JP2017036860A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2017036860A
JP2017036860A JP2015157175A JP2015157175A JP2017036860A JP 2017036860 A JP2017036860 A JP 2017036860A JP 2015157175 A JP2015157175 A JP 2015157175A JP 2015157175 A JP2015157175 A JP 2015157175A JP 2017036860 A JP2017036860 A JP 2017036860A
Authority
JP
Japan
Prior art keywords
pipe
flow divider
inner diameter
refrigerant
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015157175A
Other languages
Japanese (ja)
Inventor
立慈 川端
Tatsuji Kawabata
立慈 川端
松井 大
Masaru Matsui
大 松井
一善 友近
Kazuyoshi Tomochika
一善 友近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015157175A priority Critical patent/JP2017036860A/en
Publication of JP2017036860A publication Critical patent/JP2017036860A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning device including a flow diverter that can maintain a state where a flow rate is high immediately before flow diverting to inhibit generation of a drift current.SOLUTION: The air conditioning device 10 circulates a refrigerant compressed by a compressor 3 to a condenser 4, a decompression device 6, a flow diverter inflow pipe 7, the flow diverter 8 and an evaporator 9 in series and returns the refrigerant to the compressor 3. An inner diameter 7A of the flow diverter inflow pipe 7 and an inner diameter 14A of flow diverter inner piping 14 provided inside the flow diverter are smaller than an inner diameter of a heat transfer pipe 11 provided inside the evaporator 9.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和装置に係り、特に冷媒を分流する分流器を備えた空気調和装置に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner including a flow divider that diverts a refrigerant.

従来、空気調和装置において、特に蒸発器側の熱交換器に流入する冷媒は、分流器により分岐され、各冷媒流路に流入している。冷媒の流速が遅くなると冷媒が液とガスとに偏り、偏流が発生してしまう。
例えば、特許文献1に記載の技術は、分流器の構造についての技術であり、分流器内の流入口に絞り形状を設け、流速を速くして、液とガスとを均一に混合させることで偏流の課題解決を行っている。
Conventionally, in an air conditioner, a refrigerant that particularly flows into a heat exchanger on the evaporator side is branched by a flow divider and flows into each refrigerant flow path. When the flow rate of the refrigerant is slow, the refrigerant is biased between the liquid and the gas, and a drift occurs.
For example, the technology described in Patent Document 1 is a technology related to the structure of a flow divider, and by providing a throttle shape at the inlet of the flow divider, increasing the flow velocity, and mixing the liquid and gas uniformly. We are solving the problem of drift current.

特開平7−294061号公報Japanese Patent Laid-Open No. 7-294061

しかしながら、上述した従来の構成では、分流器入口を絞り形状とするため、絞りを通過した直後は流速が遅くなり、分流前では液とガスとに偏りが発生するという問題がある。
本発明は、上述した事情に鑑みてなされたものであり、分流直前まで流速の速い状態を保ち、偏流の発生を抑制することのできる分流器を備えた空気調和装置を提供することを目的とする。
However, in the conventional configuration described above, since the inlet of the flow divider has a throttle shape, the flow velocity is slow immediately after passing through the throttle, and there is a problem that the liquid and the gas are biased before the flow is divided.
This invention is made in view of the situation mentioned above, and it aims at providing the air conditioning apparatus provided with the flow divider which can maintain the state where the flow velocity is quick until just before a diversion, and can suppress generation | occurrence | production of a drift. To do.

上記目的を達成するために、本発明は、圧縮機で圧縮した冷媒を、凝縮器、減圧装置、分流器流入管、分流器、蒸発器と循環して前記圧縮機に戻す空気調和装置において、前記分流器流入管の内径および前記分流器内に設けられる分流器内配管の内径は、前記蒸発器内に設けられる伝熱管の内径よりも小さいことを特徴とする。   In order to achieve the above object, the present invention provides an air conditioner that circulates refrigerant compressed by a compressor through a condenser, a decompression device, a flow divider inlet pipe, a flow divider, and an evaporator and returns the refrigerant to the compressor. The inner diameter of the flow divider inflow pipe and the inner diameter of the pipe in the flow divider provided in the flow divider are smaller than the inner diameter of the heat transfer pipe provided in the evaporator.

