JP2017046578A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2017046578A
JP2017046578A JP2016166322A JP2016166322A JP2017046578A JP 2017046578 A JP2017046578 A JP 2017046578A JP 2016166322 A JP2016166322 A JP 2016166322A JP 2016166322 A JP2016166322 A JP 2016166322A JP 2017046578 A JP2017046578 A JP 2017046578A
Authority
JP
Japan
Prior art keywords
power
power transmission
side device
contact
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166322A
Other languages
Japanese (ja)
Other versions
JP6836236B2 (en
Inventor
竜二 兵頭
Ryuji Hyodo
竜二 兵頭
誠 神田
Makoto Kanda
誠 神田
勝身 田口
Katsumi Taguchi
勝身 田口
一 丁子谷
Hajime Chiyoujiya
一 丁子谷
雄一 釘宮
Yuichi Kugimiya
雄一 釘宮
豪 中川
Takeshi Nakagawa
豪 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Publication of JP2017046578A publication Critical patent/JP2017046578A/en
Application granted granted Critical
Publication of JP6836236B2 publication Critical patent/JP6836236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device that simply transmits power and data in a non-contact manner not using a metal contact point in an environment on a sea surface, under the sea, or being soaked with water.SOLUTION: A device is composed of a pair of a power transmission side device S1 including a power transmission unit for supplying power without contact, and a power reception side device R1 including a power reception unit capable of receiving power without contact, and has structure in which the outer shape of the power transmission unit is a female fitting portion 30 and the outer shape of the other power reception unit is a mail fitting portion 31, and they fit into each other. Induction coils with a core 13 and 16 are provided for facing each other on the fitting portions 30 and 31. AC power is applied to the induction coil 13 at the power transmission side, and voltage at the induction coil 16 of the power reception unit at the other power reception side is converted into direct current by a rectifier circuit 17 and applied to a load 18. In addition, optical fibers 14 and 19 are provided for facing each other on both units, and optical communication devices 14a and 19a are attached to the respective optical fibers 14 and 19, making data communication possible.SELECTED DRAWING: Figure 5

Description

本発明は、電力を金属接点を用いず電気的に非接触で伝送する装置に関する。特に、海洋再生エネルギーの発電設備の装置間の非接触の電力の伝送技術に有用な技術である。   The present invention relates to an apparatus for transmitting electric power in a non-contact manner without using metal contacts. In particular, it is a technology useful for a non-contact power transmission technology between devices of power generation facilities of marine renewable energy.

金属接点を持つ接続部品は、錆びや漏電などの問題点があるため、海面や海水中、あるいは水濡れが心配される場所での利用に制限がかかる。   Since connection parts having metal contacts have problems such as rust and electric leakage, their use is limited in the sea surface, in seawater, or in places where there is concern about getting wet.

また、最近注目を集めている非接触給電に関連する技術は、利用者の利便性向上を優先しているため、給電側装置と受電側装置との位置関係が多少ズレても、安全に、かつ確実に非接触給電できることに特徴がある。その結果、非接触給電の電力効率の向上よりも、給電側装置と受電側装置との距離を伸ばすことが優先される風潮がある。   In addition, technology related to non-contact power supply that has been attracting attention recently has given priority to improving the convenience of users, so even if the positional relationship between the power supply side device and the power reception side device is slightly shifted, It is also characterized by non-contact power supply reliably. As a result, there is a trend that priority is given to extending the distance between the power supply side device and the power reception side device over the improvement of the power efficiency of the non-contact power supply.

特開2015−023669号公報Japanese Patent Laying-Open No. 2015-023669 特開2014−150697号公報JP 2014-150697 A 特開2014−135797号公報JP 2014-135797 A 特開2013−219972号公報JP 2013-219972 A 特開2013−051855号公報JP 2013-051855 A 特開2006−078560号公報JP 2006-078560 A 特開2004−166459号公報JP 2004-166459 A 特表2010−523030号公報Special table 2010-523030 gazette 特開2003−209020号公報JP 2003-209020 A 特開2005−101392号公報JP-A-2005-101392

特許文献1は、非接触給電システムに関するものであり、非接触給電する状態を維持するため、送電側コイルと受電側コイルとの相対的な姿勢関係を調整可能とすることを特徴としている。これは、そもそも送電側機器と受電側機器との接合が不安定であることを想定したものである。   Patent Document 1 relates to a non-contact power supply system, and is characterized in that the relative posture relationship between the power transmission side coil and the power reception side coil can be adjusted in order to maintain the state of non-contact power supply. This assumes that the joining of the power transmission side device and the power reception side device is unstable in the first place.

特許文献2は、非接触で電力を送電、受電する非接触給電システムに関するものであり、送電側装置を装着する水中移動体と、受電側装置を装着する水中移動体とが並走して電力を受け渡す際に、送電側装置と受電側装置との位置合わせを行うことを大きな特徴としたものである。   Patent Document 2 relates to a non-contact power feeding system that transmits and receives electric power in a non-contact manner. An underwater mobile body to which a power transmission side device is attached and an underwater mobile body to which a power reception side device is attached run in parallel. The main feature is that the power transmission side device and the power reception side device are aligned when the power is transferred.

特許文献3は、非接触給電システムに関するものであり、送電側装置と受電側装置との位置関係が基準値を超えたときに、送電を停止することを特徴としている。   Patent Document 3 relates to a non-contact power supply system, and is characterized in that power transmission is stopped when a positional relationship between a power transmission side device and a power reception side device exceeds a reference value.

特許文献4は、非接触給電システムに関するものであるが、送電側装置と受電側装置とが電磁気結合回路を形成するように、予め設定された離間距離に送電側装置と受電側装置との間の距離を制御することを特徴としたものである。   Patent Document 4 relates to a non-contact power feeding system, but between a power transmission side device and a power reception side device at a preset distance so that the power transmission side device and the power reception side device form an electromagnetic coupling circuit. The distance is controlled.

特許文献5は、非接触給電システムに関するものではあるが、特に、その非接触送電あるいは非接触受電の機器を、互いに相手を探しながら、互いの接触を確立するためのナビゲーション・システムを実現するものである。   Patent Document 5 relates to a contactless power supply system, and in particular, realizes a navigation system for establishing contact with each other while searching for each other's devices for contactless power transmission or power reception. It is.

特許文献6は、カメラに取り付けるハウジング形式のアダプタに関するものであり、その中には、データ通信、電力の非接触給電に関するものが盛り込まれてはいる。しかし、そのデータ通信手段については、ハウジングとカメラとの嵌合部に関連性のない、無線通信方式を採用している。電力の非接触給電については、単なる組み合わせたコイル間の電磁誘導作用を利用した電力の伝送現象を用いているにすぎない。   Patent Document 6 relates to a housing-type adapter that is attached to a camera, and includes data communication and power non-contact power supply. However, the data communication means employs a wireless communication method that is not related to the fitting portion between the housing and the camera. As for the non-contact power feeding of power, the power transmission phenomenon using the electromagnetic induction action between the combined coils is merely used.

特許文献7は、非接触給電システムに関するものであるが、送電側装置と受電側装置との間隔が予め定めた基準値以内に接近しているときは給電を継続し、その近接が検知できないときは給電の継続を停止することを特徴としている。   Patent Document 7 relates to a non-contact power supply system, but when the distance between the power transmission side device and the power reception side device approaches within a predetermined reference value, the power supply is continued and the proximity cannot be detected. Is characterized by stopping the continuation of power feeding.

