JP2017044377A - Heat pump type steam generation device - Google Patents

Heat pump type steam generation device Download PDF

Info

Publication number
JP2017044377A
JP2017044377A JP2015165597A JP2015165597A JP2017044377A JP 2017044377 A JP2017044377 A JP 2017044377A JP 2015165597 A JP2015165597 A JP 2015165597A JP 2015165597 A JP2015165597 A JP 2015165597A JP 2017044377 A JP2017044377 A JP 2017044377A
Authority
JP
Japan
Prior art keywords
condenser
heat pump
refrigerant
water
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015165597A
Other languages
Japanese (ja)
Other versions
JP5950010B1 (en
Inventor
鶴羽 健
Takeshi Tsuruha
鶴羽  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015165597A priority Critical patent/JP5950010B1/en
Application granted granted Critical
Publication of JP5950010B1 publication Critical patent/JP5950010B1/en
Publication of JP2017044377A publication Critical patent/JP2017044377A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type steam generation device which can start stably by suppressing failure in a compressor.SOLUTION: A heat pump type steam generation device 12 includes: a heat pump part 18 in which a compressor 21, a condenser 22, an expansion mechanism 24 and an evaporator 26 are connected in an annular manner, and which recovers heat from an external heat source by the evaporator 26; and a steam generation part 16 for supplying water to be heated to the condenser 22, heating the water to be heated by a refrigerant and for generating steam. At refrigerant piping 27a for connecting a discharge side of the compressor 21 and an inlet side of the condenser 22, a check valve 30 is provided for preventing a backflow of the refrigerant from the condenser 22 to the compressor 21 while the compressor 21 is stopped.SELECTED DRAWING: Figure 2

Description

本発明は、外部熱源から熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置に関する。   The present invention relates to a heat pump steam generator that recovers heat from an external heat source to generate steam.

蒸気生成装置の一つとして、工場排水や使用済冷却水等の排温水等の温水から熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置がある(例えば、特許文献1)。ヒートポンプ式蒸気生成装置は、ヒートポンプ部の蒸発器を排熱回収器として機能させ、ここで熱源温水から熱を冷媒に回収し、回収した熱を利用して凝縮器で被加熱水を加熱して蒸気を生成するため、ボイラ設備等を利用して蒸気を発生させる燃焼系蒸気生成装置に比べてランニングコストやCOの排出量を低減できるメリットがある。 As one of steam generating apparatuses, there is a heat pump steam generating apparatus that generates steam by recovering heat from warm water such as industrial waste water or waste water such as used cooling water (for example, Patent Document 1). In the heat pump steam generator, the evaporator of the heat pump unit functions as an exhaust heat recovery device, where heat is recovered from the heat source hot water into the refrigerant, and the water to be heated is heated by the condenser using the recovered heat. Since steam is generated, there is an advantage that the running cost and CO 2 emission amount can be reduced as compared with the combustion system steam generating apparatus that generates steam using boiler equipment or the like.

特開2012−247156号公報JP 2012-247156 A

ところで、上記のようなヒートポンプ式蒸気生成装置では、凝縮器で被加熱水を加熱して蒸気を生成するため、ヒートポンプ部には100℃以上の高い臨界温度を有する特性の冷媒を用いる必要がある。   By the way, in the heat pump type steam generator as described above, since water to be heated is generated by a condenser to generate steam, it is necessary to use a refrigerant having a characteristic having a high critical temperature of 100 ° C. or higher for the heat pump unit. .

ところが、この種の冷媒は一般的な冷凍装置に用いられる冷媒に比べて沸点が高く、例えば常圧常温で液化する特性を有するものもある。すなわち、ヒートポンプ式蒸気生成装置の停止中に冷媒が液化すると、起動時に圧縮機に液冷媒が吸入されて液圧縮(液バック)を生じる懸念がある。また、装置の停止中に圧縮機や減圧機構に液冷媒が多量溜まった場合には、起動時の圧縮機の運転回転数や膨張機構の開度を適切に制御することが難しくなる場合もある。さらに、停止中に圧縮機に液冷媒が多量溜まった場合、冷媒が冷凍機油に多量溶け込み、その冷媒が起動時に減圧沸騰して冷凍機油に泡立ち現象(オイルフォーミング)を生じて圧縮機に不具合を生じさせる懸念もある。   However, this type of refrigerant has a boiling point higher than that of a refrigerant used in a general refrigeration apparatus, and for example, has a characteristic of liquefying at normal pressure and normal temperature. That is, when the refrigerant is liquefied while the heat pump type steam generator is stopped, there is a concern that the liquid refrigerant is sucked into the compressor at the time of startup and liquid compression (liquid back) occurs. In addition, when a large amount of liquid refrigerant is accumulated in the compressor or the decompression mechanism while the apparatus is stopped, it may be difficult to appropriately control the operation speed of the compressor at the time of startup and the opening degree of the expansion mechanism. . In addition, if a large amount of liquid refrigerant accumulates in the compressor during stoppage, a large amount of refrigerant dissolves in the refrigerating machine oil, and the refrigerant boiles under reduced pressure at the time of start-up, causing a foaming phenomenon (oil forming) in the refrigerating machine oil, causing problems in the compressor. There are also concerns.

本発明は、上記従来技術の課題を考慮してなされたものであり、圧縮機での不具合の発生を抑え、安定した起動が可能となるヒートポンプ式蒸気生成装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a heat pump type steam generator that can suppress the occurrence of problems in the compressor and can be stably started.

本発明に係るヒートポンプ式蒸気生成装置は、圧縮機、凝縮器、膨張機構及び蒸発器を環状に接続し、前記蒸発器で外部熱源から熱を回収するヒートポンプ部と、前記凝縮器に被加熱水を供給し、該被加熱水を冷媒によって加熱して蒸気を生成する蒸気生成部とを備えるヒートポンプ式蒸気生成装置であって、前記圧縮機の吐出側と前記凝縮器の入口側との間を接続する冷媒配管に、前記圧縮機の停止時に前記凝縮器から前記圧縮機への冷媒の逆流を防止する弁が設けられることを特徴とする。   The heat pump type steam generator according to the present invention includes a compressor, a condenser, an expansion mechanism, and an evaporator connected in a ring shape, and a heat pump unit that recovers heat from an external heat source by the evaporator, and water to be heated in the condenser. And a steam generation unit that generates steam by heating the water to be heated with a refrigerant, between the discharge side of the compressor and the inlet side of the condenser The refrigerant pipe to be connected is provided with a valve for preventing a reverse flow of the refrigerant from the condenser to the compressor when the compressor is stopped.

このような構成によれば、装置の運転停止時に凝縮器から圧縮機への冷媒の逆流が防止されるため、例えば運転停止直後に凝縮器から膨張機構の間の高圧側にある冷媒が圧縮機へと逆流し、圧縮機や膨張機構に多量の冷媒が残留することを回避でき、停止時に凝縮器に多量の冷媒を貯留しておくことができる。これにより、運転停止後の起動時に、圧縮機での液圧縮やオイルフォーミング等の不具合の発生を抑制することができる。また、起動時に冷媒が溜まっている場所が予測できるため、圧縮機の運転回転数や膨張機構の開度を円滑に制御でき、安定した起動運転が可能となる。   According to such a configuration, since the reverse flow of the refrigerant from the condenser to the compressor is prevented when the operation of the apparatus is stopped, for example, the refrigerant on the high pressure side between the condenser and the expansion mechanism immediately after the operation is stopped Therefore, it is possible to prevent a large amount of refrigerant from remaining in the compressor and the expansion mechanism, and to store a large amount of refrigerant in the condenser when stopped. Thereby, at the time of starting after operation stop, generation | occurrence | production of malfunctions, such as liquid compression in a compressor and oil forming, can be suppressed. Further, since the place where the refrigerant is accumulated at the time of start-up can be predicted, the operation speed of the compressor and the opening degree of the expansion mechanism can be controlled smoothly, and a stable start-up operation is possible.

前記冷媒は、大気圧で当該ヒートポンプ式蒸気生成装置の使用温度域に沸点を有する特性であってもよい。このような特性の冷媒を用いることで高い温度を確保して確実な水蒸気生成が可能となるが、装置の運転停止時の周囲温度によってはヒートポンプ部内の冷媒が液化し、液圧縮やオイルフォーミング等の不具合の発生を引き起こす懸念がある。ところが、当該ヒートポンプ式蒸気生成装置では圧縮機の吐出側と凝縮器の入口側との間を接続する冷媒配管に逆流防止用の弁を設けているため、このような不具合の発生を回避できる。   The said refrigerant | coolant may be the characteristic which has a boiling point in the use temperature range of the said heat pump vapor generation apparatus at atmospheric pressure. By using a refrigerant with such characteristics, high temperature can be secured and reliable water vapor generation is possible, but depending on the ambient temperature at the time of shutdown of the device, the refrigerant in the heat pump part liquefies, liquid compression, oil forming, etc. There is a concern of causing the occurrence of defects. However, in the heat pump type steam generator, the backflow prevention valve is provided in the refrigerant pipe that connects between the discharge side of the compressor and the inlet side of the condenser, so that such a problem can be avoided.

