JP2017038537A - Production method of algaenan composition - Google Patents

Production method of algaenan composition Download PDF

Info

Publication number
JP2017038537A
JP2017038537A JP2015161122A JP2015161122A JP2017038537A JP 2017038537 A JP2017038537 A JP 2017038537A JP 2015161122 A JP2015161122 A JP 2015161122A JP 2015161122 A JP2015161122 A JP 2015161122A JP 2017038537 A JP2017038537 A JP 2017038537A
Authority
JP
Japan
Prior art keywords
arginane
microalgae
treatment
composition
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015161122A
Other languages
Japanese (ja)
Inventor
西川 善弘
Yoshihiro Nishikawa
善弘 西川
信 渡邉
Makoto Watanabe
信 渡邉
幹英 出村
Mikihide Demura
幹英 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
University of Tsukuba NUC
Original Assignee
Unitika Ltd
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd, University of Tsukuba NUC filed Critical Unitika Ltd
Priority to JP2015161122A priority Critical patent/JP2017038537A/en
Publication of JP2017038537A publication Critical patent/JP2017038537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide production methods of efficiently and extremely simply obtaining high purity algaenan compositions from biomass derived from microalgae.SOLUTION: The present invention provides a production method of an algaenan composition wherein floating separation of algaenan from slurry comprising biomass-ground products derived from microalgae is performed. Preferably the biomass-ground products derived from microalgae is obtained by a wet grinding treatment, and preferably the specific gravity of the slurry solvent is 0.9-1.2.SELECTED DRAWING: None

Description

本発明は、微細藻類由来バイオマスから、効率よく極めて簡便に、高純度のアルジナン組成物を得る製造方法に関するものである。   The present invention relates to a production method for obtaining a highly pure arginane composition from microalga-derived biomass efficiently and very simply.

藻類が産生する炭化水素類はバイオ燃料として有望視され、産業化に向けた研究が進められている。藻類の中でもボトリオコッカス属の微細藻類は、重油相当の性質を持つ炭化水素を産生することから液体燃料を効率よく得られる藻類として注目されている。ボトリオコッカス属の微細藻類から産生する炭化水素は、構造上の特徴より、Race−A、Race−B、Race−LおよびRace−Sの大きく4つのグループに分けられ、なかでもC2n−10(n=30〜37)で表されるトリテルペン構造を持つ炭化水素を産生するRace−Bグループの株は、30〜40質量%の炭化水素を産生するものが多い(例えば、非特許文献1参照)。 Hydrocarbons produced by algae are considered promising as biofuels, and research for industrialization is underway. Among the algae, microalgae belonging to the genus Botryococcus are attracting attention as algae from which liquid fuel can be efficiently obtained because they produce hydrocarbons having properties equivalent to heavy oil. The hydrocarbons produced from the microalgae of the genus Botryococcus are divided into four groups, Race-A, Race-B, Race-L and Race-S, based on the structural features, and in particular, C n H 2n The strain of the Race-B group that produces hydrocarbons having a triterpene structure represented by −10 (n = 30 to 37) often produces 30 to 40% by mass of hydrocarbons (for example, non-patent literature) 1).

ボトリオコッカス属の微細藻類は、成長の過程で数個〜数百個の細胞の集合体(コロニー)を形成し、自身が産生した炭化水素類等の重合合成物であるバイオポリマー(アルジナン)によってコロニーの構造が維持されている。前述のようにして産生した炭化水素類は、このアルジナン中に30〜40質量%程度まで保持、蓄積される。このようにして蓄積した炭化水素類は溶媒抽出等の過程を経てバイオ燃料やバイオリファイナリーの原料として利用されるが、炭化水素類を除かれた大量の残渣は廃棄物となり、藻類由来バイオ燃料の産業化の足枷となっていた(例えば、非特許文献2参照)。   A microalga of the genus Botryococcus forms an aggregate (colony) of several to several hundred cells during the growth process, and is a biopolymer (arginane) that is a polymerization compound such as hydrocarbons produced by itself. The colony structure is maintained. The hydrocarbons produced as described above are retained and accumulated up to about 30 to 40% by mass in this arginane. The hydrocarbons accumulated in this way are used as raw materials for biofuels and biorefinery through processes such as solvent extraction, but a large amount of residue from which hydrocarbons have been removed becomes waste, and algae-derived biofuels It became a foothold of industrialization (for example, refer nonpatent literature 2).

このボトリオコッカス属の微細藻類より炭化水素類を除かれた大量の残渣は、先に述べた炭化水素類等の重合合成物であるアルジナンを50〜60質量%程度含有するが、該アルジナンの純度を高めるために、従来は該残渣を原料として、各種溶媒による溶出分の除去、水酸化カリウムによる鹸化処理、リン酸処理、各種溶媒による洗浄処理等、煩雑な操作を経て得られていた(例えば、非特許文献3参照)。   A large amount of residue obtained by removing hydrocarbons from the microalgae of the genus Botryococcus contains about 50 to 60% by mass of arginane, which is a polymerized product of the hydrocarbons described above. In order to increase the purity, conventionally, the residue was used as a raw material, and it was obtained through complicated operations such as removal of elution with various solvents, saponification treatment with potassium hydroxide, phosphoric acid treatment, and washing treatment with various solvents ( For example, refer nonpatent literature 3).

一方、アルジナンについては機器分析による構造推定がなされており、ボトリオコッカス属の微細藻類の種によって若干異なる構造を有するものの、炭化水素鎖のなかに二重結合が存在することから、ゴム様、スポンジ様の弾力を有すると予想され(例えば、非特許文献4)、各種工業分野での利用が期待されているが、前述のように煩雑な精製操作が必要であるばかりか、アルジナンは酸、アルカリ等の各種薬剤への耐性が高く、また、有機溶剤等に溶解もしないことから、有効に利用されていない現状であり、効率よく極めて簡便にアルジナンの純度を高める製造方法の開発が望まれていた。   On the other hand, the structure of alginane has been estimated by instrumental analysis, and although it has a slightly different structure depending on the species of microalgae of the genus Botryococcus, since a double bond exists in the hydrocarbon chain, rubber-like, It is expected to have a sponge-like elasticity (for example, Non-Patent Document 4) and is expected to be used in various industrial fields. However, as described above, complicated purification operations are required, and alginane is an acid, Since it is highly resistant to various chemicals such as alkali and does not dissolve in organic solvents, it is currently not effectively used, and development of a production method for increasing the purity of arginane efficiently and easily is desired. It was.