特許文献8は、非接触給電システムに関するものであるが、回転する対象機器に対して、接触を伴わない給電とデータ伝送を行うものである。   Patent Document 8 relates to a non-contact power supply system, but performs power supply and data transmission without contact with a rotating target device.

以上のように先行技術は、海中や水濡れのある環境下において非接触給電を実現するため、電力を送る側の装置と受け取る側の装置との距離、位置関係、両者の平行具合などを、複雑な機構と手順によって所要の状態に維持する、あるいは所要の条件を外れたときに安全に送電を停止する方法やその装置に関するものである。   As described above, the prior art realizes contactless power feeding in the sea or in an environment with water wet, so the distance between the device that sends power and the device that receives it, the positional relationship, the parallel state of both, The present invention relates to a method and apparatus for maintaining power in a required state by a complicated mechanism and procedure, or safely stopping power transmission when a required condition is not met.

または、回転する物体に対して、ケーブルの捻じれなどを意識することなく、電力を送る方法についてのものである。   Or it is about the method of sending electric power without being conscious of the twist of a cable etc. with respect to the rotating object.

特許文献9は、陸上での使用を想定した非接触給電用のカプラ(結合器)に関するものである。   Patent Document 9 relates to a contactless power supply coupler (coupler) that is supposed to be used on land.

特許文献10は、非接触給電を構成する送電側コイルと受電側コイルとの間で漏れる磁束が、ほかの電源コードなどに干渉して不要な電気的ノイズを生じることを阻止することを目的とした構成を提案するものである。   Patent Document 10 aims to prevent magnetic flux leaking between a power transmission side coil and a power reception side coil constituting non-contact power supply from interfering with other power cords and causing unnecessary electrical noise. The proposed configuration is proposed.

このように、非接触給電に関連する既存の技術文献は幾つかあるが、海面や海中、さらには水濡れのある環境下において、簡便に電力とデータとを伝送する方法あるいは装置を示す技術文献はない。   As described above, there are several existing technical documents related to non-contact power feeding. Technical documents showing a method or apparatus for easily transmitting power and data in the sea surface, in the sea, or in an environment where the water is wet. There is no.

本発明が解決しようとする課題は、従来の公知技術にはない海面や海中、あるいは水濡れのある環境において、非接触給電技術と光通信技術を用いて、複雑な機構や手順を要することなく、簡便に電力とデータを伝送する方法やその装置の提供にある。   The problem to be solved by the present invention is that there is no need for complicated mechanisms and procedures using non-contact power feeding technology and optical communication technology on the surface of the sea, in the sea, or in a wet environment, which is not found in the conventional known technology. The present invention provides a method and apparatus for simply transmitting power and data.

かかる課題を解決した本発明の構成は、
1) 非接触で送電する機能を有する送電側装置と、非接触で受電する機能を有する受電側装置とがあり、これらを対にして電力を送受する非接触式電力伝送装置において、送電側装置と受電側装置とを互いに対向位置に配置でき、それぞれの装置に包含されている非接触送電機能の電力送出部と非接触受電機能の電力受け入れ部との相対的位置関係を固定する機構あるいは構造を有していて、その相対的位置の固定により電力の送受が所定の機能または性能を発揮することを特徴とする、非接触式電力伝送装置
2) 前記電力送出部と電力受け入れ部との相対的位置関係を固定する構造として、電力送出部側をメス型の嵌合部とし、非接触受電機能の電力受け入れ部側の嵌合部の形状をオス型にし、電力送出部側のメス型嵌合部に電力受け入れ部側のオス型嵌合部を嵌合して相対的位置関係を固定することを特徴とする、前記1)記載の非接触式電力伝送装置
3) 前記送電側装置の非接触で送電する機能及び前記受電側装置の非接触で受電する機能が、電力送出部に設けたコア付誘導コイルと電力受け入れ部に設けたコア付誘導コイルとによる電磁誘導によるもので、それらのコアを有する電力送出部と電力受け入れ部のメス型嵌合部とオス型嵌合部とを嵌合させることで互に近接させて、それらの相対位置を固定する構造のものである、前記2)記載の非接触式電力伝送装置
4) 前記電力送出部と前記電力受け入れ部との間に、非接触で近接距離間のデータ通信可能なデータ通信手段を設けた、前記2)〜3)いずれか記載の非接触式電力伝送装置
5) 前記受電側装置に受電された電力と電圧をモニターするモニター回路を設け、同モニター回路でモニターした電力・電圧のモニターのデータを前記データ通信手段で送電側装置へ送信し、送信されてきたモニターのデータに基づいて送電側装置にある電力制御回路で誘導コイルによる送電側電力量をフィードバック制御するようにした、前記4)記載の非接触式電力伝送装置
6) 前記5)において、送電側装置がデータ通信手段で受信したモニターのデータと伝送した電力量との照会比較によって、電力伝送の異常を検知又は予測する異常検知回路と、同異常検知回路が異常検出又は予測した場合にその異常を解消させる保護回路とを送電側装置に設けた、前記5)記載の非接触式電力伝送装置
7) 前記電力送出部と電力受け入れ部とを近接して嵌合させる嵌合部に進入した海水又は水を嵌合部から逃がす排水路の溝を形成した、前記2)〜6)いずれか記載の非接触式電力伝送装置
8) 送電側装置の電力送出部と受電側装置の電力受け入れ部との嵌合部の相対する面の両方あるいは片方の面材を弾力性のある材質とし、生物の付着を完全に防ぐことができなかった場合でも、その生物による出っ張りを弾力性のある材質に食い込ませることで、送電側装置と受電側装置との嵌合を成し遂げることができることを特徴とする、前記2)〜7)いずれか記載の非接触式電力伝送装置
9) 送電側装置の電力送出部と受電側装置の電力受け入れ部との嵌合する相対する面の両方あるいは片方の面材を弾力性のある材質とし、嵌合操作の際、同じく相対する面の一部が先に接触し、その材質の弾力性によって順次ほかの部分も接触する領域が増加することで、嵌合部分隙間に残る水分を強制的に排除することを特徴とする、前記2)〜8)いずれか記載の非接触式電力伝送装置
10) 海水に浸った海洋再生エネルギーで発電する発電設備で、発電した電力を給電できる送電側装置と、電力の給電を受ける受電側装置とに分れた装置を有するものに使用した、前記1)〜9)いずれか記載の非接触式電力伝送装置
にある。
The configuration of the present invention that solves this problem is as follows.
1) There is a power transmission side device having a function of transmitting power in a contactless manner and a power receiving side device having a function of receiving power in a contactless manner. And the power receiving side device can be arranged at positions facing each other, and the mechanism or structure for fixing the relative positional relationship between the power transmission unit of the non-contact power transmission function and the power reception unit of the non-contact power reception function included in each device The non-contact type power transmission device 2 is characterized in that power transmission / reception exhibits a predetermined function or performance by fixing the relative position of the power transmission unit and the power reception unit. As a structure to fix the general positional relationship, the power sending part side is a female fitting part, the shape of the fitting part on the power receiving part side of the non-contact power receiving function is male, and the female fitting part on the power sending part side Accept electricity at joint The non-contact type power transmission device 3 according to the above 1), wherein the relative position relationship is fixed by fitting the male side fitting portion on the part side, and the function of non-contact power transmission of the power transmission side device And the function of receiving power in a non-contact manner of the power receiving side device is based on electromagnetic induction by the induction coil with core provided in the power transmission unit and the induction coil with core provided in the power reception unit. The non-contact according to the above 2), which has a structure in which a female fitting part and a male fitting part of the power receiving part are fitted to each other so as to be close to each other and their relative positions are fixed. 4) Type of power transmission device 4) The non-contact according to any one of 2) to 3), wherein a data communication means capable of non-contact data communication between adjacent distances is provided between the power transmission unit and the power receiving unit. Type power transmission device 5) The power receiving device receives power The monitor circuit for monitoring the power and voltage is provided, the monitor data of the power and voltage monitored by the monitor circuit is transmitted to the power transmission side device by the data communication means, and the power transmission side is based on the transmitted monitor data. In the non-contact type power transmission device 6) described in 4) above, the power transmission side device received by the data communication means, wherein the power control circuit in the device feedback-controls the amount of power transmitted by the induction coil. Transmitting an anomaly detection circuit that detects or predicts an abnormality in power transmission by inquiry comparison between the monitor data and the amount of transmitted power, and a protection circuit that eliminates the anomaly when the anomaly detection circuit detects or predicts an anomaly The non-contact power transmission device according to 5) provided in the side device 7) A fitting portion that fits the power sending portion and the power receiving portion close to each other The non-contact type power transmission device 8) according to any one of the above 2) to 6), in which the seawater or water that has entered is drained from the fitting portion, and the power of the power transmission unit of the power transmission side device and the power of the power reception side device Even if both the facing surface of the receiving part and the mating part or one of the face materials are made of elastic material, even if it is not possible to completely prevent the organism from attaching, the bulge by the organism is elastic. The non-contact power transmission device 9) according to any one of 2) to 7) above, wherein the fitting between the power transmission side device and the power reception side device can be achieved by biting into the material. Both of the facing surfaces of the power sending unit and the power receiving unit of the power receiving side device or one of the facing materials are made of a resilient material. In contact with the elasticity of the material. The non-contact power transmission device 10) according to any one of 2) to 8) above, wherein water remaining in the fitting portion gap is forcibly removed by increasing the contact area with the portion of 1) to 9) used in a power generation facility that generates power using marine renewable energy soaked in water and has a device divided into a power transmission side device that can supply the generated power and a power reception side device that receives the power supply. ) Any one of the contactless power transmission devices.