前記ヒートポンプ部の前記凝縮器の出口側と前記膨張機構との間には、開閉弁が設けられていてもよい。そうすると、装置の運転停止時に開閉弁を閉制御することで、凝縮器に多量の冷媒を確実に閉じ込めておくことができる。これにより、起動時の圧縮機の液圧縮等の不具合の発生をより確実に回避し、安定した起動運転を行うことができる。   An on-off valve may be provided between the outlet side of the condenser of the heat pump unit and the expansion mechanism. If it does so, a large amount of refrigerant | coolants can be reliably confine | sealed in a condenser by carrying out closed control of the on-off valve at the time of operation stop of an apparatus. Thereby, generation | occurrence | production of malfunctions, such as liquid compression of the compressor at the time of starting, can be avoided more reliably, and the stable starting operation can be performed.

当該ヒートポンプ式蒸気生成装置の運転停止時に、前記開閉弁を閉制御すると共に前記圧縮機を駆動制御することで、前記ヒートポンプ部の冷媒を前記凝縮器へと導入するポンプダウン運転を実行する制御部を備えた構成としてもよい。そうすると、運転停止時に膨張機構、蒸発器、圧縮機及び冷媒配管内の冷媒を凝縮器へと強制的に集約することができる。   A control unit that performs a pump-down operation for introducing the refrigerant of the heat pump unit into the condenser by controlling the closing of the on-off valve and driving the compressor when the heat pump steam generator is stopped. It is good also as a structure provided with. If it does so, the refrigerant | coolant in an expansion mechanism, an evaporator, a compressor, and refrigerant | coolant piping can be compulsorily collected to a condenser at the time of an operation stop.

前記蒸気生成部は、被加熱水を前記凝縮器に供給する給水経路と、前記被加熱水が前記凝縮器で前記冷媒によって加熱されることで生成された気液二相流を水と水蒸気とに分離させる水蒸気分離器と、分離した水を前記給水経路からの被加熱水と共に前記凝縮器へと循環させる循環経路と、前記水蒸気分離器で分離された水蒸気を外部に送り出す送出経路とを有し、前記凝縮器が前記水蒸気分離器よりも低位置に設置された構成であってもよい。これにより、運転時に水蒸気分離器内に溜まっている液相の水が停止時には凝縮器へと集約されるため、起動時に凝縮器で冷媒による加熱対象(被加熱水)が不足する空焚き現象を回避でき、熱交換器効率を速やかに向上させることができる。しかも、運転時においても液相の水の液面が凝縮器内に安定して保持されるため、運転時に冷媒による加熱対象が不足する空焚き運転も抑制される。   The steam generation unit includes a water supply path for supplying heated water to the condenser, and a gas-liquid two-phase flow generated when the heated water is heated by the refrigerant in the condenser. A water vapor separator for separating the water vapor, a circulation path for circulating the separated water to the condenser together with heated water from the water supply path, and a delivery path for sending the water vapor separated by the water vapor separator to the outside. And the structure by which the said condenser was installed in the low position rather than the said water vapor separator may be sufficient. As a result, liquid phase water accumulated in the water vapor separator during operation is concentrated in the condenser when it is stopped, so that there is not enough air to be heated by the condenser (heated water) in the condenser during startup. This can be avoided and the efficiency of the heat exchanger can be improved promptly. Moreover, since the liquid level of the water in the liquid phase is stably held in the condenser even during operation, the idling operation in which the object to be heated by the refrigerant is insufficient during operation is also suppressed.

前記ヒートポンプ部の前記凝縮器と前記膨張機構との間には、前記凝縮器を出た冷媒と、前記給水経路を流通する前記凝縮器への導入前の被加熱水とを熱交換させる熱交換器が設けられ、前記蒸気生成部では、前記凝縮器が前記熱交換器よりも低位置に設置された構成であってもよい。これにより、装置の運転時に熱交換器から凝縮器への被加熱水の供給が円滑になると共に、停止時には熱交換器内の被加熱水も凝縮器に集約できる。   Between the condenser of the heat pump unit and the expansion mechanism, heat exchange is performed to exchange heat between the refrigerant exiting the condenser and the water to be heated before being introduced into the condenser flowing through the water supply path. The steam generator may be configured such that the condenser is installed at a lower position than the heat exchanger. Thereby, the supply of heated water from the heat exchanger to the condenser becomes smooth during operation of the apparatus, and the heated water in the heat exchanger can also be collected in the condenser when stopped.

前記ヒートポンプ部では、前記凝縮器が前記蒸発器よりも低位置に設置された構成であってもよい。これにより、装置の運転停止時に蒸発器内に溜まっている冷媒をより円滑に凝縮器へと集約することができる。   In the heat pump unit, the condenser may be installed at a lower position than the evaporator. Thereby, the refrigerant | coolant which has accumulated in the evaporator at the time of operation stop of an apparatus can be more smoothly integrated into a condenser.

本発明によれば、装置の運転停止時に凝縮器から圧縮機への冷媒の逆流が防止されるため、例えば運転停止直後に凝縮器から膨張機構の間にある冷媒が圧縮機へと逆流し、圧縮機や膨張機構に多量の冷媒が残留することを回避でき、停止時に凝縮器に多量の冷媒を貯留しておくことができる。これにより、運転停止後の起動時に、圧縮機での液圧縮やオイルフォーミング等の不具合の発生を抑制することができる。また、起動時に冷媒が溜まっている場所が予測できるため、圧縮機の運転回転数や膨張機構の開度を円滑に制御でき、安定した起動運転が可能となる。   According to the present invention, since the backflow of the refrigerant from the condenser to the compressor is prevented when the operation of the apparatus is stopped, for example, the refrigerant between the condenser and the expansion mechanism flows back to the compressor immediately after the operation is stopped. A large amount of refrigerant can be prevented from remaining in the compressor and the expansion mechanism, and a large amount of refrigerant can be stored in the condenser when stopped. Thereby, at the time of starting after operation stop, generation | occurrence | production of malfunctions, such as liquid compression in a compressor and oil forming, can be suppressed. Further, since the place where the refrigerant is accumulated at the time of start-up can be predicted, the operation speed of the compressor and the opening degree of the expansion mechanism can be controlled smoothly, and a stable start-up operation is possible.

本発明の一実施形態に係るヒートポンプ式蒸気生成装置の外観構造を示す斜視図である。It is a perspective view showing the appearance structure of the heat pump type steam generator concerning one embodiment of the present invention. 図1に示すヒートポンプ式蒸気生成装置の回路構造を模式的に示す構成図である。It is a block diagram which shows typically the circuit structure of the heat pump type steam generation apparatus shown in FIG. 筐体内に設置されたヒートポンプ部及び蒸気生成部の構成を示す斜視図である。It is a perspective view which shows the structure of the heat pump part installed in the housing | casing, and a steam generation part. 図3に示すヒートポンプ部の斜視図である。It is a perspective view of the heat pump part shown in FIG. 図3に示す蒸気生成部の斜視図である。It is a perspective view of the steam production | generation part shown in FIG. 図4に示すヒートポンプ部の正面図であり、図6(A)は、ヒートポンプ式蒸気生成装置の運転時の冷媒の状態を示し、図6(B)は、ヒートポンプ式蒸気生成装置の停止時の冷媒の状態を示している。FIG. 6A is a front view of the heat pump unit shown in FIG. 4, FIG. 6A shows the state of the refrigerant during operation of the heat pump steam generator, and FIG. 6B is a diagram when the heat pump steam generator is stopped. The state of the refrigerant is shown. 図5に示す蒸気生成部の正面図であり、図7(A)は、ヒートポンプ式蒸気生成装置の運転時の水の状態を示し、図7(B)は、ヒートポンプ式蒸気生成装置の停止時の水の状態を示している。FIG. 7A is a front view of the steam generation unit shown in FIG. 5, FIG. 7A shows the state of water during operation of the heat pump steam generation device, and FIG. 7B is when the heat pump steam generation device is stopped. Shows the state of water.

