JP2002010535A - Contactless power transmission system - Google Patents

Contactless power transmission system

Info

Publication number
JP2002010535A
JP2002010535A JP2000193404A JP2000193404A JP2002010535A JP 2002010535 A JP2002010535 A JP 2002010535A JP 2000193404 A JP2000193404 A JP 2000193404A JP 2000193404 A JP2000193404 A JP 2000193404A JP 2002010535 A JP2002010535 A JP 2002010535A
Authority
JP
Japan
Prior art keywords
non
contact
power transmission
voltage
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000193404A
Other languages
Japanese (ja)
Other versions
JP4135299B2 (en
Inventor
Hideaki Abe
Minoru Kawamoto
Motoharu Muto
秀明 安倍
元治 武藤
実 河本
Original Assignee
Matsushita Electric Works Ltd
松下電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd, 松下電工株式会社 filed Critical Matsushita Electric Works Ltd
Priority to JP2000193404A priority Critical patent/JP4135299B2/en
Publication of JP2002010535A publication Critical patent/JP2002010535A/en
Application granted granted Critical
Publication of JP4135299B2 publication Critical patent/JP4135299B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission device capable of stabilizing output terminal voltage to a constant value in a wide load range. SOLUTION: This non-contact power transmission device consists of a non- contact receptacle 1 including, a power circuit 10 outputting a DC voltage E and an inverter circuit 11 generating a const frequency high-frequency voltage V1 by inputting the DC voltage E and switching a semiconductor switch and a primary coil L1 for power transmission to which is supplied the high-frequency voltage V1 from the inverter circuit 11, a non-contact plug 2 including a secondary coil L2 for receiving power in which a high-frequency voltage V2 is induced by the primary coil L1 for power transmission and a rectifying and smoothing circuit 20 rectifying and smoothing the high frequency voltage V2 induced in the secondary coil L2 for receiving power, and a terminal apparatus 3 connected to the output terminal of the non-contact plug 2 to server as a load, and conducts thinning-out control for thinning out the high-frequency voltage V1 of constant frequency supplied to the primary coil L1 for power transmission from the inverter circuit 11.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、非接触電力伝達装置に関するものである。 BACKGROUND OF THE INVENTION The present invention relates to a contactless power transmission system.

【0002】 [0002]

【従来の技術】近年、電磁誘導を利用した非接触電力伝達の実用化が盛んに行われている。 Recently, practical application of the non-contact power transmission utilizing electromagnetic induction has been actively conducted. これらは負荷が特定されているものが大半であり、複数の負荷を対象としたり、単独負荷であってもその負荷電流が大きく変わる場合の実用化例は見当たらない。 These are mostly those specified load, or directed to a plurality of loads, the practical example when the load current varies greatly not find even alone load. 非接触電力伝達では電力供給側となる1次側と負荷を持つ2次側との間に電気的絶縁物があり、電力供給側の1次側コイルと負荷側の2 Is a non-contact power transmission has an electrical insulation between the secondary side with the load and the primary side of the power supply side, 2 of the load side and the primary coil of the power supply
次側コイルとで分離着脱できる構造を有するトランスを介して電力を伝達する。 Via a transformer having a structure that can be separated detached at the next coil to transmit the power. 図27に前記トランスによる非接触電力伝達装置の従来例1の概略構成図を示す。 Wherein Figure 27 shows a schematic block diagram of a conventional example 1 of the non-contact power transmission device according to the transformer. 1次側は、電力供給側の1次側コイルL1の両端に、インバータ回路(本従来例では省略)で生成された可聴域周波数以上である約20KHz以上の高周波電圧V1が印加されて構成され、2次側は、1次側コイルL1との間に磁気結合度Mを有する負荷側の2次側コイルL2と、2 The primary side, the two ends of the primary coil L1 of the power supply side, the high frequency voltage V1 of greater than about 20KHz is more audible range frequencies generated in is configured is applied (omitted in this conventional example) inverter circuit , the secondary side includes a secondary coil L2 of the load side having a magnetic coupling degree M between the primary coil L1, 2
次側コイルL2に誘起された電圧を整流する平滑整流回路20と、平滑整流回路20の出力端に接続される負荷である負荷3aとから構成され、1次側コイルL1と2 Next side smoothing rectifier circuit 20 for rectifying the voltage induced in the coil L2, is composed of a load 3a is connected load to the output terminal of the rectifying and smoothing circuit 20, the primary coil L1 and the secondary
次側コイルL2とで分離着脱できる構造を有する電力送受用トランスT1を構成している。 Constitute a power transmitting and receiving transformer T1 having a structure capable Detachable at the next coil L2. 図28は、電力送受用トランスT1の構造を示す。 Figure 28 shows the structure of the power transmitting and receiving transformer T1. 電力を供給する1次側は、磁性材料からなるE型コアA4に設けられた1次側コイルL1を有し、1次側から電力を供給される2次側も同様に磁性材料からなるE型コアA4に設けられた2 Primary supplies power has a primary side coil L1 provided in the E-shaped core A4 made of a magnetic material, consisting of the secondary side likewise magnetic material to be supplied with electric power from the primary side E 2 provided in the mold core A4
次側コイルL2を有し、互いに電気的絶縁GAP116 Have the following side coil L2, electrically insulated from each other GAP116
を介して対向設置されている。 It is oppositely disposed via. このような分離着脱できる電力送受用トランスT1においては、漏れ磁束F1が生じ、1次側コイルL1と2次側コイルL2との磁気結合度Mは低下する。 In such separation Detachable power transmitting and receiving transformer T1, resulting leakage flux F1 is, the degree of magnetic coupling M of the primary coil L1 and the secondary coil L2 decreases. ここで図29に、図27の回路を2 Here in FIG. 29, 2 of the circuit of FIG. 27
次側に換算した等価回路を示す。 It shows an equivalent circuit in terms of the following side. 2次側コイルL2の誘起電圧を有する電圧源E2の出力に直列に漏れインダクタンスL4が接続され、平滑整流回路20を介して負荷3aに接続される。 Inductance L4 leaks in series with the output of the voltage source E2 with the induced voltage in the secondary coil L2 is connected, is connected to the load 3a via the smoothing rectifier circuit 20. 前述のように磁気結合度Mが低下して1次コイルL1で生じる総磁束の内2次側コイルL2 Secondary coil of the total magnetic flux generated by the magnetic coupling of M is reduced primary coil L1 as described above L2
の鎖交磁束F2が少なくなると、漏れ磁束F1による漏れインダクタンスL4が生じる。 When the interlinkage magnetic flux F2 decreases, the leakage inductance L4 is caused by the leakage flux F1. また、1次側コイルL In addition, the primary coil L
1の両端に印可される電圧V1は可聴域周波数以上である約20KHz以上の高周波で駆動されるため、磁気結合度Mが低く漏れインダクタンスL4を有する電力送受用トランスT1を介して負荷3aへ電力を伝達する場合、2次コイルL2の誘起電圧即ち、電圧源E2の電圧は低下し、漏れインダクタンスL4による誘導リアクタンスのために電圧降下を起こし、結果として出力端子電圧V3は低下する。 Since voltage V1 is applied to the first ends are driven at approximately 20KHz or more high frequency is more than the audible band frequency, power to the load 3a via the power transmitting and receiving transformer T1 to degree of magnetic coupling M has a leakage inductance L4 low when transmitting a induced voltage in the secondary coil L2 that is, the voltage of the voltage source E2 decreases, causing a voltage drop due to the inductive reactance due to leakage inductance L4, the output terminal voltage V3 as a result decreases. 図30は図29に示す負荷電流I3 Figure 30 is a load current I3 shown in FIG. 29
に対する出力端子電圧V3の特性117a及び負荷電力Pの特性118aを示した図である。 Is a diagram showing characteristics 117a and characteristic 118a of the load power P of the output terminal voltage V3 with respect. 出力端子電圧V3 The output terminal voltage V3
は漏れインダクタンスL4による交流インピーダンスのために線形的に低下する。 Linearly decreases for the AC impedance due to the leakage inductance L4 is. また、負荷電力Pは、負荷電流I3が所定の電圧以下では負荷電流I3が増加するにしたがって負荷電力Pも増加するが、負荷電流I3が所定の電圧以上になると負荷電流I3が増加するにしたがって負荷電力Pは低下する。 Further, the load power P in accordance with the load current I3 is at less than a predetermined voltage is also increased load power P according to the load current I3 increases, the load current I3 and the load current I3 becomes equal to or higher than a predetermined voltage increases load power P is reduced. このような特性を持つ場合には、一定電圧入力で動作する異なる負荷電流の機器を負荷3aとして設けた場合、負荷電流I3が所定の電流値以上では増加するほど、出力端子電圧V3は低下し、 When having such a characteristic, when provided with devices different load current to operate at a constant voltage input as the load 3a, as the load current I3 is increased at a predetermined current value or more, the output terminal voltage V3 drops ,
負荷7の定電圧入力条件を外れてしまい、本来の性能を発揮できなくなる。 It deviates a constant voltage input conditions of the load 7, can not be influence the performance of the product.

【0003】また、非接触電力伝達において非接触充電の場合には2次コイルL2に並列または直列にコンデンサを接続して負荷整合による力率改善を行い、前記漏れインダクタンスL4の影響を補い2次側で取り出すことのできる有効電力を増加させる場合が多い。 [0003] perform power factor correction by the parallel or to connect the capacitor in series load matching the secondary coil L2 in the case of non-contact charging in non-contact power transmission, the secondary compensate the influence of the leakage inductance L4 when increasing the effective power can be taken out at the side is large. 図31の回路図は前記図27の2次側コイルL2に並列にコンデンサC2を接続したもので、図32は図31の回路を2次側に換算した等価回路を示し、2次側コイルL2の誘起電圧を有する電圧源E2の出力に直列に漏れインダクタンスL4が接続され、漏れインダクタンスL4を介して電圧源E2に並列にコンデンサC2が接続され、コンデンサC2の両端は整流平滑回路20を介して負荷3aに接続される。 Circuit diagram of FIG. 31 is obtained by connecting the capacitor C2 in parallel with the secondary coil L2 of FIG 27, FIG 32 shows an equivalent circuit obtained by converting the circuit of Figure 31 on the secondary side, the secondary side coil L2 inductance L4 leaks in series with the output of the voltage source E2 with the induced voltage is connected to the capacitor C2 is connected in parallel to the voltage source E2 through the leakage inductance L4, both ends of the capacitor C2 via a rectifying and smoothing circuit 20 It is connected to a load 3a. 前記コンデンサC2を接続することにより電力伝送効率が大幅に向上し、小型化ができる。 Power transmission efficiency by connecting the capacitor C2 is significantly improved, it is compact. 負荷3 Load 3
aに充電を行う場合には出力端子電圧V3は例えば電池電圧となりほぼ一定である。 Output terminal voltage V3 in the case of charging to a is constant becomes substantially example battery voltage. しかし、負荷3aが定電圧負荷ではない例えば抵抗のような負荷に対しては、図3 However, the load 3a is for the load, such as a no example resistance at a constant voltage load, FIG. 3
3の負荷電流I3に対する出力端子電圧V3の特性11 The output terminal voltage V3 for the third load current I3 characteristic 11
7b及び負荷電力Pの特性118bに示すようにコンデンサC2が接続されている場合には接続されていない場合に比べて、負荷電流I3が増加すると出力端子電圧V 7b and load power in the case where the capacitor C2 as shown in connected P characteristic 118b as compared with the case not connected, the load current I3 increases the output terminal voltage V
3の低下が顕著に見られる。 Decrease of 3 can be seen prominently. また負荷電力Pがピークとなる点K付近の出力端子電圧V3の時に最適な負荷整合が行われ、負荷電流I3がこのK点での負荷電流より大きい領域では、出力端子電圧V3が急速に低下する。 The optimum load matching is performed when the output terminal voltage V3 near load power point P reaches a peak K, the load current I3 is larger area than the load current in this point K, the output terminal voltage V3 rapidly drops to. 負荷電流I3がK点での負荷電流よりも小さい領域でも負荷電流I3に反比例して出力端子電圧V3は低下している。 Load current I3 output terminal voltage V3 in inverse proportion to the load current I3 in a region smaller than the load current at the point K is reduced. そして、負荷電流I3が非常に小さい領域では出力端子電圧V3は急に大きくなっている。 Then, the load current I3 output terminal voltage V3 is very small region is suddenly increased.

【0004】前述のような特性や特徴を持つ非接触電力伝送において図34の負荷電流I3に対する出力端子電圧V3の特性117c及び負荷電力Pの特性118cに示すように、出力端子電圧V3を、負荷電流I3の異なる負荷に対して出力端子電圧V3を対象とする全ての負荷領域で一定として安定化させる方法が望まれる。 [0004] As shown in above-mentioned properties and characteristics of the output terminal voltage V3 with respect to the load current I3 in FIG. 34 in the non-contact power transmission having the features 117c and load power P characteristics 118c, the output terminal voltage V3, the load method of stabilizing a constant in all load regions of interest output terminal voltage V3 with respect to different loads of current I3 is desired. この安定した特性を得るために通常のスイッチング電源の電圧制御で行われるように、2次側の出力端子電圧V3を検出し、基準電圧と比較、誤差増幅し、1次側に誤差増幅した信号を非接触で伝送して1次側の駆動電圧振幅、 As is done in the normal voltage control of the switching power supply in order to obtain the stable characteristics, detects the output terminal voltage V3 on the secondary side, compared with a reference voltage, and an error amplifier, the error amplified signal to the primary side a driving voltage amplitude of the transmission to the primary side without contact,
周波数、デューティ及び間引き率を制御するフィードバック制御方法を検討したところ、いずれも従来技術では不都合を生じることが判明した。 Frequency, was examined feedback control method for controlling the duty and decimation rates, both were found to occur a disadvantage in the prior art.

【0005】 [0005]

【発明が解決しようとする課題】非接触伝送では、通常のスイッチング電源に比べて、漏れ磁束F1によるノイズが少し多くなることと、負荷整合を施しても回路効率が少し低下することから、1次コイルL1に印可される高周波電圧V1を生成するためのインバータ回路は共振型インバータを採用することが最適である。 In the [0006] non-contact transmission, as compared with the conventional switching power supply, and the noise due to leakage flux F1 becomes little more, since the circuit efficiency be subjected to load matching may decrease slightly, 1 an inverter circuit for generating a high frequency voltage V1 is applied to the next coil L1 is best to employ a resonant inverter. そして、安定化したい電圧領域で、対象とする最大負荷電流時において最適負荷整合を行うこと、即ち2次側に接続されるコンデンサC2の静電容量を、負荷整合を行うのに最適な値に設定することが最良である。 Then, in the voltage region to be stabilized, to perform an optimum load matching at the maximum load current of interest, i.e. the capacitance of the capacitor C2 connected to the secondary side, to an optimum value to perform load matching it is best to set.

【0006】ところが、前述の回路方式において無負荷時から全負荷時にわたって出力端子電圧V3を一定にする安定化を行う場合、不都合がある。 [0006] However, when performing stabilization to constant output terminal voltage V3 across when full load no load in the circuit system described above, there is a disadvantage. 2次側に接続した負荷整合用のコンデンサC2は、全ての負荷電流領域において接続されているため1次コイルL1に印可される高周波電圧V1を生成するためのインバータ回路が、P Capacitor C2 for load matching connected to the secondary side, an inverter circuit for generating a high frequency voltage V1 is applied to the primary coil L1 because they are connected in all of the load current region, P
WM方式及び周波数可変方式では、周波数やデューティ比の変化幅が大きいと回路動作が不安定になる場合がある。 The WM scheme and frequency variable type, there is a case where the circuit operates with the variation width of the frequency and the duty ratio is large becomes unstable. これは図32に示す2次側等価回路に示すように2 This is because, as shown on the secondary side equivalent circuit shown in FIG. 32 2
次側コイルL2の誘起電圧を有する電圧源E2には、漏れインダクタンスL4とコンデンサC2とが直列に接続された直列共振回路が接続されているため、1次コイルL1に印可される高周波電圧V1の周波数やデューティ比が大きく変化して2次側コイルL2に誘起する電圧の周波数やデューティ比が大きく変化すると、前記直列共振回路の動作も大きく変化するためであると考えられる。 The voltage source E2 with the induced voltage of the next coil L2, since the series resonant circuit and the leakage inductance L4 and the capacitor C2 are connected in series are connected, the high frequency voltage V1 is applied to the primary coil L1 When the frequency and duty ratio of the voltage frequency and the duty ratio is induced to a change to the secondary coil L2 increases significantly changes, the operation of the series resonant circuit is also believed to be due to changes significantly. もし、この影響が無視できたとしても、負荷電流I If, as this effect is negligible, the load current I
3を非常に大きく変化させなければならない時(例えば100倍の変化幅がある時)には、1次コイルL1に印可される高周波電圧V1の周波数やデューティ比も非常に大きく変化させなければならないため、特に軽負荷、 3 When must very greatly changed (e.g. when there is 100-fold change width) must be changed very larger frequency and the duty ratio of the high frequency voltage V1 is applied to the primary coil L1 because, in particular a light load,
無負荷近辺での制御が回路動作の実用限界を超えて制御不能になる場合がある。 Control in the vicinity of the no-load may become uncontrollable beyond the practical limit of the circuit operation.

【0007】また1次コイルL1に印可される高周波電圧V1を生成するためのインバータ回路が、従来の間引き制御を行った場合には、従来の間引き制御は、「1次コイルL1に印可される高周波電圧V1を固定周波数で連続駆動させる中で、出力端子電圧の検出電圧が安定化したい目標電圧を超えた場合にインバータを休止させる制御方法」であり、この方法も軽負荷、無負荷近辺において、目標電圧付近で、駆動周波数の1周期にも満たないオン・オフ動作が頻繁に行われ、共振型インバータのメリットである低損失のソフトスイッチングが行われず、ハードスイッチングを行ってスイッチング損失が増加すると共に、強いノイズ源となる。 Furthermore the inverter circuit for generating a high frequency voltage V1 is applied to the primary coil L1, when performing conventional decimation control, conventional thinning control, is applied to the "primary coil L1 among which continuously drives the high-frequency voltage V1 at a fixed frequency, the detection voltage of the output terminal voltage is controlled method "for pause inverter if it exceeds the target voltage to be stabilized, this method is also a light load, in the vicinity unloaded , in the vicinity of the target voltage, on-off operation of less than one cycle of the driving frequency is frequently performed, not performed soft switching low-loss, which is a merit of the resonant inverter, switching loss by performing the hard switching increases as well as, a strong noise source.