本発明によれば、海面や海中、あるいは水濡れのある環境において、非接触給電技術又はこれに光通信技術を用いて、複雑な機構や手順を要することなく、簡便に電力とデータを伝送する方法やその装置の提供を可能にする。
また、近年の非接触給電技術は、送電部と受電部との間隔が広がったり、送電部と受電部との平行具合がズレたり、あるいは送電部と受電部との対向位置がズレたりしても、安全かつ確実に電力を送受することに重きが置かれ、電力の伝送効率を高めることの優先順位は低かった。本発明によれば、非接触給電の送電機能部と受電機能部の空間伝送に係る部材間の相対的位置関係が、所定の状態に納まることにより、十分に高い電力の伝送効率を実現することを可能とする効果もある。
According to the present invention, power and data can be easily transmitted using a non-contact power feeding technology or an optical communication technology for this in the sea surface, under the sea, or in an environment where the water is wet, without requiring a complicated mechanism or procedure. Allows provision of methods and apparatus.
In recent non-contact power supply technologies, the distance between the power transmission unit and the power reception unit has increased, the parallel state between the power transmission unit and the power reception unit has shifted, or the facing position between the power transmission unit and the power reception unit has shifted. However, emphasis was placed on transmitting and receiving power safely and reliably, and the priority for increasing the power transmission efficiency was low. According to the present invention, the relative positional relationship between the members related to the spatial transmission of the power transmission function unit and the power reception function unit of non-contact power supply is within a predetermined state, thereby realizing sufficiently high power transmission efficiency. There is also an effect that makes possible.

図1は本発明の基本構成を示す説明図である。FIG. 1 is an explanatory diagram showing the basic configuration of the present invention. 図2は本発明の実施例1に係る説明図である。FIG. 2 is an explanatory diagram according to the first embodiment of the present invention. 図3は本発明の実施例2に係る、内包される誘導コイルの実装状態を示す1つ目の説明図である。FIG. 3 is a first explanatory view showing a mounted state of the included induction coil according to the second embodiment of the present invention. 図4は本発明の実施例2に係る、内包される誘導コイルの実装状態を示す2つ目の説明図である。FIG. 4 is a second explanatory diagram showing a mounted state of the induction coil to be included according to the second embodiment of the present invention. 図5は本発明の実施例3に係る説明図である。FIG. 5 is an explanatory diagram according to Embodiment 3 of the present invention. 図6は本発明の実施例4に係る、一方の嵌合部材の凹部領域の断面を示す説明図である。FIG. 6 is an explanatory view showing a cross section of a recessed area of one fitting member according to Embodiment 4 of the present invention. 図7は本発明の実施例4に係る、一方の嵌合部材の側面を示す説明図である。FIG. 7 is an explanatory view showing a side surface of one fitting member according to Embodiment 4 of the present invention. 図8は本発明の実施例4に係る、他方の嵌合部材の側面図である。FIG. 8 is a side view of the other fitting member according to the fourth embodiment of the present invention. 図9は本発明の実施例4に係る、他方の嵌合部材の断面を示す説明図である。FIG. 9 is an explanatory view showing a cross section of the other fitting member according to Embodiment 4 of the present invention.

送電側装置と、受電側装置とを対にした本発明において、パワーデバイスなどの駆動素子の温度上昇値を検知することで、機器の破損を未然に防止する保護回路を有することが好ましい。   In the present invention in which the power transmission side device and the power reception side device are paired, it is preferable to have a protection circuit that prevents damage to the device by detecting a temperature rise value of a driving element such as a power device.

本発明において、海中、海面、水中、水面、あるいは水濡れが懸念されるところで使用する場合に、水分による腐食や劣化を防止するための材料を用いることが好ましい。
又、本発明において、海中、海面、水中、水面、あるいは水濡れが懸念されるところで使用する場合に、生物の付着を防止するための表面処理を施すことが好ましい。
更に、本発明で、海中、海面、水中、水面、あるいは水濡れが懸念されるところで使用する場合に、表面に付着する細かな汚れや表面が摩擦によってラフネスな面になることによって拡散する光を想定して光通信を確保することが好ましい。
In the present invention, it is preferable to use a material for preventing corrosion or deterioration due to moisture when used in the sea, sea surface, water, water surface, or a place where there is a concern about water wetting.
In the present invention, when used in the sea, the sea surface, the water, the water surface, or a place where there is a concern about water wetting, it is preferable to perform a surface treatment for preventing the attachment of organisms.
Furthermore, in the present invention, when used in the sea, sea surface, underwater, water surface, or where there is a concern about water wetting, fine dirt adhering to the surface or light diffused by the surface becoming a rough surface due to friction. It is preferable to secure optical communication assuming it.

更に、本発明では、送電側装置と受電側装置とを互いに接続(固定)する構造(嵌合部)について、これを海中、海面、水中、水面、あるいは水濡れが懸念されるところで使用する場合に、嵌合の遊びから海水や水が逃げることを期待するのではなく、別に海水や水を逃がす道筋(排水路となる溝)を設けたことが好ましい。
本発明は、海洋再生エネルギーの分野で、その発電した電気を海水で隔てられた装置間の非接触で効率よく安全に送電あるいは受電することを目的に有益である。
Furthermore, in the present invention, the structure (fitting part) for connecting (fixing) the power transmission side device and the power reception side device to each other is used in the sea, sea surface, underwater, water surface, or where there is a concern about water wetting. In addition, it is preferable not to expect seawater or water to escape from the play of fitting, but to provide a path (a groove serving as a drainage channel) through which seawater and water escape.
The present invention is beneficial in the field of marine regenerative energy for the purpose of efficiently and safely transmitting or receiving the generated electricity in a non-contact manner between devices separated by seawater.