以下、本発明に係るヒートポンプ式蒸気生成装置について好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of the heat pump type steam generator according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係るヒートポンプ式蒸気生成装置12の外観構造を示す斜視図であり、図2は、図1に示すヒートポンプ式蒸気生成装置12の回路構造を模式的に示す構成図である。ヒートポンプ式蒸気生成装置12は、工場排水等の温水から回収した排熱を利用して水蒸気を生成するシステムであり、生成した水蒸気は乾燥装置や殺菌装置等の外部の蒸気利用設備に送られる。   FIG. 1 is a perspective view showing an external structure of a heat pump steam generator 12 according to an embodiment of the present invention, and FIG. 2 schematically shows a circuit structure of the heat pump steam generator 12 shown in FIG. It is a block diagram. The heat pump steam generator 12 is a system that generates steam using exhaust heat recovered from warm water such as factory waste water, and the generated steam is sent to an external steam utilization facility such as a drying device or a sterilizer.

先ず、ヒートポンプ式蒸気生成装置12の回路構造の構成例について説明する。   First, a configuration example of a circuit structure of the heat pump type steam generator 12 will be described.

図2に示すように、ヒートポンプ式蒸気生成装置12は、水を蒸発させて水蒸気を生成し、外部へと送り出す蒸気生成部16と、温水供給部17によって供給される温水(熱源温水)から熱を回収し、この熱を蒸気生成部16での蒸気生成のための熱源として供給するヒートポンプ部18と、システムの制御を行う制御部20とを備える。   As shown in FIG. 2, the heat pump steam generator 12 generates heat by evaporating water, generates steam, and heats the hot water (heat source hot water) supplied by the hot water supply unit 17 and the steam generator 16 that sends the water to the outside. And a heat pump unit 18 that supplies this heat as a heat source for generating steam in the steam generation unit 16 and a control unit 20 that controls the system.

ヒートポンプ部18は、冷媒を圧縮する圧縮機21と、圧縮機21で圧縮された冷媒を凝縮させる凝縮器22と、凝縮器22を出た冷媒を減圧する膨張機構24と、温水から熱を回収して冷媒を蒸発させる蒸発器26とを冷媒配管27a〜27eを用いて環状に接続し、冷媒を循環させる冷凍サイクル装置である。本実施形態では、凝縮器22の出口側と膨張機構24の入口側との間に給水を予備加熱する加熱器(熱交換器)28を接続している。膨張機構24は、例えば電子膨張弁であり、制御部20の制御下に開度を調整可能である。以下では冷媒配管27a〜27eについて、まとめて冷媒配管27と呼ぶこともある。   The heat pump unit 18 recovers heat from hot water, a compressor 21 that compresses the refrigerant, a condenser 22 that condenses the refrigerant compressed by the compressor 21, an expansion mechanism 24 that decompresses the refrigerant that has exited the condenser 22, and Then, the evaporator 26 that evaporates the refrigerant is connected in an annular shape using the refrigerant pipes 27a to 27e to circulate the refrigerant. In the present embodiment, a heater (heat exchanger) 28 for preheating the feed water is connected between the outlet side of the condenser 22 and the inlet side of the expansion mechanism 24. The expansion mechanism 24 is an electronic expansion valve, for example, and can adjust the opening degree under the control of the control unit 20. Hereinafter, the refrigerant pipes 27a to 27e may be collectively referred to as the refrigerant pipe 27.

圧縮機21と凝縮器22との間の冷媒配管27aには逆止弁30が設けられ、加熱器28と膨張機構24との間の冷媒配管27cには開閉弁31が設けられている。逆止弁30は、圧縮機21から凝縮器22への冷媒の流通を許容する一方、凝縮器22から圧縮機への冷媒の逆流を防止する弁である。本実施形態の場合、逆止弁30はヒートポンプ式蒸気生成装置12の停止中の冷媒の逆流を防止できればよく、また装置の運転中は通常、逆流自体が生じないため、例えば逆止弁30に代えて、制御部20によって装置の停止時に閉制御される開閉弁(電磁弁)を用いてもよい。開閉弁31は、例えば電磁弁であり、制御部20の制御下に開閉可能である。   A check valve 30 is provided in the refrigerant pipe 27 a between the compressor 21 and the condenser 22, and an open / close valve 31 is provided in the refrigerant pipe 27 c between the heater 28 and the expansion mechanism 24. The check valve 30 is a valve that allows the refrigerant to flow from the compressor 21 to the condenser 22 and prevents the refrigerant from flowing backward from the condenser 22 to the compressor. In the case of this embodiment, the check valve 30 only needs to be able to prevent the refrigerant backflow while the heat pump steam generator 12 is stopped, and usually the backflow itself does not occur during operation of the apparatus. Instead, an on-off valve (electromagnetic valve) that is controlled to be closed by the control unit 20 when the apparatus is stopped may be used. The on-off valve 31 is an electromagnetic valve, for example, and can be opened and closed under the control of the control unit 20.

圧縮機21で圧縮されて高温高圧となった冷媒は、凝縮器22で蒸気生成部16を循環する水と熱交換して冷却され凝縮する。凝縮器22を出た冷媒は、加熱器28で給水管(給水経路)32aを流れる水を予熱してさらに冷却された後、膨張機構24で断熱膨張され、蒸発器26で温水供給部17を流れる温水から吸熱して蒸発して圧縮機21に戻る。圧縮機21は、制御部20の制御下に、その吸入側や吐出側の冷媒の圧力及び温度に基づきインバータを介してその運転回転数が制御される。   The refrigerant that has been compressed by the compressor 21 to a high temperature and high pressure is cooled and condensed by exchanging heat with water circulating in the steam generation unit 16 in the condenser 22. The refrigerant that has exited the condenser 22 is preheated with water flowing through a water supply pipe (water supply path) 32a by the heater 28 and further cooled, and then adiabatically expanded by the expansion mechanism 24, and the hot water supply unit 17 is supplied by the evaporator 26. It absorbs heat from the flowing hot water, evaporates and returns to the compressor 21. The operation speed of the compressor 21 is controlled through an inverter based on the pressure and temperature of the refrigerant on the suction side and the discharge side under the control of the control unit 20.

蒸気生成部16は、ヒートポンプ部18を循環する冷媒を熱源として水を蒸発させて蒸気を生成する凝縮器22と、凝縮器22で生成される水蒸気と水を含む気液二相流を蒸気と水とに分離する水蒸気分離器34と、水蒸気分離器34で分離された水を給水管32aから供給される被加熱水と合流させて凝縮器22に導入する循環管(循環経路)32bと、凝縮器22からの気液二相流を水蒸気分離器34へと導く蒸気管(蒸気経路)32cと、水蒸気分離器34で分離された蒸気を外部の蒸気利用設備へと送り出す送出管(送出経路)32dとを有する。   The steam generating unit 16 uses a refrigerant circulating in the heat pump unit 18 as a heat source to evaporate water to generate steam, and a vapor-liquid two-phase flow including water vapor and water generated by the condenser 22 is converted into steam. A water vapor separator 34 that separates into water, a circulation pipe (circulation path) 32b that joins the water separated by the water vapor separator 34 with the heated water supplied from the water supply pipe 32a and introduces it into the condenser 22; A steam pipe (steam path) 32c for guiding the gas-liquid two-phase flow from the condenser 22 to the steam separator 34, and a delivery pipe (sending path) for sending the steam separated by the steam separator 34 to an external steam utilization facility ) 32d.

水蒸気分離器34は、鉛直方向に沿った円筒状容器で構成され、下端壁に接続された循環管32bに接続された給水管32aから水が補給されることで容器内部に水を貯留する。給水管32aは、図示しない水道管や水タンクからの水(被加熱水)を給水ポンプ37によって循環管32bまで導入する。給水ポンプ37は制御部20によって運転制御される。循環管32bは、水蒸気分離器34の下端壁から凝縮器22までを連通する経路である。蒸気管32cは、凝縮器22から水蒸気分離器34の上部側壁までを連通し、気液二相流が流通する経路である。   The water vapor separator 34 is configured by a cylindrical container along the vertical direction, and stores water inside the container by replenishing water from a water supply pipe 32a connected to a circulation pipe 32b connected to a lower end wall. The water supply pipe 32 a introduces water (heated water) from a water pipe or water tank (not shown) to the circulation pipe 32 b by a water supply pump 37. The operation of the water supply pump 37 is controlled by the control unit 20. The circulation pipe 32 b is a path that communicates from the lower end wall of the water vapor separator 34 to the condenser 22. The steam pipe 32c is a path through which the gas-liquid two-phase flow circulates from the condenser 22 to the upper side wall of the water vapor separator 34.