Microbiol.Cult.Coll.26(1).1−10(2010)p.4Microbiol. Cult. Coll. 26 (1). 1-10 (2010) p. 4 平成23年度農山漁村6次産業化対策事業「農山漁村における藻類バイオマスファームの事業化可能性調査報告書」p.72011 Rural and Mountainous Village Sixth Industrialization Measures Project “Survey Report on Practical Use of Algal Biomass Farms in Rural and Mountainous Villages” p. 7 Phytochemistry 22(2).389−97(1983)p.395Phytochemistry 22 (2). 389-97 (1983) p. 395 Microbiol.Cult.Coll.26(1).1−10(2010)p.5−7Microbiol. Cult. Coll. 26 (1). 1-10 (2010) p. 5-7

本発明の目的は、微細藻類由来バイオマスから、効率よく極めて簡便に高純度のアルジナン組成物を得る製造方法を提供することにある。   An object of the present invention is to provide a production method for obtaining a highly pure arginane composition from microalga-derived biomass efficiently and very simply.

本発明者らは、上記課題の解決のため鋭意研究を重ねた結果、微細藻類由来バイオマス粉砕物がスラリー中で、スラリー溶媒と該粉砕物との比重差により極めて容易に浮遊分離可能であることを見出した。本発明者らは、さらに研究を重ねて、微細藻類由来バイオマス粉砕物を含むスラリーから、アルジナンを浮遊分離処理することで、効率よく極めて簡便に高純度のアルジナン組成物を得ることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that the microalgae-derived biomass pulverized product can be suspended and separated very easily in the slurry due to the difference in specific gravity between the slurry solvent and the pulverized product. I found. The present inventors have further researched and found that a high-purity arginane composition can be obtained efficiently and simply by subjecting arginane to floating separation from a slurry containing a pulverized biomass of microalgae. Completed the invention.

すなわち、本発明は、以下の(1)〜(7)を要旨とするものである。
(1)微細藻類由来バイオマス粉砕物を含むスラリーから、アルジナンを浮遊分離処理することを特徴とするアルジナン組成物の製造方法。
(2)前記微細藻類由来バイオマス粉砕物が、湿式粉砕処理にて得られたものである(1)記載のアルジナン組成物の製造方法。
(3)前記スラリー溶媒の比重が0.9〜1.2であることを特徴とする(1)または(2)記載のアルジナン組成物の製造方法。
(4)前記微細藻類がボトリオコッカス属由来であることを特徴とする(1)〜(3)いずれかに記載のアルジナン組成物の製造方法。
(5)前記浮遊分離処理が遠心分離処理であることを特徴とする(1)〜(4)いずれかに記載のアルジナン組成物の製造方法。
(6)前記浮遊分離処理が静置処理であることを特徴とする(1)〜(4)いずれかに記載のアルジナン組成物の製造方法。
(7)(1)〜(6)いずれかに記載の製造方法により得られたアルジナン組成物。
That is, the gist of the present invention is the following (1) to (7).
(1) A method for producing an arginane composition comprising subjecting arginane to a floating separation treatment from a slurry containing a pulverized product of biomass derived from microalgae.
(2) The method for producing an arginane composition according to (1), wherein the microalgae-derived biomass pulverized product is obtained by a wet pulverization treatment.
(3) The method for producing an arginane composition according to (1) or (2), wherein the slurry solvent has a specific gravity of 0.9 to 1.2.
(4) The method for producing an arginane composition according to any one of (1) to (3), wherein the microalga is derived from the genus Botryococcus.
(5) The method for producing an arginane composition according to any one of (1) to (4), wherein the floating separation treatment is a centrifugal separation treatment.
(6) The method for producing an arginane composition according to any one of (1) to (4), wherein the floating separation treatment is a stationary treatment.
(7) An arginane composition obtained by the production method according to any one of (1) to (6).

本発明によれば、微細藻類由来バイオマス粉砕物を含むスラリーから、アルジナンを浮遊分離処理することにより、効率よく極めて簡便に高純度のアルジナン組成物を得ることができる。   According to the present invention, a high-purity arginane composition can be obtained efficiently and simply by subjecting arginane to a floating separation treatment from a slurry containing a pulverized product of microalgae-derived biomass.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の微細藻類由来バイオマスは、主にバイオ燃料を産生する微細藻類由来のバイオマスをいい、具体的には、緑藻類、珪藻類由来のバイオマス等が挙げられる。さらに具体的には、Botryococcus braunii,Chlorella spp.,Cryptothecodinium cohnii,Cylindrotheca spp.,Dunaliella primolecta,Isochrysis spp.,Monallanthus salina,Nannochloris spp.,Nannochloropsis spp.,Neochloris spp.,Nitzschia spp.,Phaeodactylum tricornutum,Schizochytrium spp.,Tetraselmis suieiaなどの由来のバイオマスが挙げられる。   The microalga-derived biomass of the present invention refers to biomass derived from microalgae that mainly produces biofuel, and specific examples include biomass derived from green algae and diatoms. More specifically, Botryococcus braunii, Chlorella spp., Cryptothecodinium chonii, Cylindrotheca spp. Dunaliella primorecta, Isochrysis spp. , Monallanthus salina, Nannochloris spp. , Nannochloropsis spp. , Neochloris spp. , Nitzschia spp. , Phaeodactylum tricornutum, Schizochytrium spp. And biomass derived from Tetraselmis suieia.

なかでも、重油相当の炭化水素類を産生するボトリオコッカス(Botryococcus)属由来のバイオマスであることが好ましい。   Among these, biomass derived from the genus Botryococcus that produces hydrocarbons equivalent to heavy oil is preferable.

微細藻類由来のバイオマスは、微細藻類自体、微細藻類を乾燥したもの、各種凝集剤により凝集回収した微細藻類、凝集回収した微細藻類の乾燥物のいずれであってもかまわないが、それらから有機溶媒により炭化水素類を抽出した後の抽出残渣であることが好ましく、前述のボトリオコッカス属微細藻類から有機溶媒により炭化水素類を抽出した後の抽出残渣であることがより好ましい。   Biomass derived from microalgae may be any of microalgae itself, dried microalgae, microalgae aggregated and recovered with various coagulants, and dried microalgae aggregated and recovered, and organic solvents from them. It is preferably an extraction residue after the hydrocarbons are extracted by the above, and more preferably an extraction residue after the hydrocarbons are extracted from the aforementioned Botryococcus microalgae with an organic solvent.