送電側装置の電力送出部と受電側装置の電力受け入れ部との相対位置関係を固定する方法として、特に、機械的に接続する作業、あるいは電磁的に接続(固定)する方法、あるいはそれらの組み合わせによって接続(固定)する方法、を採用することができる。   As a method of fixing the relative positional relationship between the power transmission unit of the power transmission side device and the power reception unit of the power reception side device, in particular, a mechanical connection work, a method of electromagnetic connection (fixation), or a combination thereof The method of connecting (fixing) can be adopted.

図を用いて、本発明の実施例を説明する。   Embodiments of the present invention will be described with reference to the drawings.

まずは図1を用いて、本発明の基本構成について説明する。
図1中の凹型で囲まれた凹型領域A1(主に左側)は送電側装置S1を示し、同じく凸型で囲まれた凸型領域A2(主に右側)は受電側装置R1を示している。
送電側装置S1は、整流回路11、電力制御回路12、誘導コイル13、光ファイバ14、光通信器14aなどを内包して構成される。左端に記載されている電気記号は交流電力10の電源を表現している。
受電側装置R1も同様に、誘導コイル16、整流回路17、光ファイバ19、光通信器19aなどを内包して構成される。右端に記載されている電気記号は負荷18を表現している。
なお、これらの構成は、電気系の文書記述で良く用いられるブロック図であり、具体的な構成は様々である。従って、この記載内容に限定されるものではない。
また、図を分かりやすく記載しているため、凹と凸との嵌合部分は密接させていないが、実際の使用においては、適切な嵌合処理がなされるものである。
First, the basic configuration of the present invention will be described with reference to FIG.
In FIG. 1, a concave area A1 (mainly left side) surrounded by a concave shape indicates the power transmission side device S1, and a convex area A2 (mainly right side) also surrounded by a convex shape indicates the power receiving side device R1. .
The power transmission side device S1 includes a rectifier circuit 11, a power control circuit 12, an induction coil 13, an optical fiber 14, an optical communication device 14a, and the like. The electric symbol described at the left end represents a power source of AC power 10.
Similarly, the power receiving side device R1 includes an induction coil 16, a rectifier circuit 17, an optical fiber 19, an optical communication device 19a, and the like. The electrical symbol written at the right end represents the load 18.
These configurations are block diagrams that are often used in electrical document descriptions, and various specific configurations are available. Therefore, it is not limited to this description.
Further, since the drawing is described in an easy-to-understand manner, the fitting portion between the concave and convex portions is not in close contact, but in an actual use, an appropriate fitting process is performed.

この図において、電力の伝送について説明すれば、以下のとおりである。図1は本発明の基本構成を示す図面である。
この図1において、送電側装置S1では、受け取った交流電力10を整流回路11で整流し、一旦、直流とする。その上で、電力制御回路12において所望の高周波電力に変換する。この高周波電力は、誘導コイル13へと供給される。
送電側装置S1と受電側装置R1の凹型領域A1と凸型領域A2とが適切に嵌合処理されている場合、送電側装置S1の誘導コイル13と、受電側装置R1に内包される誘導コイル16との位置関係は、適切なものとなっている。このため、送電側装置S1に内包される誘導コイル13に供給された高周波電力は、受電側装置R1に内包される誘導コイル16に対して相互誘導作用を成す。
受電側装置R1では、相互誘導作用によって、誘導コイル16に誘導起電力が発生する。そして、負荷(Rz)18の影響を受けた所定の電流が流れることとなる。受電側装置R1の整流回路17は、負荷18の種類や構成によって不要な場合もあるが、ここでは直流にしてから負荷18に電力を供給する。
In this figure, power transmission will be described as follows. FIG. 1 is a diagram showing a basic configuration of the present invention.
In FIG. 1, in the power transmission side device S1, the received AC power 10 is rectified by the rectifier circuit 11 and temporarily converted into a DC. After that, the power control circuit 12 converts it into desired high frequency power. This high frequency power is supplied to the induction coil 13.
When the concave region A1 and the convex region A2 of the power transmission side device S1 and the power reception side device R1 are appropriately fitted, the induction coil 13 of the power transmission side device S1 and the induction coil included in the power reception side device R1 The positional relationship with 16 is appropriate. For this reason, the high frequency power supplied to the induction coil 13 included in the power transmission side device S1 has a mutual induction action on the induction coil 16 included in the power reception side device R1.
In the power receiving device R1, an induced electromotive force is generated in the induction coil 16 due to the mutual induction action. Then, a predetermined current influenced by the load (Rz) 18 flows. The rectifier circuit 17 of the power receiving side device R1 may be unnecessary depending on the type and configuration of the load 18, but here the power is supplied to the load 18 after being converted to direct current.

同じく、この図1において、データの伝送について説明すれば、以下のとおりである。
例えば、1本の、光ファイバ14,19の様な光伝送路を用いた双方向の光通信のデータ通信手段を想定する。
送電側装置S1と受電側装置R1とが適切に嵌合処理されている場合、送電側装置S1に内包される光ファイバ14,19を用いた光伝送路の端面と、受電側装置R1に内包される光伝送路の端面とが、適切な対向状態を成す。このため、光量の僅かな減衰はあるものの、光を用いた光ファイバ14,19と光通信器14a,19aのデータ通信手段が問題なく提供されることなる。
また例えば、上りと下りに別々の光伝送路を用いた、2つの異なる方向の単方向光通信を組み合わせて双方向の通信を想定する場合、送電側装置S1と受電側装置R1とが適切に嵌合処理されている時、上り方向の光伝送路同士、下り方向の光伝送路同士が、それぞれ適切な対向状態を成せば、目的とする光を用いたデータ通信手段が問題なく提供されることとなる。
Similarly, in FIG. 1, data transmission will be described as follows.
For example, assume a data communication means for bidirectional optical communication using a single optical transmission line such as the optical fibers 14 and 19.
When the power transmission side device S1 and the power reception side device R1 are appropriately fitted, the end face of the optical transmission line using the optical fibers 14 and 19 included in the power transmission side device S1 and the power reception side device R1 are included. The end face of the optical transmission line to be formed is in an appropriate facing state. For this reason, although there is a slight attenuation of the light amount, the data communication means of the optical fibers 14 and 19 and the optical communication devices 14a and 19a using light can be provided without any problem.
For example, when two-way communication is assumed by combining two different directions of unidirectional optical communication using separate optical transmission paths for uplink and downlink, the power transmission side device S1 and the power reception side device R1 are appropriately configured. When the fitting process is performed, if the upstream optical transmission paths and the downstream optical transmission paths are in an appropriate facing state, data communication means using the target light can be provided without any problem. It will be.

以下、様々なバリエーションについて、実施例として説明する。   Hereinafter, various variations will be described as examples.