【0008】そしてこれらの制御方式は、従来技術では、2次側の出力端子電圧V3などの情報は光信号を利用したフォトカプラを介して、1次側のインバータ回路の駆動電圧振幅、周波数、デューティ比及び間引き率を制御するフィードバック制御であった。 [0008] and these control schemes, in the prior art, information such as the output terminal voltage V3 on the secondary side via a photocoupler utilizing a light signal, the driving voltage amplitude of the primary-side inverter circuit, frequency, was feedback control for controlling the duty ratio and the thinning rate. しかし、非接触電力伝達装置においては、浴室や屋外などの水まわりや汚れの多いところ悪環境で使われる場合にそのメリットが出るため、まわりの明るさや、汚れ等の影響を受ける光信号を利用する技術手段は採用が難しい。 However, use in non-contact power transmission device, since the benefits out when used with water around or a dirty place adverse environments such as a bathroom or outdoors, brightness and around, the optical signal affected by dirt technical means are difficult to adopt to.

【0009】本発明は、上記事由に鑑みてなされたものであり、その目的は、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することにある。 [0009] The present invention has been made in view of the above circumstances, an object thereof is to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0010】 [0010]

【課題を解決するための手段】請求項1の発明は、直流電圧を出力する電源回路と前記直流電圧を一定周波数の高周波電圧に変換するインバータ回路と前記インバータ回路から前記高周波電圧を供給される電力送電用1次コイルとから構成される非接触コンセントと、前記電力送電用1次コイルと分離着脱自在なトランス構造を構成して高周波電圧を誘起される電力受電用2次コイルと前記電力受電用2次コイルに誘起される高周波電圧を整流平滑する整流平滑回路とから構成される非接触プラグと、 [Means for Solving the Problems] of claim 1 the invention is supplied with the high frequency voltage and an inverter circuit for converting the DC voltage as the power supply circuit that outputs a DC voltage to a high frequency voltage of a constant frequency from said inverter circuit a non-contact power outlet composed of a primary coil for electrical power transmission, the power receiving and the power receiving a secondary coil induced a high frequency voltage to constitute a power transmission for the primary coil separation detachable transformer structure a non-contact plugs comprised a high frequency voltage from the rectifying smoothing circuit for rectifying and smoothing induced to use the secondary coil,
前記非接触プラグの出力端子に接続され負荷となる端末機器とから構成される非接触電力伝達装置において、前記非接触コンセントは、対象としている負荷領域に対する前記非接触プラグの出力端子電圧を、前記インバータ回路より前記電力送電用1次コイルに供給される高周波電圧を間引いて安定化させる間引き制御を行う制御手段を備えることを特徴とし、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができる。 In the above contactless power transmission system composed of a terminal device to be connected to the output terminal of the non-contact plugs load, the contactless outlet, the output terminal voltage of the non-contact plug for the load region of interest, the thinning out the high frequency voltage supplied from the inverter circuit to the power transmission for the primary coil characterized by comprising a control means for performing a thinning control for stabilizing, non-be stabilized to a constant value the output terminal voltage in a wide load range it is possible to provide a contactless power transmission device.

【0011】請求項2の発明は、請求項1の発明において、前記制御手段は、非接触プラグの出力端子電圧が所定の電圧を上回った場合には、インバータ回路から電力送電用1次コイルへの高周波電圧の供給を一定時間間引き、前記一定時間間引きを行った後非接触プラグの出力端子電圧が前記所定の電圧を上回っていれば再び電力送電用1次コイルへの前記高周波電圧の供給を一定時間間引くことを繰り返し、前記各一定時間間引きを行った後で非接触プラグの出力端子電圧が所定の電圧を下回った場合には、非接触プラグの出力端子電圧が所定の電圧を上回るまで電力送電用1次コイルへの前記高周波電圧の供給を連続的に行う動作を継続させることを特徴とし、 [0011] invention of claim 2 is the invention of claim 1, wherein, when the output terminal voltage of the non-contact plug exceeds a predetermined voltage, the inverter circuit to the power transmission for the primary coil decimation certain time the supply of the high frequency voltage, the supply of the high frequency voltage to the predetermined time thinning the non-contact plugs output terminal voltage the predetermined re-power transmission for the primary coil if exceeds the voltage after Repeat thinning predetermined time, wherein when the output terminal voltage of the non-contact plug after the predetermined time decimation is below the predetermined voltage, the power to the output terminal voltage of the non-contact plugs exceeds a predetermined voltage continuously performing operations of supply of the high frequency voltage to the power transmitting primary coil characterized in that to continue,
広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができる。 It is possible to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0012】請求項3の発明は、請求項1または2の発明において、非接触プラグは、非接触プラグ内部の電気状態を表す情報を磁気信号に変換して非接触コンセントに伝送し、前記制御手段は、前記磁気信号に基づいて間引き制御のための制御信号を形成し、前記制御信号によりインバータ回路を間引き制御することを特徴とし、電圧安定化のためのフィードバック信号に磁気信号を使うため、まわりの明るさや汚れの影響を受けずに、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができる。 [0012] The invention of claim 3 is the invention of claim 1 or 2, non-contact plugs, and transmit information representative of the non-contact plugs inside the electrical state to a non-contact electrical outlet is converted into a magnetic signal, the control because means, wherein the control signal for the thinning control is formed on the basis of a magnetic signal, and controls thinning the inverter circuit by the control signal, use the magnetic signal to the feedback signal for voltage stabilization, without being affected by the brightness and dirt around, it is possible to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0013】請求項4の発明は、請求項1乃至3いずれかの発明において、インバータ回路は、ハーフブリッジ型の部分共振インバータであることを特徴とし、故障時の出力電圧の上昇を抑えることができる。 [0013] The invention of claim 4 is the invention of any claims 1 to 3, the inverter circuit is characterized by a half-bridge type partial resonant inverter, it is possible to suppress the increase in the failure time of the output voltage it can.

【0014】請求項5の発明は、請求項4の発明において、電力受電用2次コイルはセンタータップを備え、整流平滑回路は、電力受電用2次コイルのセンタータップではない両出力端に直列に且つ互いに逆方向に接続する整流素子の電力受電用2次コイルに接続していない各他端同士を接続した全波整流部を有し、前記整流素子の接続中点にチョークコイルを接続することを特徴とし、整流部を小型化することができる。 [0014] The invention of claim 5 is the invention of claim 4, the secondary coil power receiving a center tapped, the rectifying smoothing circuit, serial to both the output end is not a center tap of the secondary coil for power receiving and it has a full-wave rectifier connected to each other ends not connected to the power receiving for a secondary coil of the rectifying elements connected in opposite directions, connecting the choke coil to the connection midpoint of the rectifier element characterized in that, the rectifying section can be miniaturized.

【0015】請求項6の発明は、請求項1乃至5いずれかの発明において、電力受電用2次コイルに並列にコンデンサを接続することを特徴とし、負荷整合をとることで1次側から2次側へ伝達できる有効電力を増加させることができる。 [0015] The invention of claim 6, claims 1 to 5 in any of the invention is characterized by connecting a capacitor in parallel with the secondary coil power receiving, 2 from the primary side by taking the load matching active power that can be transmitted to the next side can be increased.

【0016】請求項7の発明は、請求項6の発明において、前記コンデンサの静電容量値は、対象とする負荷領域の最大負荷時において、電力送電用1次コイルに供給される高周波電圧の極性反転時期と、前記コンデンサの両端に発生する振動電圧が極大値または極小値となる時期とが一致する静電容量値であることを特徴とし、最適な負荷整合を行って回路効率を向上させることができる。 [0016] The invention of claim 7 is the invention of claim 6, the capacitance value of the capacitor, at the time of maximum load of the load region of interest, the high frequency voltage supplied to the primary coil for power transmission a polarity inversion timing, characterized by oscillating voltage generated across said capacitor is a capacitance value and when as a maximum or minimum values ​​match, to improve the circuit efficiency by performing an optimum load matching be able to.

【0017】請求項8の発明は、請求項3乃至7いずれかの発明において、非接触コンセントに1次側信号受信コイルを設け、非接触プラグには前記1次側信号受信コイルに対向配置され前記1次側信号受信コイルと分離着脱自在なトランス構造を構成する2次側信号送信コイルを設け、前記2次側信号送信コイルは非接触プラグの内部の電気状態を表す情報を交流電圧に変換した信号を入力され、磁気信号として磁束信号を発生し、前記1次側信号受信コイルは前記磁束信号により電圧を誘起され、 [0017] The invention of claim 8, as in one of claims 3 to 7, the primary-side signal receiving coil arranged in non-contact electrical outlet, the non-contact plug is disposed opposite to the primary-side signal reception coil converting the secondary-side signal transmission coils and the primary-side signal reception coil composing the separation detachable trans configuration provided, the secondary-side signal transmitting coil is the alternating voltage information indicating the internal electrical state of non-contact plug is input to the signal, the magnetic flux signal generated as a magnetic signal, the primary signal receiving coil is induced voltage by the magnetic flux signal,
前記制御手段はインバータ回路を前記誘起された電圧に基づいた制御信号により前記間引き制御することを特徴とし、電圧安定化のためのフィードバック信号に磁束信号を使うため、まわりの明るさや汚れの影響を受けずに、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができる。 Said control means characterized in that the decimation controlled by a control signal based on the inverter circuit to the induced voltage, to use the flux signal to the feedback signal for voltage stabilization, the effect of the brightness and dirt around without being, it is possible to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0018】請求項9の発明は、請求項8の発明において、電力送電用1次コイルと1次側信号受信コイルとの間、及び電力受電用2次コイルと2次側信号送信コイルとの間の少なくとも一方の間に磁性体からなる磁気シールド用隔壁を設けたことを特徴とし、信号送受用トランスに鎖交する電流送授用トランスで発生する磁束を低減させて、正確な電圧安定化のための磁束信号を送受信することができる。 [0018] The invention of claim 9 is the invention of claim 8, between the primary coil and the primary signal receiving coil power transmission, and the secondary coil and the secondary-side signal transmitting coil power receiving characterized in that a magnetic shielding partition wall made of a magnetic material between at least one of between, by reducing the magnetic flux generated by the current feed 授用 transformer interlinked with the transformer signal transmission and reception, precise voltage regulation it can be transmitted and received magnetic flux signal for.

【0019】請求項10の発明は、請求項9の発明において、電力送電用1次コイルと電力受電用2次コイルとを、磁性体からなるコアに巻装し、前記コアを互いに前記コアの軸方向に対向配置させたことを特徴とし、信号送受用トランスに鎖交する電流送授用トランスで発生する磁束を低減させて、正確な電圧安定化のための磁束信号を送受信することができる。 [0019] The invention of claim 10 is the invention of claim 9, and a primary coil and a secondary coil for power receiving power transmission, wound around the core made of a magnetic material, said core said core with each other characterized in that is opposed in the axial direction, thereby reducing the magnetic flux generated by the current feed 授用 transformer interlinked with the transformer signal transmission and reception, can be transmitted and received magnetic flux signal for accurate voltage regulation .

【0020】請求項11の発明は、請求項9の発明において、電力送電用1次コイルと電力受電用2次コイルとを、前記コイルの軸方向に垂直な方向に開口部を有する有底筒型の磁性体からなるコアに巻装し、前記コアを互いに前記コアの軸方向に対向配置させ、前記コアの非開口部の近傍に1次側信号受信コイルと2次側信号送信コイルとを配置したことを特徴とし、信号送受用トランスに鎖交する電流送授用トランスで発生する磁束を低減させて、正確な電圧安定化のための磁束信号を送受信することができる。 [0020] The invention of claim 11 is the invention of claim 9, and a primary coil and a secondary coil for power receiving power transmission, a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil wound around the core made of a magnetic material of the mold, the core is disposed opposite to the axial direction of the core from one another, and a primary-side signal reception coil and the secondary-side signal transmitting coil in the vicinity of the non-opening portion of the core characterized in that the arranged, thereby reducing the magnetic flux generated by the current feed 授用 transformer interlinked with the transformer signal transmission and reception, can be transmitted and received magnetic flux signal for accurate voltage regulation.

【0021】請求項12の発明は、請求項8乃至11いずれかの発明において、2次側信号送信コイルは、非接触プラグの内部の電気状態を表す情報を交流電圧に変換した信号を入力されて、電力送電用1次コイルが発生させる磁束とは逆位相の位相を有する磁束信号を発生することを特徴とし、正確な電圧安定化のための束信号を送受信することができる。 [0021] The invention of claim 12, as in one of claims 8 to 11, the secondary-side signal transmitting coil is inputted a signal converted into an AC voltage information indicating the internal electrical state of non-contact plug Te, characterized by generating a magnetic flux signal having an inverted phase of the magnetic flux is the primary coil for power transmission is generated, can be transmitted and received beam signals for accurate voltage regulation.

【0022】請求項13の発明は、請求項12記載の発明において、2次側信号送信コイルの一方の端子は、電力受電用2次コイルのどちらか一方の端子に接続していることを特徴とし、正確な電圧安定化のための磁束信号を送受信することができる。 [0022] The invention of claim 13 is the invention of claim 12, wherein, one terminal of the secondary side signal transmission coil, characterized in that connected to either terminal of the secondary coil power receiving and then, it can transmit and receive a magnetic flux signal for accurate voltage regulation.

【0023】請求項14の発明は、請求項3乃至7いずれかの発明において、非接触コンセントは、電力送電用1次コイルの近傍に電力送電用1次コイルと電力受電用2次コイルとの間に発生する磁束を検出する磁束検出用コイルを設け、前記磁束検出用コイルは、磁気信号として電力送電用1次コイルで発生する磁束を検出し、前記磁束検出用コイルから前記検出する磁束に応じて出力される電圧に基づいて前記制御手段は、インバータ回路を間引き制御することを特徴とし、正確な電圧安定化のための磁束信号を受信することができる。 [0023] The invention of claim 14, as in one of claims 3 to 7, the non-contact outlet, the primary coil and the power receiving a secondary coil for power transmission in the vicinity of the primary coil power transmission a magnetic flux detecting coil for detecting a magnetic flux generated between provided, the magnetic flux detecting coil detects the magnetic flux generated by the power transmission for the primary coil as a magnetic signal, the magnetic flux that the detection from the magnetic flux detecting coil depending said control means based on the voltage output by is characterized by controlling decimating the inverter circuit, it is possible to receive a magnetic flux signal for accurate voltage regulation.

【0024】請求項15の発明は、請求項14の発明において、電力送電用1次コイルと電力受電用2次コイルとを、前記コイルの軸方向に垂直な方向に開口部を有する有底筒型の磁性体からなるコアに設けて前記コアを互いに前記コアの軸方向に対向配置させ、前記電力送電用1次コイルのコアの開口部の近傍に前記磁束検出用コイルを配置したことを特徴とし、正確な電圧安定化のための磁束信号を受信することができる。 The invention of claim 15 is the invention of claim 14, and a primary coil and a secondary coil for power receiving power transmission, a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil characterized in that provided in the core of a magnetic material of the mold is disposed opposite to the axial direction of the core together the core and disposing the magnetic flux detecting coil in the vicinity of the opening of the core of the power transmission for the primary coil and then it may receive the magnetic flux signal for accurate voltage regulation.

【0025】請求項16の発明は、請求項1乃至15いずれかの発明において、一つの非接触コンセントは、出力電圧の異なる複数の非接触プラグに適合し、各非接触プラグが対象としている負荷領域を含む全領域において前記各非接触プラグの出力電圧を所定の電圧範囲内に収める前記制御手段を有することを特徴とし、経済的である。 [0025] The invention of claim 16, as in one of claims 1 to 15, one non-contact outlets are compatible with a plurality of non-contact plugs having different output voltages, loads each non-contact plugs is targeted characterized by having the control means to keep the output voltage of said each non-contact plugs within a predetermined voltage range in the entire region including the region, which is economical.

【0026】請求項17の発明は、請求項1乃至16いずれかの発明において、非接触プラグの出力端子に並列に抵抗を接続することを特徴とし、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができる。 The invention of claim 17, as in one of claims 1 to 16, characterized by connecting a resistor in parallel to the output terminal of the non-contact plugs, the output terminal voltage at a constant value over a wide load range it is possible to provide a non-contact power transmission system can be stabilized.

【0027】請求項18の発明は、請求項1乃至17いずれかの発明において、非接触プラグが非接触コンセントの所定の位置に結合していない場合は、前記制御手段は、インバータ回路から電力送電用1次コイルへ供給する出力を制限することを特徴徴とし、高い安全性と信頼性とを備えることができる。 The invention of claim 18, as in one of claims 1 to 17, when the non-contact plug is not attached to a predetermined position of the non-contact electrical outlet, the control means, the power transmission from the inverter circuit to limit the output to be supplied to use the primary coil characterized symptoms, it can be provided with high safety and reliability.

【0028】請求項19の発明は、請求項18の発明において、非接触コンセントはインバータ回路から電力送電用1次コイルへの高周波電圧の供給の制限を制御するスイッチ機能を備え、非接触プラグは前記スイッチ機能のオン・オフ状態を制御する駆動体を備え、非接触プラグが非接触コンセントの所定の位置に結合すると前記スイッチ機能を動作させることで前記制御手段はインバータ回路から電力送電用1次コイルへの高周波電圧の供給を可能にすることを特徴とし、高い安全性と信頼性とを備えることができる。 The invention of claim 19 is the invention of claim 18, the non-contact power outlet has a switch function for controlling the restriction of the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil, the non-contact plugs a drive member for controlling the on and off states of the switching function, the non-contact plug and the control means by operating said switch function and binding to a predetermined position of the non-contact electrical outlet power transmission for the primary from an inverter circuit characterized in that to enable the supply of the high-frequency voltage to the coil can be provided with high safety and reliability.

【0029】請求項20の発明は、請求項19の発明において、非接触コンセントの前記スイッチ機能が機械接点からなり、非接触プラグが備える駆動体は磁石からなり、非接触プラグが非接触コンセントの所定の位置に結合すると前記磁石の磁力によって前記機械接点が動作して、前記制御手段はインバータ回路から電力送電用1次コイルへの高周波電圧の供給を可能にすることを特徴とし、高い安全性と信頼性とを備えることができる。 The invention of claim 20 is the invention of claim 19, wherein the switch function of the non-contact power outlet is made of mechanical contacts, the drive member non-contact plug is provided consists magnets, the non-contact plug is a non-contact power outlet wherein the magnetic force of the magnet and bonded into place mechanical contacts is operated, the control means is characterized by enabling the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil, high safety It may include a and reliability.