具体的には、上記微細藻類を、ヘキサン、クロロホルム、メタノール、エタノール、ジエチルエーテル、アセトンからなる1群の有機溶媒から1種以上、又はヘキサン/アセトンの混合溶媒、クロロホルム/メタノールの混合溶媒、エタノール/ジエチルエーテルの混合溶媒などに例示される前記有機溶媒の混合物に分散し、微細藻類中の炭化水素類を抽出することにより得られる抽出残渣を、微細藻類由来バイオマスとして利用することができる。   Specifically, the microalgae is one or more selected from a group of organic solvents consisting of hexane, chloroform, methanol, ethanol, diethyl ether and acetone, or a mixed solvent of hexane / acetone, a mixed solvent of chloroform / methanol, ethanol. An extraction residue obtained by dispersing in a mixture of organic solvents exemplified by a mixed solvent of / diethyl ether and extracting hydrocarbons in microalgae can be used as biomass derived from microalgae.

本発明において微細藻類由来バイオマスは、そのまま後述する機械的粉砕処理の原料として用いることができるが、さらにアルジナンの純度を高めるため、あらかじめ塊状等の形状に加工しておくことが好ましい。   In the present invention, the microalgae-derived biomass can be used as it is as a raw material for the mechanical pulverization process described later, but it is preferably processed in advance into a shape such as a lump in order to further increase the purity of the alginane.

上記微細藻類由来バイオマスは、機械的粉砕処理により微細藻類由来バイオマス粉砕物とすることができる。機械的粉砕処理は、乾燥状態により機械的粉砕処理を行なう他、溶媒を添加した湿式粉砕処理により粉砕処理を行うことができるが、湿式粉砕処理が好ましい。   The microalga-derived biomass can be made into a microalga-derived biomass pulverized product by mechanical pulverization. The mechanical pulverization treatment can be performed by a wet pulverization treatment in which a solvent is added in addition to performing a mechanical pulverization treatment in a dry state, but a wet pulverization treatment is preferable.

湿式粉砕処理は、溶媒が存在する状態で機械的粉砕処理を行うことをいうが、機械的粉砕処理の中でも、ボールミル処理、ビーズミル処理、ホモジナイザー処理のいずれか1つ以上を組み合わせることが効率の良いアルジナンの分離の観点から好ましい。   The wet pulverization process is a mechanical pulverization process in the presence of a solvent. Among mechanical pulverization processes, it is efficient to combine any one or more of ball milling, bead milling, and homogenizer processing. It is preferable from the viewpoint of separation of arginane.

該湿式粉砕処理に用いる溶媒は特に限定されないが、例えば、水、食塩水、アルカリ水溶液またはこれらの混合物等が挙げられる。   The solvent used in the wet pulverization treatment is not particularly limited, and examples thereof include water, saline, alkaline aqueous solution, or a mixture thereof.

該ボールミル処理、該ビーズミル処理においては、微細藻類由来バイオマス1容量に対して0.5〜2容量のメディア(例えば、ボール、ビーズ)を用いることが好ましい。また、該メディアの直径は特に限定されないが、0.03〜100mmが好ましく、0.1〜50mmがより好ましく、1〜20mmがいっそう好ましい。該メディアの材質は特に限定されないが、微細藻類由来バイオマスと比較して硬度が高いものが好ましく、ステンレス製、アルミナ製、ジルコニア製がより好ましい。粉砕容器(ポット、ドラム)はボールと同質のものが好ましい。   In the ball mill treatment and the bead mill treatment, it is preferable to use 0.5 to 2 volumes of media (for example, balls and beads) with respect to 1 volume of biomass from microalgae. The diameter of the medium is not particularly limited, but is preferably 0.03 to 100 mm, more preferably 0.1 to 50 mm, and even more preferably 1 to 20 mm. The material of the media is not particularly limited, but is preferably higher in hardness than microalgae-derived biomass, and more preferably stainless steel, alumina, or zirconia. The grinding container (pot, drum) is preferably the same as the ball.

該ホモジナイザー処理では、例えばポリトロンホモジナイザーのように固定刃と回転刃による機械的引きちぎり(ロータ・ステータ)方式や、高速回転するディスク・ロータとステータの間隙を高圧で通過させるコロイドミル方式のいずれも使用できる。   The homogenizer treatment includes, for example, a mechanical tearing (rotor / stator) method using a fixed blade and a rotating blade, such as a polytron homogenizer, and a colloid mill method that allows a high-speed rotation between a disk rotor and a stator to pass through at high pressure. Can be used.

該湿式粉砕処理の前に、溶媒の吸収を速やかに行なうため、微細藻類由来バイオマスを前述の溶媒に予め浸漬しておいても良い。湿式粉砕処理時または該湿式粉砕処理前の予め浸漬時における当該溶媒量は、微細藻類由来バイオマスの溶媒中での流動性を確認しながら調節すればよいが、微細藻類由来バイオマス1質量部に対して3〜20質量部とするのが好ましく、5〜10質量部とするのがより好ましい。3〜20質量部とすることで流動性を確保しつつ、高い粉砕効率を得ることができる。   Prior to the wet pulverization treatment, in order to quickly absorb the solvent, the microalgae-derived biomass may be previously immersed in the solvent. The amount of the solvent at the time of wet pulverization or pre-immersion before the wet pulverization may be adjusted while confirming the fluidity of the microalgae-derived biomass in the solvent. 3 to 20 parts by mass is preferable, and 5 to 10 parts by mass is more preferable. High grinding efficiency can be obtained while ensuring fluidity by setting it as 3-20 mass parts.

本発明における微細藻類由来バイオマス粉砕物を含むスラリーは、前述の粉砕物を溶媒に分散したものをいう。該溶媒は特に限定されないが、例えば、水、食塩水、アルカリ水溶液またはこれらの混合物等が挙げられる。   The slurry containing the microalga-derived biomass pulverized product in the present invention refers to a slurry obtained by dispersing the above pulverized product in a solvent. The solvent is not particularly limited, and examples thereof include water, saline, alkaline aqueous solution, or a mixture thereof.

