[Example 1]
An anaerobic fluidized bed wastewater treatment apparatus having the configuration shown in FIG. 1 was prepared. This anaerobic fluidized bed wastewater treatment apparatus had an organic matter removal rate of 95% when treated water having an organic matter concentration of 2000 mg / L was treated under the following treatment conditions.

(処理条件)
原水槽10内の被処理水の有機物濃度:2000mg/L
流動床型反応槽20のBOD容積負荷:30kg/m/日
第1ポンプ40による被処理水の供給量:10.3L/日
第2ポンプ50による処理水の供給量:650L/日
流動床型反応槽20に導入された水の上向流速:20m/h
流動床22の膨張比:1.2
流動床型反応槽20内での被処理水の滞留時間:1.6h
(Processing conditions)
Organic matter concentration of treated water in raw water tank 10: 2000 mg / L
BOD volumetric load of fluidized bed reactor 20: 30 kg / m 3 / day Amount of treated water supplied by first pump 40: 10.3 L / day Amount of treated water supplied by second pump 50: 650 L / day Fluidized bed Flow rate of water introduced into the reaction tank 20: 20 m / h
Expansion ratio of fluidized bed 22: 1.2
Residence time of treated water in fluidized bed reactor 20: 1.6h

[比較例1]
上記実施例1で処理した被処理水が雨水によって、濃度が1/2倍、量が2倍に希釈された場合を想定して、原水槽10内の被処理水の有機物濃度を1000mg/Lとし、第1ポンプ40による被処理水の供給量を20.6L/日としたこと以外は、実施例1と同様にして被処理水中の有機物の除去処理を行った。その結果、有機物除去率は85%以下となった。処理条件を以下に示す。
[Comparative Example 1]
Assuming that the water to be treated treated in Example 1 is diluted with rainwater by a factor of 1/2 and the amount is doubled, the organic matter concentration in the raw water tank 10 is 1000 mg / L. And the removal processing of the organic substance in to-be-processed water was performed like Example 1 except having supplied the amount of to-be-processed water by the 1st pump 40 to 20.6 L / day. As a result, the organic matter removal rate was 85% or less. The processing conditions are shown below.

(処理条件)
原水槽10内の被処理水の有機物濃度:1000mg/L
流動床型反応槽20のBOD容積負荷:30kg/m/日
第1ポンプ40による被処理水の供給量:20.6L/日
第2ポンプ50による処理水の供給量:650L/日
流動床型反応槽20に導入された水の上向流速:20m/h
流動床22の膨張比:1.2
流動床型反応槽20内での被処理水の滞留時間:0.8h
(Processing conditions)
Organic matter concentration of treated water in raw water tank 10: 1000 mg / L
BOD volumetric load of fluidized bed reactor 20: 30 kg / m 3 / day Amount of treated water supplied by first pump 40: 20.6 L / day Amount of treated water supplied by second pump 50: 650 L / day Fluidized bed Flow rate of water introduced into the reaction tank 20: 20 m / h
Expansion ratio of fluidized bed 22: 1.2
Residence time of water to be treated in the fluidized bed reactor 20: 0.8h

[実施例2]
上記比較例1の処理条件において、第2ポンプ50による処理水の供給量を288L/日として、流動床型反応槽20に導入された水の上向流速を10m/hとしたこと以外は、比較例1と同様にして排水処理を行った。その結果、有機物除去率は90%以上となった。処理条件を以下に示す。
[Example 2]
In the treatment conditions of Comparative Example 1, except that the amount of treated water supplied by the second pump 50 is 288 L / day and the upward flow rate of water introduced into the fluidized bed type reaction tank 20 is 10 m / h, Waste water treatment was performed in the same manner as in Comparative Example 1. As a result, the organic matter removal rate was 90% or more. The processing conditions are shown below.

(処理条件)
原水槽10内の被処理水の有機物濃度:1000mg/L
流動床型反応槽20のBOD容積負荷:30kg/m/日
第1ポンプ40による被処理水の供給量:20.6L/日
第2ポンプ50による処理水の供給量:288L/日
流動床型反応槽20に導入された水の上向流速:10m/h
流動床22の膨張比:1をわずかに超える
流動床型反応槽20内での被処理水の滞留時間:0.8h
(Processing conditions)
Organic matter concentration of treated water in raw water tank 10: 1000 mg / L
BOD volumetric load of fluidized bed reactor 20: 30 kg / m 3 / day Amount of treated water supplied by first pump 40: 20.6 L / day Amount of treated water supplied by second pump 50: 288 L / day Fluidized bed Flow rate of water introduced into the reaction tank 20: 10 m / h
The expansion ratio of the fluidized bed 22 slightly exceeds 1: Residence time of water to be treated in the fluidized bed reactor 20: 0.8 h

