JP2017038538A - Method for producing microalgal-derived protein composition - Google Patents

Method for producing microalgal-derived protein composition Download PDF

Info

Publication number
JP2017038538A
JP2017038538A JP2015161123A JP2015161123A JP2017038538A JP 2017038538 A JP2017038538 A JP 2017038538A JP 2015161123 A JP2015161123 A JP 2015161123A JP 2015161123 A JP2015161123 A JP 2015161123A JP 2017038538 A JP2017038538 A JP 2017038538A
Authority
JP
Japan
Prior art keywords
biomass
protein
microalgae
derived
protein composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015161123A
Other languages
Japanese (ja)
Inventor
西川 善弘
Yoshihiro Nishikawa
善弘 西川
信 渡邉
Makoto Watanabe
信 渡邉
幹英 出村
Mikihide Demura
幹英 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
University of Tsukuba NUC
Original Assignee
Unitika Ltd
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd, University of Tsukuba NUC filed Critical Unitika Ltd
Priority to JP2015161123A priority Critical patent/JP2017038538A/en
Publication of JP2017038538A publication Critical patent/JP2017038538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fodder In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating a microalgal protein useful as a protein material for agriculture/aquatic feed from unused resources microalga-derived biomass.SOLUTION: A method for producing a microalgal-derived protein composition comprises: concentrating the microalgal-derived biomass from a slurry containing microalga-derived biomass using a separation membrane with an effective pore size of 2 to 200 μm, and then subjecting the microalgal-derived biomass to an alkaline treatment under the condition of pH 10 to 13. In the method, preferably, the microalgae is a genus Botryococcus.SELECTED DRAWING: None

Description

本発明は、微細藻類由来バイオマスから農・水産飼料用タンパク質原料として有用な微細藻類由来タンパク質組成物の製造方法に関するものである。   The present invention relates to a method for producing a microalgae-derived protein composition useful as a protein raw material for agricultural and aquatic feeds from microalgae-derived biomass.

藻類が産生する炭化水素類はバイオ燃料として有望視され、産業化に向けた研究が進められている。藻類の中でもボトリオコッカス属の微細藻類は、重油相当の性質を持つ炭化水素を産生することから液体燃料を効率よく得られる藻類として注目されている。ボトリオコッカス属の微細藻類から産生する炭化水素は、構造上の特徴より、Race−A、Race−B、Race−LおよびRace−Sの大きく4つのグループに分けられ、なかでもC2n−10(n=30〜37)で表されるトリテルペン構造を持つ炭化水素を産生するRace−Bグループの株は、30〜40質量%の炭化水素を産生するものが多い(例えば、非特許文献1参照)。 Hydrocarbons produced by algae are considered promising as biofuels, and research for industrialization is underway. Among the algae, microalgae belonging to the genus Botryococcus are attracting attention as algae from which liquid fuel can be efficiently obtained because they produce hydrocarbons having properties equivalent to heavy oil. The hydrocarbons produced from the microalgae of the genus Botryococcus are divided into four groups, Race-A, Race-B, Race-L and Race-S, based on the structural features, and in particular, C n H 2n The strain of the Race-B group that produces hydrocarbons having a triterpene structure represented by −10 (n = 30 to 37) often produces 30 to 40% by mass of hydrocarbons (for example, non-patent literature) 1).

ボトリオコッカス属の微細藻類は、成長の過程で数個〜数百個の細胞の集合体(コロニー)を形成し、自身が産生した炭化水素類等の重合合成物であるバイオポリマー(アルジナン)によってコロニーの構造が維持されている。前述のようにして産生した炭化水素類は、このアルジナン中に30〜40質量%程度まで保持、蓄積される。このようにして蓄積した炭化水素類は溶媒抽出等の過程を経てバイオ燃料やバイオリファイナリーの原料として利用されるが、炭化水素類を除かれた大量の残渣は廃棄物となり、藻類由来バイオ燃料の産業化の足枷となっており(例えば、非特許文献2参照)、残渣中に含まれる各種有用成分を有効利用するための手法の開発が望まれている。とりわけ、残渣中に含まれるタンパク質は、昨今の飼料用魚粉の枯渇問題や、トウモロコシ、ダイズ等の飼料原料植物のバイオエタノール用途との争奪による価格高騰問題等を受けて、新たなタンパク質原料として期待されている。   A microalga of the genus Botryococcus forms an aggregate (colony) of several to several hundred cells during the growth process, and is a biopolymer (arginane) that is a polymerization compound such as hydrocarbons produced by itself. The colony structure is maintained. The hydrocarbons produced as described above are retained and accumulated up to about 30 to 40% by mass in this arginane. The hydrocarbons accumulated in this way are used as raw materials for biofuels and biorefinery through processes such as solvent extraction, but a large amount of residue from which hydrocarbons have been removed becomes waste, and algae-derived biofuels It has become a foothold for industrialization (see, for example, Non-Patent Document 2), and development of a method for effectively using various useful components contained in the residue is desired. In particular, the protein contained in the residue is expected to be a new protein raw material in response to the recent problems of depletion of fish meal for feed and the price increase due to the competition with bioethanol for feed raw materials such as corn and soybean. Has been.