アルジナンの浮遊促進の観点から、該溶媒の比重は、0.9〜1.2が好ましく、0.95〜1.1がより好ましく、1.0〜1.07がいっそう好ましい。中でも、0〜10質量%濃度の食塩水(該溶媒の比重が1.0〜1.07相当)は、後述する浮遊分離処理においてアルジナンと他の水溶性成分、不溶性成分との分離が速やかに起こるため好ましい。また、分離精製の効率の観点から、前述の湿式粉砕処理に用いる溶媒と当該スラリーに用いる溶媒は同じものがより好ましい。   From the viewpoint of promoting the suspension of arginane, the specific gravity of the solvent is preferably 0.9 to 1.2, more preferably 0.95 to 1.1, and even more preferably 1.0 to 1.07. Among them, 0-10 mass% salt solution (the specific gravity of the solvent is equivalent to 1.0 to 1.07) allows rapid separation of arginane from other water-soluble components and insoluble components in the floating separation treatment described below. This is preferable because it occurs. Further, from the viewpoint of the efficiency of separation and purification, the solvent used for the above-mentioned wet pulverization treatment and the solvent used for the slurry are more preferably the same.

次に、浮遊分離処理工程について説明する。
本発明における浮遊分離処理は、前述の微細藻類由来バイオマス粉砕物を含むスラリーから、該溶媒とアルジナンとの比重差を利用して、アルジナンを浮遊分離させる工程である。該浮遊分離処理は、アルジナンを浮遊分離できる処理であれば特に限定されないが、遠心分離処理、静置処理が工業的にも適している。
Next, the floating separation process will be described.
The floating separation treatment in the present invention is a step of floating and separating arginane from a slurry containing the above-described pulverized product of microalgae using the specific gravity difference between the solvent and arginane. The floating separation treatment is not particularly limited as long as it is a treatment that can float and separate arginane, but centrifugal separation treatment and stationary treatment are also industrially suitable.

遠心分離処理は、遠心力を利用した分離処理であり、例えば、円筒(シャープレス)方式、分離板(ディスク)方式、傾寫(デカンタ)方式等、三層分離が好ましい。   Centrifugation processing is separation processing using centrifugal force, and for example, three-layer separation such as a cylindrical (sharpless) method, a separation plate (disk) method, and a decanter method is preferable.

静置処理は、微細藻類由来バイオマス粉砕物を含むスラリーから、静置状態によりアルジナンを浮遊分離するものである。該静置処理では、固液界面を視認するためののぞき窓が設置され、かつ、底部に排液口の設置されているタンク等の使用が好ましい。   In the stationary treatment, arginane is floated and separated in a stationary state from a slurry containing a pulverized biomass of microalgae. In the stationary treatment, it is preferable to use a tank or the like in which an observation window for visually recognizing the solid-liquid interface is installed and a drainage port is installed at the bottom.

前述の浮遊分離処理により得られたアルジナン組成物は、洗浄、脱水、乾燥、粉砕等の工程を付すことができる。さらに、利用性を高めるために、乾燥粉体を得る前に種々の水溶性成分、溶媒可溶性成分の除去操作を行うことが好ましい。   The arginane composition obtained by the aforementioned floating separation treatment can be subjected to steps such as washing, dehydration, drying, and pulverization. Furthermore, in order to improve the usability, it is preferable to perform various water-soluble components and solvent-soluble component removal operations before obtaining a dry powder.

種々の水溶性成分の除去操作としては、酸処理、アルカリ処理、温熱水処理等が挙げられる。水溶性成分の除去操作に用いられる薬剤としては、塩酸、硫酸、トリクロロ酢酸等の酸類、水酸化ナトリウム、水酸化カリウム等のアルカリ類が挙げられる。また、温熱水処理の温度としては20〜110℃が好ましく、25〜80℃がより好ましく、30〜50℃がいっそう好ましい。当該酸処理、アルカリ処理及び温熱水処理は、併用して行なうこともできる。   Examples of the operation for removing various water-soluble components include acid treatment, alkali treatment, hot water treatment and the like. Examples of the chemical used for the operation for removing the water-soluble component include acids such as hydrochloric acid, sulfuric acid and trichloroacetic acid, and alkalis such as sodium hydroxide and potassium hydroxide. Moreover, as temperature of a hot water process, 20-110 degreeC is preferable, 25-80 degreeC is more preferable, and 30-50 degreeC is still more preferable. The acid treatment, alkali treatment and hot water treatment can be performed in combination.

種々の溶媒可溶性成分の除去操作としては、浸漬、攪拌、還流、ソックスレー抽出処理等の抽出処理やそれに次ぐ遠心分離、濾過処理等の分離処理が挙げられる。種々の溶媒可溶性成分の除去操作に用いられる溶媒としては、メタノール、エタノール、イソプロパノール等のアルコール類、クロロホルム、テトラクロロエタン等の含有ハロゲン溶媒類、酢酸エチル、メチルエチルケトン等の高極性溶媒類、トルエン、ヘキサン等の低極性溶媒類、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン等の非プロトン性極性溶媒類等が挙げられ、これらのうちのいくつかを順次単独に、あるいは、混合溶媒として使用することもできる。   Examples of the operation for removing various solvent-soluble components include extraction treatment such as immersion, stirring, reflux, and Soxhlet extraction treatment, and subsequent separation treatment such as centrifugation and filtration treatment. Solvents used for removal of various solvent-soluble components include alcohols such as methanol, ethanol and isopropanol, halogen solvents containing chloroform and tetrachloroethane, highly polar solvents such as ethyl acetate and methyl ethyl ketone, toluene and hexane Low polar solvents such as dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like, and some of these may be used alone or as a mixed solvent. it can.

次に、実施例により、本発明をより詳細に説明する。なお、本発明は、実施例に限定されるものではない。   Next, the present invention will be described in more detail by way of examples. In addition, this invention is not limited to an Example.

本発明の実施例におけるアルジナン純度(含有量)の測定方法を以下に示す。   The measuring method of the arginane purity (content) in the Example of this invention is shown below.