送出管32dは、水蒸気分離器34の上端壁に接続され、蒸気管32cから当該水蒸気分離器34内に供給され、ここで水が分離された後の蒸気を外部に送り出す経路である。送出管32dには、制御部20の制御下にその開度が適宜調整されることにより、当該ヒートポンプ式蒸気生成装置12から外部に送り出される蒸気の流量や圧力を制御する圧力調整弁38が設けられている。   The delivery pipe 32d is connected to the upper end wall of the water vapor separator 34, and is a path that is supplied from the steam pipe 32c into the water vapor separator 34 and sends out the steam after the water is separated here. The delivery pipe 32d is provided with a pressure regulating valve 38 for controlling the flow rate and pressure of the steam sent out from the heat pump steam generator 12 by appropriately adjusting the opening degree under the control of the control unit 20. It has been.

蒸気生成部16では、水蒸気分離器34の水面と凝縮器22の水面との高低差により、水蒸気分離器34から凝縮器22へと循環管32bを介して水が供給されると共に、凝縮器22で生成された水蒸気が蒸気管32cから水蒸気分離器34を介して送出管32dへと送り出されるサーモサイフォン回路が形成される。その結果、循環管32b、蒸気管32c及び水蒸気分離器34で形成される水循環系統内に循環ポンプ等の動力源を設けることなく、水を循環させることができる。以下では水が液相から気相に相変化しつつ流通する給水管32a、循環管32b、蒸気管32c及び送出管32dについて、まとめて水配管32と呼ぶこともある。   In the steam generation unit 16, water is supplied from the water vapor separator 34 to the condenser 22 through the circulation pipe 32 b due to the difference in level between the water surface of the water vapor separator 34 and the water surface of the condenser 22, and the condenser 22. A thermosiphon circuit is formed in which the water vapor generated in (1) is sent from the steam pipe 32c to the delivery pipe 32d via the water vapor separator 34. As a result, water can be circulated without providing a power source such as a circulation pump in the water circulation system formed by the circulation pipe 32b, the steam pipe 32c, and the water vapor separator 34. Hereinafter, the water supply pipe 32a, the circulation pipe 32b, the steam pipe 32c, and the delivery pipe 32d through which water flows while changing from the liquid phase to the gas phase may be collectively referred to as the water pipe 32.

温水供給部17は、蒸発器26に温水を供給する温水供給管17aと、蒸発器26から温水を排出する温水排出管17bとを有する。温水供給管17aには、外部の温水タンク等の温水供給源から供給される温水を所定の流量で送水する図示しない温水ポンプが設けられる。   The hot water supply unit 17 includes a hot water supply pipe 17 a that supplies hot water to the evaporator 26 and a hot water discharge pipe 17 b that discharges hot water from the evaporator 26. The hot water supply pipe 17a is provided with a hot water pump (not shown) that supplies hot water supplied from a hot water supply source such as an external hot water tank at a predetermined flow rate.

このようなヒートポンプ式蒸気生成装置12のヒートポンプ部18には、大気圧で当該ヒートポンプ式蒸気生成装置12の使用温度域、例えば−5℃〜40℃程度の温度範囲に沸点を有する特性の冷媒、例えばR245fa(沸点15℃程度)を用いている。すなわち、ヒートポンプ部18に封入される冷媒は、凝縮器22で蒸気生成部16の被加熱水を加熱して蒸気を生成する必要があるため100℃以上の高い臨界温度を有する特性が必要である。そして、この種の冷媒は一般的な冷凍装置に用いられる冷媒(例えば沸点がマイナス数十℃程度)に比べて沸点も高い傾向にあり、例えばR245faのように常圧常温で液化するものもある。   The heat pump unit 18 of the heat pump steam generator 12 has a characteristic refrigerant having a boiling point in the operating temperature range of the heat pump steam generator 12 at atmospheric pressure, for example, a temperature range of about −5 ° C. to 40 ° C., For example, R245fa (boiling point of about 15 ° C.) is used. That is, the refrigerant sealed in the heat pump unit 18 needs to have a characteristic having a high critical temperature of 100 ° C. or higher because it is necessary to generate steam by heating the water to be heated in the steam generation unit 16 by the condenser 22. . This type of refrigerant tends to have a higher boiling point than refrigerants used in general refrigeration equipment (for example, the boiling point is about minus several tens of degrees Celsius). For example, some refrigerants such as R245fa liquefy at normal pressure and normal temperature. .

次に、ヒートポンプ式蒸気生成装置12の各部の具体的な構成について説明する。   Next, a specific configuration of each part of the heat pump steam generator 12 will be described.

本実施形態に係るヒートポンプ式蒸気生成装置12では、このような蒸気生成部16、温水供給部17及びヒートポンプ部18を構成する各要素を筐体14の内部に収容している(図1参照)。   In the heat pump type steam generation device 12 according to the present embodiment, the elements constituting the steam generation unit 16, the hot water supply unit 17, and the heat pump unit 18 are accommodated in the housing 14 (see FIG. 1). .

図1に示すように、筐体14は、脚部39を介して地面や床面上に設置される箱状構造であり、正面に設けられた開口を扉40によって開閉可能である一方、正面以外の5面(上面、底面、背面、左右側面)がパネル42によって閉塞されている。筐体14の正面壁となる扉40には、操作者が当該ヒートポンプ式蒸気生成装置12の制御部20に対する各種設定や運転指令等を行う際に操作する操作盤44が設けられている。   As shown in FIG. 1, the housing 14 has a box-like structure that is installed on the ground or floor via legs 39, and an opening provided on the front can be opened and closed by a door 40, while the front The other five surfaces (top surface, bottom surface, back surface, left and right side surfaces) are closed by the panel 42. An operation panel 44 is provided on the door 40 serving as a front wall of the housing 14 to be operated when an operator performs various settings, operation commands, and the like for the control unit 20 of the heat pump steam generator 12.

扉40の内面には制御部20を構成する電装部品を収納した電装ボックス46が取り付けられ、扉40の略中央には外部の空気を吸入する正面吸気口48が設けられている。正面吸気口48から吸入された外気は電装ボックス46内の電装部品を冷却した後、筐体14の背面下部に設けられた吸気口から吸入され、筐体14内の発熱機器(例えば、図3に示す圧縮機21の駆動用のモータ21m)を冷却した外気と合わさり、筐体14の背面上部に設けられた排気口から外部に排出される。   On the inner surface of the door 40, an electrical box 46 that houses electrical components constituting the control unit 20 is attached, and a front air inlet 48 that sucks external air is provided in the approximate center of the door 40. The outside air sucked from the front air inlet 48 cools the electric parts in the electric box 46 and is then sucked from the air inlet provided at the lower back of the housing 14 to generate heat generating devices (for example, FIG. 3) in the housing 14. The motor 21m for driving the compressor 21 shown in FIG. 5 is combined with the cooled outside air, and is discharged to the outside through an exhaust port provided at the upper back of the housing 14.

図3は、筐体14内に設置されたヒートポンプ部18及び蒸気生成部16の構成を示す斜視図である。図4は、図3に示すヒートポンプ部18の斜視図であり、図5は、図3に示す蒸気生成部16の斜視図である。また、図6は、図4に示すヒートポンプ部18の正面図であり、図7は、図5に示す蒸気生成部16の正面図であり、図6(A)及び図7(A)は、ヒートポンプ式蒸気生成装置12の運転時の冷媒及び水(被加熱水)の状態を示し、図6(B)及び図7(B)は、ヒートポンプ式蒸気生成装置12の停止時の冷媒及び水(被加熱水)の状態を示している。   FIG. 3 is a perspective view showing the configuration of the heat pump unit 18 and the steam generation unit 16 installed in the housing 14. 4 is a perspective view of the heat pump unit 18 shown in FIG. 3, and FIG. 5 is a perspective view of the steam generation unit 16 shown in FIG. 6 is a front view of the heat pump unit 18 shown in FIG. 4, FIG. 7 is a front view of the steam generation unit 16 shown in FIG. 5, and FIG. 6 (A) and FIG. The state of the refrigerant and water (heated water) during operation of the heat pump steam generator 12 is shown. FIGS. 6B and 7B show the refrigerant and water when the heat pump steam generator 12 is stopped ( The state of water to be heated) is shown.