【0030】請求項21の発明は、請求項1乃至20いずれかの発明において、非接触プラグが非接触コンセントの所定の位置に結合すると、非接触プラグ及び非接触コンセントの少なくともどちらか一方に使用可能を報知する表示を行うことを特徴とし、システムや機器の使用可否の判断をおこなうことができる。 The invention of claim 21, as in one of claims 1 to 20, when the non-contact plugs are attached to a predetermined position of the non-contact power outlet, at least use either one of the non-contact plugs and the non-contact power outlet characterized by performing a display for informing the possibility, it is possible to perform system and the availability of equipment decision.

【0031】請求項22の発明は、請求項1乃至21いずれかの発明において、非接触コンセント及び非接触プラグの少なくともどちらか一方は、非接触プラグの出力端子に接続された端末機器の負荷電力、及び非接触プラグの出力電圧の少なくともどちらか一方を表示する表示部を付加したことを特徴とし、システムや機器の使用可否の判断をおこなうことができる。 The invention of claim 22, as in one of claims 1 to 21, at least one of the non-contact power outlet and the non-contact plugs, the terminal equipment connected to the output terminal of the non-contact plug load power and characterized in that by adding a display unit for displaying at least either one of the output voltage of the non-contact plugs, a determination may be made of the availability of systems and equipment.

【0032】請求項23の発明は、請求項1乃至22いずれかの発明において、非接触プラグの出力端子に接続される端末機器は前記非接触プラグに対して、分離着脱自在なことを特徴とし、不特定の端末機器を使用することができる。 The invention of claim 23, as in one of claims 1 to 22, the terminal equipment connected to the output terminal of the non-contact plug for the non-contact plugs, characterized in that freely Detachable , it can be used unspecified terminal devices.

【0033】請求項24の発明は、請求項23の発明において、非接触プラグの出力端子から端末機器への電力の供給は、磁気結合によって供給されることを特徴とし、不特定の端末機器を使用することができる。 The invention of claim 24 is the invention of claim 23, the power supply from the output terminal of the non-contact plugs to the terminal device is characterized in that supplied by the magnetic coupling, the unspecified terminal devices it can be used.

【0034】請求項25の発明は、請求項1乃至24いずれかの発明において、非接触プラグの出力端子間に、 The invention of claim 25 is as in one of claims 1 to 24, between the output terminals of the non-contact plugs,
電圧クランプ素子を接続することを特徴とし、高い安全性と信頼性とを備えることができる。 Characterized by connecting a voltage clamping device may comprise a high safety and reliability.

【0035】 [0035]

【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention with reference to the accompanying drawings.

【0036】図1は、磁気信号を用いて間引き制御を行う非接触電力伝達装置の回路構成を示す。 [0036] FIG. 1 shows a circuit configuration of the non-contact power transmission system that performs thinning control using a magnetic signal. 非接触電力伝達装置5は、電力供給側となる1次側を構成する非接触コンセント1と負荷を持つ2次側を構成する非接触プラグ2とからなり、非接触コンセント1は、交流電源4からの交流入力を、直流電圧Eを出力する直流に変換する電源回路10と、半導体スイッチを有し、半導体スイッチをスイッチングさせることで電源回路10からの直流電圧Eを一定周波数の高周波電圧V1に変換するインバータ回路11と、インバータ回路11から前記高周波電圧V1を供給される電力送電用1次コイルL1と、非接触プラグ2からフィードバックされた磁気信号に応じてインバータ回路11の半導体スイッチのスイッチングを制御する制御信号を出力する制御部であるスイッチング制御回路12とから構成され、非接触プラグ2は、電力送電 Non-contact power transmission device 5, of a non-contact plug 2 which constituting the secondary side with the load and the non-contact power outlet 1 constituting the primary side of the power supply side, the non-contact power outlet 1, the AC power source 4 the AC input from a power supply circuit 10 which converts the direct current to output a DC voltage E, has a semiconductor switch, a semiconductor switch in the high-frequency voltage V1 having a constant frequency DC voltage E from the power supply circuit 10 by causing the switching an inverter circuit 11 for converting a power transmission for the primary coil L1 to be supplied to the high frequency voltage V1 from the inverter circuit 11, the switching of the semiconductor switches of the inverter circuit 11 in response to the magnetic signal fed back from the non-contact plugs 2 is a switching control circuit 12. a control unit outputs a control signal for controlling a non-contact plugs 2, the power transmission 1次コイルL1に印加された高周波電圧により発生した漏れ磁束F1と鎖交磁束F2との内、鎖交磁束F Among the leakage flux F1 and flux linkage F2 generated by applying high frequency voltage to the primary coil L1, the interlinkage magnetic flux F
2と鎖交することで高周波電圧を誘起される電力受電用2次コイルL2と、電力受電用2次コイルL2から出力される高周波電圧を整流平滑する整流平滑回路20と、 2 interlinked that power receiving a secondary coil L2 that is induced a high frequency voltage, the rectifying smoothing circuit 20 for rectifying smoothing the high-frequency voltage outputted from the power power receiving secondary coils L2,
非接触プラグ2の出力電圧である出力端子電圧V3を検出し、検出結果に応じて非接触コンセント1のスイッチング制御回路12に磁気信号を出力する出力端子電圧検出回路21とから構成され、出力端子電圧V3は負荷である端末機器3に出力される。 Detecting an output terminal voltage V3 is the output voltage of the non-contact plugs 2, and an output terminal voltage detection circuit 21 for outputting a magnetic signal to the switching control circuit 12 of the non-contact power outlet 1 in accordance with the detection result, the output terminal voltage V3 is output to the terminal device 3 as a load. 電力送電用1次コイルL The primary coil L for power transmission
1と電力受電用2次コイルL2とは、分離着脱できる電力送受用トランスT1を構成する。 1 and the power receiving a secondary coil L2, constituting the power transmitting and receiving transformer T1 which can separate detachable.

【0037】本実施例では、出力端子電圧V3を検出した出力端子電圧検出回路21は、その検出結果に応じた磁気信号を発生させ、その磁気信号を受信したスイッチング制御回路12は磁気信号に基づいて、出力端子電圧V3が所定の電圧を上回った場合には、インバータ回路11から電力送電用1次コイルL1への一定周波数の高周波電圧V1の供給を一定時間間引き、一定時間間引きを行った後出力端子電圧V3が所定の電圧をまだ上回っていれば再び電力送電用1次コイルL1への高周波電圧V1の供給を一定時間間引くことを繰り返し、各一定時間間引きを行った後で出力端子電圧V3が所定の電圧を下回った場合には、出力端子電圧V3が所定の電圧を上回るまで電力送電用1次コイルL1への高周波電圧V1 [0037] In this embodiment, the output terminal voltage detection circuit 21 which detects the output terminal voltage V3 generates a magnetic signal corresponding to the detection result, the switching control circuit 12 which receives the magnetic signal based on the magnetic signal Te, when the output terminal voltage V3 exceeds the predetermined voltage, a predetermined time thinning the supply of a constant frequency of the high frequency voltage V1 to the power transmission for the primary coil L1 from the inverter circuit 11, after performing the thinning predetermined time repeating that the output terminal voltage V3 is thinned certain time the supply of the high-frequency voltage V1 to again power transmission for the primary coil L1 if still greater than the predetermined voltage, the output terminal voltage V3 after performing the thinning each predetermined time There when below a predetermined voltage, a high frequency voltage of the output terminal voltage V3 to the power transmission for the primary coil L1 by more than a predetermined voltage V1
の供給を行う動作を継続させる間引き制御を行う制御信号をインバータ回路11に出力し、インバータ回路11 It outputs a control signal for thinning control to continue to operate for supplying the inverter circuit 11, the inverter circuit 11
の半導体スイッチは制御信号に応じて、スイッチング動作を行い、出力端子電圧V3を一定電圧に安定化させる。 The semiconductor switch according to the control signal, performs a switching operation to stabilize the output terminal voltage V3 to a constant voltage.

【0038】図2は、本実施例の具体的な回路構成を示す。 [0038] Figure 2 shows a specific circuit configuration of the present embodiment. 図2において、電源回路10は直流電圧Eを出力する直流電圧源10aで表し、出力端子電圧検出回路21 2, the power supply circuit 10 is represented by a DC voltage source 10a for outputting a DC voltage E, the output terminal voltage detection circuit 21
及びスイッチング制御回路12は省略する。 And the switching control circuit 12 is omitted. 非接触コンセント1は、直流電圧源10aと、直流電圧源10aに並列に接続されたコンデンサC3、C4の直列回路及び半導体スイッチQ1、Q2の直列回路と、コンデンサC Contactless outlet 1 includes a DC voltage source 10a, a series circuit of the series circuit and the semiconductor switches Q1, Q2 of the capacitors C3, C4 connected in parallel to a DC voltage source 10a, the capacitor C
1とコンデンサC2との接続中点と半導体スイッチQ1 1 and the connection point between the capacitor C2 and the semiconductor switch Q1
と半導体スイッチQ2との接続中点との間に接続されたコンデンサC1とからなるインバータ回路11と、コンデンサC1に並列に接続された電力送電用1次コイルL And an inverter circuit 11 consisting of connected capacitor C1 between the connection point between the semiconductor switches Q2, 1 primary coil connected power transmission in parallel with the capacitor C1 L
1とから構成され、ハーフブリッジ型の部分共振インバータ回路となる。 It is composed of one Tokyo, the half-bridge type of partial resonant inverter circuit. 非接触プラグ2は、センタータップを備えた電力受電用2次コイルL2と、電力受電用2次コイルL2に並列に接続されたコンデンサC2、電力受電用2次コイルL2のセンタータップではない両出力端に直列且つ互いに逆方向に接続されたダイオードD3、D Non-contact plug 2 includes a power receiving a secondary coil L2 provided with a center tap, a capacitor C2 connected in parallel to the power receiving for the secondary coil L2, is not both outputs at the center tap of the power receiving for the secondary coil L2 end in series and diodes connected in opposite directions D3, D
4、ダイオードD3、D4の接続中点に一端を接続されたチョークコイルL3、チョークコイルL3の他端と電力受電用2次コイルL2のセンタータップとの間に接続される平滑コンデンサC5からなる整流平滑回路20とから構成され、端末機器3は平滑コンデンサC5に並列に接続される。 4, the diode D3, a choke coil L3 is connected at one end to the connection point D4, a smoothing capacitor C5 connected between the center tap of the other end and the power receiving a secondary coil L2 of the choke coil L3 rectifier consists smoothing circuit 20. the terminal equipment 3 are connected in parallel to the smoothing capacitor C5. 電力送電用1次コイルL1と電力受電用2次コイルL2とは、分離着脱できる電力送受用トランスT1を構成する。 The power transmission for the primary coil L1 and the power receiving a secondary coil L2, constituting the power transmitting and receiving transformer T1 which can separate detachable. 電力受電用2次コイルL2にはセンタータップを備えているものを使用し、2つのダイオードD3、D4で整流しているので装置の小型化を図ることができる。 Using what has a center tap in the power receiving for the secondary coil L2, since the rectified by two diodes D3, D4 can be miniaturized.

【0039】次に図3に、図2における電力送電用1次コイルL1の両端電圧V1と、電力送電用1次コイルL [0039] Next in Figure 3, the voltage V1 across the power transmission for the primary coil L1 in FIG. 2, the power transmission for the primary coil L
1を流れる電流I1と、半導体スイッチQ1の両端電圧V4aと、半導体スイッチQ1を流れる電流I4aと、 A current I1 flowing through the primary, and the voltage across V4a semiconductor switches Q1, and a current I4a through the semiconductor switches Q1,
半導体スイッチQ2の両端電圧V4bと、半導体スイッチQ2を流れる電流I4bとの各波形を示す。 It shows the voltage across V4b semiconductor switches Q2, each waveform of the current I4b through the semiconductor switch Q2. 半導体スイッチQ1、Q2は交互にオン・オフを繰り返すが、この時一方の半導体スイッチがオンからオフした後、両方の半導体スイッチがオフになる一定期間を経てから他方の半導体スイッチがオンするように制御しているので、 As the semiconductor switches Q1, Q2 is repeatedly turned on and off alternately, but after this time one of the semiconductor switches is turned off from on, both the semiconductor switches and the other semiconductor switch from via a fixed period turned off is turned on since the control,
電力送電用1次コイルL1の両端電圧V1は、台形上の波形となる。 Voltage V1 across the power transmission for the primary coil L1 has a waveform on trapezoidal. 部分共振区間100は半導体スイッチQ Partial resonant section 100 of the semiconductor switch Q
1、Q2ともにオフしている区間であり、電力送電用1 1, Q2 are both off to that section, power transmission for 1
次コイルL1から2次側を見たインダクタンスと、コンデンサC1との共振動作による電圧振動が行われる期間である。 And inductance from the next coil L1 viewed secondary, a period in which a voltage oscillation is performed by the resonant operation of the capacitor C1. 半導体スイッチにMOSFETを用いると、図2に示すように寄生ダイオードD1、D2が半導体スイッチQ1、Q2に並列に接続されるため、電力送電用1 The use of MOSFET in a semiconductor switch, since the parasitic diodes D1, D2 is connected in parallel with the semiconductor switches Q1, Q2 as shown in FIG. 2, the power transmission for 1
次コイルL1の両端電圧V1の振動電圧が大きくなり、 Oscillating voltage across the voltage V1 of the next coil L1 becomes large,
電圧E/2または電圧E/2にでクランプされると、半導体スイッチQ1の両端電圧V4aと半導体スイッチQ Once clamped by the voltage E / 2 or the voltage E / 2 Second, the voltage across V4a and the semiconductor switch Q of the semiconductor switch Q1
2の両端電圧V4bとは直流電源10aの電圧Eまたはグラウンドレベルにクランプされた台形波となる。 The second voltage across V4b a trapezoidal wave which is clamped to the voltage E or ground level of the DC power source 10a. また半導体スイッチQ1、Q2にMOSFETを用いた場合は、MOSFETの寄生容量を利用しても部分共振動作ができる。 When using a MOSFET in a semiconductor switches Q1, Q2 also can be partial resonance operation by using the parasitic capacitance of the MOSFET. この部分共振により半導体スイッチQ1、Q Semiconductor switch Q1 by the partial resonance, Q
2はソフトスイッチングを行うことができ、ターンオン及びターンオフ時の損失が大幅に低減できる。 2 can perform soft switching loss during turn-on and turn-off can be greatly reduced.

【0040】図4は、負荷状態が無負荷、軽負荷近辺において従来技術の間引き制御を行った時の出力端子電圧V3と電力送電用1次コイルL1の両端電圧V1とを示す。 [0040] Figure 4, the load state is unloaded, showing the voltage V1 across the output terminal voltage V3 and the power transmission for the primary coil L1 when performing thinning control of the prior art in the vicinity light loads. 従来技術の間引き制御は、出力端子電圧V3を検出し、その検出結果が目標電圧101を超えた時のみインバータ回路11の固定周波数駆動を休止させて、一定周波数の高周波電圧V1の出力を停止させる。 Thinning control of the prior art detects the output terminal voltage V3, and the detection result by resting the fixed frequency drive of viewing the inverter circuit 11 when exceeding the target voltage 101 stops the output of the constant frequency of the high frequency voltage V1 . このような制御では、図4に示すように軽負荷、無負荷近辺において、目標電圧101の付近で駆動周波数の1周期にも満たない半導体スイッチQ1、Q2のオン・オフが頻繁に行われ、共振型インバータのメリットである低損失のソフトスイッチングが行われず、ハードスイッチングになるとともに、強いノイズ源になることは前記従来の技術でも述べたとおりである。 In such control, light load as shown in FIG. 4, in the vicinity unloaded, the semiconductor switches Q1 to near the target voltage 101 less than one cycle of the driving frequency, Q2 on and off is frequently performed, not performed soft switching low-loss, which is a merit of the resonant inverter, it becomes a hard switching, to become a strong noise source is as described in the prior art. 特に、非接触電力伝達では、 In particular, in a non-contact power transfer,
漏れ磁束や磁束の広がりによる磁界の影響で、出力端子にノイズが乗りやすいためこの傾向は顕著に現れやすい。 Under the influence of the magnetic field due to the leakage magnetic flux and magnetic flux of the spread, this trend is likely to significantly appear for noise is likely to ride to the output terminal.

【0041】前記従来技術の間引き制御に対し、図5 [0041] The over the prior art thinning control, FIG. 5
に、負荷状態が無負荷、軽負荷近辺において、出力端子電圧V3の目標電圧として2つの目標電圧102、10 The load condition is no load in the vicinity light load, the two target voltage as the target voltage of the output terminal voltage V3 102,10
3を設け、出力端子電圧V3が目標電圧102を超えるとインバータ回路11の固定周波数駆動を停止させ、出力端子電圧V3が目標電圧103より下回るとインバータ回路11の固定周波数駆動を行う制御を行った時の出力端子電圧V3と電力送電用1次コイルL1の両端電圧V1とを示す。 3 is provided, the output terminal voltage V3 exceeds the target voltage 102 stops the fixed frequency drive of the inverter circuit 11, control is carried out to output terminal voltage V3 is performed falls below than the target voltage 103 fixed frequency drive of the inverter circuit 11 showing the voltage V1 across the output terminal voltage V3 and the power transmission for the primary coil L1 when. 2つの目標電圧102、103によってヒステリシスをつくることでインバータ回路11の固定周波数駆動の動作と停止が図4に示す従来の方式に比べて良好に行われる。 Operation and stopping of the fixed frequency drive of the inverter circuit 11 by making the hysteresis by two target voltages 102 and 103 performed well compared to the conventional method shown in FIG. 実用的にはこの方式で使用可能なものもあるが、ノイズが大きく重畳される場合にはヒステリシス幅を大きくしなければならず、出力端子電圧V3 Practically also usable in this method, but it is necessary to increase the hysteresis width when the noise is greatly superimposed, the output terminal voltage V3
のリプル電圧増大の原因となる。 Cause of the ripple voltage increases.