1.アルジナンの含有量(純度)
アルジナン組成物に対し、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー(株)製、TG/DTA7200)を用い、以下の温度条件における400℃以上での重量減少率より求めた。
<測定条件>
昇温度開始温度;25℃
最終到達温度;800℃
昇温速度;+10℃/分(なお、100℃の時点で30分維持する)
温度校正標準試料(インジウム(156.6℃)、亜鉛(419.4℃)
1. Arginane content (purity)
It calculated | required from the weight decreasing rate in 400 degreeC or more on the following temperature conditions using the differential thermothermal weight simultaneous measuring apparatus (SII nanotechnology Co., Ltd. make, TG / DTA7200) with respect to the arginane composition.
<Measurement conditions>
Start-up temperature: 25 ° C
Final temperature: 800 ° C
Temperature rising rate: + 10 ° C./min (maintained at 100 ° C. for 30 minutes)
Temperature calibration standard sample (indium (156.6 ° C), zinc (419.4 ° C)

<参考例1>
ボトリオコッカス属の微細藻類乾燥物500gにヘキサン5Lを加え、室温下、24時間静置して炭化水素類等を抽出した。同様の操作をさらに2回繰り返した後ドラフト内で室温下風乾し、抽出残渣乾燥物350gを得た。抽出残渣乾燥物をブレンダにて粉砕し、孔径5mmの篩を通し、抽出残渣乾燥粉末A320g(アルジナン粗精製物。アルジナン純度33%)を得た。
<Reference Example 1>
To 500 g of dried Botryococcus microalgae, 5 L of hexane was added, and the mixture was allowed to stand at room temperature for 24 hours to extract hydrocarbons and the like. The same operation was further repeated twice and then air-dried in a draft at room temperature to obtain 350 g of a dried extract residue. The dried residue of the extraction residue was pulverized with a blender and passed through a sieve having a pore size of 5 mm to obtain 320 g of a dried extraction residue powder (Arginane crude product, Arginane purity 33%).

<比較例1>
非特許文献3記載の方法にしたがってアルジナンを調製した。すなわち、参考例1で得られた抽出残渣乾燥粉末A20gを100mLのアセトンで、室温下、3時間攪拌して洗浄した後、遠心分離(久保田製作所製、型式7930、10000G×20分)により不溶分を回収し、引き続き、同様に100mLのメタノール、クロロホルム−メタノール(vol/vol=2:1)、ジエチルエーテルによる洗浄を行った後、ドラフト内で室温した風乾し、乾燥残渣18gを得た。次に、6質量%水酸化カリウム−90%メタノール溶液100mLにより鹸化処理(室温下、6時間攪拌)を行なった。遠心分離により不溶分を回収し、水洗浄、エタノール洗浄、アセトン洗浄、ジエチルエーテル洗浄を経、残渣15gを得た。残渣をさらに100mLのリン酸に浸漬し、55℃加温下、13日間静置した。過剰量のペンタンを加え、遠心分離により不溶分を回収し、中和するまで水洗浄を行なった。最後に、100mLの水、メタノール、アセトン、ジエチルエーテルによる洗浄を経、アルジナン組成物をおよそ2.0g(アルジナン純度72%)を得た。
<Comparative Example 1>
Arginane was prepared according to the method described in Non-Patent Document 3. That is, 20 g of the extraction residue dry powder A obtained in Reference Example 1 was washed with 100 mL of acetone by stirring at room temperature for 3 hours, and then insoluble by centrifugation (model 7930, 10,000 G × 20 minutes, manufactured by Kubota Corporation). Subsequently, 100 ml of methanol, chloroform-methanol (vol / vol = 2: 1) and diethyl ether were washed in the same manner, and then air-dried at room temperature in a fume hood to obtain 18 g of a dry residue. Next, saponification treatment (stirring at room temperature for 6 hours) was performed with 100 mL of 6 mass% potassium hydroxide-90% methanol solution. Centrifugation collect | recovered the insoluble content, and 15 g of residue was obtained through water washing | cleaning, ethanol washing | cleaning, acetone washing | cleaning, and diethyl ether washing | cleaning. The residue was further immersed in 100 mL of phosphoric acid and allowed to stand for 13 days under heating at 55 ° C. An excess amount of pentane was added, the insoluble matter was recovered by centrifugation, and washed with water until neutralized. Finally, after washing with 100 mL of water, methanol, acetone, and diethyl ether, 2.0 g of arginane composition (arginane purity 72%) was obtained.

<実施例1>
参考例1で得られた抽出残渣乾燥粉末A50gを500mL容の磁性ポットに入れ、そこへエタノール50mL、5質量%食塩水250mL、ジルコニア球(直径5mm50mL容、直径10mm50mL容の混合)を入れ封をし、ボールミル装置(日陶科学製、ANZ−50S)で室温下、ロータ回転数250rpm×48時間の粉砕処理を行なった。処理液を孔径1mmの篩に通し、未粉砕物、ジルコニア球を取り除いた後、透明容器(500mL容の分液漏斗)に移し、室温下、2時間静置した。下層(不溶分、液分)を廃棄し、浮遊画分について5質量%食塩水250mLでさらに2回洗浄した後、水洗により残留する食塩を除去した。得られた浮遊画分を40℃に設定した真空乾燥機にて16時間乾燥し、乳鉢にて粉砕し、アルジナンおよそ5.0g(純度73%)を得た。
<Example 1>
50 g of extraction residue dry powder A obtained in Reference Example 1 is placed in a 500 mL magnetic pot, and 50 mL of ethanol, 250 mL of 5% by weight saline, and zirconia sphere (mixture of 5 mm diameter 50 mL volume, 10 mm diameter 50 mL volume) are put therein and sealed. Then, a pulverization process was performed at a room temperature at a rotor rotational speed of 250 rpm × 48 hours using a ball mill apparatus (manufactured by Nippon Ceramic Science Co., Ltd., ANZ-50S). The treatment liquid was passed through a sieve having a pore diameter of 1 mm to remove uncrushed materials and zirconia spheres, and then transferred to a transparent container (500 mL separatory funnel) and allowed to stand at room temperature for 2 hours. The lower layer (insoluble content, liquid content) was discarded, and the floating fraction was further washed twice with 250 mL of 5% by mass saline solution, and then the remaining salt was removed by washing with water. The obtained floating fraction was dried in a vacuum dryer set at 40 ° C. for 16 hours and pulverized in a mortar to obtain about 5.0 g of arginane (purity 73%).