図3及び図4に示すように、ヒートポンプ部18は、圧縮機21及びその駆動用のモータ21mが筐体14の底面上で正面側に沿って左右に並んで配置され、凝縮器22が筐体14の底面上で圧縮機21の背面側に配置されている。一方、蒸発器26及び加熱器28はモータ21mの背面側であって凝縮器22の側方となる位置で、圧縮機21や凝縮器22よりも高い位置に梁材等を用いて並んで配設されている。   As shown in FIGS. 3 and 4, the heat pump unit 18 includes a compressor 21 and a motor 21 m for driving the compressor 21 arranged side by side along the front side on the bottom surface of the casing 14, and the condenser 22 is disposed in the casing. It is arranged on the back side of the compressor 21 on the bottom surface of the body 14. On the other hand, the evaporator 26 and the heater 28 are arranged side by side with a beam or the like at a position on the back side of the motor 21m and on the side of the condenser 22 and higher than the compressor 21 and the condenser 22. It is installed.

ヒートポンプ部18では、凝縮器22が蒸発器26及び加熱器28よりも低位置にあり、具体的には凝縮器22への冷媒の入口であって冷媒配管27aが接続される冷媒入口ポート50が、蒸発器26からの冷媒の出口であって冷媒配管27eが接続される冷媒出口ポート51と同一高さ位置又は下部にあり、本実施形態の場合には蒸発器26の下面よりも凝縮器22の上面が低位置にある(図6も参照)。また、凝縮器22の冷媒入口ポート50が、加熱器28への冷媒の入口であって冷媒配管27bが接続される冷媒入口ポート52と同一高さ位置又は下部にある。さらに、蒸発器26の冷媒出口ポート51が加熱器28の冷媒入口ポート52と同一高さ位置又は上部にある。なお、本実施形態では液冷媒や液相の水の移動のし易さを考慮しているため、各ポートの高さ位置が同一位置又は上部(下部)にあるとは、各ポート(配管)の内径下面が同一位置又は上部(下部)にあると言い換えてもよく、以下同様とする。   In the heat pump unit 18, the condenser 22 is located at a lower position than the evaporator 26 and the heater 28, and specifically, a refrigerant inlet port 50 that is a refrigerant inlet to the condenser 22 and to which the refrigerant pipe 27 a is connected. The refrigerant outlet from the evaporator 26 is at the same height as or below the refrigerant outlet port 51 to which the refrigerant pipe 27e is connected. In the present embodiment, the condenser 22 is lower than the lower surface of the evaporator 26. Is in a low position (see also FIG. 6). Further, the refrigerant inlet port 50 of the condenser 22 is at the same height as or lower than the refrigerant inlet port 52 that is an inlet of the refrigerant to the heater 28 and to which the refrigerant pipe 27b is connected. Further, the refrigerant outlet port 51 of the evaporator 26 is at the same height position or at the top as the refrigerant inlet port 52 of the heater 28. In addition, in this embodiment, since the ease of movement of liquid refrigerant or liquid phase water is taken into consideration, the height position of each port is in the same position or upper (lower) means that each port (pipe) It may be paraphrased that the lower surface of the inner diameter is at the same position or at the upper part (lower part), and so on.

このようにヒートポンプ部18では、冷媒配管27によって冷媒が循環する各機器のうちで凝縮器22が最も低位置に配置されている。この際、圧縮機21も凝縮器22と同様に筐体14の床面上に設置されているが、圧縮機21の内部で実際に冷媒が流通する圧縮室21aは圧縮機21の最も上部となる位置(シリンダヘッドの内側)に設けられているため、冷媒流通部分での高さ位置では圧縮機21は凝縮器22よりも高位置にある。なお、本実施形態では、別体のモータ21mからの動力がベルト43を介して伝達される開放型構造の圧縮機21を用いているが(図3参照)、モータ21mを一体に組み込んだ密閉型構造の圧縮機を用いてもよい。   As described above, in the heat pump unit 18, the condenser 22 is disposed at the lowest position among the devices in which the refrigerant circulates through the refrigerant pipe 27. At this time, the compressor 21 is also installed on the floor surface of the housing 14 like the condenser 22, but the compression chamber 21 a in which the refrigerant actually circulates inside the compressor 21 is the uppermost part of the compressor 21. Therefore, the compressor 21 is located higher than the condenser 22 at a height position in the refrigerant circulation portion. In this embodiment, the compressor 21 has an open structure in which power from a separate motor 21m is transmitted via a belt 43 (see FIG. 3), but the motor 21m is integrated into a hermetic seal. A compressor having a mold structure may be used.

図3及び図5に示すように、蒸気生成部16は、凝縮器22及び給水ポンプ37が筐体14の底面上で圧縮機21及びモータ21mの背面側に配置されている。一方、水蒸気分離器34は凝縮器22の上部で凝縮器22及び給水ポンプ37よりも高い位置に梁材等を用いて配設されている。また、加熱器28は水蒸気分離器34の側方であって凝縮器22及び給水ポンプ37よりも高い位置に梁材等を用いて配設されている。   As shown in FIGS. 3 and 5, in the steam generation unit 16, the condenser 22 and the water supply pump 37 are disposed on the back surface side of the compressor 21 and the motor 21 m on the bottom surface of the housing 14. On the other hand, the water vapor separator 34 is disposed above the condenser 22 at a position higher than the condenser 22 and the water supply pump 37 using a beam material or the like. The heater 28 is disposed on the side of the water vapor separator 34 and at a position higher than the condenser 22 and the water supply pump 37 using a beam material or the like.

蒸気生成部16では、凝縮器22が水蒸気分離器34よりも低位置にあり、具体的には凝縮器22への被加熱水の入口であって循環管32bが接続される水入口ポート54が、水蒸気分離器34からの分離水の出口であって循環管32bが接続される水出口ポート55よりも下部にあり、本実施形態の場合には凝縮器22の上面が水出口ポート55(水蒸気分離器34の底面)よりも低位置にある(図7も参照)。また、凝縮器22が加熱器28よりも低位置にあり、具体的には凝縮器22の水入口ポート54が、加熱器28からの被加熱水の出口であって循環管32bに接続される給水管32aが接続される水出口ポート56よりも低位置にあり、本実施形態の場合には凝縮器22の上面が加熱器28の下面よりも低位置にある。   In the steam generation unit 16, the condenser 22 is positioned lower than the water vapor separator 34, and specifically, a water inlet port 54 that is an inlet of heated water to the condenser 22 and to which the circulation pipe 32 b is connected. In the case of this embodiment, the upper surface of the condenser 22 is the water outlet port 55 (steam water outlet), which is the outlet of the separated water from the water vapor separator 34 and below the water outlet port 55 to which the circulation pipe 32b is connected. The bottom surface of the separator 34) (see also FIG. 7). Further, the condenser 22 is positioned lower than the heater 28. Specifically, the water inlet port 54 of the condenser 22 is an outlet of water to be heated from the heater 28 and is connected to the circulation pipe 32b. In the present embodiment, the upper surface of the condenser 22 is located lower than the lower surface of the heater 28. The water outlet port 56 is connected to the water supply pipe 32a.

このように蒸気生成部16では、水配管32によって水が流通する各機器のうちで給水ポンプ37を除くと凝縮器22が最も低位置に配置されている。   As described above, in the steam generation unit 16, the condenser 22 is disposed at the lowest position when the water supply pump 37 is excluded from the devices through which water flows through the water pipe 32.

次に、以上のように構成されたヒートポンプ式蒸気生成装置12の動作及び作用について説明する。   Next, the operation and action of the heat pump steam generator 12 configured as described above will be described.

ヒートポンプ式蒸気生成装置12では、その運転時に圧縮機21が駆動されることで凝縮器22で被加熱水が冷媒によって加熱された蒸気が生成され、水蒸気分離器34で分離された蒸気は送出管32dから外部の蒸気利用設備へと送られる。   In the heat pump type steam generator 12, when the compressor 21 is driven during the operation, steam in which the water to be heated is heated by the refrigerant is generated in the condenser 22, and the steam separated in the steam separator 34 is sent out from the delivery pipe. 32d is sent to an external steam utilization facility.

この運転時、ヒートポンプ部18では、図6(A)に示すように圧縮機21から吐出された冷媒が凝縮器22で凝縮するため、凝縮器22の下部から冷媒配管27b、加熱器28、冷媒配管27c及び膨張機構24を経て、蒸発器26の下部までが液冷媒RLで満たされている。また蒸気生成部16では、図7(A)に示すように、被加熱水が供給される給水管32aから加熱器28及び循環管32bが被加熱水Wで満たされ、さらに気液二相流である凝縮器22の上部を除く部分と、水蒸気分離器34の下部から循環管32bまでが被加熱水Wで満たされている。   During this operation, in the heat pump unit 18, the refrigerant discharged from the compressor 21 is condensed in the condenser 22 as shown in FIG. 6A, so the refrigerant pipe 27 b, the heater 28, and the refrigerant are arranged from the lower part of the condenser 22. The lower part of the evaporator 26 is filled with the liquid refrigerant RL through the pipe 27c and the expansion mechanism 24. Moreover, in the steam generation part 16, as shown to FIG. 7 (A), the heater 28 and the circulation pipe 32b are filled with the to-be-heated water W from the feed water pipe 32a to which to-be-heated water is supplied, and also gas-liquid two-phase flow The portion excluding the upper portion of the condenser 22 and the lower portion of the water vapor separator 34 to the circulation pipe 32b are filled with heated water W.