ボトリオコッカス属の微細藻類は、炭化水素類以外の成分として、先に述べた炭化水素類等の重合合成物であるアルジナンが40〜60%、タンパク質が20〜30%、その他、細胞壁を構成する糖質等が30〜40%といった構成比率となっているが、飼料用途のタンパク質原料のタンパク質含量は40%以上であることが必須であるため、そのままでは利用価値に乏しい。さらに、アルジナンや細胞壁等は消化性が悪く、タンパク質とこれら成分とを分離することが、微細藻類由来タンパク質の利用価値を高めるために必須であった。   The microalgae of the genus Botryococcus consist of 40-60% alginate, which is a polymerized product of the hydrocarbons described above, 20-30% protein, and cell walls as components other than hydrocarbons. However, since the protein content of the protein raw material for feed is essential to be 40% or more, the use value is poor as it is. Furthermore, arginane, cell walls, and the like are poorly digestible, and it was essential to separate the protein from these components in order to increase the utility value of the microalgae-derived protein.

一方、炭化水素や燃料に変換されるような脂肪酸エステル等を産する微細藻類は、培養液中の濃度が極めて低い(1〜2g/L程度)。そのため、該培養液を濃縮などしてタンパク質成分を回収すると、培養液中に分泌された多糖成分や微細藻類の細胞壁、死骸等も合わせて濃縮、凝集されるため、炭化水素類を除かれた後の残渣中のタンパク質含量は10〜20%程度にまで低下し、微細藻類由来タンパク質画分の利用価値を下げる原因となっていた。   On the other hand, microalgae that produce fatty acid esters and the like that can be converted into hydrocarbons and fuels have extremely low concentrations in the culture solution (about 1-2 g / L). Therefore, when the protein component is recovered by concentrating the culture solution, the hydrocarbon components are removed because the polysaccharide component secreted into the culture solution and the cell walls and dead bodies of microalgae are also concentrated and aggregated together. The protein content in the subsequent residue was reduced to about 10 to 20%, which was a cause of lowering the utility value of the protein fraction derived from microalgae.

Microbiol.Cult.Coll.26(1).1−10(2010)p.4Microbiol. Cult. Coll. 26 (1). 1-10 (2010) p. 4 平成23年度農山漁村6次産業化対策事業「農山漁村における藻類バイオマスファームの事業化可能性調査報告書」p.72011 Rural and Mountainous Village Sixth Industrialization Measures Project “Survey Report on Practical Use of Algal Biomass Farms in Rural and Mountainous Villages” p. 7 Phytochemistry 22(2).389−97(1983)p.395Phytochemistry 22 (2). 389-97 (1983) p. 395 Microbiol.Cult.Coll.26(1).1−10(2010)p.5−7Microbiol. Cult. Coll. 26 (1). 1-10 (2010) p. 5-7

本発明の目的は、微細藻類由来バイオマスから農・水産飼料用タンパク質原料として有用な微細藻類由来タンパク質組成物を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a microalga-derived protein composition useful as a protein raw material for agricultural and aquatic feed from microalgae-derived biomass.

本発明者らは、上記課題の解決のため鋭意研究を重ねた結果、原料となる微細藻類由来バイオマスのスラリーから、特定の膜処理により微細藻類由来バイオマスを濃縮した後に、得られた微細藻類由来バイオマスを特定条件下でアルカリ処理することにより、タンパク質含量を高めた農・水産飼料用タンパク質原料として有用な微細藻類由来タンパク質組成物を得ることを見出し、本発明に到達した。   As a result of intensive studies for solving the above-mentioned problems, the present inventors derived from a microalgae obtained after concentrating the microalgae-derived biomass by a specific membrane treatment from a slurry of microalgae-derived biomass as a raw material The present inventors have found that by subjecting biomass to alkali treatment under specific conditions, a protein composition derived from microalgae that is useful as a protein raw material for agricultural and aquatic feed with an increased protein content can be obtained.