<実施例2>
参考例1で得られた抽出残渣乾燥粉末A50gを500mL容の磁性ポットに入れ、そこへエタノール50mL、5質量%食塩水250mL、ジルコニア球(直径5mm50mL容、直径10mm50mL容の混合)を入れ封をし、ボールミル装置(日陶科学製、ANZ−50S)で室温下、ロータ回転数250rpm×48時間の粉砕処理を行なった。処理液を孔径1mmの篩に通し、未粉砕物、ジルコニア球を取り除いた後、透明容器(500mL容の分液漏斗)に移し、室温下、2時間静置した。下層(不溶分、液分)を廃棄し、浮遊画分について5質量%食塩水250mLでさらに2回洗浄した。浮遊画分を500mL容のビーカーに移し、1N水酸化ナトリウム−5質量%食塩水250mLを加え、室温下、15時間攪拌しながらアルカリ処理を行なった。同様に、分液漏斗にて浮遊画分を分離し、5質量%食塩水洗の後、水洗により残留する食塩を除去した。得られた浮遊画分を乾燥し、乳鉢にて粉砕し、アルジナンおよそ3.8g(純度86%)を得た。
<Example 2>
50 g of extraction residue dry powder A obtained in Reference Example 1 is placed in a 500 mL magnetic pot, and 50 mL of ethanol, 250 mL of 5% by weight saline, and zirconia sphere (mixture of 5 mm diameter 50 mL volume, 10 mm diameter 50 mL volume) are put therein and sealed. Then, a pulverization process was performed at a room temperature at a rotor rotational speed of 250 rpm × 48 hours using a ball mill apparatus (manufactured by Nippon Ceramic Science Co., Ltd., ANZ-50S). The treatment liquid was passed through a sieve having a pore diameter of 1 mm to remove uncrushed materials and zirconia spheres, and then transferred to a transparent container (500 mL separatory funnel) and allowed to stand at room temperature for 2 hours. The lower layer (insoluble content, liquid content) was discarded, and the floating fraction was further washed twice with 250 mL of 5% by mass saline. The floating fraction was transferred to a 500 mL beaker, 250 mL of 1N sodium hydroxide-5 mass% brine was added, and alkali treatment was performed with stirring at room temperature for 15 hours. Similarly, the floating fraction was separated using a separatory funnel, and the remaining sodium chloride was removed by washing with 5% by mass sodium chloride water. The obtained floating fraction was dried and pulverized in a mortar to obtain about 3.8 g of arginane (purity 86%).

<実施例3>
参考例1で得られた抽出残渣乾燥粉末A50gを500mL容の磁性ポットに入れ、そこへエタノール50mL、5質量%食塩水250mL、ジルコニア球(直径5mm50mL容、直径10mm50mL容の混合)を入れ封をし、ボールミル装置(日陶科学製、ANZ−50S)で室温下、ロータ回転数250rpm×48時間の粉砕処理を行なった。処理液を孔径1mmの篩に通し、未粉砕物、ジルコニア球を取り除いた後、透明容器(500mL容の分液漏斗)に移し、室温下、2時間静置した。下層(不溶分、液分)を廃棄し、浮遊画分について5質量%食塩水250mLでさらに2回洗浄した。浮遊画分を500mL容のビーカーに移し、1N水酸化ナトリウム−5質量%食塩水250mLを加え、室温下、15時間攪拌しながらアルカリ処理を行なった。同様に、分液漏斗にて浮遊画分を分離し、5質量%食塩水洗の後、浮遊画分を500mL容のビーカーに移し、1N塩酸−5質量%食塩水250mLを加え、室温下、15時間攪拌しながら酸処理を行なった。同様に、分液漏斗にて浮遊画分を分離し、5質量%食塩水洗の後、水洗により残留する食塩を除去した。得られた浮遊画分を乾燥し、乳鉢にて粉砕し、アルジナンおよそ3.4g(純度91%)を得た。
<Example 3>
50 g of extraction residue dry powder A obtained in Reference Example 1 is placed in a 500 mL magnetic pot, and 50 mL of ethanol, 250 mL of 5% by weight saline, and zirconia sphere (mixture of 5 mm diameter 50 mL volume, 10 mm diameter 50 mL volume) are put therein and sealed. Then, a pulverization process was performed at a room temperature at a rotor rotational speed of 250 rpm × 48 hours using a ball mill apparatus (manufactured by Nippon Ceramic Science Co., Ltd., ANZ-50S). The treatment liquid was passed through a sieve having a pore diameter of 1 mm to remove uncrushed materials and zirconia spheres, and then transferred to a transparent container (500 mL separatory funnel) and allowed to stand at room temperature for 2 hours. The lower layer (insoluble content, liquid content) was discarded, and the floating fraction was further washed twice with 250 mL of 5% by mass saline. The floating fraction was transferred to a 500 mL beaker, 250 mL of 1N sodium hydroxide-5 mass% brine was added, and alkali treatment was performed with stirring at room temperature for 15 hours. Similarly, the floating fraction was separated using a separatory funnel, washed with 5% by mass saline solution, transferred to a 500 mL beaker, added with 250 mL of 1N hydrochloric acid-5% by mass brine, The acid treatment was performed with stirring for a period of time. Similarly, the floating fraction was separated using a separatory funnel, and the remaining sodium chloride was removed by washing with 5% by mass sodium chloride water. The obtained floating fraction was dried and pulverized in a mortar to obtain approximately 3.4 g of arginane (purity 91%).

<実施例4>
参考例1で得られた抽出残渣乾燥粉末A50gを500mL容の磁性ポットに入れ、そこへエタノール50mL、5質量%食塩水250mL、ジルコニア球(直径5mm50mL容、直径10mm50mL容の混合)を入れ封をし、ボールミル装置(日陶科学製、ANZ−50S)で室温下、ロータ回転数250rpm×48時間の粉砕処理を行なった。処理液を孔径1mmの篩に通し、未粉砕物、ジルコニア球を取り除いた後、透明容器(500mL容の分液漏斗)に移し、室温下、2時間静置した。下層(不溶分、液分)を廃棄し、浮遊画分について5質量%食塩水250mLでさらに2回洗浄した後、水洗により残留する食塩を除去した。得られた浮遊画分を500mL容のビーカーに移し、エタノール250mLを加え、室温下、1時間攪拌しながらエタノール洗浄を行なった。遠心分離(久保田製作所製、型式7930、10000G×20分)により不溶分を回収し、エタノール250mLでさらに2回洗浄した。得られた沈殿物を乾燥し、乳鉢にて粉砕し、アルジナンおよそ4.1g(純度85%)を得た。
<Example 4>
50 g of extraction residue dry powder A obtained in Reference Example 1 is placed in a 500 mL magnetic pot, and 50 mL of ethanol, 250 mL of 5% by weight saline, and zirconia sphere (mixture of 5 mm diameter 50 mL volume, 10 mm diameter 50 mL volume) are put therein and sealed. Then, a pulverization process was performed at a room temperature at a rotor rotational speed of 250 rpm × 48 hours using a ball mill apparatus (manufactured by Nippon Ceramic Science Co., Ltd., ANZ-50S). The treatment liquid was passed through a sieve having a pore diameter of 1 mm to remove uncrushed materials and zirconia spheres, and then transferred to a transparent container (500 mL separatory funnel) and allowed to stand at room temperature for 2 hours. The lower layer (insoluble content, liquid content) was discarded, and the floating fraction was further washed twice with 250 mL of 5% by mass saline solution, and then the remaining salt was removed by washing with water. The obtained floating fraction was transferred to a 500 mL beaker, 250 mL of ethanol was added, and the mixture was washed with ethanol while stirring at room temperature for 1 hour. Insoluble matter was recovered by centrifugation (Model 7930, 10,000 G × 20 minutes, manufactured by Kubota Seisakusho), and further washed twice with 250 mL of ethanol. The obtained precipitate was dried and pulverized in a mortar to obtain about 4.1 g (purity 85%) of arginane.