この状態からヒートポンプ式蒸気生成装置12の運転が停止されると、その環境温度によっては上記のように大気圧で常温に沸点を有する特性を持った冷媒がヒートポンプ部18内で液化することがある。また蒸気生成部16内に残留している被加熱水は重力によって下方へと流れ落ちる。   When the operation of the heat pump type steam generator 12 is stopped from this state, depending on the environmental temperature, the refrigerant having the characteristic of having a boiling point at normal pressure at atmospheric pressure as described above may be liquefied in the heat pump unit 18. . Further, the water to be heated remaining in the steam generating section 16 flows downward due to gravity.

そこで、当該ヒートポンプ式蒸気生成装置12では、その運転停止時、制御部20の制御下に開閉弁31を閉制御し、圧縮機21の運転を一定時間継続するポンプダウン運転を実行する。このポンプダウン運転により、蒸発器26に残留しているガス冷媒や圧縮機21内に残留しているガス冷媒が逆止弁30を通って凝縮器22内に流入し、開閉弁31を閉じているため凝縮器22から加熱器28までの間に貯留される。その結果、停止時にヒートポンプ部18内の冷媒が液化した場合には、図6(B)に示すように凝縮器22(及び加熱器28)内に液冷媒RLが集約される。さらに、ヒートポンプ部18では、図6(B)に示すように凝縮器22が回路中で最も低位置にあるため、重力によって凝縮器22へと液冷媒RLが集まり、大部分の冷媒(液冷媒RL)が凝縮器22内に集約されて貯留される。   Therefore, in the heat pump steam generator 12, when the operation is stopped, the on-off valve 31 is controlled to be closed under the control of the control unit 20, and the pump-down operation for continuing the operation of the compressor 21 for a predetermined time is executed. By this pump-down operation, the gas refrigerant remaining in the evaporator 26 and the gas refrigerant remaining in the compressor 21 flow into the condenser 22 through the check valve 30 and close the on-off valve 31. Therefore, it is stored between the condenser 22 and the heater 28. As a result, when the refrigerant in the heat pump unit 18 is liquefied when stopped, the liquid refrigerant RL is collected in the condenser 22 (and the heater 28) as shown in FIG. 6B. Further, in the heat pump unit 18, as shown in FIG. 6B, the condenser 22 is at the lowest position in the circuit, so that the liquid refrigerant RL gathers to the condenser 22 by gravity, and most of the refrigerant (liquid refrigerant) RL) is collected and stored in the condenser 22.

また、蒸気生成部16では、停止時、図7(B)に示すように回路中で最も低位置にある凝縮器22へと残留している液相の水や気相から液化した水である被加熱水Wが重力によって集約される。但し、加熱器28に残留している被加熱水は大部分がそのまま残留することになる。   Further, when the steam generating unit 16 is stopped, it is liquid water remaining in the condenser 22 at the lowest position in the circuit or water liquefied from the gas phase as shown in FIG. 7B. The heated water W is collected by gravity. However, most of the heated water remaining in the heater 28 remains as it is.

従って、運転停止後の起動時、ヒートポンプ部18では液冷媒RLの大部分が凝縮器22に集約されているため、次の起動時に圧縮機21で液圧縮やオイルフォーミング等を生じることが抑制される。また、蒸気生成部16では凝縮器22に被加熱水が集約されているため、起動時に凝縮器22で冷媒による加熱対象がない現象(空焚き現象)を回避でき、熱交換器効率が速やかに向上する。   Therefore, since most of the liquid refrigerant RL is concentrated in the condenser 22 in the heat pump unit 18 at the start after the operation stop, the compressor 21 is prevented from causing liquid compression, oil forming, or the like at the next start-up. The In addition, since the water to be heated is concentrated in the condenser 22 in the steam generation unit 16, a phenomenon in which the condenser 22 does not have a heating target by the refrigerant (start-up phenomenon) can be avoided at startup, and the heat exchanger efficiency can be quickly increased. improves.

以上のように、本実施形態に係るヒートポンプ式蒸気生成装置12では、圧縮機21、凝縮器22、膨張機構24及び蒸発器26を環状に接続し、蒸発器26で外部熱源から熱を回収するヒートポンプ部18と、凝縮器22に被加熱水を供給し、該被加熱水を冷媒によって加熱して蒸気を生成する蒸気生成部16とを備え、圧縮機21の吐出側と凝縮器22の入口側との間を接続する冷媒配管27aに、圧縮機21の停止時に凝縮器22から圧縮機21への冷媒の逆流を防止する逆止弁30が設けられている。   As described above, in the heat pump steam generation device 12 according to the present embodiment, the compressor 21, the condenser 22, the expansion mechanism 24, and the evaporator 26 are connected in an annular shape, and the evaporator 26 recovers heat from the external heat source. A heat pump unit 18 and a steam generation unit 16 that supplies heated water to the condenser 22 and heats the heated water with a refrigerant to generate steam, and includes a discharge side of the compressor 21 and an inlet of the condenser 22. A check valve 30 is provided in the refrigerant pipe 27 a that connects between the two sides to prevent the refrigerant from flowing backward from the condenser 22 to the compressor 21 when the compressor 21 is stopped.

従って、当該ヒートポンプ式蒸気生成装置12では、運転停止時に凝縮器22から圧縮機21への冷媒の逆流が逆止弁30で防止されるため、例えば運転停止直後に凝縮器22から膨張機構24の間にある冷媒が圧縮機21へと逆流し、圧縮機21や膨張機構24に多量の冷媒が残留することを回避でき、停止時に凝縮器22に多量の冷媒を貯留しておくことができる。これにより、運転停止後の起動時に、圧縮機21の吸入側の冷媒配管27eで液化した液冷媒が圧縮機21に吸入されることによる液圧縮や、圧縮機21内の冷凍機油に冷媒が多量溶け込むことによるオイルフォーミング等の不具合の発生を抑制することができる。また、停止時には冷媒が凝縮器22に集約されるため、起動時にはこの凝縮器22に集約された冷媒を循環させればよい。つまり、起動時に冷媒が溜まっている場所が予測できるため、圧縮機21の運転回転数や膨張機構24の開度を円滑に制御でき、適切な過熱度制御による安定した起動運転が可能となる。しかも装置の運転停止直後は、蒸気生成部16内で高温の被加熱水が凝縮器22に戻るため、凝縮器22中の冷媒が気化し易く、一層圧縮機21に逆流し易い懸念があるが、逆止弁30によってこの逆流を確実に防止できる。   Therefore, in the heat pump type steam generator 12, since the backflow of the refrigerant from the condenser 22 to the compressor 21 is prevented by the check valve 30 when the operation is stopped, for example, immediately after the operation is stopped, the condenser 22 and the expansion mechanism 24 It can be avoided that the refrigerant in the middle flows back to the compressor 21 and a large amount of refrigerant remains in the compressor 21 and the expansion mechanism 24, and a large amount of refrigerant can be stored in the condenser 22 when stopped. Thereby, at the time of starting after the operation is stopped, liquid refrigerant liquefied by the refrigerant pipe 27e on the suction side of the compressor 21 is sucked into the compressor 21, and a large amount of refrigerant is contained in the refrigerating machine oil in the compressor 21. Generation | occurrence | production of malfunctions, such as oil forming by melting, can be suppressed. Further, since the refrigerant is collected in the condenser 22 at the time of stopping, the refrigerant collected in the condenser 22 may be circulated at the time of activation. That is, since the place where the refrigerant is accumulated at the time of start-up can be predicted, the operation speed of the compressor 21 and the opening degree of the expansion mechanism 24 can be controlled smoothly, and stable start-up operation by appropriate superheat degree control becomes possible. Moreover, immediately after the operation of the apparatus is stopped, the heated water in the steam generator 16 returns to the condenser 22, so that the refrigerant in the condenser 22 is likely to be vaporized and more likely to flow back to the compressor 21. The check valve 30 can reliably prevent this backflow.