すなわち、本発明は、以下の(1)〜(3)を要旨とするものである。
(1)微細藻類由来バイオマスを含むスラリーから、有効孔径2〜200μmである分離膜を用いて前記微細藻類由来バイオマスを濃縮した後、前記微細藻類由来バイオマスをpH10〜13の条件下アルカリ処理することを特徴とする、微細藻類由来タンパク質組成物の製造方法。
(2)前記微細藻類がボトリオコッカス属であることを特徴とする(1)記載の微細藻類由来タンパク質組成物の製造方法。
(3)(1)又は(2)に記載の微細藻類由来タンパク質組成物の製造方法により得られた微細藻類由来タンパク質組成物。
That is, the gist of the present invention is the following (1) to (3).
(1) After concentrating the microalgae-derived biomass from the slurry containing the microalgae-derived biomass using a separation membrane having an effective pore size of 2 to 200 μm, the alkali-treatment of the microalgae-derived biomass under conditions of pH 10-13 A method for producing a protein composition derived from microalgae,
(2) The method for producing a protein composition derived from microalgae according to (1), wherein the microalga is genus Botryococcus.
(3) A microalga-derived protein composition obtained by the method for producing a microalga-derived protein composition according to (1) or (2).

本発明によれば、原料となる微細藻類由来バイオマスのスラリーから、特定の膜処理により微細藻類由来バイオマスを濃縮した後に、得られた微細藻類由来バイオマスを特定条件下アルカリ処理することにより、タンパク質含量を高めた農・水産飼料用タンパク質原料として有用な微細藻類由来タンパク質組成物を高収率で得ることができる。   According to the present invention, after concentrating the microalgae-derived biomass from the slurry of the microalgae-derived biomass as a raw material by a specific membrane treatment, the resulting microalgae-derived biomass is alkali-treated under specific conditions, thereby obtaining a protein content. It is possible to obtain a microalga-derived protein composition useful as a protein material for agricultural and aquatic feeds with improved yield in a high yield.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の微細藻類由来バイオマスは、主にバイオ燃料を産生する微細藻類由来のバイオマスをいい、具体的には、緑藻類、珪藻類由来のバイオマス等が挙げられる。さらに具体的には、Botryococcus braunii,Chlorella spp.,Cryptothecodinium cohnii,Cylindrotheca spp.,Dunaliella primolecta,Isochrysis spp.,Monallanthus salina,Nannochloris spp.,Nannochloropsis spp.,Neochloris spp.,Nitzschia spp.,Phaeodactylum tricornutum,Schizochytrium spp.,Tetraselmis suieiaなどの由来のバイオマスが挙げられる。   The microalga-derived biomass of the present invention refers to biomass derived from microalgae that mainly produces biofuel, and specific examples include biomass derived from green algae and diatoms. More specifically, Botryococcus braunii, Chlorella spp., Cryptothecodinium chonii, Cylindrotheca spp. Dunaliella primorecta, Isochrysis spp. , Monallanthus salina, Nannochloris spp. , Nannochloropsis spp. , Neochloris spp. , Nitzschia spp. , Phaeodactylum tricornutum, Schizochytrium spp. And biomass derived from Tetraselmis suieia.

なかでも、重油相当の炭化水素類を産生するボトリオコッカス(Botryococcus)属由来のバイオマスであることが好ましい。   Among these, biomass derived from the genus Botryococcus that produces hydrocarbons equivalent to heavy oil is preferable.

微細藻類由来のバイオマスは、微細藻類自体、微細藻類を乾燥したもののいずれであってもかまわないが、該微細藻類からさらに有機溶媒により炭化水素類を抽出した後の抽出残渣であることがより好ましい。   The biomass derived from the microalga may be either the microalgae itself or a product obtained by drying the microalgae, but is more preferably an extraction residue after the hydrocarbons are further extracted from the microalgae with an organic solvent. .

具体的には、上記微細藻類を、ヘキサン、クロロホルム、メタノール、エタノール、ジエチルエーテル、アセトンからなる1群の有機溶媒から1種以上、又はヘキサン/アセトンの混合溶媒、クロロホルム/メタノールの混合溶媒、エタノール/ジエチルエーテルの混合溶媒などに例示される前記有機溶媒の混合物に分散し、微細藻類中の炭化水素類を抽出することにより得られる抽出残渣を、微細藻類由来バイオマスとして利用することができる。   Specifically, the microalgae is one or more selected from a group of organic solvents consisting of hexane, chloroform, methanol, ethanol, diethyl ether and acetone, or a mixed solvent of hexane / acetone, a mixed solvent of chloroform / methanol, ethanol. An extraction residue obtained by dispersing in a mixture of organic solvents exemplified by a mixed solvent of / diethyl ether and extracting hydrocarbons in microalgae can be used as biomass derived from microalgae.