また、本発明は、前記分流器流入管の内径および前記分流器内配管の内径は、前記伝熱管の内径の0.8倍以上であり1.0倍未満であることを特徴とする。   Further, the present invention is characterized in that an inner diameter of the flow divider inlet pipe and an inner diameter of the pipe in the flow divider are 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe.

また、本発明は、前記分流器流入管の上流であり前記減圧装置の下流の位置に凍結防止管を備え、前記凍結防止管は、前記蒸発器内に設けられていることを特徴とする。   Further, the present invention is characterized in that a freeze prevention pipe is provided at a position upstream of the flow divider inflow pipe and downstream of the decompression device, and the freeze prevention pipe is provided in the evaporator.

本発明によれば、分流器流入管の内径および分流器内配管の内径を伝熱管の内径より小さく構成したため、分流器流入管および分流器内配管の断面積が小さくなり、同一冷媒流量における冷媒流速が速くなり、分流直前まで流速が速い状態を保つことが出来る。分流直前まで液とガスとに偏ることなく、比較的均一に混合した状態で分流できるため、偏流の発生を抑制できる。   According to the present invention, the inner diameter of the flow-divider inflow pipe and the inner diameter of the flow-divider internal pipe are configured to be smaller than the inner diameter of the heat transfer pipe. The flow velocity becomes faster, and it is possible to keep the flow velocity high until just before the diversion. Since the flow can be divided in a relatively uniformly mixed state without being biased to the liquid and the gas until just before the flow is divided, the occurrence of the drift can be suppressed.

本発明の実施形態に係る冷凍回路の構成図である。It is a block diagram of the refrigerating circuit which concerns on embodiment of this invention. 室外側熱交換器、室外側分流器の構成図である。It is a block diagram of an outdoor side heat exchanger and an outdoor side shunt. 室外側分流器の模式図である。It is a schematic diagram of an outdoor shunt. 別の実施形態に係る凍結防止管、室外側分流器、室外側熱交換器の構成図である。It is a block diagram of the freeze prevention pipe | tube, outdoor shunt, and outdoor heat exchanger which concern on another embodiment. 別の実施形態に係る冷媒のモリエル線図である。It is the Mollier diagram of the refrigerant | coolant which concerns on another embodiment.

第1の発明は、圧縮機で圧縮した冷媒を、凝縮器、減圧装置、分流器流入管、分流器、蒸発器と循環して圧縮機に戻す空気調和装置において、分流器流入管の内径および分流器内に設けられる分流器内配管の内径は、蒸発器内に設けられる伝熱管の内径よりも小さいことを特徴とする空気調和装置である。
この発明では、分流器流入管の内径および分流器内配管の内径を、蒸発器の伝熱管内径より小さくすることにより、同一冷媒流量における冷媒流速が速くなる。
例えば、中間運転時など冷媒流量が小さい条件下であっても、分流器流入管と分流器内流路の内径が伝熱管内径より大きい従来技術よりも、冷媒流速を分流直前まで速い状態を保つことになり、液・ガスが比較的均一に混合された状態で分流させることができ、分流器での各冷媒流路への分流悪化抑制ができる。
A first aspect of the present invention is an air conditioner in which a refrigerant compressed by a compressor is circulated through a condenser, a decompression device, a flow divider inlet pipe, a flow divider, and an evaporator and returned to the compressor. In the air conditioner, the inner diameter of the pipe in the flow divider provided in the flow divider is smaller than the inner diameter of the heat transfer tube provided in the evaporator.
In the present invention, the refrigerant flow velocity at the same refrigerant flow rate is increased by making the inner diameter of the flow divider inflow pipe and the inner diameter of the flow divider inner pipe smaller than the heat transfer pipe inner diameter of the evaporator.
For example, even under conditions where the refrigerant flow rate is small, such as during intermediate operation, the refrigerant flow rate is maintained at a higher speed until just before the diversion than in the prior art in which the inner diameter of the flow-divider inlet pipe and the flow path in the flow divider is larger than the inner diameter of the heat transfer pipe. As a result, the liquid and gas can be diverted in a relatively uniformly mixed state, and deterioration of the diversion to each refrigerant flow path in the diverter can be suppressed.