特に本実施形態では、大気圧で当該ヒートポンプ式蒸気生成装置12の使用温度域に沸点を有する特性の冷媒を用いている。すなわち、このような冷媒を用いた場合、装置の運転停止時の周囲温度によってはヒートポンプ部18内の冷媒が液化し、上記した液圧縮やオイルフォーミング等の不具合を発生し易い仕様となっている。しかしながら、当該ヒートポンプ式蒸気生成装置12では圧縮機21の吐出側と凝縮器22の入口側との間を接続する冷媒配管27aに逆止弁30を設けているため、上記したような起動時の圧縮機21の不具合の発生を回避できる。   In particular, in the present embodiment, a refrigerant having a characteristic that has a boiling point in the operating temperature range of the heat pump steam generator 12 at atmospheric pressure is used. That is, when such a refrigerant is used, the refrigerant in the heat pump unit 18 is liquefied depending on the ambient temperature when the operation of the apparatus is stopped, and the specifications such as the above-described liquid compression and oil forming are likely to occur. . However, since the heat pump type steam generator 12 is provided with the check valve 30 in the refrigerant pipe 27a that connects the discharge side of the compressor 21 and the inlet side of the condenser 22, Generation | occurrence | production of the malfunction of the compressor 21 can be avoided.

当該ヒートポンプ式蒸気生成装置12では、ヒートポンプ部18の凝縮器22の出口側と膨張機構24との間に開閉弁31を設けているため、装置の運転停止時に開閉弁31を閉制御することで、凝縮器22(及び加熱器28)に多量の冷媒を確実に閉じ込めておくことができる。これにより、起動時の圧縮機の液圧縮等の不具合の発生をより確実に回避し、安定した起動運転を行うことができる。   In the heat pump steam generator 12, since the on / off valve 31 is provided between the outlet side of the condenser 22 of the heat pump unit 18 and the expansion mechanism 24, the on / off valve 31 is controlled to be closed when the operation of the apparatus is stopped. A large amount of refrigerant can be reliably trapped in the condenser 22 (and the heater 28). Thereby, generation | occurrence | production of malfunctions, such as liquid compression of the compressor at the time of starting, can be avoided more reliably, and the stable starting operation can be performed.

当該ヒートポンプ式蒸気生成装置12では、その運転停止時に制御部20の制御下に、開閉弁31を閉制御すると共に圧縮機21を駆動制御することで、ヒートポンプ部18の冷媒を凝縮器22へと導入するポンプダウン運転を実行する。これにより、運転停止時に膨張機構24、蒸発器26、圧縮機21及び冷媒配管27内の冷媒を凝縮器22へと強制的に集約することができる。その結果、上記のような圧縮機21の不具合の発生等をより確実に回避できる。   In the heat pump steam generator 12, when the operation is stopped, the on-off valve 31 is closed and the compressor 21 is driven and controlled under the control of the control unit 20, whereby the refrigerant in the heat pump unit 18 is transferred to the condenser 22. Execute the pump down operation to be introduced. Thereby, the refrigerant | coolant in the expansion mechanism 24, the evaporator 26, the compressor 21, and the refrigerant | coolant piping 27 can be forcedly integrated to the condenser 22 at the time of a driving | operation stop. As a result, the occurrence of the malfunction of the compressor 21 as described above can be avoided more reliably.

当該ヒートポンプ式蒸気生成装置12では、蒸気生成部16において凝縮器22が水蒸気分離器34よりも低位置に設置されている。これにより、運転時に水蒸気分離器34内に溜まっている液相の水が停止時には凝縮器22へと集約されるため、起動時に凝縮器22で冷媒による加熱対象(被加熱水)が不足する空焚き現象を回避でき、熱交換器効率を速やかに向上させることができる。しかも、運転時においても液相の水の液面が凝縮器22内に安定して保持されるため(図7(A)参照)、運転時に冷媒による加熱対象が不足する空焚き運転も抑制される。これにより、冷媒が過剰に高圧になることが抑えられ、装置の運転効率が向上する。また、当該ヒートポンプ式蒸気生成装置12を構成する機器のうちで比較的大きな重量を有する凝縮器22を低位置に配置することで、装置全体の重心を下げることができ、耐振動性能が向上すると共に、組立作業の作業性も向上する。   In the heat pump steam generator 12, the condenser 22 is installed at a lower position than the water vapor separator 34 in the steam generator 16. As a result, the liquid-phase water accumulated in the water vapor separator 34 during operation is concentrated to the condenser 22 when stopped, so that the condenser 22 has insufficient air to be heated by the refrigerant (heated water) at the time of startup. The soaking phenomenon can be avoided and the heat exchanger efficiency can be improved promptly. Moreover, since the level of the liquid phase water is stably held in the condenser 22 even during operation (see FIG. 7A), air-operated operation in which there is a shortage of heating targets by the refrigerant during operation is also suppressed. The Thereby, it is suppressed that a refrigerant | coolant becomes high pressure too much, and the operating efficiency of an apparatus improves. Moreover, by arranging the condenser 22 having a relatively large weight among the devices constituting the heat pump type steam generating device 12 at a low position, the center of gravity of the entire device can be lowered, and the vibration resistance performance is improved. In addition, the workability of the assembly work is improved.

さらに蒸気生成部16では、凝縮器22が加熱器28よりも低位置に設置されている。これにより、装置の運転時の加熱器28から凝縮器22への被加熱水の供給が円滑になると共に、停止時には加熱器28内の被加熱水も凝縮器22にある程度集約できる。   Further, in the steam generation unit 16, the condenser 22 is installed at a lower position than the heater 28. Accordingly, the water to be heated is smoothly supplied from the heater 28 to the condenser 22 during operation of the apparatus, and the water to be heated in the heater 28 can be concentrated to the condenser 22 to some extent when the apparatus is stopped.

当該ヒートポンプ式蒸気生成装置12では、ヒートポンプ部18において凝縮器22が蒸発器26よりも低位置に設置されている。これにより、装置の運転停止時に蒸発器26内に溜まっている冷媒をより円滑に凝縮器22へと集約することができる。   In the heat pump steam generator 12, the condenser 22 is installed at a lower position than the evaporator 26 in the heat pump unit 18. As a result, the refrigerant accumulated in the evaporator 26 when the operation of the apparatus is stopped can be more smoothly collected into the condenser 22.

なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.

12 ヒートポンプ式蒸気生成装置
14 筐体
16 蒸気生成部
17 温水供給部
18 ヒートポンプ部
20 制御部
21 圧縮機
21m モータ
22 凝縮器
24 膨張機構
26 蒸発器
27a〜27e 冷媒配管
28 加熱器
30 逆止弁
31 開閉弁
32a 給水管
32b 循環管
32c 蒸気管
32d 送出管
34 水蒸気分離器
37 給水ポンプ
40 扉
50,52 冷媒入口ポート
51 冷媒出口ポート
54 水入口ポート
55,56 水出口ポート
RL 液冷媒
W 被加熱水
DESCRIPTION OF SYMBOLS 12 Heat pump type steam generation apparatus 14 Case 16 Steam generation part 17 Hot water supply part 18 Heat pump part 20 Control part 21 Compressor 21m Motor 22 Condenser 24 Expansion mechanism 26 Evaporator 27a-27e Refrigerant piping 28 Heater 30 Check valve 31 On-off valve 32a Water supply pipe 32b Circulation pipe 32c Steam pipe 32d Delivery pipe 34 Steam separator 37 Water supply pump 40 Door 50, 52 Refrigerant inlet port 51 Refrigerant outlet port 54 Water inlet port 55, 56 Water outlet port RL Liquid refrigerant W Heated water

Claims (7)