本発明において微細藻類由来バイオマスは、そのまま分離膜濃縮工程の原料として用いることができるが、さらにタンパク質の分離効率を高めるため、あらかじめ粉末状、塊状等の形状に加工しておくことが好ましい。ここでいう粉末状とは、粉砕機(カッター、ハンマー等)や各種ミル(石臼タイプ、乳鉢タイプ、ボールミル等)により粒径0.1〜5mm程度まで細かくしたものが挙げられ、塊状は粒径5mm〜30mm程度の不均一な形状のものが挙げられる。   In the present invention, the microalgae-derived biomass can be used as it is as a raw material for the separation membrane concentration step, but it is preferably processed in advance into a powder form, a lump form or the like in order to further increase the protein separation efficiency. As used herein, the powder form includes those that have been fined to a particle size of about 0.1 to 5 mm by a pulverizer (cutter, hammer, etc.) or various mills (stone mill type, mortar type, ball mill, etc.). The thing of a nonuniform shape of about 5 mm-30 mm is mentioned.

本発明における微細藻類由来バイオマスを含むスラリーは、前述の微細藻類由来バイオマスを溶媒に分散したものをいう。該溶媒は特に限定されないが、例えば、水、食塩水、アルカリ水溶液またはこれらの混合物、微細藻類の培養液等が挙げられる。   The slurry containing the microalga-derived biomass in the present invention refers to a slurry obtained by dispersing the aforementioned microalgae-derived biomass in a solvent. The solvent is not particularly limited, and examples thereof include water, saline, alkaline aqueous solution or a mixture thereof, and a culture solution of microalgae.

本発明における製造方法においては、微細藻類由来バイオマスを含むスラリーから、有効孔径2〜200μmである分離膜を用いて微細藻類由来バイオマスを濃縮することが必要である。具体的には、該分離膜の有効孔径が2〜200μmであり、より有効な分離の観点から、3〜30μmが好ましく、5〜10μmがより好ましい。該膜分離における有効孔径の効果は明らかではないが、2μm以上の有効孔径を有する分離膜を用いることで、分泌する多糖を分離膜通過させ、微細藻類の単細胞または単細胞が複数繋がった集合体(コロニー)を有効に保持することにより、分離濃縮することができるものと考えられる。   In the production method of the present invention, it is necessary to concentrate the microalgae-derived biomass from the slurry containing the microalgae-derived biomass using a separation membrane having an effective pore diameter of 2 to 200 μm. Specifically, the effective pore size of the separation membrane is 2 to 200 μm, and from the viewpoint of more effective separation, 3 to 30 μm is preferable, and 5 to 10 μm is more preferable. Although the effect of the effective pore size in the membrane separation is not clear, by using a separation membrane having an effective pore size of 2 μm or more, the secreted polysaccharide is allowed to pass through the separation membrane and a single cell or a plurality of single cells of microalgae are connected ( It is considered that separation and concentration can be achieved by effectively retaining colonies.

次に、アルカリ処理工程について説明する。
本発明においては、特定の分離膜により微細藻類由来バイオマスを含むスラリーから濃縮した微細藻類由来バイオマスに対し、アルカリ処理を行う。該アルカリ処理においては、前記微細藻類由来バイオマスをアルカリ金属やアルカリ土類金属等の水酸化物などを含む水溶液、アルコール溶液などにより処理を行うものであり、具体的には、アルカリ剤として、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムを用いることが好ましい。これらアルカリ処理においては、効率的なタンパク質の遊離の観点から、アルカリ処理液のpHが10以上13以下となるようにアルカリ剤の添加量を調整するのが必要であり、11以上12.5以下が好ましい。
Next, the alkali treatment process will be described.
In the present invention, the alkali treatment is performed on the microalga-derived biomass concentrated from the slurry containing the microalga-derived biomass by a specific separation membrane. In the alkali treatment, the biomass derived from the microalgae is treated with an aqueous solution containing a hydroxide such as an alkali metal or an alkaline earth metal, an alcohol solution, or the like. Sodium oxide, potassium hydroxide, and calcium hydroxide are preferably used. In these alkali treatments, from the viewpoint of efficient protein release, it is necessary to adjust the addition amount of the alkali agent so that the pH of the alkali treatment solution is 10 or more and 13 or less, and 11 or more and 12.5 or less. Is preferred.

本発明におけるアルカリ処理では、アルカリ処理によるタンパク質の遊離効率を高めるために、各種攪拌、混合、粉砕処理を併用しても良い。具体的には、プロペラ式攪拌翼等による攪拌、各種ポンプによる処理液の循環、ボールミル、ビーズミル、ホモジナイザー等による粉砕等である。   In the alkali treatment in the present invention, various stirring, mixing, and pulverization treatments may be used in combination in order to increase the protein release efficiency by the alkali treatment. Specifically, stirring with a propeller-type stirring blade or the like, circulation of treatment liquid with various pumps, pulverization with a ball mill, bead mill, homogenizer, or the like.