<実施例5>
参考例1で得られた抽出残渣乾燥粉末A50gを500mL容の磁性ポットに入れ、そこへエタノール50mL、5質量%食塩水250mL、ジルコニア球(直径5mm50mL容、直径10mm50mL容の混合)を入れ封をし、ボールミル装置(日陶科学製、ANZ−50S)で室温下、ロータ回転数250rpm×48時間の粉砕処理を行なった。処理液を孔径1mmの篩に通し、未粉砕物、ジルコニア球を取り除いた後、透明容器(500mL容の分液漏斗)に移し、室温下、2時間静置した。下層(不溶分、液分)を廃棄し、浮遊画分について5質量%食塩水250mLでさらに2回洗浄した後、水洗により残留する食塩を除去した。得られた浮遊画分を500mL容のビーカーに移し、エタノール250mLを加え、室温下、1時間攪拌しながらエタノール洗浄を行なった。遠心分離(久保田製作所製、型式7930、10000G×20分)により不溶分を回収し、エタノール250mLでさらに2回洗浄した。得られた沈殿物を100mL容のビーカーに移し、クロロホルム50mLを加え、室温下、1時間攪拌しながらクロロホルム洗浄を行なった。漏斗に波形濾紙(No.5C)をセットし、浮遊物を回収し、クロロホルム100mLを満遍なく滴下しながらさらに洗浄した。得られた回収物を乾燥し、乳鉢にて粉砕し、アルジナンおよそ3.7g(純度89%)を得た。
<Example 5>
50 g of extraction residue dry powder A obtained in Reference Example 1 is placed in a 500 mL magnetic pot, and 50 mL of ethanol, 250 mL of 5% by weight saline, and zirconia sphere (mixture of 5 mm diameter 50 mL volume, 10 mm diameter 50 mL volume) are put therein and sealed. Then, a pulverization process was performed at a room temperature at a rotor rotational speed of 250 rpm × 48 hours using a ball mill apparatus (manufactured by Nippon Ceramic Science Co., Ltd., ANZ-50S). The treatment liquid was passed through a sieve having a pore diameter of 1 mm to remove uncrushed materials and zirconia spheres, and then transferred to a transparent container (500 mL separatory funnel) and allowed to stand at room temperature for 2 hours. The lower layer (insoluble content, liquid content) was discarded, and the floating fraction was further washed twice with 250 mL of 5% by mass saline solution, and then the remaining salt was removed by washing with water. The obtained floating fraction was transferred to a 500 mL beaker, 250 mL of ethanol was added, and the mixture was washed with ethanol while stirring at room temperature for 1 hour. Insoluble matter was recovered by centrifugation (Model 7930, 10,000 G × 20 minutes, manufactured by Kubota Seisakusho), and further washed twice with 250 mL of ethanol. The resulting precipitate was transferred to a 100 mL beaker, added with 50 mL of chloroform, and washed with chloroform while stirring at room temperature for 1 hour. Corrugated filter paper (No. 5C) was set in the funnel, and the suspended matter was collected, and further washed while dropping 100 mL of chloroform uniformly. The obtained recovered material was dried and pulverized in a mortar to obtain approximately 3.7 g of arginane (purity 89%).

<参考例2>
ボトリオコッカス属の微細藻類乾燥物1kgにヘキサン5Lを加え、室温下、24時間静置して炭化水素類等を抽出した。同様の操作をさらに2回繰り返して、抽出残渣乾燥物を得た。ここまでの操作をさらに4回繰り返して、抽出残渣乾燥物を合わせて3.4kg得た。抽出残渣乾燥物をブレンダにて粉砕し、孔径5mmのふるいを通し、抽出残渣乾燥粉末B3.2kg(アルジナン粗精製物。アルジナン純度32%)を得た。
<Reference Example 2>
5 kg of hexane was added to 1 kg of dried Botryococcus microalgae and allowed to stand at room temperature for 24 hours to extract hydrocarbons and the like. The same operation was further repeated twice to obtain a dried extract residue. The operation so far was repeated four more times to obtain 3.4 kg of dried extract residue. The dried extract residue was pulverized with a blender and passed through a sieve with a pore size of 5 mm to obtain 3.2 kg of dried extract residue powder B (Arginane crude product, Arginane purity 32%).

<実施例6>
参考例2で得られた抽出残渣乾燥粉末B2kgをボールミル装置(中央化工機製、AB200)に入れ、そこへ水30L、ジルコニア球(直径10mm10L容、直径50mm5L容の混合)を入れ封をし、室温下、ロータ回転数30rpm×48時間の粉砕処理を行なった。処理液を孔径1mmの篩に払い出し、未粉砕物、ジルコニア球を取り除いた後、処理液をシャープレス遠心分離装置(関西遠心分離機製作所製、型式NO−6−A、15000rpm)へ導入した。上清を廃棄し、円筒内の残留物のうち上層部のものを回収し、45L容のポリバケツに移し、水20Lに再び懸濁した。同様にシャープレス遠心分離装置へ導入し、上清を廃棄し、円筒内の残留物のうち上層部のものを回収した。同操作をさらに1回繰り返した。得られた回収物を乾燥し、ブレンダにて粉砕し、アルジナンおよそ390g(純度67%)を得た。
<Example 6>
2 kg of the extraction residue dry powder B obtained in Reference Example 2 is put into a ball mill apparatus (AB200, manufactured by Chuo Kako), and 30 L of water and zirconia spheres (mixture of 10 mm diameter and 10 L diameter, 50 mm diameter and 5 L volume) are put therein and sealed. Below, the grinding | pulverization process of rotor rotation speed 30rpm x 48 hours was performed. The treatment liquid was dispensed onto a sieve having a pore diameter of 1 mm, and after removing uncrushed materials and zirconia spheres, the treatment liquid was introduced into a shear press centrifuge (manufactured by Kansai centrifuge Seisakusho, model NO-6-A, 15000 rpm). The supernatant was discarded, and the upper layer of the residue in the cylinder was recovered, transferred to a 45 L plastic bucket, and suspended again in 20 L of water. Similarly, it was introduced into a sharp press centrifuge, the supernatant was discarded, and the upper layer portion of the residue in the cylinder was recovered. The same operation was repeated once more. The obtained recovered material was dried and pulverized with a blender to obtain about 390 g (purity 67%) of arginane.