実施例1において、流動床型反応槽20に導入された水(被処理水+処理水)の有機物濃度は、約31mg/L=2000×10.3÷(10.3+650)である。
比較例1において、流動床型反応槽20に導入された水の有機物濃度は、約31mg/L=1000×20.6÷(20.6+650)である。実施例1と比較例1とで流動床型反応槽20に導入された水の有機物濃度が同じでありながら、比較例1では有機物除去率が85%以下に低下した理由は、流動床型反応槽20内での被処理水の滞留時間が1.6hから0.8hに短くなったためであると考えられる。
実施例2において、流動床型反応槽20に導入された水の有機物濃度は、約67mg/L=1000×20.6÷(20.6+288)である。比較例1と実施例2とで流動床型反応槽20内での被処理水の滞留時間が同じでありながらも、実施例2で有機物除去率が90%以上に向上した理由は、流動床型反応槽20に導入された混合水の有機物濃度が、比較例1と比較して約2倍も増加したためであると考えられる。
In Example 1, the organic substance concentration of water (treated water + treated water) introduced into the fluidized bed reactor 20 is about 31 mg / L = 2000 × 10.3 ÷ (10.3 + 650).
In Comparative Example 1, the organic concentration of water introduced into the fluidized bed reactor 20 is about 31 mg / L = 1000 × 20.6 ÷ (20.6 + 650). The reason why the organic matter removal rate in Comparative Example 1 was reduced to 85% or less in Comparative Example 1 was the same as Example 1 and Comparative Example 1 in which the organic matter concentration of water introduced into the fluidized bed reaction vessel 20 was the same. This is probably because the retention time of the water to be treated in the tank 20 was shortened from 1.6 h to 0.8 h.
In Example 2, the organic substance concentration of water introduced into the fluidized bed reactor 20 is approximately 67 mg / L = 1000 × 20.6 ÷ (20.6 + 288). The reason why the organic matter removal rate was improved to 90% or more in Example 2 was the same as in Comparative Example 1 and Example 2 while the residence time of the water to be treated in the fluidized bed type reaction tank 20 was the same. This is probably because the organic substance concentration of the mixed water introduced into the mold reaction tank 20 increased about twice as compared with Comparative Example 1.

10…原水槽、11…被処理水用有機物濃度計、20…流動床型反応槽、21…担体、22…流動床、23…導水口、24…放水口、30…処理水槽、31…処理水用有機物濃度計、32…取出口、40…第1ポンプ(被処理水供給部)、50…第2ポンプ(処理水供給部)、60…制御部   DESCRIPTION OF SYMBOLS 10 ... Raw water tank, 11 ... Organic substance concentration meter for to-be-treated water, 20 ... Fluidized bed type reaction tank, 21 ... Carrier, 22 ... Fluidized bed, 23 ... Water inlet, 24 ... Water outlet, 30 ... Treated water tank, 31 ... Treatment Organic concentration meter for water, 32 ... take-out port, 40 ... first pump (treated water supply part), 50 ... second pump (treated water supply part), 60 ... control part

Claims (3)