本発明におけるアルカリ処理では、固液比は特に限定されないが、微細藻類由来バイオマスの流動性の観点から、微細藻類由来バイオマス1質量部に対して溶媒量は3〜20質量部とするのが好ましく、5〜10質量部とするのがより好ましい。3〜20質量部とすることで流動性を確保しつつ、高いたんぱく質遊離効率を得ることができる。   In the alkali treatment in the present invention, the solid-liquid ratio is not particularly limited, but from the viewpoint of fluidity of the microalgae-derived biomass, the solvent amount is preferably 3 to 20 parts by mass with respect to 1 part by mass of the microalgae-derived biomass. It is more preferable to set it as 5-10 mass parts. High protein release efficiency can be obtained while ensuring fluidity by setting it as 3-20 mass parts.

このようにして得られたタンパク質組成物は、固液分離、濃縮、乾燥、粉砕等の工程を経た乾燥粉体として調製された後、農・水産飼料用タンパク質原料として有用な微細藻類由来タンパク質として利用することができる。   The protein composition thus obtained is prepared as a dry powder that has undergone steps such as solid-liquid separation, concentration, drying, and pulverization, and then as a microalgae-derived protein useful as a protein raw material for agricultural and aquatic feeds. Can be used.

次に、実施例により、本発明をより詳細に説明する。なお、本発明は、実施例に限定されるものではない。   Next, the present invention will be described in more detail by way of examples. In addition, this invention is not limited to an Example.

本発明の実施例におけるタンパク質の定量、含量(純度)測定には、タンパク質の遊離したアルカリ処理〜固液分離後の溶液、あるいは、乾燥、粉砕工程を経て得られたタンパク質の乾燥粉体を対象として、Lowry法(ナカライテスク社製、プロテインアッセイLowryキット)を用いた。 なお、本発明においては、得られる微細藻類タンパク質組成物中のタンパク質純度は40質量%以上、タンパク質収率(原料に対するタンパク質回収率)は15%以上を合格とした。   For the protein quantification and content (purity) measurement in the examples of the present invention, the protein free alkaline treatment to the solution after solid-liquid separation, or the dried protein powder obtained through the drying and pulverization processes are targeted. The Lowry method (manufactured by Nacalai Tesque, Protein Assay Lowry Kit) was used. In the present invention, the protein purity in the obtained microalgal protein composition was 40% by mass or more, and the protein yield (protein recovery rate relative to the raw material) was 15% or more.

<比較例1>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)を中空糸膜(旭化成製、マイクローザMF、ULP−143、有効孔径;0.45μm)にて1Lに濃縮した。濃縮液をバットに広げ、通風下、乾燥し、乾燥バイオマスおよそ58gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH11.6とした。16時間攪拌(アルカリ処理)の後、固液分離を行ない、アルカリ処理液およそ38mLを得た。うち30mLを凍結乾燥し、粉末およそ3.1gを得た。前記アルカリ処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;1.1g、タンパク質純度;29.3%であった。
<Comparative Example 1>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was concentrated to 1 L with a hollow fiber membrane (manufactured by Asahi Kasei, Microza MF, ULP-143, effective pore size: 0.45 μm). The concentrated solution was spread on a vat and dried under ventilation to obtain approximately 58 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and then 4N sodium hydroxide was added dropwise to adjust the pH to 11.6. After stirring for 16 hours (alkali treatment), solid-liquid separation was performed to obtain approximately 38 mL of an alkali treatment liquid. Of these, 30 mL was lyophilized to obtain approximately 3.1 g of powder. When the protein release amount was measured using the alkaline treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount was 1.1 g and the protein purity was 29.3%.