実施例1〜6、比較例1にて得られた結果を表1に示す。 Table 1 shows the results obtained in Examples 1 to 6 and Comparative Example 1.

表1に示すように、実施例1〜6においては、微細藻類由来バイオマス粉砕物を含むスラリーからアルジナンを浮遊分離するという極めて簡便な方法にもかかわらず、従来法である比較例1と同等以上の高純度のアルジナン組成物を収率良く得ることができた。特に、さらなる精製に付した実施例2〜5においては、より純度の高いアルジナン組成物を得ることができた。さらに、実施例6において、工業的に適用可能な装置によっても、従来方法と同等レベルの純度のアルジナン組成物を得ることができることが分かった。




As shown in Table 1, in Examples 1-6, despite the extremely simple method of floating and separating arginane from a slurry containing a pulverized biomass of microalgae, it is equal to or higher than that of Comparative Example 1 which is a conventional method. The high-purity arginane composition was obtained with good yield. In particular, in Examples 2 to 5 subjected to further purification, a higher purity arginane composition could be obtained. Furthermore, in Example 6, it was found that an arginane composition having a purity level equivalent to that of the conventional method can be obtained even with an industrially applicable apparatus.




Claims (7)

微細藻類由来バイオマス粉砕物を含むスラリーから、アルジナンを浮遊分離処理することを特徴とするアルジナン組成物の製造方法。   A method for producing an arginane composition comprising subjecting arginane to a floating separation treatment from a slurry containing a pulverized product of biomass derived from microalgae. 前記微細藻類由来バイオマス粉砕物が、湿式粉砕処理にて得られたものである請求項1記載のアルジナン組成物の製造方法。   The method for producing an arginane composition according to claim 1, wherein the pulverized biomass of microalgae is obtained by a wet pulverization treatment. 前記スラリー溶媒の比重が0.9〜1.2であることを特徴とする請求項1または2記載のアルジナン組成物の製造方法。   3. The method for producing an arginane composition according to claim 1, wherein the slurry solvent has a specific gravity of 0.9 to 1.2. 前記微細藻類がボトリオコッカス属由来であることを特徴とする請求項1〜3いずれか1項に記載のアルジナン組成物の製造方法。   The method for producing an arginane composition according to any one of claims 1 to 3, wherein the microalga is derived from the genus Botryococcus. 前記浮遊分離処理が遠心分離処理であることを特徴とする請求項1〜4いずれか1項に記載のアルジナン組成物の製造方法。   The said floating separation process is a centrifugation process, The manufacturing method of the arginane composition of any one of Claims 1-4 characterized by the above-mentioned. 前記浮遊分離処理が静置処理であることを特徴とする請求項1〜4いずれか1項に記載のアルジナン組成物の製造方法。   The said floating separation process is a stationary process, The manufacturing method of the arginane composition of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜6いずれか1項に記載された製造方法により得られたアルジナン組成物。
The arginane composition obtained by the manufacturing method as described in any one of Claims 1-6.
JP2015161122A 2015-08-18 2015-08-18 Production method of algaenan composition Pending JP2017038537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015161122A JP2017038537A (en) 2015-08-18 2015-08-18 Production method of algaenan composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015161122A JP2017038537A (en) 2015-08-18 2015-08-18 Production method of algaenan composition

Publications (1)

Publication Number Publication Date
JP2017038537A true JP2017038537A (en) 2017-02-23

Family

ID=58202332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015161122A Pending JP2017038537A (en) 2015-08-18 2015-08-18 Production method of algaenan composition

Country Status (1)

Country Link
JP (1) JP2017038537A (en)

Similar Documents

Publication Publication Date Title
Munir et al. Harvesting and processing of microalgae biomass fractions for biodiesel production (a review)
Wu et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium
Liber et al. Harvesting microalgae for food and energy products
CN107771185A (en) method for extracting pectin
CN104138794B (en) A kind of water separation impurity removal process during particulate class material production
JP6557102B2 (en) Method for producing polyisoprene
CN103937604A (en) Method for extracting oil in microalgae
JP2017038537A (en) Production method of algaenan composition
CN112679556A (en) Production process of high-purity tea saponin
CN111072469B (en) Method for extracting natural nervonic acid
JP2017038536A (en) Production method of algaenan composition
CN101671400A (en) Method of preparing soluble soybean polysaccharide
de Carvalho et al. Technologies for separation and drying of algal biomass for varied applications
JP2015124229A (en) Asphalt modifier
CN108822226A (en) A method of extracting polysaccharide from microalgae algae-residue
RU2714115C2 (en) Polysaccharide microgel application during vegetable oil production, polysaccharide microgel based reagents and vegetable oil production method using thereof
CN113262727A (en) Method for extracting soil nano colloid
WO2015184629A1 (en) Method for breaking microalgal walls and extracting oil while simultaneously esterfying algal oil with water-tolerant acidic ionic liquid
CN112778792B (en) Method for extracting natural green pigment from trichoderma fungus
JP2015124091A (en) Admixture for concrete
RU2017120057A (en) SUBSTANCE COALESCENCE METHOD
CN110699558A (en) Method for extracting high-purity tin from industrial waste
JP2017038538A (en) Method for producing microalgal-derived protein composition
CN112778797B (en) Method for extracting natural green pigment from Metarrhizium anisopliae
CN104531836B (en) A kind of sharp separation Synechocystis cell and the method for its mineralization product