有機物を含む被処理水を貯留する原水槽と、
前記原水槽に設置されている有機物濃度計と、
内部に嫌気性微生物を付着させた担体が充填され、下部に前記被処理水の導水口が備えられ、上部に、前記被処理水と前記担体とが接触することによって有機物が除去された処理水の放水口が備えられている流動床型反応槽と、
前記流動床型反応槽の前記放水口に接続され、前記放水口から放出された処理水を貯留する処理水槽と、
前記処理水槽に接続され、前記処理水を前記流動床型反応槽の前記導水口に供給する処理水供給部と、
前記有機物濃度計にて測定された前記被処理水の有機物濃度、及び前記流動床型反応槽の前記導水口に供給される前記被処理水の量に基づいて、前記処理水供給部が前記流動床型反応槽の前記導水口に供給する前記処理水の量を制御する制御部とを有する嫌気性流動床排水処理装置。
A raw water tank for storing treated water containing organic matter;
An organic matter concentration meter installed in the raw water tank;
Treated water filled with a carrier having anaerobic microorganisms attached inside, provided with a water inlet for the treated water at the bottom, and organic matter removed by contacting the treated water with the carrier at the top A fluidized bed reactor equipped with a water outlet,
A treated water tank connected to the water outlet of the fluidized bed reaction tank and storing treated water discharged from the water outlet;
A treated water supply unit connected to the treated water tank and supplying the treated water to the water inlet of the fluidized bed type reaction tank;
Based on the organic matter concentration of the treated water measured by the organic matter concentration meter and the amount of the treated water supplied to the water inlet of the fluidized bed type reaction tank, the treated water supply unit is configured to flow the fluid. An anaerobic fluidized bed wastewater treatment apparatus having a control unit for controlling the amount of the treated water supplied to the water inlet of the bed type reaction tank.
前記制御部には、前記被処理水の有機物の除去率を測定する測定部が更に備えられ、
前記制御部は、前記測定部にて測定された前記有機物の除去率が所定値よりも低い際に、前記処理水供給部によって前記流動床型反応槽の前記導水口に供給する前記処理水の量を低減させる請求項1に記載の嫌気性流動床排水処理装置。
The control unit is further provided with a measurement unit that measures an organic matter removal rate of the water to be treated.
The said control part is the said treated water supplied to the said water inlet of the said fluidized bed reaction tank by the said treated water supply part, when the removal rate of the said organic substance measured in the said measurement part is lower than predetermined value. The anaerobic fluidized bed waste water treatment equipment according to claim 1 which reduces quantity.
前記制御部は、前記処理水供給部によって前記流動床型反応槽の前記導水口に供給する前記処理水の量を、前記担体が形成する流動床の膨張比が1よりも大きく、2よりも小さくなる量に制御する請求項1または請求項2に記載の嫌気性流動床排水処理装置。   The control unit is configured such that the amount of the treated water supplied to the water inlet of the fluidized bed type reaction tank by the treated water supply unit is larger than 1 when the expansion ratio of the fluidized bed formed by the carrier is larger than 1. The anaerobic fluidized bed wastewater treatment apparatus according to claim 1 or 2, wherein the anaerobic fluidized bed wastewater treatment apparatus is controlled to a smaller amount.
JP2015174640A 2015-09-04 2015-09-04 Anaerobic fluidized bed wastewater treatment apparatus Pending JP2017047398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015174640A JP2017047398A (en) 2015-09-04 2015-09-04 Anaerobic fluidized bed wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174640A JP2017047398A (en) 2015-09-04 2015-09-04 Anaerobic fluidized bed wastewater treatment apparatus

Publications (1)

Publication Number Publication Date
JP2017047398A true JP2017047398A (en) 2017-03-09

Family

ID=58278375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174640A Pending JP2017047398A (en) 2015-09-04 2015-09-04 Anaerobic fluidized bed wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP2017047398A (en)

Similar Documents

Publication Publication Date Title
US3232434A (en) Device for purifying waste waters
WO2005068380A1 (en) A-sbr apparatus for removing nitrogen and phosphorous in sewage/waste water
US20120080385A1 (en) Facility for treating an aqueous fluid by contact with a fluidised bed of coagulated activated carbon in powder form
JPH1190483A (en) Method and apparatus for treating waste water
CN113264645A (en) Domestic sewage treatment system and treatment method
JP2010247051A (en) Water treatment apparatus
KR101541070B1 (en) method and device for controlling using turbulence stimulation and filter member
JP2007117908A (en) Septic tank
AU2015298397B2 (en) Sequencing batch facility and method for reducing the nitrogen content in waste water
KR101555024B1 (en) Advanced wastewater treatment methods using sbr and apparatus used therein
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
CN110392672B (en) Aerated reactor with internal solids separation
JP2017047398A (en) Anaerobic fluidized bed wastewater treatment apparatus
JP6149446B2 (en) Kraft pulp wastewater treatment method and apparatus
KR101817471B1 (en) Wastewater Treatment System
JP5925023B2 (en) Sludge wastewater treatment facility and treatment method
JP7262332B2 (en) Water treatment method and water treatment equipment
JP2018103113A (en) System and method for treating waste water
JP6444574B1 (en) Water treatment system and water treatment method
CN203866155U (en) Diatomite sewage treatment system
KR20220078024A (en) Apparatus and Method for Treating Anaerobic Digestive Fluid
JP2010142781A (en) Biological denitrification apparatus
CN104386880A (en) Soybean protein sewage treatment method
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus
KR101303820B1 (en) Water treatmen apparatus for removing nitrogen and phosphorus using upflow and downflow complete mixing chain reaction

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170912