(実施例1)
図2に示す実施例1は、本発明に含まれる装置全体に係る実施例の一つを示している。
図2中の凹型領域A1(主に左側)には送電側装置S1を示し、同じく凸型領域A2(主に右側)は受電側装置R1を示している。また、図の左端は大元の交流電力10を、図の右端は最終的な負荷18を示している。なお、これらの構成は、電気系の文書記述で良く用いられるブロック図で示してあり、実際の回路構成は様々である。あくまでも一つの実施例である。
この図で示している状態は、完全な嵌合の前の状況である。凹型領域A1と凸型領域A2との嵌合処理した状態では、両者が密接する。また、適切な嵌合処理後、それを固定(ロック)する手段を付加することも有益である。なお、それぞれの装置を凹型と凸型で示しているが、この形状に囚われる必要はない。嵌合できる対であれば、どのような形状でも良い。
送電側装置S1は、整流回路11、電力制御回路12、誘導コイル13、光ファイバ14、光通信器14aなどを内包して構成されている。受電側装置R1も同様に、誘導コイル16、整流回路17、光ファイバ19、光通信器19aなどを内包して構成されている。
この図において、電力の伝送は以下の様にして行われる。まず、送電側装置S1では、受け取った(送るべき)電力を整流して直流にする。その上で、電力制御回路12において所望の高周波電力に変換する。そして、この高周波電力を誘導コイル13に供給する。送電側装置S1と受電側装置R1とが適切に嵌合処理されていれば、送電側装置S1と受電側装置R1にそれぞれ内包される誘導コイル13,16同士の位置関係は、適切なものとなっている。このため、送電側装置S1に内包される誘導コイル13に供給された高周波電力は、受電側装置R1に内包される誘導コイル16に対して相互誘導作用を成す。受電側装置R1では、相互誘導作用によって、誘導コイル16に誘導起電力が発生し、負荷(Rz)18の影響を受けた所定の電流が流れることとなる。受電側装置R1の整流回路17は、負荷18の種類や構成によって不要な場合もあるが、ここでは直流にしてから負荷18に電力を供給する場合の図を示している。
同じく、この図において、データの伝送は以下の様にして行われる。例えば、1本の光ファイバ14を用いた双方向の光通信の場合、送電側装置S1と受電側装置R1とが適切に嵌合処理されている時、送電側装置S1ならびに受電側装置R1に内包されるそれぞれの光ファイバ14,19の端面が適切な対向状態となる。このため、通常の光ファイバ用コネクタの接続と同様に、光を用いたデータ通信手段が問題なく提供されることとなる。なお、海中などでの使用においては、光ファイバの端面に磨耗や汚損が生ずることが想定される。このため、適切な開口数を持つ光ファイバを用いることや、広角レンズを用いてカップリングすることなどの工夫も有効である。
なお、この装置の用途としては、海面、海上、海中、水面、水上、水中をはじめ、水濡れが想定される屋外や屋内、漏電防止や防爆の目的など、様々な場面での利用が可能である。
また、表面や内部の材質についても、耐腐食性に優れたもの、耐生物付着阻害性に優れたもの、あるいは水分や溶剤に対して耐膨潤性に優れたものを用いるなど、本装置の利用場面に応じた選定が可能である。
Example 1
A first embodiment shown in FIG. 2 shows one of the embodiments relating to the entire apparatus included in the present invention.
In FIG. 2, the concave region A1 (mainly on the left side) shows the power transmission side device S1, and the convex region A2 (mainly on the right side) shows the power reception side device R1. Further, the left end of the figure shows the original AC power 10 and the right end of the figure shows the final load 18. These configurations are shown in block diagrams often used in electrical document descriptions, and actual circuit configurations vary. This is just one example.
The state shown in this figure is the situation before complete mating. In the state where the concave area A1 and the convex area A2 are fitted, both are in close contact with each other. It is also beneficial to add a means to lock (lock) it after an appropriate mating process. In addition, although each apparatus is shown by the concave type and the convex type, it is not necessary to be caught by this shape. Any shape may be used as long as the pair can be fitted.
The power transmission side device S1 includes a rectifier circuit 11, a power control circuit 12, an induction coil 13, an optical fiber 14, an optical communication device 14a, and the like. Similarly, the power receiving side device R1 includes an induction coil 16, a rectifier circuit 17, an optical fiber 19, an optical communication device 19a, and the like.
In this figure, power transmission is performed as follows. First, in the power transmission side device S1, the received (to be sent) power is rectified into a direct current. After that, the power control circuit 12 converts it into desired high frequency power. Then, this high frequency power is supplied to the induction coil 13. If the power transmission side device S1 and the power reception side device R1 are appropriately fitted, the positional relationship between the induction coils 13 and 16 included in the power transmission side device S1 and the power reception side device R1 is appropriate. It has become. For this reason, the high frequency power supplied to the induction coil 13 included in the power transmission side device S1 has a mutual induction action on the induction coil 16 included in the power reception side device R1. In the power receiving side device R <b> 1, an induced electromotive force is generated in the induction coil 16 due to the mutual induction action, and a predetermined current influenced by the load (Rz) 18 flows. The rectifier circuit 17 of the power receiving side device R1 may be unnecessary depending on the type and configuration of the load 18, but here, a diagram in the case where the power is supplied to the load 18 after the direct current is shown is shown.
Similarly, in this figure, data transmission is performed as follows. For example, in the case of bidirectional optical communication using a single optical fiber 14, when the power transmission side device S1 and the power reception side device R1 are appropriately fitted, the power transmission side device S1 and the power reception side device R1 The end faces of the respective optical fibers 14 and 19 to be included are in an appropriate facing state. For this reason, similarly to the connection of a normal optical fiber connector, data communication means using light can be provided without any problem. When used in the sea or the like, it is assumed that the end face of the optical fiber is worn or soiled. For this reason, devices such as using an optical fiber having an appropriate numerical aperture and coupling using a wide-angle lens are also effective.
In addition, the device can be used in various situations such as sea, sea, sea, water, water, underwater, outdoors or indoors where water is expected, indoors, leakage prevention and explosion-proof purposes. is there.
In addition, the surface and internal materials can be used with this device, such as those with excellent corrosion resistance, those with excellent anti-biological adhesion resistance, and those with excellent swelling resistance against moisture and solvents. Selection according to the scene is possible.

(実施例2)
図3と図4に示す実施例2は、送電側装置S1ならびに受電側装置R1に内包される誘導コイル13,16の実装状態を示している。
これらの図は、実施例1で説明した誘導コイル13,16が、コア13a,16aに巻かれたコイルである場合について示している。
電磁誘導方式を用いる非接触給電の場合、送電側の誘導コイル13と受電側の誘導コイル16との間で、漏れ磁束を極力少なくすることが望まれる。
そのため、誘導コイル13,16を巻き付けたコア13a,16aの端面を可能な限り、嵌合面の直近に近づけたものが図3である。このように防水のための防水ケース15,19bや表面塗装を極力薄くして、コア13a,16a同士の距離をできる限り小さくすることを実現したものである。他の構成は実施例1と同様で、共通の符号を有する。
また図4は、送電側装置S1と受電側装置R1とを完全に嵌合させたとき、両者のコア13a,16a同士が密接するように、嵌合面とコア面とを一致させた場合を示している。高周波電力に用いられる誘導コイル13,16のコア13a,16aは、フェライトなどであり、防食処理が不要である。このことに着目し、あえてコア表面(コア断面)を嵌合面に一致(露出)させたものである。このことにより、理屈上は、コア間距離を0にすることが可能となり、漏れ磁束を最小限に留めることが可能である。
(Example 2)
The second embodiment shown in FIGS. 3 and 4 shows a mounting state of the induction coils 13 and 16 included in the power transmission side device S1 and the power reception side device R1.
These drawings show a case where the induction coils 13 and 16 described in the first embodiment are coils wound around the cores 13a and 16a.
In the case of non-contact power supply using an electromagnetic induction method, it is desirable to reduce the leakage magnetic flux as much as possible between the induction coil 13 on the power transmission side and the induction coil 16 on the power reception side.
Therefore, FIG. 3 shows the end faces of the cores 13a and 16a around which the induction coils 13 and 16 are wound as close as possible to the fitting surface. As described above, the waterproof cases 15 and 19b and the surface coating for waterproofing are made as thin as possible, and the distance between the cores 13a and 16a is made as small as possible. Other configurations are the same as those of the first embodiment, and have common reference numerals.
FIG. 4 shows a case where the fitting surface and the core surface are made to coincide so that the cores 13a and 16a of the power transmission side device S1 and the power reception side device R1 are completely fitted. Show. The cores 13a and 16a of the induction coils 13 and 16 used for the high-frequency power are made of ferrite or the like and do not require anticorrosion treatment. Focusing on this, the core surface (core cross section) is intentionally matched (exposed) with the fitting surface. In theory, this makes it possible to reduce the distance between the cores to zero and to minimize the leakage magnetic flux.