【0042】そこで発明では図6に示すように、出力端子電圧V3が目標電圧108を上回った場合には、インバータ回路11から電力送電用1次コイルL1への一定周波数の高周波電圧V1の供給を一定時間106間引き、一定時間106の間引きを行った後出力端子電圧V [0042] Therefore, in the invention, as shown in FIG. 6, when the output terminal voltage V3 exceeds the target voltage 108, the supply of the constant frequency of the high frequency voltage V1 from the inverter circuit 11 to the power transmission for the primary coil L1 fixed time 106 decimation, output terminal voltage V after thinning predetermined time 106
3が目標電圧108をまだ上回っていれば再び電力送電用1次コイルL1への高周波電圧V1の供給を一定時間106間引くことを繰り返し、各一定時間106の間引きを行った後で出力端子電圧V3が目標電圧108を下回った場合には、出力端子電圧V3が目標電圧108を上回るまで電力送電用1次コイルL1への高周波電圧V 3 repeatedly that a decimating predetermined time 106 to supply the high-frequency voltage V1 to the target voltage 108 still exceeds by far if again the power transmission for the primary coil L1, the output terminal voltage after decimation of each fixed time 106 V3 There when below the target voltage 108, a high frequency voltage V of the output terminal voltage V3 to the power transmission for the primary coil L1 up exceeds the target voltage 108
1の供給を行う動作を継続させる間引き制御を行い、この一連の動作を継続させて出力端子電圧V3を一定にする安定化を行う。 Thinned out control to continue the operation for supplying 1 performs stabilization of the output terminal voltage V3 by continuing this series of operations a constant. この方式では、軽負荷から全負荷までの範囲において、一定時間106の休止期間の終了時には出力端子電圧V3は目標電圧108を確実にある程度下回り、インバータ回路11の固定周波数駆動も連続1 In this manner, in the range up to full load light load, the output terminal voltage V3 at the end of the rest period of a constant period 106 reliably below certain extent the target voltage 108, continuous also fixed frequency drive of the inverter circuit 11 1
周期以上は確保できる。 Cycles or more can be ensured. そして、完全な無負荷の場合にはインバータ回路11の固定周波数駆動が1周期未満になることもありうるが、この場合にでもインバータ回路11の固定周波数駆動動作の期間と停止の期間とは一定の周期で規則的に繰り返されるため、インバータ回路1 Then, although in the case of a complete no-load can also be fixed frequency drive of the inverter circuit 11 is less than one period, constant in the period and the duration of the stop of the fixed frequency drive operation of the inverter circuit 11 even in this case since a cycle of repeated regularly, the inverter circuit 1
1の固定周波数駆動の期間と停止の期間とが不規則に繰り返される図4の場合に比べて高調波ノイズは低減できる。 Harmonic noise can be reduced as compared with the case of FIG. 4 which period of one fixed frequency drive and the duration of the stop are repeated irregularly. また、本実施例のもう一つのメリットは、負荷状態が無負荷に近い時も全負荷に近い時も、出力端子電圧V It is another advantage of this embodiment, when the load state is close to be full load when almost no load is also the output terminal voltage V
3の最大電圧107をほぼ同程度にできるため、とくに浴室などの水まわりで使う低い電圧を安定化させる場合に、その電圧規格の上限値に対し少しのマージン分だけ低い電圧に目標電圧108を設定すれば、確実に電圧規格の上限値以内に出力端子電圧V3を制御できるため、 For possible third maximum voltage 107 to approximately the same extent, particularly in the case of stabilizing the low voltage used in plumbing, such as the bathroom, the target voltage 108 a little margin only low voltage to the upper limit of the rated voltage by setting, it is possible to reliably control the output terminal voltage V3 within the upper limit of the rated voltage,
安全安心に配慮した出力端子電圧V3の電圧安定化を行うことができる。 It is possible to perform voltage stabilization at the output terminal voltage V3 which considered safe and secure.

【0043】次に図7に、電力送電用1次コイルL1の両端電圧V1と、コンデンサC2の両端電圧V2と、コンデンサC2を流れる電流I2と、端末機器3を流れる負荷電流I3との各波形を示す。 [0043] Next in Figure 7, the voltage V1 across the power transmission for the primary coil L1, the waveform of the voltage V2 across the capacitor C2, a current I2 flowing through the capacitor C2, and the load current I3 flowing through the terminal equipment 3 It is shown. コンデンサC2を電力受電用2次コイルL2に並列に接続して最適な負荷整合を行うことができる条件は、図7にタイミング109に示すように電力送電用1次コイルL1の両端電圧V1の極性反転時と、コンデンサC2の両端電圧V2の振動電圧が極大値に達する時とが一致すること及びタイミング110のように電力送電用1次コイルL1の両端電圧V Conditions that may effect the optimum load matching connected in parallel to the capacitor C2 to the power the power-receiving secondary coil L2, the polarity of the voltage V1 across the power transmission for the primary coil L1 as shown in the timing 109 in FIG. 7 and when inverted, the voltage V across the power transmission for the primary coil L1 as possible and the timing 110 and when the vibration voltage across the voltage V2 of the capacitor C2 reaches a maximum value matches
1の極性反転時と、コンデンサC2の両端電圧V2の振動電圧が極小値に達する時とが一致することと等価である。 1 and the polarity inversion time of, is equivalent to vibration voltage across the voltage V2 of the capacitor C2 are matched and the time to reach the minimum value. 図7のように最適な負荷整合を行うためのコンデンサC2の静電容量値は、インバータ回路11の駆動周波数や、電力送電用1次コイルL1と電力受電用2次コイルL2間の漏れインダクタンスL4以外に出力端子電圧V3や整流平滑回路20の整流方式にも影響を受ける。 Optimal load capacitance value of the matching capacitor C2 for performing as shown in FIG. 7, and the driving frequency of the inverter circuit 11, the power transmission for the primary coil L1 and leakage inductance L4 between the power power receiving secondary coil L2 also affected rectification method of the output terminal voltage V3 and rectifying and smoothing circuit 20 in addition.

【0044】図8、9は本実施例における負荷電流I3 [0044] Figure 8 and 9 is the load current I3 in this embodiment
に対する出力端子電圧V3の特性117d、117eを示す。 Characteristics of the output terminal voltage V3 with respect to 117d, shows the 117e. 最大負荷電力がとれる点K、即ち負荷整合が最適にとれている点Kより負荷電流I3が小さい領域111 Maximum load power can be taken point K, namely the load from the K point that optimally take a load matching current I3 is smaller region 111
及び113では出力端子電圧V3は、点Kにおける出力端子電圧V3より高くなっているため、本実施例の間引き制御による電圧低減動作により出力端子電圧V3の安定化を行うことができる。 And the output terminal voltage V3 at 113 since that is higher than the output terminal voltage V3 at the point K, it is possible to perform the stabilization of the output terminal voltage V3 by a voltage reduction operation by the thinning control of this embodiment. 一方負荷電流I3が点Kを超える領域112、114では、出力端子電圧V3は急激に電圧降下を起こし利用できない。 On the one hand the load current I3 exceeds the point K regions 112 and 114, the output terminal voltage V3 is not available to cause a rapid voltage drop. このようにコンデンサC2により最適な負荷整合を行うことで、本発明の無接触電力伝達装置5を最も効率の高い状態で動作させることができる。 By thus performing the optimum load matching with the capacitor C2, it is possible to operate the non-contact power transmission device 5 of the present invention in the most efficient state. また、適用負荷範囲を超えた場合、例えば端末機器3の故障により内部短絡が起こっても、点K Further, if it exceeds applicable load range, for example, take place internal short-circuit due to failure of the terminal device 3, the point K
よりも負荷電流I3が大きくなると出力端子電圧V3の電圧降下が急激に起こり、出力端子電圧V3は低電圧になるとともに負荷電流I3は電流制限がかかり安全であり、安全安心に配慮したシステムとなっている。 Load current I3 is larger than the voltage drop of the output terminal voltage V3 occurs rapidly, the output terminal voltage V3 load current I3 with in undervoltage is safe current limit starts, a system that considers the safe and secure ing.

【0045】図10乃至23は本発明の実施形態の具体例を示し、基本的な構成は図1及び図2とほぼ同様であり、同一の構成要素には同一の符号を付して説明は省略する。 [0045] Figure 10 through 23 shows a specific example of an embodiment of the present invention, the basic structure is substantially the same as FIGS. 1 and 2, the same components are described with the same reference numerals omitted. 図10において、電力供給側となる1次側を構成する非接触コンセント1は、直流電源を入力されて一定周波数の高周波電圧を出力するインバータ回路11と(図10乃至16では直流電源を出力する電源回路は省略)、インバータ回路11から前記高周波電圧を供給される電力送電用1次コイルL1と、非接触プラグ2の2 10, the non-contact power outlet 1 constituting the primary side of the power supply side, and outputs an inverter circuit 11 for outputting a high frequency voltage of constant frequency is input to the DC power source (DC power source in FIG. 10 to 16 power supply circuit is omitted), and power transmission for the primary coil L1 to be supplied to the high-frequency voltage from the inverter circuit 11, the second non-contact plugs 2
次側信号送信コイル23からフィードバックされた磁気信号により電圧を誘起される1次側信号受信コイル14 Induced voltage by a magnetic signal fed back from the next side signal transmitting coil 23 primary signal receiving coil 14
と、前記誘起電圧に基づいた信号を出力する信号変換回路13と、信号変換回路13の出力信号に応じてインバータ回路11の半導体スイッチのスイッチングを間引き制御する制御信号を出力するスイッチング制御回路12 When, a signal conversion circuit 13 for outputting a signal based on the induced voltage, the switching control circuit 12 for outputting a control signal for controlling thinning the switching of the semiconductor switches of the inverter circuit 11 according to the output signal of the signal conversion circuit 13
とから構成され、負荷を持つ2次側を構成する非接触プラグ2は、電力送電用1次コイルL1に印加された高周波電圧により発生した磁束F3と鎖交することで高周波電圧を誘起される電力受電用2次コイルL2と、電力受電用2次コイルL2の高周波出力を整流平滑する整流平滑回路20と、非接触プラグ2の出力端子電圧V3を検出し、検出信号を出力する出力端子電圧検出回路21 Is composed of a non-contact plugs 2 constituting the secondary side with the load is induced a high frequency voltage by the magnetic flux F3 interlinked generated by applying high frequency voltage to the power transmission for the primary coil L1 power power receiving secondary coils L2, a rectifying and smoothing circuit 20 to the high frequency output rectifier smoothing the power receiving for the secondary coil L2, detects the output terminal voltage V3 of the non-contact plugs 2, the output terminal voltage and outputs a detection signal detection circuit 21
と、前記検出信号に応じた交流信号を出力する信号変換回路22と、信号変換回路22から出力される交流信号を入力されて、磁気信号としての磁束信号を発生する2 When, a signal conversion circuit 22 outputs an AC signal corresponding to the detection signal, it is inputted an AC signal output from the signal conversion circuit 22, which generates a magnetic flux signal as a magnetic signal 2
次側信号送信コイル23とから構成され、非接触プラグ2の出力は端末機器3に接続される。 Consists of the following side signal transmitting coil 23, the output of the non-contact plugs 2 are connected to the terminal device 3. 電力送電用1次コイルL1と電力受電用2次コイルL2とは、分離着脱できる電力送受用トランスT1を構成し、1次側信号受信コイル14と2次側信号送信コイル23とは、分離着脱できる信号授受用トランスT2を構成する。 The power transmission for the primary coil L1 and the power receiving a secondary coil L2, and constitute a power transmitting and receiving transformer T1 can separate detachable, the primary signal receiving coil 14 and the secondary-side signal transmitting coil 23, Detachable constituting the signal transfer transformer T2 possible.

【0046】しかし、図10に示す回路構成のように電力送受用トランスT1と信号授受用トランスT2とが互いに近傍に配置されると磁束F3の広がりによって、磁束F3の一部は1次側信号受信コイル14と2次側信号送信コイル23とに鎖交しており、信号授受用トランスT2にはノイズが入ることになり正確な非接触プラグ2 [0046] However, the spread When the power transmitting and receiving transformer T1 and the signal transfer transformer T2 are disposed close to each other flux F3 as the circuit configuration shown in FIG. 10, part of the magnetic flux F3 primary side signal receiving coil 14 and the secondary-side signal transmitting coil 23 and is interlinked to the precise non-contact plugs will be noise enters the signal transfer transformer T2 2
の出力端子電圧V3の情報を非接触コンセント1にフィードバックできない。 The information of the output terminal voltage V3 that can not be fed back to the non-contact power outlet 1. そこで、前述の問題を改善する実施例を図11〜図14に示す。 Therefore, it is shown in FIGS. 11 to 14 an embodiment for improving the above problems.

【0047】図11は、非接触コンセント1、非接触プラグ2と、信号授受用トランスT2との間に磁気を通しやすい磁性体からなる隔壁A1を設け、電力送電用1次コイルL1により発生する磁束F3を障壁A1に集中させることで、磁束F3の内、信号授受用トランスT2に鎖交する磁束を低減させたものである。 [0047] Figure 11 is a non-contact power outlet 1, a non-contact plugs 2, the provided partition wall A1 formed of easy magnetic material through the magnetic between the signal transfer transformer T2, generated by the power transmission for the primary coil L1 by concentrating the magnetic flux F3 barrier A1, among the magnetic flux F3, it is obtained by reducing the magnetic flux interlinked with the signal transfer transformer T2.

【0048】図12は、電力送電用1次コイルL1と電力受電用2次コイルL2とを磁性体からなるコアA2に巻装し、電力送電用1次コイルL1と電力受電用2次コイルL2との軸方向に互いに対向配置させており、電力送電用1次コイルL1により発生する磁束F3をコアA [0048] Figure 12 is wound around the power transmission for the primary coil L1 and the power receiving a secondary coil L2 into a core A2 made of a magnetic material, a primary coil for power transmission L1 and power receiving a secondary coil L2 and so as to face each other in the axial direction of the core flux F3 generated by the power transmission for the primary coil L1 a
2に集中させることで、磁束F3の広がり度合いを低減させて、磁束F3の内、信号授受用トランスT2に鎖交する磁束を低減させたものである。 By concentrating to 2, by reducing the spread degree of the magnetic flux F3, of the magnetic flux F3, it is obtained by reducing the magnetic flux interlinked with the signal transfer transformer T2.

【0049】図13は、電力送電用1次コイルL1と電力受電用2次コイルL2とを、磁性体からなり開口部を有する一般によく使われているトランス用のコアA3に巻装し、電力送電用1次コイルL1と電力受電用2次コイルL2との軸方向に互いに対向配置させており、電力送電用1次コイルL1により発生する磁束F3をコアA [0049] Figure 13 is wound around the power transmission for the primary coil L1 and the power receiving a secondary coil L2, the core A3 for transformers that are often used in general having an opening of a magnetic material, the power and so as to face each other in the axial direction of the power transmitting primary coil L1 and the power receiving a secondary coil L2, a magnetic flux F3 generated by the power transmission for the primary coil L1 core a
3に集中させることで、磁束F3の広がり度合いを低減させて、磁束F3の内、信号授受用トランスT2に鎖交する磁束を低減させたものである。 By concentrating to 3, by reducing the spreading degree of the magnetic flux F3, of the magnetic flux F3, it is obtained by reducing the magnetic flux interlinked with the signal transfer transformer T2. また、図13においてはコアA3の開口部122から磁束F3の一部が漏れるので、信号授受用トランスT2は、その磁束が鎖交しないようにコアA3の非開口部123側に設置しておく。 Further, since a part from the opening 122 of the core A3 flux F3 leaks in FIG. 13, the signal transfer transformer T2 is previously installed in the non-opening portion 123 side of the core A3 so that the magnetic flux is not interlinked with .

【0050】図14に示す実施例においては、出力端子電圧V3を信号変換回路24に入力して、信号変換回路24は出力端子電圧V3に応じた信号を出力し、2次側信号送信コイル23の一端は前記信号が出力される信号変換回路24の出力に接続され、他端は電力受電用2次コイルの一端に接続されている。 [0050] In the embodiment shown in FIG. 14, inputs an output terminal voltage V3 to the signal conversion circuit 24, the signal conversion circuit 24 outputs a signal corresponding to the output terminal voltage V3, 2-side signal transmitting coil 23 one end is connected to the output of the signal conversion circuit 24 where the signal is output, the other end is connected to one end of the secondary coil power receiving. また、電力送電用1次コイルL1で発生し電力受電用2次コイルL2と鎖交する磁束F3a及び電力送電用1次コイルL1で発生し1 Further, it generated in the power receiving a secondary coil L2 magnetic flux interlinking F3a and power transmission for the primary coil L1 generated by the power transmission for the primary coil L1 1
次側信号受信コイル14と鎖交する磁束F3bとの方向と、2次側信号送信コイル23で発生する磁束信号F4 The direction of the next-side signal reception coil 14 and the magnetic flux linking F3b, magnetic flux signal F4 generated on the secondary side signal transmitting coil 23
の方向とが互いに反対方向になるように、電力送電用1 As the directions are opposite directions of the power transmission for 1
次コイルL1と1次側信号受信コイル14との巻線の方向と、電力受電用2次コイルL2と2次側信号送信コイル23との巻線の方向とを互いに反対方向にすることで、2次側信号送信コイル23で発生する磁束信号F4 The direction of winding of the next coil L1 and the primary-side signal receiving coil 14, by the opposite directions and the direction of the winding of the power receiving a secondary coil L2 and the secondary signal transmitter coil 23, flux signal F4 generated on the secondary side signal transmitting coil 23
の位相は、電力送電用1次コイルL1で発生する磁束F The phase flux generated in the power transmission for the primary coil L1 F
3a、F3bの位相とは逆位相となり、信号授受用トランスT2は電力送電用1次コイルL1で発生する磁束F 3a, it becomes opposite phase to the phase of F3b, the magnetic flux signal transfer transformer T2 is generated in the power transmission for the primary coil L1 F
3a、F3bの影響を受けにくくなる。 3a, it is hardly affected by the F3b.