<比較例2>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)を中空糸膜(旭化成製、マイクローザMF、ULP−143、有効孔径;0.45μm)にて1Lに濃縮した。ポリシリカ鉄(水道機工社製、PSI−025)10mLを攪拌した濃縮液に滴下し、バイオマス分を凝集させた。凝集物を金属製の篩(孔径100μm)にて回収し、バットに広げ、通風下、乾燥し、乾燥バイオマスおよそ60gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH11.8とした。16時間攪拌(アルカリ処理)の後、固液分離を行ない、アルカリ処理液およそ37mLを得た。うち30mLを凍結乾燥し、粉末およそ2.9gを得た。前記アルカリ処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;0.9g、タンパク質純度;25.2%であった。
<Comparative Example 2>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was concentrated to 1 L with a hollow fiber membrane (manufactured by Asahi Kasei, Microza MF, ULP-143, effective pore size: 0.45 μm). 10 mL of polysilica iron (manufactured by Seiko Kiko Co., Ltd., PSI-025) was added dropwise to the stirred concentrated solution to aggregate the biomass. Aggregates were collected with a metal sieve (pore size 100 μm), spread on a vat, and dried under ventilation to obtain approximately 60 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and then 4N sodium hydroxide was added dropwise to adjust the pH to 11.8. After stirring for 16 hours (alkali treatment), solid-liquid separation was performed to obtain approximately 37 mL of an alkali treatment solution. Of these, 30 mL was freeze-dried to obtain approximately 2.9 g of powder. When the protein release amount was measured using the alkaline treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount was 0.9 g and the protein purity was 25.2%.

<比較例3>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)をナイロンメッシュの袋状物(有効孔径;5μm)に入れ、振盪しながら、1Lに濃縮した。濃縮液をバットに広げ、通風下、乾燥し、乾燥バイオマスおよそ30gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた(pH5.6を示した)後、16時間攪拌の後、固液分離を行ない、処理液およそ47mLを得た。うち40mLを凍結乾燥し、粉末およそ0.8gを得た。前記処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;1.1g、タンパク質純度;89.1%であった。
<Comparative Example 3>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was put into a nylon mesh bag (effective pore size: 5 μm) and concentrated to 1 L with shaking. The concentrated solution was spread on a vat and dried under ventilation to obtain approximately 30 g of dry biomass. The dried biomass was chopped into 5 mm pieces with scissors, 10 g of which was swollen with 50 mL of water (indicating pH 5.6), stirred for 16 hours, solid-liquid separation was performed, and about 47 mL of the processing solution was added. Obtained. Of these, 40 mL was freeze-dried to obtain approximately 0.8 g of powder. When the protein release amount was measured using the treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount was 1.1 g and the protein purity was 89.1%.

<比較例4>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)をナイロンメッシュの袋状物(有効孔径;5μm)に入れ、振盪しながら、1Lに濃縮した。濃縮液をバットに広げ、通風下、乾燥し、乾燥バイオマスおよそ30gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH8.6とした。16時間攪拌した後、固液分離を行ない、処理液およそ47mLを得た。うち40mLを凍結乾燥し、粉末およそ1.3gを得た。前記処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;1.4g、タンパク質純度;88.9%であった。
<Comparative example 4>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was put into a nylon mesh bag (effective pore size: 5 μm) and concentrated to 1 L with shaking. The concentrated solution was spread on a vat and dried under ventilation to obtain approximately 30 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and 4N sodium hydroxide was added dropwise to adjust the pH to 8.6. After stirring for 16 hours, solid-liquid separation was performed to obtain about 47 mL of a processing solution. Of these, 40 mL was freeze-dried to obtain approximately 1.3 g of powder. When the protein release amount was measured using the treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount was 1.4 g and the protein purity was 88.9%.

<実施例1>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)をナイロンメッシュの袋状物(有効孔径;5μm)に入れ、振盪しながら、1Lに濃縮した。濃縮液をバットに広げ、通風下、乾燥し、乾燥バイオマスおよそ32gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH10.2とした。16時間攪拌(アルカリ処理)の後、固液分離を行ない、アルカリ処理液およそ46mLを得た。うち40mLを凍結乾燥し、粉末およそ2.5gを得た。前記アルカリ処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;2.6g、タンパク質純度;90.1%であった。
<Example 1>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was put into a nylon mesh bag (effective pore size: 5 μm) and concentrated to 1 L with shaking. The concentrated solution was spread on a vat and dried under ventilation to obtain approximately 32 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and then 4N sodium hydroxide was added dropwise to adjust the pH to 10.2. After stirring for 16 hours (alkali treatment), solid-liquid separation was performed to obtain approximately 46 mL of an alkali treatment liquid. Of these, 40 mL was freeze-dried to obtain approximately 2.5 g of powder. When the protein release amount was measured using the alkaline treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount: 2.6 g, protein purity: 90.1%.