(実施例3)
図5に示す実施例3として、送電側と受電側との間の光ファイバ14,19と光通信器14a,19aの通信機能を利用して、全体の制御を行う場合の実施例を示している。なお、通信機能としては、特別に専用の通信手段を設けても良いし、外部装置のために提供する通信手段に相乗りしても良い。この図では、相乗りする場合を示している。その他の構成・作用効果は、実施例1と同様である。
送電側および受電側に実装されている監視機能回路20,21は、各装置の作動状況を知るため、要所々々の温度、電力、電圧、電流、周波数、力率など、必要な情報を収集するモニター回路である。通信重畳機能回路23,24は、収集した情報をデータ化して、外部装置のために提供する通信手段に相乗りして送信する。通信弁別機能回路25は、先の重畳された情報を取り出し、制御機能回路22に伝達する。制御機能回路22では、収集された、あるいは収集されて伝達されてきた各種の情報を分析し、電力制御へのフィードバックや異常時の緊急停止を実現する。
この制御機能回路22には、受電側装置R1の監視機能回路21(モニター回路)からの受電側の電力・電圧のデータと、送電側装置S1の監視機能回路20(モニター回路)の送電側の電力・電圧のデータと比較照合して、送電の電力・電圧をフィードバック制御する電力制御フィードバック回路22aと、受電側及び送電側のモニターデータから電力の送電・受電の異常を検知する異常検知回路22bと、同異常検知回路22bの異常検出信号によってその異常を解消する電気的保護回路22cとを含んでいる。他の構造・作用効果は実施例1,2と同様である。
(Example 3)
As Example 3 shown in FIG. 5, the example in the case of performing the whole control using the communication function of the optical fibers 14 and 19 and the optical communication devices 14a and 19a between the power transmission side and the power receiving side is shown. Yes. In addition, as a communication function, a special communication means may be provided specially, and it may share with the communication means provided for an external device. This figure shows the case of carpooling. Other configurations and operational effects are the same as those of the first embodiment.
The monitoring function circuits 20 and 21 mounted on the power transmission side and the power reception side collect necessary information such as temperature, power, voltage, current, frequency, and power factor at various points in order to know the operating status of each device. It is a monitor circuit. The communication superimposing function circuits 23 and 24 convert the collected information into data, and transmit it together with the communication means provided for the external device. The communication discrimination function circuit 25 extracts the previously superimposed information and transmits it to the control function circuit 22. The control function circuit 22 analyzes various information collected or collected and transmitted, and realizes feedback to power control and emergency stop in the event of an abnormality.
The control function circuit 22 includes power reception / voltage data on the power receiving side from the monitoring function circuit 21 (monitor circuit) of the power receiving side device R1, and the power transmission side of the monitoring function circuit 20 (monitor circuit) of the power transmission side device S1. A power control feedback circuit 22a that feedback-controls the power / voltage of power transmission by comparing with power / voltage data, and an abnormality detection circuit 22b that detects power transmission / power reception abnormality from monitor data on the power receiving side and power transmission side. And an electrical protection circuit 22c that eliminates the abnormality by the abnormality detection signal of the abnormality detection circuit 22b. Other structures, functions and effects are the same as in the first and second embodiments.

(実施例4)
図6〜9に示す実施例4は、嵌合部の構造を示したものである。なお、図6,7は凹型領域A1の嵌合部材30を、図8,9はその対応である凸型領域A2の嵌合部材31を示している。
通常の嵌合では、位置と向きが規定できればよい。このため、嵌合させるコネクタなどには、一つの突起とそれに対応する窪みなどを付加することが通常である。図8,9に示すように、凸型領域A2の嵌合部材31に、窪みが一つ多い。これは、海中などでの嵌合処理を考慮して付加したものである。
海中など、水分が多い場所では、嵌合部材30,31の凹部領域A1に海水や水が入っている。隙間なく嵌合する部材30,31では、その海水や水が嵌合処理を阻害する。この海水や水を効率よく排水するための溝32である。このような溝32は、どのような形状でも良く、凹型領域A1の嵌合部材30に付与しても、凸型領域A2の嵌合部材31に付与しても良い。また、その数もいくつでも良い。他の構造・作用効果は実施例1,2,3と同様である。
Example 4
Example 4 shown in FIGS. 6-9 shows the structure of a fitting part. 6 and 7 show the fitting member 30 in the concave region A1, and FIGS. 8 and 9 show the fitting member 31 in the convex region A2 corresponding thereto.
In normal fitting, the position and orientation need only be defined. For this reason, it is usual to add one protrusion and a recess corresponding to the connector to be fitted. As shown in FIGS. 8 and 9, the fitting member 31 in the convex region A2 has one depression. This is added in consideration of the fitting process in the sea.
In places where there is a lot of moisture, such as in the sea, seawater and water are contained in the recessed regions A1 of the fitting members 30, 31. In the members 30 and 31 that are fitted without a gap, the seawater or water hinders the fitting process. It is the groove | channel 32 for draining this seawater and water efficiently. Such a groove | channel 32 may be what kind of shape, and may be provided to the fitting member 30 of concave area | region A1, or may be provided to the fitting member 31 of convex area | region A2. Also, any number is acceptable. Other structures, functions and effects are the same as in the first, second and third embodiments.

(実施例5)
前記実施例4において、嵌合部30,31を嵌合させた後、その固定方法として、機械的に把持固定する方法、磁石等によって生じる磁力を利用して吸引固定する方法がある。
これ以外にも粘着性のある材質による固定などの方法も想定されるため、機械的あるいは電磁的な固定方法に限定されない。
(Example 5)
In the fourth embodiment, after the fitting portions 30 and 31 are fitted, as a fixing method, there are a method of mechanically holding and fixing, and a method of attracting and fixing using a magnetic force generated by a magnet or the like.
In addition, since a method such as fixing with an adhesive material is also assumed, the method is not limited to a mechanical or electromagnetic fixing method.

(実施例6)
前記実施例1〜5において、嵌合部30,31の表面、すなわち、例えば、送電側装置S1と受電側装置R1との相対する面の両方あるいは片方を弾力性のある材質とすることで、生物の付着を完全に防ぐことができなかった場合でも、その生物による出っ張りを弾力性のある材質に食い込ませることで、嵌合部の遊びが(隙間)が充分でない場合であっても送電側装置と受電側装置との嵌合を成し遂げることができる。
(Example 6)
In the first to fifth embodiments, the surfaces of the fitting portions 30 and 31, that is, for example, both or one of the opposing surfaces of the power transmission side device S1 and the power reception side device R1 are made of an elastic material. Even if it is not possible to completely prevent the attachment of organisms, the protruding side caused by the organisms can be bitten into an elastic material, so that even if there is not enough play (gap) on the power transmission side Fitting between the device and the power receiving device can be achieved.