【0051】また、前記図33の負荷電流I3に対する出力端子電圧V3の特性117bに示すように、無負荷状態に近くなると出力端子電圧V3は高くなる傾向があり、負荷が軽くなるほど出力端子電圧V3の安定化は難しくなる。 [0051] Further, as shown in the characteristic 117b of the output terminal voltage V3 with respect to the load current I3 of FIG 33, near the output terminal voltage in no-load condition V3 tend to become high, the load becomes lighter as the output terminal voltage V3 stabilization is difficult of. 間引き制御によって全負荷領域をカバーするようにフィードバック制御系を設計できるが、制御信号の分解能向上、応答速度向上、対ノイズ性強化などで制御回路の部品も増えコスト、サイズで不利となる。 Can be designed a feedback control system so as to cover the entire load range by decimating the control but, resolution enhancement of the control signal, improves the response speed, versus parts also increases the cost of the control circuit such as noise enhancement, which is disadvantageous in size. しかし、図14に示すように非接触プラグ2の出力端子間に抵抗R1を並列に接続することで、図24の負荷電流I However, by connecting the resistor R1 in parallel between the output terminal of the non-contact plugs 2 as shown in FIG. 14, the load current I of FIG. 24
3に対する出力端子電圧V3の特性117fに示すように、抵抗R1に電流115を常に流しておき、領域11 As indicated by the characteristic 117f of the output terminal voltage V3 with respect to 3, always keep supplying a current 115 to resistor R1, region 11
1において出力端子電圧V3の安定化を行うことができる。 It can be performed to stabilize the output terminal voltage V3 at 1. さらに、負荷の急変時には過渡的な出力端子電圧V Further, at the time of abrupt change in the load transient output terminal voltage V
3の上昇もありうるため、図14に示すように非接触プラグ2の出力端子間に定電圧ダイオードZD1を並列に接続することで、出力端子電圧V3を常に安定化させることができる。 Since there may be increase of 3, by connecting the constant-voltage diode ZD1 in parallel between the output terminal of the non-contact plugs 2 as shown in FIG. 14, it is possible to always stabilize the output terminal voltage V3. 前述のような負荷急変時の出力端子電圧V3の上昇頻度は少なく、また上昇電圧も小さいため定電圧ダイオードZD1の損失は小さい。 Increased frequency of sudden load change at the output terminal voltage V3 as described above is small, also it increases the voltage loss of the constant voltage diode ZD1 for even small small. 本実施例では定電圧ダイオードを使っているが電圧クランプ素子であればよい。 Although the embodiment adopts a constant voltage diode may be a voltage clamping element.

【0052】次に図15は、間引き制御に必要な非接触プラグ2の電気情報を電力送電用1次コイルL1で発生する磁束F3の変化から得るもので、電力送電用1次コイルL1で発生する磁束F3の変化を磁束検出コイル1 [0052] Next 15 is intended to obtain a non-contact electrical information of the plug 2 necessary thinning control from a change in the magnetic flux F3 generated by the power transmission for the primary coil L1, generated in the power transmission for the primary coil L1 magnetic flux detecting coil 1 a change in magnetic flux F3 to
4aで検出して、その検出結果に基づいてインバータ回路11を間引き制御するものである。 It is detected by 4a, and controls thinning the inverter circuit 11 based on the detection result. 非接触伝送においては、伝送する電力が増加すれば、電力送電用1次コイルL1で発生する磁束F3も電力に比例して増加し、出力端子電圧は電力に反比例して低下する。 In the non-contact transmission, if increased power to be transmitted, the magnetic flux F3 generated by the power transmission for the primary coil L1 also increases in proportion to the power, the output terminal voltage drops in inverse proportion to the power. 前述の特性は、一つのシステムにおいては同一な特性であるので、 Characteristics described above, since in one system is the same properties,
電力送電用1次コイルL1で発生する磁束F3の変化を磁束検出コイル14aで検出すれば、間接的に非接触プラグ2の出力端子電圧の情報を得ることができ、インバータ回路11を間引き制御することができる。 By detecting a change in magnetic flux F3 generated by the power transmission for the primary coil L1 by the magnetic flux detecting coils 14a, indirectly it can obtain information output terminal voltage of the non-contact plugs 2, which controls thinning the inverter circuit 11 be able to. 図15に示す回路は、電力送電用1次コイルL1と電力受電用2 The circuit shown in FIG. 15, the power transmission for the primary coil L1 and the power receiving for 2
次コイルL2とを空芯とし、磁束F3の広がりや漏れを大きくして磁束F3を磁束検出コイル14aに鎖交させるものである。 The next coil L2 is air core, is intended to interlinked magnetic flux F3 to the magnetic flux detection coil 14a to increase the spread and leakage of magnetic flux F3.

【0053】図16に示す回路は、前記図15に示した回路の電力送電用1次コイルL1と電力受電用2次コイルL2とを、磁性体からなり開口部122を有する一般によく使われているトランス用のコアA3に設けて互いに対向配置させており、開口部122近傍に磁束検出コイル14aを配置することで、磁束F3の内、開口部1 [0053] The circuit shown in FIG. 16, and FIG 15 power transmission for the primary coil L1 and the power receiving a secondary coil L2 of the circuit shown in, often used generally with an opening 122 made of a magnetic material and so as to face each other is provided in the core A3 for transformer are, by disposing the magnetic flux detecting coil 14a in the vicinity of the opening portion 122, of the magnetic flux F3, the opening 1
22から漏れる磁束を磁束検出コイル14aに鎖交させるものである。 The magnetic flux leaking from the 22 is intended to interlinked magnetic flux detection coil 14a.

【0054】以上に示したように、本発明は広い負荷領域に対して、必要な電圧への安定化を行うことができる。 [0054] As described above, the present invention is a wide load range, it is possible to stabilize to the required voltage.

【0055】図17に、浴室内で使う本発明の非接触電力伝達システム例の外観を示す。 [0055] Figure 17 shows the appearance of a contactless power transfer system of the present invention used in the bathroom. 壁200に埋設された非接触コンセント1は、壁200の表面と接する外周部にシール15を設けて防水性を高めている。 Contactless outlet embedded in the wall 200 1, to enhance the waterproofness of the sealing 15 provided on the outer peripheral portion in contact with the surface of the wall 200. 非接触コンセント1の内部には、前記の電源回路10、インバータ回路11、スイッチング制御回路12及び信号変換回路13が内蔵され、交流電源4と接続された回路ブロックX1と、凹部19に対して配置された電力送電用1次コイルL1と、同様に凹部19に対して配置された1次側信号受信コイル14とが設けられ、非接触プラグ2側の面には非接触コンセント1が使用可能状態である時点灯するコンセント通電表示LED16が設けられている。 Inside the non-contact power outlet 1, the power supply circuit 10, inverter circuit 11, the switching control circuit 12 and the signal conversion circuit 13 is built, the circuit blocks X1, which is connected to the AC power source 4, arranged relative to the recess 19 the power transmission for the primary coil L1 which is likewise a primary-side signal reception coil 14 disposed against the recess 19 is provided, non-contact contactless outlet 1 on the surface of the plug 2 side usable state outlet energization display LED16 to light is provided when it is.
非接触プラグ2は、通電時は、非接触コンセント1の凹部19に嵌合させて、内部には、嵌合時に電力送電用1 Non-contact plugs 2, when energized, in the fitted recess 19 of the non-contact power outlet 1, the internal, power transmission when the fitting 1
次コイルL1に対向配置するように設けられた電力受電用2次コイルL2と、1次側信号受信コイル14に対向配置するように設けられた2次側信号送信コイル23 Power power receiving secondary coils L2 provided to face disposed next coil L1, 1 primary signal receiving coil 14 secondary signals provided to opposed to the transmitter coil 23
と、前記整流平滑回路20、出力端子電圧検出回路21 When the rectifying and smoothing circuit 20, the output terminal voltage detection circuit 21
及び信号変換回路22が内蔵された回路ブロックX2 Circuit block X2 and the signal conversion circuit 22 is built
と、機器3に電力を伝達するケーブルコード26とから構成され、端末機器3は、ケーブルコード26を接続されて電力を伝達され、表面に非接触プラグ2が使用可能状態である時点灯するプラグ通電表示LED25が設けられている。 When the plug is composed of the cable cord 26 for transmitting the power to the device 3, the terminal device 3, which is connected to the cable cord 26 is transmitted power, lights when the non-contact plugs 2 on the surface is ready for use energization display LED25 is provided.

【0056】図18は、図17を非接触プラグ2側から見た図を示す。 [0056] Figure 18 shows a view of the Fig. 17 from the non-contact plug 2 side. 非接触コンセント1及び非接触プラグ2 Contactless outlet 1 and the non-contact plugs 2
が使用可能かどうかを表示することはユーザにとって必要であり、非接触コンセント1の非接触プラグ2側表面には、非接触コンセント1が使用可能状態である時点灯するコンセント通電表示LED16を設け、非接触プラグ2表面には非接触プラグ2が使用可能状態である時点灯するコンセント通電表示LED16を設けている。 There it is necessary for the user to indicate whether available, the non-contact plug 2 side surface of the non-contact power outlet 1, the outlet energization display LED16 to light when the non-contact power outlet 1 is ready for use is provided, the non-contact plugs 2 surface is provided with the outlet energization display LED16 to light when the non-contact plugs 2 are available. また、広い負荷領域を対象としているため、現在使っている端末機器3がどの程度の負荷なのか、使用限界を超えていないのかなどの情報は重要である。 Moreover, large because of the load area targeted, whether the terminal device 3 which uses the current degree of loading of the information such as what does not exceed the usage limit is important. この情報は間引き制御の間引き率より得ることができる。 This information can be obtained from the thinning rate of the thinning control. 即ち間引き率が大きいと負荷は小さく、間引き率が小さいほど負荷は大きいことに相当する。 Or load the thinning rate is large is small, the load as the thinning rate is small corresponds to a larger. さらに予め最低間引き率を設定しておき、間引き率が最低間引き率を下回り、対象負荷領域を越えると出力端子電圧V3は急激に低下するので、出力端子電圧V3が所定の電圧値以下になったことで過負荷状態を判定できる。 Further advance set a minimum thinning ratio, the thinning rate is below the minimum decimation rate, since the output terminal voltage V3 exceeds the target load range drops sharply, the output terminal voltage V3 is equal to or less than a predetermined voltage value It can determine an overload state by. この使用負荷量を表示するのが非接触コンセント1の非接触プラグ2側表面に設けられた負荷量表示インジケータ17である。 This to display the used amount of load is the load amount display indicator 17 which is provided in a non-contact plug 2 side surface of the non-contact power outlet 1.

【0057】図19は、12V用端末機器3aに接続された12V機器用非接触プラグ2aと、24V用端末機器3bに接続された24V機器用非接触プラグ2bとを、1台の非接触コンセント1で電力伝達可能なことを示している。 [0057] Figure 19 is a non-contact plugs 2a for the connected 12V equipment to terminal equipment 3a 12V, and a non-contact plugs 2b for the connected 24V equipment to terminal equipment 3b 24V, one non-contact power outlet It indicates that it is possible power transfer at 1. 前記のように本発明の非接触電力伝達システムの間引き制御は、負荷領域が広くても制御可能なので、非接触コンセント1の電力送電用1次コイルL1の巻数が一定でも、12V機器用非接触プラグ2aと24 Wherein the non-contact power decimation control transmission system of the present invention as so controllable even wide load range, in even number of turns of the power transmission for the primary coil L1 of a contactless power outlet 1 is fixed, non-contacting 12V equipment plug 2a and 24
V機器用非接触プラグ2bとの電力受電用2次コイルL Power power receiving secondary coils L of the non-contact plugs 2b for V equipment
2aと電力受電用2次コイルL2bとの巻数を変えることで各々の出力端子電圧V3を安定化させることができ、また任意の電圧に安定化させることもできる。 2a and each of the output terminal voltage V3 can be stabilized by changing the number of turns of the power receiving a secondary coil L2b, may also be stabilized to an arbitrary voltage.

【0058】また、非接触電力伝達システムでは、電力送電用1次コイルL1と電力受電用2次コイルL2との距離が長くなるほど伝達できる電力は減少するため、非接触コンセント1と非接触プラグ2との相対的位置関係を所定の位置関係に保つ必要がある。 [0058] In the contactless power transfer system, the distance between the power transmission for the primary coil L1 and the power receiving a secondary coil L2 is power that can be transmitted as longer decreases, the non-contact power outlet 1 and the non-contact plugs 2 it is necessary to maintain a predetermined positional relationship relative positional relationship between the. 図20は、非接触プラグ2を非接触コンセント1の凹部19に完全に嵌合させていない状態を示しており、このような場合には非接触コンセント1から非接触プラグ2への電力伝達を停止させる必要がある。 Figure 20 shows a state of not completely fitted contactless plug 2 into the recess 19 of the non-contact power outlet 1, a power transfer from the non-contact power outlet 1 to the noncontact plug 2 in this case it is necessary to stop. そこで、非接触コンセント1は凹部19に対して配置された機械接点18を設け、機械接点18がオンした時のみ、、非接触コンセント1の回路ブロックX1に内蔵されたインバータ回路11が動作し、非接触コンセント1から非接触プラグ2への電力伝達を行い、非接触プラグ2は嵌合時に機械接点18に対向配置するように永久磁石30を設ける。 Therefore, the non-contact power outlet 1 is a mechanical contacts 18 which are positioned relative to the recess 19 provided, the inverter circuit 11 to mechanical contacts 18 is incorporated in the circuit block X1 in ,, contactless outlet 1 only when turned on operates, performs power transfer from the non-contact power outlet 1 to the non-contact plugs 2, a non-contact plug 2 is provided a permanent magnet 30 so as to opposed to the mechanical contacts 18 during mating. 機械接点18 Mechanical contacts 18
は、永久磁石30の磁力によって動作するスイッチで、 Is a switch operated by the magnetic force of the permanent magnet 30,
図20においては非接触プラグ2は非接触コンセント1 Non-contact plug 2 in FIG. 20 is a non-contact power outlet 1
の凹部19に完全に嵌合していないので、永久磁石30 Since the recess 19 of the not fully mated, the permanent magnet 30
と機械接点18とは離れすぎており、永久磁石30の磁力は機械接点18を動作させることはできない。 And too far away from the mechanical contacts 18 and the magnetic force of the permanent magnet 30 can not operate the mechanical contacts 18. 図21 Figure 21
は非接触プラグ2を非接触コンセント1の凹部19に完全に嵌合させている状態を示しており、永久磁石30の磁力は機械接点18を動作させることができ、非接触コンセント1の回路ブロックX1に内蔵されたインバータ回路11が動作し、非接触コンセント1から非接触プラグ2への電力伝達を行うことができる。 Shows a state in which fully-fitted contactless plug 2 into the recess 19 of the non-contact power outlet 1, the magnetic force of the permanent magnet 30 can operate the mechanical contacts 18, the non-contact power outlet 1 circuit block inverter circuit 11 incorporated in the X1 operates, it is possible to perform power transmission from the non-contact power outlet 1 to the non-contact plugs 2. なお、永久磁石30は永久磁石なので、1次側信号受信コイル14、2 Since the permanent magnet 30 is a permanent magnet, the primary signal receiving coil 14, 2
次側信号送信コイル23、磁束検出用コイル14aの磁束信号に悪影響を与えない。 Next side signal transmission coil 23, does not adversely affect the magnetic flux signal magnetic flux detecting coil 14a. また、コンセント通電表示LED16は、機械接点18がオンすることで点灯させることができ、プラグ通電表示LED25は出力端子電圧V3を監視することで点灯させることができる。 Further, outlet energization display LED16 can be lit by mechanical contacts 18 are turned on, plug electrification display LED25 can be lit by monitoring the output terminal voltage V3.

【0059】次に、非接触プラグ2と端末機器3との接続は、水まわりで使用するときは一体型とするほうが望ましいが、水まわりで使用しないとき、及び水まわりで使用するときでも水中につけるような使い方をしないときであれば簡易防水でもよいため、非接触プラグ2と端末機器3との接続を脱着可能な構造にしてもよい。 Next, connection between the non-contact plugs 2 and the terminal device 3, it is desirable should be an integral type when used with water around, when not in use with water around and water even when used around water if when not to use the like attached to may be of a simple waterproof, may be detachable structure the connection between the non-contact plugs 2 and the terminal device 3. このようにすれば、非接触コンセント1と非接触プラグ2とは各1つずつあれば、端末機器3のみ用途に応じて揃えればよいため経済的である。 In this way, the non-contact power outlet 1 and the non-contact plugs 2 If one each, it is economical for it Soroere depending on the application only the terminal device 3. 図22において、端末機器3c、3dはケーブルコード26c、26dを備え、ケーブルコード26c、26dの端末には各々コネクタ2 In Figure 22, the terminal device 3c, 3d is provided with a cable cord 26c, the 26d, each cable cord 26c, the 26d of the terminal connector 2
7c、27dが接続されており、非接触プラグ2の表面に設けられ非接触プラグ2の出力端と接続しているソケット28c、28dと分離着脱可能になっており、1つの非接触プラグ2に複数の端末機器3c、3dを接続できるようになっている。 7c, 27d are connected, a socket 28c provided in the non-contact plugs 2 of the surface connected to an output terminal of the non-contact plugs 2, 28d and has become a separable removable, one in the non-contact plugs 2 a plurality of terminal devices 3c, which is to be connected to 3d. 図23においては、端末機器3 23, the terminal device 3
eはケーブルコード26eを備え、ケーブルコード26 e has a cable cord 26e, the cable code 26
eの端末には電力受電コイルL5が接続され、非接触プラグ2の表面近傍には非接触プラグ2の出力端と接続している電力送電コイルL4を備え、電力受電コイルL5 The e terminal is connected to the power receiving coil L5, in the vicinity of the surface of the non-contact plugs 2 includes a power transmission coil L4 connected to the output terminal of the non-contact plugs 2, the power receiving coil L5
は非接触プラグ2表面の凹部29と嵌合して電力送信コイルL4から電磁誘導により電力伝達される。 Is the power transmitted by electromagnetic induction from the power transmission coil L4 engaged with the recess 29 of the non-contact plugs 2 surface. 図23においては、電力送信コイルL4に印可される回路ブロックX2の出力電圧は高周波電圧である。 23, the output voltage of the circuit block X2 which is applied to the power transmitting coil L4 is a high frequency voltage.