<実施例2>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)をナイロンメッシュの袋状物(有効孔径;5μm)に入れ、振盪しながら、1Lに濃縮した。濃縮液をバットに広げ、通風下、乾燥し、乾燥バイオマスおよそ32gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH11.7とした。16時間攪拌(アルカリ処理)の後、固液分離を行ない、アルカリ処理液およそ48mLを得た。うち40mLを凍結乾燥し、粉末およそ2.6gを得た。前記アルカリ処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;2.8g、タンパク質純度;90.9%であった。
<Example 2>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was put into a nylon mesh bag (effective pore size: 5 μm) and concentrated to 1 L with shaking. The concentrated solution was spread on a vat and dried under ventilation to obtain approximately 32 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and then 4N sodium hydroxide was added dropwise to adjust the pH to 11.7. After stirring for 16 hours (alkali treatment), solid-liquid separation was performed to obtain approximately 48 mL of an alkali treatment solution. Of these, 40 mL was freeze-dried to obtain approximately 2.6 g of powder. When the protein release amount was measured using the alkaline treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount was 2.8 g, and the protein purity was 90.9%.

<実施例3>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)をナイロンメッシュの袋状物(有効孔径;5μm)に入れ、振盪しながら、1Lに濃縮した。ポリシリカ鉄(水道機工社製、PSI−025)10mLを攪拌した濃縮液に滴下し、バイオマス分を凝集させた。凝集物を金属製の篩(孔径100μm)にて回収し、バットに広げ、通風下、乾燥し、乾燥バイオマスおよそ35gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH11.5とした。16時間攪拌(アルカリ処理)の後、固液分離を行ない、アルカリ処理液およそ47mLを得た。うち40mLを凍結乾燥し、粉末およそ2.7gを得た。前記アルカリ処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;2.7g、タンパク質純度;85.7%であった。
<Example 3>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was put into a nylon mesh bag (effective pore size: 5 μm) and concentrated to 1 L with shaking. 10 mL of polysilica iron (manufactured by Seiko Kiko Co., Ltd., PSI-025) was added dropwise to the stirred concentrated solution to aggregate the biomass. Aggregates were collected with a metal sieve (pore size 100 μm), spread on a vat, and dried under ventilation to obtain approximately 35 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and then 4N sodium hydroxide was added dropwise to adjust the pH to 11.5. After stirring for 16 hours (alkali treatment), solid-liquid separation was performed to obtain approximately 47 mL of the alkali treatment liquid. Of these, 40 mL was freeze-dried to obtain approximately 2.7 g of powder. When the protein release amount was measured using the alkaline treatment liquid and the protein content (purity) was measured using the freeze-dried powder, the protein release amount was 2.7 g and the protein purity was 85.7%.

<実施例4>
ボトリオコッカス属の培養液40L(バイオマスとしておよそ1.5g/L)をナイロンメッシュの袋状物(有効孔径;25μm)に入れ、振盪脱水し、およそ650gの湿バイオマスを得た。得られた湿バイオマスをバットに広げ、通風下、乾燥し、乾燥バイオマスおよそ32gを得た。乾燥バイオマスをはさみにて5mm画に細断し、うち10gを50mLの水で膨潤させた後、4N水酸化ナトリウムを滴下し、pH11.5とした。16時間攪拌(アルカリ処理)の後、固液分離を行ない、アルカリ処理液およそ48mLを得た。うち40mLを凍結乾燥し、粉末およそ2.6gを得た。前記アルカリ処理液を用いてタンパク質遊離量を、前記凍結乾燥粉末を用いてタンパク質含量(純度)を測定したところ、タンパク質遊離量;2.9g、タンパク質純度;92.3%であった。
<Example 4>
40 L of Botryococcus culture solution (approximately 1.5 g / L as biomass) was put into a nylon mesh bag (effective pore size: 25 μm) and dehydrated by shaking to obtain approximately 650 g of wet biomass. The obtained wet biomass was spread on a vat and dried under ventilation to obtain approximately 32 g of dry biomass. The dried biomass was shredded into 5 mm drawings with scissors, 10 g of which was swollen with 50 mL of water, and then 4N sodium hydroxide was added dropwise to adjust the pH to 11.5. After stirring for 16 hours (alkali treatment), solid-liquid separation was performed to obtain approximately 48 mL of an alkali treatment solution. Of these, 40 mL was freeze-dried to obtain approximately 2.6 g of powder. When the protein release amount was measured using the alkaline treatment liquid and the protein content (purity) was measured using the lyophilized powder, the protein release amount was 2.9 g and the protein purity was 92.3%.

表1に示すように、原料となる微細藻類由来バイオマスのスラリーから、特定の膜処理により濃縮した微細藻類由来バイオマスを特定条件下アルカリ処理することにより、タンパク質含量を高めた微細藻類由来タンパク質組成物を高収率で得ることができることがわかった。なお、実施例3の結果より、バイオマスの膜濃縮時の有効孔径が適切であれば、凝集剤を使用して回収したバイオマスを原料としても農・水産飼料用タンパク質原料として有用な微細藻類タンパク質を得ることが可能であることがわかった。   As shown in Table 1, a microalgae-derived protein composition having an increased protein content by alkali treatment of microalgae-derived biomass concentrated by a specific membrane treatment from a slurry of microalgae-derived biomass as a raw material It was found that can be obtained in high yield. In addition, if the effective pore diameter at the time of membrane concentration of biomass is appropriate from the result of Example 3, even if the biomass recovered using a flocculant is used as a raw material, a microalgae protein useful as a protein raw material for agriculture / fishery feed It turns out that it is possible to obtain.