(実施例7)
前記実施例1〜6において、嵌合部30,31の表面、すなわち、例えば、送電側装置S1と受電側装置R1との相対する面の両方あるいは片方を弾力性のある材質とし、嵌合操作の際、同じく相対する面の一部が先に接触し、その材質の弾力性によって順次ほかの部分も接触する領域が増加するようにする。このことで、嵌合部分隙間に残る水分を強制的に排除することが可能となる。
(Example 7)
In the first to sixth embodiments, the surface of the fitting portions 30, 31, that is, for example, both or one of the opposing surfaces of the power transmission side device S1 and the power reception side device R1 is made of an elastic material, and the fitting operation is performed. At this time, a part of the opposite surfaces is first brought into contact with the other, and the area in which other parts are brought into contact with each other is increased by the elasticity of the material. This makes it possible to forcibly exclude the moisture remaining in the fitting portion gap.

本発明は、海面や海中、あるいは水濡れのある環境において、さらには漏電防止、防爆目的など、金属接点を用いたくない場面で利用する、電力とデータを伝送する方法の提供、およびその装置の製造方法などとして、産業に寄与する。   The present invention provides a method for transmitting electric power and data, which is used in situations where it is not desired to use a metal contact, such as in leakage prevention or explosion prevention, in the sea surface, in the sea, or in a wet environment, and the apparatus. Contributes to industry as a manufacturing method.

A1 凹型領域
A2 凸型領域
S1 送電側装置
R1 受電側装置
10 交流電力
11 整流回路
12 電力制御回路
13 誘導コイル
13a コア
14 光ファイバ
14a 光通信器
15 防水ケース
16 誘導コイル
16a コア
17 整流回路
18 負荷
19 光ファイバ
19a 光通信器
19b 防水ケース
20,21 監視機能回路
22 制御機能回路
22a 電力制御フィードバック回路
22b 異常検知回路
22c 保護回路
23,24 通信重畳機能回路
25 通信弁別機能回路
30 メス型の嵌合部材(嵌合部)
31 オス型の嵌合部材(嵌合部)
32 溝
A1 concave region A2 convex region S1 power transmission side device R1 power reception side device 10 AC power 11 rectification circuit 12 power control circuit 13 induction coil 13a core 14 optical fiber 14a optical communication device 15 waterproof case 16 induction coil 16a core 17 rectification circuit 18 load DESCRIPTION OF SYMBOLS 19 Optical fiber 19a Optical communication device 19b Waterproof case 20, 21 Monitoring function circuit 22 Control function circuit 22a Power control feedback circuit 22b Abnormality detection circuit 22c Protection circuit 23, 24 Communication superposition function circuit 25 Communication discrimination function circuit 30 Female type fitting Member (Fitting part)
31 Male fitting member (fitting part)
32 grooves

Claims (10)

非接触で送電する機能を有する送電側装置と、非接触で受電する機能を有する受電側装置とがあり、これらを対にして電力を送受する非接触式電力伝送装置において、送電側装置と受電側装置とを互いに対向位置に配置でき、それぞれの装置に包含されている非接触送電機能の電力送出部と非接触受電機能の電力受け入れ部との相対的位置関係を固定する機構あるいは構造を有していて、その相対的位置の固定により電力の送受が所定の機能または性能を発揮することを特徴とする、非接触式電力伝送装置。   There are a power transmission side device having a function of transmitting power in a contactless manner and a power receiving side device having a function of receiving power in a contactless manner. The side devices can be placed at positions facing each other, and there is a mechanism or structure that fixes the relative positional relationship between the power transmission unit of the non-contact power transmission function and the power reception unit of the non-contact power reception function included in each device. A non-contact power transmission device characterized in that power transmission and reception exhibits a predetermined function or performance by fixing its relative position. 前記電力送出部と電力受け入れ部との相対的位置関係を固定する構造として、電力送出部側をメス型の嵌合部とし、非接触受電機能の電力受け入れ部側の嵌合部の形状をオス型にし、電力送出部側のメス型嵌合部に電力受け入れ部側のオス型嵌合部を嵌合して相対的位置関係を固定することを特徴とする、請求項1記載の非接触式電力伝送装置。   As a structure for fixing the relative positional relationship between the power sending part and the power receiving part, the power sending part side is a female fitting part, and the shape of the fitting part on the power receiving part side of the non-contact power receiving function is male. The non-contact type according to claim 1, wherein the relative positional relationship is fixed by fitting a male fitting portion on the power receiving portion side to a female fitting portion on the power sending portion side. Power transmission device. 前記送電側装置の非接触で送電する機能及び前記受電側装置の非接触で受電する機能が、電力送出部に設けたコア付誘導コイルと電力受け入れ部に設けたコア付誘導コイルとによる電磁誘導によるもので、それらのコアを有する電力送出部と電力受け入れ部のメス型嵌合部とオス型嵌合部とを嵌合させることで互に近接させて、それらの相対位置を固定する構造のものである、請求項2記載の非接触式電力伝送装置。   Electromagnetic induction by the non-contact power transmission function of the power transmission side device and the non-contact power reception function of the power reception side device by the cored induction coil provided in the power transmission unit and the cored induction coil provided in the power reception unit In the structure of fixing the relative position of the power sending part having the core and the female fitting part and the male fitting part of the power receiving part, which are close to each other by fitting. The non-contact power transmission device according to claim 2, wherein 前記電力送出部と前記電力受け入れ部との間に、非接触で近接距離間のデータ通信可能なデータ通信手段を設けた、請求項2〜3いずれか記載の非接触式電力伝送装置。   The contactless power transmission device according to any one of claims 2 to 3, wherein a data communication means capable of data communication between adjacent distances in a contactless manner is provided between the power transmission unit and the power receiving unit. 前記受電側装置に受電された電力と電圧をモニターするモニター回路を設け、同モニター回路でモニターした電力・電圧のモニターのデータを前記データ通信手段で送電側装置へ送信し、送信されてきたモニターのデータに基づいて送電側装置にある電力制御回路で誘導コイルによる送電側電力量をフィードバック制御するようにした、請求項4記載の非接触式電力伝送装置。   The power receiving side device is provided with a monitor circuit for monitoring the received power and voltage, and the monitor of the power and voltage monitored by the monitoring circuit is transmitted to the power transmitting side device by the data communication means. The non-contact power transmission device according to claim 4, wherein the power control circuit in the power transmission side device performs feedback control of the power transmission side power amount by the induction coil based on the data. 請求項5において、送電側装置がデータ通信手段で受信したモニターのデータと伝送した電力量との照会比較によって、電力伝送の異常を検知又は予測する異常検知回路と、同異常検知回路が異常検出又は予測した場合にその異常を解消させる保護回路とを送電側装置に設けた、請求項5記載の非接触式電力伝送装置。   6. The abnormality detection circuit according to claim 5, wherein the power transmission side device detects or predicts a power transmission abnormality by comparing the monitor data received by the data communication means with the transmitted power amount, and the abnormality detection circuit detects the abnormality. Or the non-contact-type electric power transmission apparatus of Claim 5 which provided the protection circuit which eliminates the abnormality when it estimates, in the power transmission side apparatus. 前記電力送出部と電力受け入れ部とを近接して嵌合させる嵌合部に進入した海水又は水を嵌合部から逃がす排水路の溝を形成した、請求項2〜6いずれか記載の非接触式電力伝送装置。   The non-contact in any one of Claims 2-6 which formed the groove | channel of the drainage channel which escapes the seawater or water which approached the fitting part which fits the said electric power transmission part and the electric power reception part closely. Power transmission device. 送電側装置の電力送出部と受電側装置の電力受け入れ部との嵌合部の相対する面の両方あるいは片方の面材を弾力性のある材質とし、生物の付着を完全に防ぐことができなかった場合でも、その生物による出っ張りを弾力性のある材質に食い込ませることで、送電側装置と受電側装置との嵌合を成し遂げることができることを特徴とする、請求項2〜7いずれか記載の非接触式電力伝送装置。   It is not possible to completely prevent the attachment of organisms by making both or one of the opposing faces of the fitting part of the power sending part of the power transmitting side device and the power receiving part of the power receiving side device elastic. 8, wherein the fitting by the power transmission side device and the power reception side device can be achieved by causing the bulge of the living organism to bite into the elastic material. Non-contact power transmission device. 送電側装置の電力送出部と受電側装置の電力受け入れ部との嵌合する相対する面の両方あるいは片方の面材を弾力性のある材質とし、嵌合操作の際、同じく相対する面の一部が先に接触し、その材質の弾力性によって順次ほかの部分も接触する領域が増加することで、嵌合部分隙間に残る水分を強制的に排除することを特徴とする、請求項2〜8いずれか記載の非接触式電力伝送装置。   Both or one of the facing surfaces of the power transmitting unit of the power transmission side device and the power receiving unit of the power receiving side device are made of elastic material, and the same surface is also used during the fitting operation. The portion that comes into contact first, and the area where the other portions sequentially come into contact with each other due to the elasticity of the material increases, so that moisture remaining in the fitting portion gap is forcibly removed. 8. The non-contact power transmission device according to any one of 8. 海水に浸った海洋再生エネルギーで発電する発電設備で、発電した電力を給電できる送電側装置と、電力の給電を受ける受電側装置とに分れた装置を有するものに使用した、請求項1〜9いずれか記載の非接触式電力伝送装置。   A power generation facility that generates power using marine renewable energy immersed in seawater, which is used for a power transmission side device that can supply the generated power and a device that is divided into a power reception side device that receives power supply. 9. The non-contact power transmission device according to any one of 9.
JP2016166322A 2015-08-28 2016-08-26 Non-contact power transmission device Active JP6836236B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015168601 2015-08-28
JP2015168601 2015-08-28