【0060】また、浴室内のように水まわりで使用し、 [0060] In addition, used in the water around like in the bathroom,
感電対策のために低電圧出力が必要な場合には、非接触コンセント2の故障時においても非接触プラグ2及び端末機器3での電圧上昇をできる限り抑えなければならない。 If the low voltage output is required for the electric shock protection, even when the non-contact electrical outlet 2 fault must be kept as much as possible voltage increase at the non-contact plugs 2 and the terminal device 3. 本発明においては、分離着脱できる電力伝送用トランスT1を使って電力伝達を行うため、非接触コンセント1の1次側電力送電コイルL1に印可される高周波電圧V1の振幅に比例した電圧が、非接触プラグ2の2次側電力受電コイルL2に誘起される。 In the present invention, for performing power transmission via power transmission transformer T1 can separate detachable, voltage proportional to the amplitude of the high frequency voltage V1 is applied to the primary side power transmission coil L1 of a contactless power outlet 1, non induced in the secondary side power receiving coil L2 of the contact plugs 2. そのため非接触コンセント1側のインバータ回路や、制御回路の故障で1 Therefore the non-contact power outlet 1 side inverter circuit and, 1 a malfunction of the control circuit
次側電力送電コイルL1に高い電圧が印加された場合には2次側電力受電コイルL2に誘起される電圧V2も上昇し、制御可能な領域を越えて非接触プラグ2の出力端子電圧V3に高い電圧がかかる可能性がある。 When a high voltage to the next side power transmission coil L1 is applied rises the voltage induced in the secondary side power receiving coil L2 V2, the output terminal voltage V3 of the non-contact plugs 2 exceeds the controllable region it may take a higher voltage. そこで本発明では、図2に示すようにインバータ回路11はハーフブリッジ回路を用いているので、1次側電力送電コイルL1の両端電圧V1は、直流電源10aの電圧Eに対して電圧−E/2と電圧E/2とで確実にクランプされ、2次側電力受電コイルL2に誘起される電圧V2の上昇は一定電圧以上上昇せず、安全なシステムとなっている。 In this invention, since the inverter circuit 11 as shown in FIG. 2 is a half-bridge circuit, the voltage V1 across the primary side power transmission coil L1, a voltage -E with respect to the voltage E of the DC power supply 10a / securely clamped between the 2 and the voltage E / 2, the increase in the voltage induced in the secondary side power receiving coil L2 V2 does not rise above a certain voltage, and has a secure system.

【0061】なお図2のコンデンサC2は、図25に示すように電力受電用2次コイルL2のセンタータップと他の端子間にコンデンサC21、C22を接続してもよいし、図26に示すようにダイオードD3、D4に並列にコンデンサC21、C22を各々接続しても同様の効果を得ることができる。 [0061] Note that the capacitor C2 of FIG. 2 may be connected to capacitor C21, C22 between the center tap and the other terminal of the power power receiving secondary coils L2, as shown in FIG. 25, as shown in FIG. 26 You can also obtain the same effect by each connecting a capacitor C21, C22 in parallel with the diodes D3, D4 to. これは、コンデンサC2は高周波交流に作用するコンデンサであり、図2、図25及び図26の交流的な等価回路は同等になるためであり、いずれも図7に示す電力受電用2次コイルL2の両端電圧V2の波形条件を得ることができる。 This capacitor C2 is a capacitor that acts on a high-frequency alternating current, 2, 25 and the AC equivalent circuit of FIG. 26 is for become equal, both power receiving for 2 shown in FIG. 7 coil L2 it can be obtained waveform conditions of voltage V2 across the. このように本発明の各波形条件を満たしておればそれらは本発明に含まれることはもちろん、このことは電力受電用2次コイルL Thus if I satisfies the waveform conditions of the present invention which is to be included in the present invention of course, this is power power receiving secondary coil L
2がセンタータップを備えていない場合も同様である。 If the 2 does not have a center tap is the same.

【0062】 [0062]

【発明の効果】請求項1の発明は、直流電圧を出力する電源回路と前記直流電圧を一定周波数の高周波電圧に変換するインバータ回路と前記インバータ回路から前記高周波電圧を供給される電力送電用1次コイルとから構成される非接触コンセントと、前記電力送電用1次コイルと分離着脱自在なトランス構造を構成して高周波電圧を誘起される電力受電用2次コイルと前記電力受電用2次コイルに誘起される高周波電圧を整流平滑する整流平滑回路とから構成される非接触プラグと、前記非接触プラグの出力端子に接続され負荷となる端末機器とから構成される非接触電力伝達装置において、前記非接触コンセントは、対象としている負荷領域に対する前記非接触プラグの出力端子電圧を、前記インバータ回路より前記電力送電用1次コイ [Effect of the Invention] The invention of claim 1, the power transmission for 1 supplied the high frequency voltage and an inverter circuit for converting the DC voltage as the power supply circuit that outputs a DC voltage to a high frequency voltage of a constant frequency from said inverter circuit a non-contact power outlet comprised of a next coil, the power transmitting primary coil and the separating removable constitute a transformer structure and power power receiving secondary coils induced a high frequency voltage to the power receiving a secondary coil the contactless power transfer device comprising a non-contact plugs comprised a high frequency voltage from the rectifying smoothing circuit for rectifying and smoothing, and the non-contact plug terminal equipment to be connected to a load to the output terminal of which is induced in, the contactless outlet, the output terminal voltage of the non-contact plug for the load area as an object, the power transmission for the primary carp from said inverter circuit に供給される高周波電圧を間引いて安定化させる間引き制御を行う制御手段を備えることを特徴とし、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができるという効果がある。 It is thinned out high-frequency voltage supplied characterized by comprising a control means for performing a thinning control for stabilizing provides a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range that the there is an effect that.

【0063】請求項2の発明は、請求項1の発明において、前記制御手段は、非接触プラグの出力端子電圧が所定の電圧を上回った場合には、インバータ回路から電力送電用1次コイルへの高周波電圧の供給を一定時間間引き、前記一定時間間引きを行った後非接触プラグの出力端子電圧が前記所定の電圧を上回っていれば再び電力送電用1次コイルへの前記高周波電圧の供給を一定時間間引くことを繰り返し、前記各一定時間間引きを行った後で非接触プラグの出力端子電圧が所定の電圧を下回った場合には、非接触プラグの出力端子電圧が所定の電圧を上回るまで電力送電用1次コイルへの前記高周波電圧の供給を連続的に行う動作を継続させることを特徴とし、 [0063] invention of claim 2 is the invention of claim 1, wherein, when the output terminal voltage of the non-contact plug exceeds a predetermined voltage, the inverter circuit to the power transmission for the primary coil decimation certain time the supply of the high frequency voltage, the supply of the high frequency voltage to the predetermined time thinning the non-contact plugs output terminal voltage the predetermined re-power transmission for the primary coil if exceeds the voltage after Repeat thinning predetermined time, wherein when the output terminal voltage of the non-contact plug after the predetermined time decimation is below the predetermined voltage, the power to the output terminal voltage of the non-contact plugs exceeds a predetermined voltage continuously performing operations of supply of the high frequency voltage to the power transmitting primary coil characterized in that to continue,
広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができるという効果がある。 There is an effect that it is possible to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0064】請求項3の発明は、請求項1または2の発明において、非接触プラグは、非接触プラグ内部の電気状態を表す情報を磁気信号に変換して非接触コンセントに伝送し、前記制御手段は、前記磁気信号に基づいて間引き制御のための制御信号を形成し、前記制御信号によりインバータ回路を間引き制御することを特徴とし、電圧安定化のためのフィードバック信号に磁気信号を使うため、まわりの明るさや汚れの影響を受けずに、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができるという効果がある。 [0064] The invention of claim 3 is the invention of claim 1 or 2, non-contact plugs, and transmit information representative of the non-contact plugs inside the electrical state to a non-contact electrical outlet is converted into a magnetic signal, the control because means, wherein the control signal for the thinning control is formed on the basis of a magnetic signal, and controls thinning the inverter circuit by the control signal, use the magnetic signal to the feedback signal for voltage stabilization, without being affected by the brightness and dirt around, there is an effect that it is possible to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0065】請求項4の発明は、請求項1乃至3いずれかの発明において、インバータ回路は、ハーフブリッジ型の部分共振インバータであることを特徴とし、故障時の出力電圧の上昇を抑えることができるという効果がある。 [0065] The invention of claim 4 is the invention of any claims 1 to 3, the inverter circuit is characterized by a half-bridge type partial resonant inverter, it is possible to suppress the increase in the failure time of the output voltage there is an effect that can be.

【0066】請求項5の発明は、請求項4の発明において、電力受電用2次コイルはセンタータップを備え、整流平滑回路は、電力受電用2次コイルのセンタータップではない両出力端に直列に且つ互いに逆方向に接続する整流素子の電力受電用2次コイルに接続していない各他端同士を接続した全波整流部を有し、前記整流素子の接続中点にチョークコイルを接続することを特徴とし、整流部を小型化することができるという効果がある。 [0066] The invention of claim 5 is the invention of claim 4, the secondary coil power receiving a center tapped, the rectifying smoothing circuit, serial to both the output end is not a center tap of the secondary coil for power receiving and it has a full-wave rectifier connected to each other ends not connected to the power receiving for a secondary coil of the rectifying elements connected in opposite directions, connecting the choke coil to the connection midpoint of the rectifier element characterized in that, there is an effect that the rectifier unit can be miniaturized.

【0067】請求項6の発明は、請求項1乃至5いずれかの発明において、電力受電用2次コイルに並列にコンデンサを接続することを特徴とし、負荷整合をとることで1次側から2次側へ伝達できる有効電力を増加させることができるという効果がある。 [0067] The invention of claim 6, claims 1 to 5 in any of the invention is characterized by connecting a capacitor in parallel with the secondary coil power receiving, 2 from the primary side by taking the load matching there is an effect that the active power that can be transmitted to the next side can be increased.

【0068】請求項7の発明は、請求項6の発明において、前記コンデンサの静電容量値は、対象とする負荷領域の最大負荷時において、電力送電用1次コイルに供給される高周波電圧の極性反転時期と、前記コンデンサの両端に発生する振動電圧が極大値または極小値となる時期とが一致する静電容量値であることを特徴とし、最適な負荷整合を行って回路効率を向上させることができるという効果がある。 [0068] The invention of claim 7 is the invention of claim 6, the capacitance value of the capacitor, at the time of maximum load of the load region of interest, the high frequency voltage supplied to the primary coil for power transmission a polarity inversion timing, characterized by oscillating voltage generated across said capacitor is a capacitance value and when as a maximum or minimum values ​​match, to improve the circuit efficiency by performing an optimum load matching that there is an effect that it is.

【0069】請求項8の発明は、請求項3乃至7いずれかの発明において、非接触コンセントに1次側信号受信コイルを設け、非接触プラグには前記1次側信号受信コイルに対向配置され前記1次側信号受信コイルと分離着脱自在なトランス構造を構成する2次側信号送信コイルを設け、前記2次側信号送信コイルは非接触プラグの内部の電気状態を表す情報を交流電圧に変換した信号を入力され、磁気信号として磁束信号を発生し、前記1次側信号受信コイルは前記磁束信号により電圧を誘起され、 [0069] The invention of claim 8, as in one of claims 3 to 7, the primary-side signal receiving coil arranged in non-contact electrical outlet, the non-contact plug is disposed opposite to the primary-side signal reception coil converting the secondary-side signal transmission coils and the primary-side signal reception coil composing the separation detachable trans configuration provided, the secondary-side signal transmitting coil is the alternating voltage information indicating the internal electrical state of non-contact plug is input to the signal, the magnetic flux signal generated as a magnetic signal, the primary signal receiving coil is induced voltage by the magnetic flux signal,
前記制御手段はインバータ回路を前記誘起された電圧に基づいた制御信号により前記間引き制御することを特徴とし、電圧安定化のためのフィードバック信号に磁束信号を使うため、まわりの明るさや汚れの影響を受けずに、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができるという効果がある。 Said control means characterized in that the decimation controlled by a control signal based on the inverter circuit to the induced voltage, to use the flux signal to the feedback signal for voltage stabilization, the effect of the brightness and dirt around without being, there is an effect that it is possible to provide a non-contact power transmission system can be stabilized to a constant value the output terminal voltage in a wide load range.

【0070】請求項9の発明は、請求項8の発明において、電力送電用1次コイルと1次側信号受信コイルとの間、及び電力受電用2次コイルと2次側信号送信コイルとの間の少なくとも一方の間に磁性体からなる磁気シールド用隔壁を設けたことを特徴とし、信号送受用トランスに鎖交する電流送授用トランスで発生する磁束を低減させて、正確な電圧安定化のための磁束信号を送受信することができるという効果がある。 [0070] The invention of claim 9 is the invention of claim 8, between the primary coil and the primary signal receiving coil power transmission, and the secondary coil and the secondary-side signal transmitting coil power receiving characterized in that a magnetic shielding partition wall made of a magnetic material between at least one of between, by reducing the magnetic flux generated by the current feed 授用 transformer interlinked with the transformer signal transmission and reception, precise voltage regulation there is an effect that it is possible to transmit and receive a magnetic flux signal for.

【0071】請求項10の発明は、請求項9の発明において、電力送電用1次コイルと電力受電用2次コイルとを、磁性体からなるコアに巻装し、前記コアを互いに前記コアの軸方向に対向配置させたことを特徴とし、信号送受用トランスに鎖交する電流送授用トランスで発生する磁束を低減させて、正確な電圧安定化のための磁束信号を送受信することができるという効果がある。 [0071] The invention of claim 10 is the invention of claim 9, and a primary coil and a secondary coil for power receiving power transmission, wound around the core made of a magnetic material, said core said core with each other characterized in that is opposed in the axial direction, thereby reducing the magnetic flux generated by the current feed 授用 transformer interlinked with the transformer signal transmission and reception, can be transmitted and received magnetic flux signal for accurate voltage regulation there is an effect that.

【0072】請求項11の発明は、請求項9の発明において、電力送電用1次コイルと電力受電用2次コイルとを、前記コイルの軸方向に垂直な方向に開口部を有する有底筒型の磁性体からなるコアに巻装し、前記コアを互いに前記コアの軸方向に対向配置させ、前記コアの非開口部の近傍に1次側信号受信コイルと2次側信号送信コイルとを配置したことを特徴とし、信号送受用トランスに鎖交する電流送授用トランスで発生する磁束を低減させて、正確な電圧安定化のための磁束信号を送受信することができるという効果がある。 [0072] The invention of claim 11 is the invention of claim 9, and a primary coil and a secondary coil for power receiving power transmission, a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil wound around the core made of a magnetic material of the mold, the core is disposed opposite to the axial direction of the core from one another, and a primary-side signal reception coil and the secondary-side signal transmitting coil in the vicinity of the non-opening portion of the core characterized in that the arranged, thereby reducing the magnetic flux generated by the current feed 授用 transformer interlinked with the transformer signal transmission and reception, there is an effect that it is possible to transmit and receive a magnetic flux signal for accurate voltage regulation.

【0073】請求項12の発明は、請求項8乃至11いずれかの発明において、2次側信号送信コイルは、非接触プラグの内部の電気状態を表す情報を交流電圧に変換した信号を入力されて、電力送電用1次コイルが発生させる磁束とは逆位相の位相を有する磁束信号を発生することを特徴とし、正確な電圧安定化のための束信号を送受信することができるという効果がある。 [0073] The invention of claim 12, as in one of claims 8 to 11, the secondary-side signal transmitting coil is inputted a signal converted into an AC voltage information indicating the internal electrical state of non-contact plug Te, characterized by generating a magnetic flux signal having an inverted phase of the magnetic flux is the primary coil for power transmission is generated, there is an effect that it is possible to transmit and receive beam signals for accurate voltage regulation .

【0074】請求項13の発明は、請求項12記載の発明において、2次側信号送信コイルの一方の端子は、電力受電用2次コイルのどちらか一方の端子に接続していることを特徴とし、正確な電圧安定化のための磁束信号を送受信することができるという効果がある。 [0074] The invention of claim 13 is the invention of claim 12, wherein, one terminal of the secondary side signal transmission coil, characterized in that connected to either terminal of the secondary coil power receiving and then, there is an effect that it is possible to transmit and receive a magnetic flux signal for accurate voltage regulation.

【0075】請求項14の発明は、請求項3乃至7いずれかの発明において、非接触コンセントは、電力送電用1次コイルの近傍に電力送電用1次コイルと電力受電用2次コイルとの間に発生する磁束を検出する磁束検出用コイルを設け、前記磁束検出用コイルは、磁気信号として電力送電用1次コイルで発生する磁束を検出し、前記磁束検出用コイルから前記検出する磁束に応じて出力される電圧に基づいて前記制御手段は、インバータ回路を間引き制御することを特徴とし、正確な電圧安定化のための磁束信号を受信することができるという効果がある。 [0075] The invention of claim 14, as in one of claims 3 to 7, the non-contact outlet, the primary coil and the power receiving a secondary coil for power transmission in the vicinity of the primary coil power transmission a magnetic flux detecting coil for detecting a magnetic flux generated between provided, the magnetic flux detecting coil detects the magnetic flux generated by the power transmission for the primary coil as a magnetic signal, the magnetic flux that the detection from the magnetic flux detecting coil said control means based on the voltage output in response is characterized by controlling decimating the inverter circuit, there is an effect that it is possible to receive a magnetic flux signal for accurate voltage regulation.

【0076】請求項15の発明は、請求項14の発明において、電力送電用1次コイルと電力受電用2次コイルとを、前記コイルの軸方向に垂直な方向に開口部を有する有底筒型の磁性体からなるコアに設けて前記コアを互いに前記コアの軸方向に対向配置させ、前記電力送電用1次コイルのコアの開口部の近傍に前記磁束検出用コイルを配置したことを特徴とし、正確な電圧安定化のための磁束信号を受信することができるという効果がある。 [0076] The invention of claim 15 is the invention of claim 14, and a primary coil and a secondary coil for power receiving power transmission, a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil characterized in that provided in the core of a magnetic material of the mold is disposed opposite to the axial direction of the core together the core and disposing the magnetic flux detecting coil in the vicinity of the opening of the core of the power transmission for the primary coil and then, there is an effect that it is possible to receive a magnetic flux signal for accurate voltage regulation.

【0077】請求項16の発明は、請求項1乃至15いずれかの発明において、一つの非接触コンセントは、出力電圧の異なる複数の非接触プラグに適合し、各非接触プラグが対象としている負荷領域を含む全領域において前記各非接触プラグの出力電圧を所定の電圧範囲内に収める前記制御手段を有することを特徴とし、経済的であるという効果がある。 [0077] The invention of claim 16, as in one of claims 1 to 15, one non-contact outlets are compatible with a plurality of non-contact plugs having different output voltages, loads each non-contact plugs is targeted characterized by having the control means to keep the output voltage of said each non-contact plugs within a predetermined voltage range in the entire region including the region, there is an effect that it is economical.