第2の発明は、第1の発明において、分流器流入管の内径および分流器内配管の内径は、伝熱管の内径の0.8倍以上であり1.0倍未満であることを特徴とする空気調和機である。
この発明では、例えば、冷媒R32を用いて、分流器流入管の内径および分流器内配管の内径を伝熱管の内径の0.8倍以上であり1.0倍未満の範囲とした場合は、分流器流入管の内径および分流器内配管の内径が伝熱管内径より大きくなるよう設計された、一般的なR410Aを用いた同一能力の空気調和装置と比べて、分流器流入管と分流器内配管での圧力損失は+40%以下となる。すなわち、分流器流入管の内径および分流器内配管の内径を伝熱管の内径の0.8倍以上であり1.0倍未満の範囲とした場合、配管内の圧力損失の顕著な増加を抑えつつ、第1の発明と同様、分流器での各冷媒流路への分流悪化抑制ができる。
A second invention is characterized in that, in the first invention, the inner diameter of the flow divider inflow pipe and the inner diameter of the pipe in the flow divider are 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe. It is an air conditioner.
In the present invention, for example, when the refrigerant R32 is used and the inner diameter of the flow-divider inlet pipe and the inner diameter of the pipe in the flow-divider are 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe, Compared to the same capacity air conditioner using R410A, which is designed so that the inner diameter of the flow divider inlet pipe and the inner diameter of the pipe inside the flow divider are larger than the inner diameter of the heat transfer pipe, the flow divider inlet pipe and the flow divider inside The pressure loss in the piping is + 40% or less. That is, when the inner diameter of the flow-divider inlet pipe and the inner diameter of the pipe in the flow-divider are in the range of 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe, a significant increase in pressure loss in the pipe is suppressed. However, similarly to the first invention, it is possible to suppress the deterioration of the diversion to each refrigerant flow path in the diversion device.

第3の発明は、第1から第2の発明において、分流器流入管の上流に凍結防止管を備え、凍結防止管は、蒸発器内に設けられていることを特徴とする空気調和装置である。
この発明では、分流器流入管の内径および分流器内配管の内径を小さくすることより、分流器流入管および分流器内配管での圧力損失が大きくなるが、減圧装置での減圧幅を小さくできる為、凍結防止管における冷媒の圧力は高くなる。凍結防止管での圧力、温度が高くなるため、蒸発器における凍結防止能力を向上できる。
A third aspect of the present invention is the air conditioner according to any one of the first to second aspects, further comprising an anti-freezing pipe upstream of the flow divider inflow pipe, and the anti-freezing pipe is provided in the evaporator. is there.
In this invention, by reducing the inner diameter of the shunt inlet pipe and the inner diameter of the shunt pipe, the pressure loss in the shunt inlet pipe and the shunt pipe increases, but the pressure reduction width in the decompressor can be reduced. For this reason, the pressure of the refrigerant in the anti-freezing pipe increases. Since the pressure and temperature in the anti-freezing pipe are increased, the anti-freezing ability in the evaporator can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施形態に係る空気調和装置10における冷媒回路を示す。図2は、暖房運転時に蒸発器として機能する場合の室外側熱交換器9および室外側分流器8の構成図である。また、図3は、室外側分流器8の模式図である。本実施の形態では、空気調和装置10を暖房運転した場合を念頭に置いて説明する。
空気調和装置10は、室外機1と室内機2とで構成されている。室外機1には、圧縮機3、四方弁15、蒸発器としての室外側熱交換器9、分流器としての室外側分流器8、減圧装置6、室外側分流器8と減圧装置6とを接続する分流器流入管7が備えられている。室内機2には、室内側分流器5、凝縮器としての室内側熱交換器4が備えられている。
(Embodiment 1)
FIG. 1 shows a refrigerant circuit in an air conditioner 10 according to an embodiment of the present invention. FIG. 2 is a configuration diagram of the outdoor heat exchanger 9 and the outdoor shunt 8 when it functions as an evaporator during heating operation. FIG. 3 is a schematic diagram of the outdoor shunt 8. In the present embodiment, the case where the air-conditioning apparatus 10 is operated for heating will be described.
The air conditioner 10 includes an outdoor unit 1 and an indoor unit 2. The outdoor unit 1 includes a compressor 3, a four-way valve 15, an outdoor heat exchanger 9 as an evaporator, an outdoor flow divider 8 as a flow divider, a pressure reducing device 6, an outdoor flow divider 8 and a pressure reducing device 6. A shunt inlet pipe 7 to be connected is provided. The indoor unit 2 includes an indoor shunt 5 and an indoor heat exchanger 4 as a condenser.