Publications (2)

Publication Number Publication Date
JP2017046578A true JP2017046578A (en) 2017-03-02
JP6836236B2 JP6836236B2 (en) 2021-02-24

Family

ID=58210207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166322A Active JP6836236B2 (en) 2015-08-28 2016-08-26 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP6836236B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617191A (en) * 2019-01-16 2019-04-12 青岛鲁渝能源科技有限公司 Connector assembly, wireless power socket based on wireless power and for plug
CN109904663A (en) * 2019-02-13 2019-06-18 浙江理工大学上虞工业技术研究院有限公司 Based on electromagnetic induction without spring hole scoket and changeover plug engaged therewith
JP2020054226A (en) * 2018-09-25 2020-04-02 長崎県 Device group as set

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729502U (en) * 1993-11-02 1995-06-02 川崎重工業株式会社 Electrical / optical composite connector
US5536979A (en) * 1994-06-30 1996-07-16 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with switch for reduced magnetic field
JP2002010535A (en) * 2000-06-27 2002-01-11 Matsushita Electric Works Ltd Non-contact power transmission device
JP2005217045A (en) * 2004-01-28 2005-08-11 Riso Kagaku Corp Ship equipped with noncontact power supply unit, noncontact power supply unit for ship, and power supplying coil and power receiving coil for ship
JP2007151264A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd Wiring system
JP2010104203A (en) * 2008-10-27 2010-05-06 Seiko Epson Corp Power feed control apparatus, power feed apparatus, electric power-receiving control apparatus, electric power-receiving apparatus, electronic equipment, and contactless power transmission system
JP2014514894A (en) * 2011-02-21 2014-06-19 ワイサブ アーエス Underwater connector device
WO2014162535A1 (en) * 2013-04-03 2014-10-09 パイオニア株式会社 Contactless power supply device, communication method and computer program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729502U (en) * 1993-11-02 1995-06-02 川崎重工業株式会社 Electrical / optical composite connector
US5536979A (en) * 1994-06-30 1996-07-16 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with switch for reduced magnetic field
JP2002010535A (en) * 2000-06-27 2002-01-11 Matsushita Electric Works Ltd Non-contact power transmission device
JP2005217045A (en) * 2004-01-28 2005-08-11 Riso Kagaku Corp Ship equipped with noncontact power supply unit, noncontact power supply unit for ship, and power supplying coil and power receiving coil for ship
JP2007151264A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd Wiring system
JP2010104203A (en) * 2008-10-27 2010-05-06 Seiko Epson Corp Power feed control apparatus, power feed apparatus, electric power-receiving control apparatus, electric power-receiving apparatus, electronic equipment, and contactless power transmission system
JP2014514894A (en) * 2011-02-21 2014-06-19 ワイサブ アーエス Underwater connector device
WO2014162535A1 (en) * 2013-04-03 2014-10-09 パイオニア株式会社 Contactless power supply device, communication method and computer program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054226A (en) * 2018-09-25 2020-04-02 長崎県 Device group as set
JP7360650B2 (en) 2018-09-25 2023-10-13 長崎県 Equipment group to be assembled
CN109617191A (en) * 2019-01-16 2019-04-12 青岛鲁渝能源科技有限公司 Connector assembly, wireless power socket based on wireless power and for plug
CN109904663A (en) * 2019-02-13 2019-06-18 浙江理工大学上虞工业技术研究院有限公司 Based on electromagnetic induction without spring hole scoket and changeover plug engaged therewith
CN109904663B (en) * 2019-02-13 2023-12-19 浙江理工大学上虞工业技术研究院有限公司 Socket assembly based on electromagnetic induction

Also Published As

Publication number Publication date
JP6836236B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP2017046578A (en) Non-contact power transmission device
JP4785740B2 (en) Electrical connector
JP5839020B2 (en) Power transmission coil unit and wireless power transmission device
US8378774B2 (en) Coil unit and electronic apparatus using the same
JP6598765B2 (en) Electromagnetic connector
JP6299320B2 (en) Coil unit and wireless power transmission device
JP2017104007A (en) Contactless connector system with feedback from secondary side
JP6432366B2 (en) Coil for wireless power transmission and wireless power transmission device
JP2011072115A (en) Noncontact charging system
JP2010114494A (en) Non-contact transmitter and induction heating cooker
CN101667777B (en) Non-contact connecting device for transmitting underwater electric energy and signal
JP2018512837A (en) Device for inductively transmitting energy in a contactless manner and method of operating such a device
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
CN110848490A (en) Automatic separating mechanism for fire hose and quick connector
JP5652854B2 (en) Power line communication system
US20230048470A1 (en) Robot device and wireless connector
US7803012B2 (en) Cable collector of power supply apparatus
CN110311267B (en) Seabed non-contact type energy transmission and communication hybrid wet plugging connector
JP2015106938A (en) Power transmission coil unit and wireless power transmission device
Haibing et al. Comparison of two electromagnetic couplers in an inductive power transfer system for autonomous underwater vehicle docking application
US20170093196A1 (en) Rechargeable Battery Induction System and Methods of Making and Using the Same
JPH0231405A (en) Electric connector
RU2744064C1 (en) Device for contactless transmission of electricity and information signals to an underwater vehicle
JP2019103390A (en) Non-contact power supply device for electric power
JP2007149845A (en) Magnetic core

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6836236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250