【0078】請求項17の発明は、請求項1乃至16いずれかの発明において、非接触プラグの出力端子に並列に抵抗を接続することを特徴とし、広い負荷範囲で出力端子電圧を一定値に安定化できる非接触電力伝達装置を提供することができるという効果がある。 [0078] The invention of claim 17, as in one of claims 1 to 16, characterized by connecting a resistor in parallel to the output terminal of the non-contact plugs, the output terminal voltage at a constant value over a wide load range there is an effect that it is possible to provide a non-contact power transmission system can be stabilized.

【0079】請求項18の発明は、請求項1乃至17いずれかの発明において、非接触プラグが非接触コンセントの所定の位置に結合していない場合は、前記制御手段は、インバータ回路から電力送電用1次コイルへ供給する出力を制限することを特徴徴とし、高い安全性と信頼性とを備えることができるという効果がある。 [0079] The invention of claim 18, as in one of claims 1 to 17, when the non-contact plug is not attached to a predetermined position of the non-contact electrical outlet, the control means, the power transmission from the inverter circuit to limit the output to be supplied to use the primary coil characterized symptoms, there is an effect that can be provided with high safety and reliability.

【0080】請求項19の発明は、請求項18の発明において、非接触コンセントはインバータ回路から電力送電用1次コイルへの高周波電圧の供給の制限を制御するスイッチ機能を備え、非接触プラグは前記スイッチ機能のオン・オフ状態を制御する駆動体を備え、非接触プラグが非接触コンセントの所定の位置に結合すると前記スイッチ機能を動作させることで前記制御手段はインバータ回路から電力送電用1次コイルへの高周波電圧の供給を可能にすることを特徴とし、高い安全性と信頼性とを備えることができるという効果がある。 [0080] The invention of claim 19 is the invention of claim 18, the non-contact power outlet has a switch function for controlling the restriction of the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil, the non-contact plugs a drive member for controlling the on and off states of the switching function, the non-contact plug and the control means by operating said switch function and binding to a predetermined position of the non-contact electrical outlet power transmission for the primary from an inverter circuit characterized in that to enable the supply of the high-frequency voltage to the coil, there is an effect that can be provided with high safety and reliability.

【0081】請求項20の発明は、請求項19の発明において、非接触コンセントの前記スイッチ機能が機械接点からなり、非接触プラグが備える駆動体は磁石からなり、非接触プラグが非接触コンセントの所定の位置に結合すると前記磁石の磁力によって前記機械接点が動作して、前記制御手段はインバータ回路から電力送電用1次コイルへの高周波電圧の供給を可能にすることを特徴とし、高い安全性と信頼性とを備えることができるという効果がある。 [0081] The invention of claim 20 is the invention of claim 19, wherein the switch function of the non-contact power outlet is made of mechanical contacts, the drive member non-contact plug is provided consists magnets, the non-contact plug is a non-contact power outlet wherein the magnetic force of the magnet and bonded into place mechanical contacts is operated, the control means is characterized by enabling the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil, high safety there is an effect that it is possible and a and reliability.

【0082】請求項21の発明は、請求項1乃至20いずれかの発明において、非接触プラグが非接触コンセントの所定の位置に結合すると、非接触プラグ及び非接触コンセントの少なくともどちらか一方に使用可能を報知する表示を行うことを特徴とし、システムや機器の使用可否の判断をおこなうことができるという効果がある。 [0082] The invention of claim 21, as in one of claims 1 to 20, when the non-contact plugs are attached to a predetermined position of the non-contact power outlet, at least use either one of the non-contact plugs and the non-contact power outlet enabling characterized by performing a display for informing, there is an effect that it is possible to determine the availability of systems and devices.

【0083】請求項22の発明は、請求項1乃至21いずれかの発明において、非接触コンセント及び非接触プラグの少なくともどちらか一方は、非接触プラグの出力端子に接続された端末機器の負荷電力、及び非接触プラグの出力電圧の少なくともどちらか一方を表示する表示部を付加したことを特徴とし、システムや機器の使用可否の判断をおこなうことができるという効果がある。 [0083] The invention of claim 22, as in one of claims 1 to 21, at least one of the non-contact power outlet and the non-contact plugs, the terminal equipment connected to the output terminal of the non-contact plug load power and characterized in that by adding a display unit for displaying at least either one of the output voltage of the non-contact plug, there is an effect that it is possible to determine the availability of systems and devices.

【0084】請求項23の発明は、請求項1乃至22いずれかの発明において、非接触プラグの出力端子に接続される端末機器は前記非接触プラグに対して、分離着脱自在なことを特徴とし、不特定の端末機器を使用することができるという効果がある。 [0084] The invention of claim 23, as in one of claims 1 to 22, the terminal equipment connected to the output terminal of the non-contact plug for the non-contact plugs, characterized in that freely Detachable , there is an effect that it is possible to use a non-specific terminal device.

【0085】請求項24の発明は、請求項23の発明において、非接触プラグの出力端子から端末機器への電力の供給は、磁気結合によって供給されることを特徴とし、不特定の端末機器を使用することができるという効果がある。 [0085] The invention of claim 24 is the invention of claim 23, the power supply from the output terminal of the non-contact plugs to the terminal device is characterized in that supplied by the magnetic coupling, the unspecified terminal devices there is an effect that can be used.

【0086】請求項25の発明は、請求項1乃至24いずれかの発明において、非接触プラグの出力端子間に、 [0086] The invention of claim 25 is as in one of claims 1 to 24, between the output terminals of the non-contact plugs,
電圧クランプ素子を接続することを特徴とし、高い安全性と信頼性とを備えることができるという効果がある。 Characterized by connecting a voltage clamping device, there is an effect that it is possible with high safety and reliability.

【0087】このように本発明で構成される非接触電力伝達システムは、安全や安心と、高い信頼性を背景に、 [0087] Thus a non-contact power transmission system including the present invention, the safety and peace of mind, a high reliability in the background,
浴室などの水まわり環境を電化し、様々な電気機器により多様なユーザニーズに応えることができるものである。 Electrified water around environment such as a bathroom, in which it is possible to meet various user needs a variety of electric devices.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例を示す回路構成図である。 1 is a circuit diagram showing an embodiment of the present invention.

【図2】本発明の実施例を示す具体的な回路構成図である。 2 is a specific circuit diagram showing an embodiment of the present invention.

【図3】本発明の実施例の特性を示す図である。 3 is a diagram showing a characteristic example of the present invention.

【図4】本発明の実施例の特性を示す図である。 4 is a diagram showing a characteristic example of the present invention.

【図5】本発明の実施例の特性を示す図である。 5 is a diagram showing a characteristic example of the present invention.

【図6】本発明の実施例の特性を示す図である。 6 is a diagram showing a characteristic example of the present invention.

【図7】本発明の実施例の特性を示す図である。 7 is a diagram showing a characteristic example of the present invention.

【図8】本発明の実施例の特性を示す図である。 8 is a diagram showing a characteristic example of the present invention.

【図9】本発明の実施例の特性を示す図である。 9 is a diagram showing a characteristic example of the present invention.

【図10】本発明の実施例を示す回路構成図である。 10 is a circuit diagram showing an embodiment of the present invention.

【図11】本発明の実施例を示す回路構成図である。 11 is a circuit diagram showing an embodiment of the present invention.

【図12】本発明の実施例を示す回路構成図である。 12 is a circuit diagram showing an embodiment of the present invention.

【図13】本発明の実施例を示す回路構成図である。 13 is a circuit diagram showing an embodiment of the present invention.

【図14】本発明の実施例を示す回路構成図である。 14 is a circuit diagram showing an embodiment of the present invention.

【図15】本発明の実施例を示す回路構成図である。 FIG. 15 is a circuit diagram showing an embodiment of the present invention.

【図16】本発明の実施例を示す回路構成図である。 16 is a circuit diagram showing an embodiment of the present invention.

【図17】本発明の実施例を示す外観図である。 17 is an external view showing an embodiment of the present invention.

【図18】本発明の実施例を示す外観図である。 Figure 18 is an external view showing an embodiment of the present invention.

【図19】本発明の実施例を示す外観図である。 19 is an external view showing an embodiment of the present invention.

【図20】本発明の実施例を示す外観図である。 Figure 20 is an external view showing an embodiment of the present invention.

【図21】本発明の実施例を示す外観図である。 Figure 21 is an external view showing an embodiment of the present invention.

【図22】本発明の実施例を示す外観図である。 Figure 22 is an external view showing an embodiment of the present invention.

【図23】本発明の実施例を示す外観図である。 Figure 23 is an external view showing an embodiment of the present invention.

【図24】本発明の実施例の特性を示す図である。 24 is a diagram showing a characteristic example of the present invention.

【図25】本発明の実施例を示す回路構成図である。 FIG. 25 is a circuit diagram showing an embodiment of the present invention.

【図26】本発明の実施例を示す回路構成図である。 FIG. 26 is a circuit diagram showing an embodiment of the present invention.

【図27】本発明の従来例を示す回路構成図である。 FIG. 27 is a circuit diagram showing a conventional example of the present invention.

【図28】本発明の従来例の電力授受用トランスを示す構成図である。 FIG. 28 is a configuration diagram showing a power transfer transformer of a conventional example of the present invention.

【図29】本発明の従来例を示す回路構成図である。 29 is a circuit diagram showing a conventional example of the present invention.

【図30】本発明の従来例の特性を示す図である。 30 is a diagram showing the characteristics of a conventional example of the present invention.

【図31】本発明の従来例を示す回路構成図である。 FIG. 31 is a circuit diagram showing a conventional example of the present invention.

【図32】本発明の従来例を示す回路構成図である。 Figure 32 is a circuit diagram showing a conventional example of the present invention.

【図33】本発明の従来例の特性を示す図である。 33 is a diagram showing the characteristics of a conventional example of the present invention.

【図34】本発明の従来例の特性を示す図である。 34 is a diagram showing the characteristics of a conventional example of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 非接触コンセント 2 非接触プラグ 3 端末機器 10 電源回路 11 インバータ回路 20 整流平滑回路 E 直流電圧 V1 高周波電圧 V2 高周波電圧 L1 電力送電用1次コイル L2 電力受電用2次コイル 1 the non-contact electrical outlet 2 contactless plug 3 terminal device 10 power supply circuit 11 inverter circuit 20 rectifying and smoothing circuit E DC voltage V1 high frequency voltage V2 frequency voltage L1 power transmission for the primary coil L2 power power receiving secondary coils

フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H02M 3/335 H01F 23/00 B (72)発明者 武藤 元治 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 5G065 AA00 DA06 DA07 EA06 HA04 JA01 LA01 MA01 MA02 MA03 MA09 MA10 NA01 NA02 NA03 NA09 5H730 AA17 AS01 BB25 BB26 BB57 BB75 CC01 EE03 EE08 EE59 FD01 FF18 FG07 Of the front page Continued (51) Int.Cl. 7 identification mark FI theme Court Bu (Reference) H02M 3/335 H01F 23/00 B (72 ) inventor Motoharu Muto Osaka Prefecture Kadoma Oaza Kadoma 1048 address Matsushita Electric Works Co., the company F-term (reference) 5G065 AA00 DA06 DA07 EA06 HA04 JA01 LA01 MA01 MA02 MA03 MA09 MA10 NA01 NA02 NA03 NA09 5H730 AA17 AS01 BB25 BB26 BB57 BB75 CC01 EE03 EE08 EE59 FD01 FF18 FG07