Claims (3)

微細藻類由来バイオマスを含むスラリーから、有効孔径2〜200μmである分離膜を用いて前記微細藻類由来バイオマスを濃縮した後、前記微細藻類由来バイオマスをpH10〜13の条件下アルカリ処理することを特徴とする、微細藻類由来タンパク質組成物の製造方法。 After concentrating the microalgae-derived biomass from a slurry containing microalgae-derived biomass using a separation membrane having an effective pore diameter of 2 to 200 μm, the microalgae-derived biomass is alkali-treated under a condition of pH 10-13. A method for producing a microalgae-derived protein composition. 前記微細藻類がボトリオコッカス属であることを特徴とする、請求項1記載の微細藻類由来タンパク質組成物の製造方法。 The method for producing a protein composition derived from a microalgae according to claim 1, wherein the microalgae is a genus Botryococcus. 請求項1又は2に記載の微細藻類由来タンパク質組成物の製造方法により得られた微細藻類由来タンパク質組成物。 A microalgae-derived protein composition obtained by the method for producing a microalgae-derived protein composition according to claim 1 or 2.
JP2015161123A 2015-08-18 2015-08-18 Method for producing microalgal-derived protein composition Pending JP2017038538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015161123A JP2017038538A (en) 2015-08-18 2015-08-18 Method for producing microalgal-derived protein composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015161123A JP2017038538A (en) 2015-08-18 2015-08-18 Method for producing microalgal-derived protein composition

Publications (1)

Publication Number Publication Date
JP2017038538A true JP2017038538A (en) 2017-02-23

Family

ID=58202347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015161123A Pending JP2017038538A (en) 2015-08-18 2015-08-18 Method for producing microalgal-derived protein composition

Country Status (1)

Country Link
JP (1) JP2017038538A (en)

Similar Documents

Publication Publication Date Title
Anthony et al. Effect of coagulant/flocculants on bioproducts from microalgae
JP6807329B2 (en) Methods and applications for culturing ω-7 fatty acid compounds and yellow-green algae to produce the compounds
RU2010133948A (en) PRODUCTION, COLLECTION AND PROCESSING OF ALGAE CROPS
CN106480149B (en) A method of extracting polypeptide from vinasse
Abdullah et al. Algae oil extraction from freshwater microalgae Chlorella vulgaris
WO2016074409A1 (en) Method for preparing vehicle biological fuel oil, biogas and fertilizer by utilizing microalgae full composition
CN113308387B (en) Bacterial strain for co-production of unsaturated fatty acid and carotenoid and application thereof
Rushan et al. Effect of immobilization method on the growth of Chlorella vulgaris and fatty acid profile for biodiesel production
Du et al. Enhanced growth and lipid production of Chlorella pyrenoidosa by plant growth regulator GA3
Zonouzi et al. Oil extraction from microalgae Dunalliela sp. By polar and non-polar solvents
RU2015108881A (en) METHOD FOR PROCESSING BIOMASS OF PLANT ORIGIN AND METHOD FOR BURNING
Cui et al. Isolation and identification of a novel strain of Heveochlorella sp. and presentation of its capacity as biodiesel feedstock
CN103937604A (en) Method for extracting oil in microalgae
CN104726197B (en) The method of extracting cigarette seed oil is discarded in cigarette seed using homogenate extraction technology from Turkish tobaccos
CN109355321A (en) A method of microalgae grease yield is improved using walnut shell extract
JP2017038538A (en) Method for producing microalgal-derived protein composition
JP2018093766A (en) Method for producing desalted and dried product of microalga belonging to genus aurantiochytrium cultured in culture liquid containing salt
CN111448298B (en) Method for separating microbial oil
JPWO2020026794A1 (en) Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA
CN103360611A (en) Method for extracting gutta-percha from folium cortex eucommiae, skin or fruit
CN113444578B (en) Extraction process of nannochloropsis oculata essential oil
CN102234565A (en) Method for extracting bio-oil by recycling botryococcus braunii cells
EP2179047B1 (en) Lipophilic preparations
CN105623831B (en) A kind of extracting method of microalgae grease
CN104560375B (en) A kind of extracting method of microalgae grease