圧縮機、凝縮器、膨張機構及び蒸発器を環状に接続し、前記蒸発器で外部熱源から熱を回収するヒートポンプ部と、
前記凝縮器に被加熱水を供給し、該被加熱水を冷媒によって加熱して蒸気を生成する蒸気生成部と、
を備えるヒートポンプ式蒸気生成装置であって、
前記圧縮機の吐出側と前記凝縮器の入口側との間を接続する冷媒配管に、前記圧縮機の停止時に前記凝縮器から前記圧縮機への冷媒の逆流を防止する弁が設けられることを特徴とするヒートポンプ式蒸気生成装置。
A compressor, a condenser, an expansion mechanism, and an evaporator connected in an annular shape, and a heat pump unit that recovers heat from an external heat source in the evaporator;
A steam generator that supplies heated water to the condenser and heats the heated water with a refrigerant to generate steam;
A heat pump type steam generator comprising:
A refrigerant pipe connecting the discharge side of the compressor and the inlet side of the condenser is provided with a valve for preventing a reverse flow of the refrigerant from the condenser to the compressor when the compressor is stopped. A heat pump type steam generator characterized by the above.
請求項1記載のヒートポンプ式蒸気生成装置において、
前記冷媒は、大気圧で当該ヒートポンプ式蒸気生成装置の使用温度域に沸点を有する特性であることを特徴とするヒートポンプ式蒸気生成装置。
In the heat pump type steam generator according to claim 1,
The heat pump type steam generating apparatus, wherein the refrigerant has a characteristic of having a boiling point in an operating temperature range of the heat pump type steam generating apparatus at atmospheric pressure.
請求項1又は2記載のヒートポンプ式蒸気生成装置において、
前記ヒートポンプ部の前記凝縮器の出口側と前記膨張機構との間には、開閉弁が設けられることを特徴とするヒートポンプ式蒸気生成装置。
In the heat pump type steam generator according to claim 1 or 2,
An on-off valve is provided between the outlet side of the condenser of the heat pump unit and the expansion mechanism.
請求項3記載のヒートポンプ式蒸気生成装置において、
当該ヒートポンプ式蒸気生成装置の運転停止時に、前記開閉弁を閉制御すると共に前記圧縮機を駆動制御することで、前記ヒートポンプ部の冷媒を前記凝縮器へと導入するポンプダウン運転を実行する制御部を備えることを特徴とするヒートポンプ式蒸気生成装置。
In the heat pump type steam generator according to claim 3,
A control unit that performs a pump-down operation for introducing the refrigerant of the heat pump unit into the condenser by controlling the closing of the on-off valve and driving the compressor when the heat pump steam generator is stopped. A heat pump steam generator characterized by comprising:
請求項1〜4のいずれか1項に記載のヒートポンプ式蒸気生成装置において、
前記蒸気生成部は、被加熱水を前記凝縮器に供給する給水経路と、前記被加熱水が前記凝縮器で前記冷媒によって加熱されることで生成された気液二相流を水と水蒸気とに分離させる水蒸気分離器と、分離した水を前記給水経路からの被加熱水と共に前記凝縮器へと循環させる循環経路と、前記水蒸気分離器で分離された水蒸気を外部に送り出す送出経路とを有し、
前記凝縮器が前記水蒸気分離器よりも低位置に設置されることを特徴とするヒートポンプ式蒸気生成装置。
In the heat pump type steam generator according to any one of claims 1 to 4,
The steam generation unit includes a water supply path for supplying heated water to the condenser, and a gas-liquid two-phase flow generated when the heated water is heated by the refrigerant in the condenser. A water vapor separator for separating the water vapor, a circulation path for circulating the separated water to the condenser together with heated water from the water supply path, and a delivery path for sending the water vapor separated by the water vapor separator to the outside. And
The heat pump type steam generator characterized in that the condenser is installed at a lower position than the water vapor separator.
請求項1〜5のいずれか1項に記載のヒートポンプ式蒸気生成装置において、
前記ヒートポンプ部の前記凝縮器と前記膨張機構との間には、前記凝縮器を出た冷媒と、前記給水経路を流通する前記凝縮器への導入前の被加熱水とを熱交換させる熱交換器が設けられ、
前記蒸気生成部では、前記凝縮器が前記熱交換器よりも低位置に設置されることを特徴とするヒートポンプ式蒸気生成装置。
In the heat pump type steam generator according to any one of claims 1 to 5,
Between the condenser of the heat pump unit and the expansion mechanism, heat exchange is performed to exchange heat between the refrigerant exiting the condenser and the water to be heated before being introduced into the condenser flowing through the water supply path. Vessel is provided,
In the steam generation part, the condenser is installed at a lower position than the heat exchanger.
請求項1〜6のいずれか1項に記載のヒートポンプ式蒸気生成装置において、
前記ヒートポンプ部では、前記凝縮器が前記蒸発器よりも低位置に設置されることを特徴とするヒートポンプ式蒸気生成装置。
In the heat pump type steam generator according to any one of claims 1 to 6,
In the heat pump unit, the condenser is installed at a lower position than the evaporator.
JP2015165597A 2015-08-25 2015-08-25 Heat pump steam generator Active JP5950010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165597A JP5950010B1 (en) 2015-08-25 2015-08-25 Heat pump steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165597A JP5950010B1 (en) 2015-08-25 2015-08-25 Heat pump steam generator

Publications (2)

Publication Number Publication Date
JP5950010B1 JP5950010B1 (en) 2016-07-13
JP2017044377A true JP2017044377A (en) 2017-03-02

Family

ID=56375172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165597A Active JP5950010B1 (en) 2015-08-25 2015-08-25 Heat pump steam generator

Country Status (1)

Country Link
JP (1) JP5950010B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702271A (en) * 2017-08-30 2018-02-16 青岛海尔空调器有限总公司 The fault detect of air-conditioning and its supercooling tube group and processing method
JP2020098037A (en) * 2018-12-17 2020-06-25 富士電機株式会社 Steam generation device
WO2022270593A1 (en) * 2021-06-24 2022-12-29 サンデン・アドバンストテクノロジー株式会社 Heat medium temperature adjustment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062054A1 (en) * 2016-09-27 2019-07-04 東芝キヤリア株式会社 Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752765A (en) * 1980-09-16 1982-03-29 Mitsubishi Electric Corp Air conditioning equipment
JPS58127060A (en) * 1982-12-17 1983-07-28 三菱電機株式会社 Refrigeration cycle device
JPH1137573A (en) * 1997-07-17 1999-02-12 Mitsubishi Denki Bill Techno Service Kk Refrigerant circuit of freezing air conditioner
JP2000320993A (en) * 1999-05-13 2000-11-24 Toyo Eng Works Ltd Fan coil evaporator
WO2015068531A1 (en) * 2013-11-08 2015-05-14 富士電機株式会社 Steam-generating heat pump and method for controlling operation of steam-generating heat pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752765A (en) * 1980-09-16 1982-03-29 Mitsubishi Electric Corp Air conditioning equipment
JPS58127060A (en) * 1982-12-17 1983-07-28 三菱電機株式会社 Refrigeration cycle device
JPH1137573A (en) * 1997-07-17 1999-02-12 Mitsubishi Denki Bill Techno Service Kk Refrigerant circuit of freezing air conditioner
JP2000320993A (en) * 1999-05-13 2000-11-24 Toyo Eng Works Ltd Fan coil evaporator
WO2015068531A1 (en) * 2013-11-08 2015-05-14 富士電機株式会社 Steam-generating heat pump and method for controlling operation of steam-generating heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702271A (en) * 2017-08-30 2018-02-16 青岛海尔空调器有限总公司 The fault detect of air-conditioning and its supercooling tube group and processing method
JP2020098037A (en) * 2018-12-17 2020-06-25 富士電機株式会社 Steam generation device
JP7192471B2 (en) 2018-12-17 2022-12-20 富士電機株式会社 steam generator
WO2022270593A1 (en) * 2021-06-24 2022-12-29 サンデン・アドバンストテクノロジー株式会社 Heat medium temperature adjustment system

Also Published As

Publication number Publication date
JP5950010B1 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
TWI577949B (en) Lubrication and cooling system
JP5950010B1 (en) Heat pump steam generator
KR200491391Y1 (en) ORCC for converting waste heat from a heat source into mechanical energy and a cooling system using such ORCC
JP6785440B2 (en) Refrigeration cycle equipment
JP2014080912A (en) Gas compressor
KR101668363B1 (en) Energy system
JP2017072099A (en) Multistage compressor and refrigeration system including the same
JP2008082623A (en) Compression type refrigerating device
JP6423736B2 (en) Cooling system
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
US20180003438A1 (en) Solid-Liquid Separation System
KR102189168B1 (en) Compressor assembly and its control method and cooling/heating system
JP6696226B2 (en) Heat pump type steam generator
JP2007147211A (en) Control method for refrigerating cycle device and refrigerating cycle device using the same
JP5821411B2 (en) Steam generator
JP2012097963A (en) Heat pump and method for controlling the same
JP2011027358A (en) Heater
JP6610157B2 (en) Heat pump steam generator
JP6528467B2 (en) Heat pump type steam generating device and operating method of heat pump type steam generating device
JP2018146144A (en) Refrigeration cycle device and operating method for the same
JP6174191B2 (en) Gas compressor
JP5671442B2 (en) Thermal energy utilization apparatus and operation method thereof
JP6455348B2 (en) Heat pump steam generator and method of operating the heat pump steam generator
JP6394525B2 (en) Heat pump steam generator
JP6643711B2 (en) Refrigeration cycle apparatus and cooling method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5950010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250