Claims (25)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 直流電圧を出力する電源回路と前記直流電圧を一定周波数の高周波電圧に変換するインバータ回路と前記インバータ回路から前記高周波電圧を供給される電力送電用1次コイルとから構成される非接触コンセントと、前記電力送電用1次コイルと分離着脱自在なトランス構造を構成して高周波電圧を誘起される電力受電用2次コイルと前記電力受電用2次コイルに誘起される高周波電圧を整流平滑する整流平滑回路とから構成される非接触プラグと、前記非接触プラグの出力端子に接続され負荷となる端末機器とから構成される非接触電力伝達装置において、前記非接触コンセントは、対象としている負荷領域に対する前記非接触プラグの出力端子電圧を、前記インバータ回路より前記電力送電用1次コイルに供給される高周波 Composed of the 1. A DC voltage the high-frequency voltage power transmission for the primary coil is supplied with a power supply circuit and said DC voltage output inverter circuit for converting the high-frequency voltage of constant frequency from the inverter circuit a non-contact power outlet, the high frequency voltage constituting the power transmission for the primary coil separation detachable transformer structure is induced in the power receiving a secondary coil induced a high frequency voltage the power power receiving secondary coils a non-contact plugs composed of a rectifier smoothing circuit for rectifying and smoothing, in the non-contact power transfer device comprising said non-contact plugs connected to a terminal device as a load to the output terminal of the non-contact power outlet, the subject and the output terminal voltage of the non-contact plugs for by that load range, the high frequency supplied to the power transmission for the primary coil than the inverter circuit 電圧を間引いて安定化させる間引き制御を行う制御手段を備えることを特徴とする非接触電力伝達装置。 Contactless power transmission system, characterized in that it comprises a control means for performing a thinning control for stabilizing by thinning out the voltage.
  2. 【請求項2】 前記制御手段は、非接触プラグの出力端子電圧が所定の電圧を上回った場合には、インバータ回路から電力送電用1次コイルへの高周波電圧の供給を一定時間間引き、前記一定時間間引きを行った後非接触プラグの出力端子電圧が前記所定の電圧を上回っていれば再び電力送電用1次コイルへの前記高周波電圧の供給を一定時間間引くことを繰り返し、前記各一定時間間引きを行った後で非接触プラグの出力端子電圧が所定の電圧を下回った場合には、非接触プラグの出力端子電圧が所定の電圧を上回るまで電力送電用1次コイルへの前記高周波電圧の供給を連続的に行う動作を継続させることを特徴とする請求項1記載の非接触電力伝達装置。 Wherein said control means, when the output terminal voltage of the non-contact plug exceeds a predetermined voltage, thinning the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil a predetermined time, the constant repeating that the output terminal voltage of the non-contact plugs after time decimation decimating predetermined time the supply of the high frequency voltage to the predetermined re-power transmission primary coil if exceeds the voltage, each fixed time decimation when the output terminal voltage of the non-contact plug after falls below a predetermined voltage, the supply of the high frequency voltage of the output terminal voltage of the non-contact plugs to the power transmission for the primary coil to above a predetermined voltage non-contact power transmission device according to claim 1, characterized in that to continue performed continuously operated.
  3. 【請求項3】 非接触プラグは、非接触プラグ内部の電気状態を表す情報を磁気信号に変換して非接触コンセントに伝送し、前記制御手段は、前記磁気信号に基づいて間引き制御のための制御信号を形成し、前記制御信号によりインバータ回路を間引き制御することを特徴とする請求項1または2記載の非接触電力伝達装置。 3. A non-contact plugs, and transmit information representative of the non-contact plugs inside the electrical state to a non-contact electrical outlet is converted into a magnetic signal, said control means, for decimating the control based on the magnetic signal forming a control signal, said control signal by a non-contact power transmission device according to claim 1 or 2, wherein the controlling decimating the inverter circuit.
  4. 【請求項4】 インバータ回路は、ハーフブリッジ型の部分共振インバータであることを特徴とする請求項1乃至3いずれか記載の非接触電力伝達装置。 Wherein the inverter circuit includes a non-contact power transmission device according to any one of claims 1 to 3, characterized in that a half-bridge type partial resonant inverter.
  5. 【請求項5】 電力受電用2次コイルはセンタータップを備え、整流平滑回路は、電力受電用2次コイルのセンタータップではない両出力端に直列に且つ互いに逆方向に接続する整流素子の電力受電用2次コイルに接続していない各他端同士を接続した全波整流部を有し、前記整流素子の接続中点にチョークコイルを接続することを特徴とする請求項4記載の非接触電力伝達装置。 5. A secondary coil power receiving comprises a center tap, the rectifier smoothing circuit, power rectifier element connected and in opposite directions in series to both output terminals are not the center tap of the secondary coil for power receiving has a full-wave rectifier connected to each other ends not connected to the power receiving secondary coils, a non-contact according to claim 4, wherein the connecting choke coils to a connection point of said rectifying element power transfer device.
  6. 【請求項6】 電力受電用2次コイルに並列にコンデンサを接続することを特徴とする請求項1乃至5いずれか記載の非接触電力伝達装置。 6. A non-contact power transmission device according to any one of claims 1 to 5, characterized in that a capacitor in parallel with the secondary coil power receiving.
  7. 【請求項7】 前記コンデンサの静電容量値は、対象とする負荷領域の最大負荷時において、電力送電用1次コイルに供給される高周波電圧の極性反転時期と、前記コンデンサの両端に発生する振動電圧が極大値または極小値となる時期とが一致する静電容量値であることを特徴とする請求項6記載の非接触電力伝達装置。 7. The electrostatic capacitance value of the capacitor, at the time of maximum load of the load region of interest, and the polarity inversion timing of the high-frequency voltage supplied to the primary coil for power transmission, generated across the capacitor a contactless power transmission system according to claim 6, wherein the oscillating voltage is an electrostatic capacitance value and when as a maximum or minimum value match.
  8. 【請求項8】 非接触コンセントに1次側信号受信コイルを設け、非接触プラグには前記1次側信号受信コイルに対向配置され前記1次側信号受信コイルと分離着脱自在なトランス構造を構成する2次側信号送信コイルを設け、前記2次側信号送信コイルは非接触プラグの内部の電気状態を表す情報を交流電圧に変換した信号を入力され、磁気信号として磁束信号を発生し、前記1次側信号受信コイルは前記磁束信号により電圧を誘起され、前記制御手段はインバータ回路を前記誘起された電圧に基づいた制御信号により前記間引き制御することを特徴とする請求項3乃至7いずれか記載の非接触電力伝達装置。 The primary signal receiving coil arranged in 8. contactless outlet, constituting the oppositely disposed the primary signal receiving coil and isolation detachable transformer structure to the primary-side signal reception coil for non-contact plug the secondary signal transmission coil provided, the secondary-side signal transmitting coil is input a signal obtained by converting the information indicating the internal electrical non-contact state with the plug into an AC voltage, the magnetic flux signal generated as a magnetic signal, the the primary signal receiving coil is induced voltage by the magnetic flux signal, the control means any one of claims 3 to 7, characterized in that the decimation controlled by a control signal based on the inverter circuit to the induced voltage non-contact power transmission device according.
  9. 【請求項9】 電力送電用1次コイルと1次側信号受信コイルとの間、及び電力受電用2次コイルと2次側信号送信コイルとの間の少なくとも一方の間に磁性体からなる磁気シールド用隔壁を設けたことを特徴とする請求項8記載の非接触電力伝達装置。 9. A magnetic consisting power between the power transmitting primary coil and the primary signal receiving coils, and the magnetic between at least one of between the secondary coil and the secondary-side signal transmitting coil power receiving a contactless power transmission system according to claim 8, characterized in that a shielding partition wall.
  10. 【請求項10】 電力送電用1次コイルと電力受電用2 10. A power transmission for the primary coil and the power receiving for 2
    次コイルとを、磁性体からなるコアに巻装し、前記コアを互いに前記コアの軸方向に対向配置させたことを特徴とする請求項9記載の非接触電力伝達装置。 And following coil, wound around the core made of a magnetic material, a non-contact power transmission device according to claim 9, characterized in that were opposed in the axial direction of the core together the core.
  11. 【請求項11】 電力送電用1次コイルと電力受電用2 11. The power transmission for the primary coil and the power receiving for 2
    次コイルとを、前記コイルの軸方向に垂直な方向に開口部を有する有底筒型の磁性体からなるコアに巻装し、前記コアを互いに前記コアの軸方向に対向配置させ、前記コアの非開口部の近傍に1次側信号受信コイルと2次側信号送信コイルとを配置したことを特徴とする請求項9 And following coil, the direction perpendicular to the axial direction of the coil wound around the core made of a magnetic material of the bottomed tubular having an opening, is disposed opposite to the axial direction of the core together with the core, the core claim that the primary signal receiver coil in the vicinity of the non-opening portion of the characterized in that it is arranged and a secondary-side signal transmitting coil 9
    記載の非接触電力伝達装置。 Non-contact power transmission device according.
  12. 【請求項12】 2次側信号送信コイルは、非接触プラグの内部の電気状態を表す情報を交流電圧に変換した信号を入力されて、電力送電用1次コイルが発生させる磁束とは逆位相の位相を有する磁束信号を発生することを特徴とする請求項8乃至11いずれか記載の非接触電力伝達装置。 12. The secondary-side signal transmitting coil is inputted a signal converted into an AC voltage information indicating the internal electrical state of non-contact plugs, reverse phase with the flux is the primary coil for power transmission is generated non-contact power transmission device according to any one of claims 8 to 11, characterized in that for generating a magnetic flux signal having a phase.
  13. 【請求項13】 2次側信号送信コイルの一方の端子は、電力受電用2次コイルのどちらか一方の端子に接続していることを特徴とする請求項12記載の非接触電力伝達装置。 One terminal of 13. The secondary-side signal transmission coil, the contactless power transmission system according to claim 12, characterized in that connected to either terminal of the secondary coil power receiving.
  14. 【請求項14】 非接触コンセントは、電力送電用1次コイルの近傍に電力送電用1次コイルと電力受電用2次コイルとの間に発生する磁束を検出する磁束検出用コイルを設け、前記磁束検出用コイルは、磁気信号として電力送電用1次コイルで発生する磁束を検出し、前記磁束検出用コイルから前記検出する磁束に応じて出力される電圧に基づいて前記制御手段は、インバータ回路を間引き制御することを特徴とする請求項3乃至7いずれか記載の非接触電力伝達装置。 14. Non-contact power outlet is provided with a magnetic flux detecting coil for detecting a magnetic flux generated between the primary coil and the power receiving a secondary coil for power transmission in the vicinity of the primary coil power transmission, wherein magnetic flux detecting coil detects the magnetic flux generated by the power transmission for the primary coil as a magnetic signal, said control means based on the voltage output in response to magnetic flux the detector from the magnetic flux detecting coil, an inverter circuit non-contact power transmission device according to any one of claims 3 to 7, characterized in that the control thinning.
  15. 【請求項15】 電力送電用1次コイルと電力受電用2 15. The power transmission for the primary coil and the power receiving for 2
    次コイルとを、前記コイルの軸方向に垂直な方向に開口部を有する有底筒型の磁性体からなるコアに設けて前記コアを互いに前記コアの軸方向に対向配置させ、前記電力送電用1次コイルのコアの開口部の近傍に前記磁束検出用コイルを配置したことを特徴とする請求項14記載の非接触電力伝達装置。 And following coil, it is arranged opposite in the axial direction of the core together with the core provided in a bottomed tubular core made of a magnetic material having an opening in a direction perpendicular to the axial direction of the coil, for the power transmission a contactless power transmission system according to claim 14, wherein in that a magnetic flux detecting coil in the vicinity of the opening of the core of the primary coil.
  16. 【請求項16】 一つの非接触コンセントは、出力電圧の異なる複数の非接触プラグに適合し、各非接触プラグが対象としている負荷領域を含む全領域において前記各非接触プラグの出力電圧を所定の電圧範囲内に収める前記制御手段を有することを特徴とする請求項1乃至15 16. One non-contact outlets are compatible with a plurality of non-contact plugs having different output voltages, predetermined output voltage of said each non-contact plugs in the entire region where the non-contact plugs comprise a load region as an object claims 1 to 15, characterized in that it has the control means to fall within the voltage range
    いずれか記載の非接触電力伝達装置。 Non-contact power transmission device according any.
  17. 【請求項17】 非接触プラグの出力端子に並列に抵抗を接続することを特徴とする請求項1乃至16いずれか記載の非接触電力伝達装置。 17. Non-contact power transmission device according to any one of claims 1 to 16, characterized in that connecting a resistor in parallel to the output terminal of the non-contact plugs.
  18. 【請求項18】 非接触プラグが非接触コンセントの所定の位置に結合していない場合は、前記制御手段は、インバータ回路から電力送電用1次コイルへ供給する出力を制限することを特徴とする請求項1乃至17いずれか記載の非接触電力伝達装置。 18. If the non-contact plug is not attached to a predetermined position of the non-contact electrical outlet, the control means to limit the output supplied from the inverter circuit to the power transmission for the primary coil non-contact power transmission device according to any of claims 1 to 17.
  19. 【請求項19】 非接触コンセントはインバータ回路から電力送電用1次コイルへの高周波電圧の供給の制限を制御するスイッチ機能を備え、非接触プラグは前記スイッチ機能のオン・オフ状態を制御する駆動体を備え、非接触プラグが非接触コンセントの所定の位置に結合すると前記スイッチ機能を動作させることで前記制御手段はインバータ回路から電力送電用1次コイルへの高周波電圧の供給を可能にすることを特徴とする請求項18記載の非接触電力伝達装置。 19. Non-contact power outlet has a switch function for controlling the restriction of the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil, the non-contact plugs to control the on and off states of the switching function drive comprising a body, that the non-contact plugs and the control unit by operating the switch function and binding to a predetermined position of the non-contact outlet to allow the supply of high-frequency voltage from the inverter circuit to the power transmission for the primary coil a contactless power transmission system according to claim 18, wherein.
  20. 【請求項20】 非接触コンセントの前記スイッチ機能が機械接点からなり、非接触プラグが備える駆動体は磁石からなり、非接触プラグが非接触コンセントの所定の位置に結合すると前記磁石の磁力によって前記機械接点が動作して、前記制御手段はインバータ回路から電力送電用1次コイルへの高周波電圧の供給を可能にすることを特徴とする請求項19記載の非接触電力伝達装置。 The switch function 20. contactless outlet consists mechanical contacts, the drive member non-contact plug is provided is made of a magnet, the non-contact plugs are attached to a predetermined position of the non-contact electrical outlet by the magnetic force of the magnet operating the machine contacts, said control means non-contact power transmission device according to claim 19, wherein allowing the supply of the high-frequency voltage from the inverter circuit to the power transmission for the primary coil.
  21. 【請求項21】 非接触プラグが非接触コンセントの所定の位置に結合すると、非接触プラグ及び非接触コンセントの少なくともどちらか一方に使用可能を報知する表示を行うことを特徴とする請求項1乃至20いずれか記載の非接触電力伝達装置。 When 21. contactless plug is attached to a predetermined position of the non-contact power outlet, 1 to claim and performs a display for informing the usable on at least one of the non-contact plugs and the non-contact power outlet 20 non-contact power transmission device according any.
  22. 【請求項22】 非接触コンセント及び非接触プラグの少なくともどちらか一方は、非接触プラグの出力端子に接続された端末機器の負荷電力、及び非接触プラグの出力電圧の少なくともどちらか一方を表示する表示部を付加したことを特徴とする請求項1乃至21いずれか記載の非接触電力伝達装置。 22. at least one of the non-contact power outlet and the non-contact plugs, displays the at least one of load power, and the output voltage of the non-contact plug terminal equipment connected to the output terminal of the non-contact plug non-contact power transmission device according to any one of claims 1 to 21, characterized in that by adding a display unit.
  23. 【請求項23】 非接触プラグの出力端子に接続される端末機器は前記非接触プラグに対して、分離着脱自在なことを特徴とする請求項1乃至22いずれか記載の非接触電力伝達装置。 23. to the terminal equipment connected to the output terminal of the non-contact plugs the contactless plug, contactless power transfer device according to any one of claims 1 to 22, characterized in that freely Detachable.
  24. 【請求項24】 非接触プラグの出力端子から端末機器への電力の供給は、磁気結合によって供給されることを特徴とする請求項23記載の非接触電力伝達装置。 24. The power supply from the output terminal of the non-contact plugs to the terminal equipment, the non-contact power transmission device according to claim 23, wherein the supplied by the magnetic coupling.
  25. 【請求項25】 非接触プラグの出力端子間に、電圧クランプ素子を接続することを特徴とする請求項1乃至2 25. between the output terminals of the non-contact plugs, claim, characterized in that for connecting the voltage clamping element 1 to 2
    4いずれか記載の非接触電力伝達装置。 4 contactless power transmission device according any.
JP2000193404A 2000-06-27 2000-06-27 Contactless power transmission system Active JP4135299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000193404A JP4135299B2 (en) 2000-06-27 2000-06-27 Contactless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000193404A JP4135299B2 (en) 2000-06-27 2000-06-27 Contactless power transmission system

Publications (2)

Publication Number Publication Date
JP2002010535A true JP2002010535A (en) 2002-01-11
JP4135299B2 JP4135299B2 (en) 2008-08-20

Family

ID=18692403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193404A Active JP4135299B2 (en) 2000-06-27 2000-06-27 Contactless power transmission system

Country Status (1)

Country Link
JP (1) JP4135299B2 (en)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414607A (en) * 2004-05-24 2005-11-30 George Alan Limpkin Power supply with inductive coupling
JP2007330404A (en) * 2006-06-13 2007-12-27 Olympus Corp Wireless power supply system and capsule endoscope equipped with the same
JP2009189197A (en) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp Noncontact electric power transmission device
WO2010087317A1 (en) * 2009-01-30 2010-08-05 株式会社村田製作所 Contactless power receiving device
KR100998392B1 (en) 2002-07-26 2010-12-03 시프라 페턴트엔트위크렁스-운트 베테일리강스게젤샤프트 엠베하 Apparatus with two components being movable relative to each other and a device for simultaneous transfer of electric power and information between these components
JP2010284995A (en) * 2009-06-09 2010-12-24 Sharp Corp Noncontact power supply apparatus
JP2011514137A (en) * 2008-03-10 2011-04-28 テクティウム リミテッド Environment-friendly power supply
CN102255400A (en) * 2011-07-15 2011-11-23 华北电力大学(保定) Wireless power supply device and use method thereof
CN102377251A (en) * 2010-08-10 2012-03-14 株式会社村田制作所 Power transmission system
JP2012165602A (en) * 2011-02-08 2012-08-30 Renesas Electronics Corp Power transmission apparatus
JP2013511161A (en) * 2009-11-16 2013-03-28 300ケイ エンタープライズ ピーティーワイ リミテッド Non-contact coupling and method used in conjunction with electrical equipment
WO2013020138A3 (en) * 2011-08-04 2013-04-04 Witricity Corporation Tunable wireless power architectures
US8461719B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
JP2014057511A (en) * 2008-12-12 2014-03-27 Chun-Kil Jung Non-contact power charging station with planar spiral core structure, non-contact power receiving device, and method of controlling the same
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
FR2998104A1 (en) * 2012-11-12 2014-05-16 Bright In Res & Dev Method for installing electromagnetic connection of e.g. electric cleaner in bath-tub, involves fitting plug in base plate to concentrically place windings and to transfer energy by magnetic coupling between plug and plate
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
JP5622013B1 (en) * 2013-11-27 2014-11-12 悠一 桐生 Set type tidal power generation facility
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9106088B2 (en) 2011-03-09 2015-08-11 Kabushiki Kaisha Toyota Jidoshokki Non-contact power transmission apparatus
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9124113B2 (en) 2008-07-07 2015-09-01 Powerbyproxi Limited Inductively coupled power receiver and method of operation
US9130395B2 (en) 2008-12-12 2015-09-08 Hanrim Postech Co., Ltd. Non-contact charging station with planar spiral power transmission coil and method for controlling the same
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
CN105047388A (en) * 2015-07-20 2015-11-11 河南理工大学 Induction socket, plug and power utilization control method
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9318780B2 (en) 2010-11-16 2016-04-19 Powerbyproxi Limited Wirelessly rechargeable battery and power transmitter
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038148A1 (en) 2012-09-06 2016-08-08 パナソニックIpマネジメント株式会社 Non-contact power supply system and the non-contact extended plugs

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998392B1 (en) 2002-07-26 2010-12-03 시프라 페턴트엔트위크렁스-운트 베테일리강스게젤샤프트 엠베하 Apparatus with two components being movable relative to each other and a device for simultaneous transfer of electric power and information between these components
GB2414607A (en) * 2004-05-24 2005-11-30 George Alan Limpkin Power supply with inductive coupling
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2007330404A (en) * 2006-06-13 2007-12-27 Olympus Corp Wireless power supply system and capsule endoscope equipped with the same
US8203434B2 (en) 2006-06-13 2012-06-19 Olympus Corporation Wireless power feeding system and capsule endoscope system applied with the same
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
JP2009189197A (en) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp Noncontact electric power transmission device
JP2011514137A (en) * 2008-03-10 2011-04-28 テクティウム リミテッド Environment-friendly power supply
US9124113B2 (en) 2008-07-07 2015-09-01 Powerbyproxi Limited Inductively coupled power receiver and method of operation
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8461719B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9178376B2 (en) 2008-12-12 2015-11-03 Hanrim Postech Co., Ltd. Non-contact charging station with power transmission planar spiral core, non-contact power-receiving apparatus, and method for controlling the same
US9130395B2 (en) 2008-12-12 2015-09-08 Hanrim Postech Co., Ltd. Non-contact charging station with planar spiral power transmission coil and method for controlling the same
JP2014057511A (en) * 2008-12-12 2014-03-27 Chun-Kil Jung Non-contact power charging station with planar spiral core structure, non-contact power receiving device, and method of controlling the same
WO2010087317A1 (en) * 2009-01-30 2010-08-05 株式会社村田製作所 Contactless power receiving device
US8723374B2 (en) 2009-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Non-contact power receiving apparatus
JP2010284995A (en) * 2009-06-09 2010-12-24 Sharp Corp Noncontact power supply apparatus
JP2013511161A (en) * 2009-11-16 2013-03-28 300ケイ エンタープライズ ピーティーワイ リミテッド Non-contact coupling and method used in conjunction with electrical equipment
US9040947B2 (en) 2009-11-16 2015-05-26 300K Enterprises Pty Ltd Contactless coupling and method for use with an electrical appliance
US8987941B2 (en) 2010-08-10 2015-03-24 Murata Manufacturing Co., Ltd. Power transmission system
CN102377251A (en) * 2010-08-10 2012-03-14 株式会社村田制作所 Power transmission system
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9318780B2 (en) 2010-11-16 2016-04-19 Powerbyproxi Limited Wirelessly rechargeable battery and power transmitter
JP2012165602A (en) * 2011-02-08 2012-08-30 Renesas Electronics Corp Power transmission apparatus
US9106088B2 (en) 2011-03-09 2015-08-11 Kabushiki Kaisha Toyota Jidoshokki Non-contact power transmission apparatus
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
CN102255400A (en) * 2011-07-15 2011-11-23 华北电力大学(保定) Wireless power supply device and use method thereof
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
WO2013020138A3 (en) * 2011-08-04 2013-04-04 Witricity Corporation Tunable wireless power architectures
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
FR2998104A1 (en) * 2012-11-12 2014-05-16 Bright In Res & Dev Method for installing electromagnetic connection of e.g. electric cleaner in bath-tub, involves fitting plug in base plate to concentrically place windings and to transfer energy by magnetic coupling between plug and plate
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
JP5622013B1 (en) * 2013-11-27 2014-11-12 悠一 桐生 Set type tidal power generation facility
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
CN105047388A (en) * 2015-07-20 2015-11-11 河南理工大学 Induction socket, plug and power utilization control method
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control

Also Published As

Publication number Publication date
JP4135299B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US6317338B1 (en) Power supply for an electroluminescent display
CN101971452B (en) Inductive power supply system with multiple coil primary
US5684678A (en) Resonant converter with controlled inductor
JP5816308B2 (en) Non-contact power receiving apparatus and its method of operation
JP4140169B2 (en) Contactless power transmission system
JP4852970B2 (en) Power supply system
CN104953683B (en) Induced power transmission system and the method for answering the system of power transmission for operation sense
WO2012101907A1 (en) Power transmission system
US8125208B2 (en) Transformer device utilizing an air gap for non-contact energy transmission from the primary side to the secondary side
JP4778432B2 (en) Frequency control resonant converter
EP0650216A1 (en) Antenna circuit
JP5554937B2 (en) Non-contact power supply system
CN101836272B (en) Inductive power supply
JP5426570B2 (en) Inductive power transfer circuit
US6697272B2 (en) Contactless power transmitting system and contactless charging system
US8810196B2 (en) Inductive charger and charging method
JP3692541B2 (en) Power transmission device and a power transmission method
JP6070789B2 (en) The power supply apparatus and power supply system
EP0960459B1 (en) Power transfer and voltage level conversion for a battery-powered electronic device
US20180342908A1 (en) System and method for coded communication signals regulating inductive power transmissions
US20020118552A1 (en) Power supply apparatus for the reduction of power consumption
US8427012B2 (en) Non resonant inductive power transmission system and method
US7310245B2 (en) Electric power transmission device and electric power transmission method
KR930000417B1 (en) Frequency controlled resonant regulator
JP5928865B2 (en) The method of non-contact power feeding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5