室外機1に備えられる圧縮機3は、冷媒配管12により、四方弁15を介して室内機2に備えられる室内側熱交換器4の一端に接続されている。室内側熱交換器4の他端側には、室内側分流器5が接続され、室内側分流器5は、冷媒配管12により室外機1に備えられる減圧装置6と接続されている。減圧装置6は、分流器流入管7により室外側分流器8に接続されている。   The compressor 3 provided in the outdoor unit 1 is connected to one end of the indoor side heat exchanger 4 provided in the indoor unit 2 through a four-way valve 15 by a refrigerant pipe 12. The indoor side flow divider 5 is connected to the other end side of the indoor side heat exchanger 4, and the indoor side flow divider 5 is connected to a decompression device 6 provided in the outdoor unit 1 by a refrigerant pipe 12. The decompression device 6 is connected to the outdoor flow divider 8 by a flow divider inlet pipe 7.

分流器流入管7は、図2に示すように、室外側分流器8の内部で分流器内配管14となる。この分流器内配管14は、室外側分流器8の内部で複数の分流器流出管13a〜13dに分岐する。この分流器流出管13a〜13dの分岐の数は、室外側熱交換器9に並列に設けられる伝熱管11のパス数が4パスであることに対応したものである。
なお、室外側熱交換器9に並列に設けられる伝熱管11のパス数およびこのパス数に対応する分流器流出管13の分岐の数は、適宜に変更が可能である。
As shown in FIG. 2, the flow divider inflow pipe 7 becomes a flow divider internal pipe 14 inside the outdoor flow divider 8. This in-divider pipe 14 branches into a plurality of diverter outflow pipes 13 a to 13 d inside the outdoor diverter 8. The number of branches of the flow divider outflow pipes 13a to 13d corresponds to the number of paths of the heat transfer pipe 11 provided in parallel with the outdoor heat exchanger 9 being four.
In addition, the number of paths of the heat transfer pipes 11 provided in parallel to the outdoor heat exchanger 9 and the number of branches of the flow divider outlet pipes 13 corresponding to the number of paths can be changed as appropriate.

図3に示すように、本実施の形態では、分流器流入管7は、分流器内配管14の入口開口に接続されており、分流器流入管7の内径7Aと分流器内配管14の内径14Aは、略等しく形成されている。これら分流器流入管7の内径7Aと分流器内配管14の内径14Aは、室外側熱交換器9に設けられる伝熱管11の内径よりも小さくなるように構成されている。
伝熱管11の内径は、7mmとなるよう構成されている。分流器流入管7の内径7Aおよび分流器内配管14の内径14Aは、この伝熱管11の内径の0.8倍以上であり、1.0倍未満に構成される。
なお、図3において、分流器流出管13a〜13cは省略している。
As shown in FIG. 3, in the present embodiment, the flow divider inflow pipe 7 is connected to the inlet opening of the flow divider inner pipe 14, and the inner diameter 7 </ b> A of the flow divider inflow pipe 7 and the inner diameter of the flow divider inner pipe 14. 14A is formed substantially equally. The inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are configured to be smaller than the inner diameter of the heat transfer pipe 11 provided in the outdoor heat exchanger 9.
The inner diameter of the heat transfer tube 11 is 7 mm. The inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe 11.
In FIG. 3, the flow divider outlet pipes 13a to 13c are omitted.

分流器内配管14から分岐した分流器流出管13a〜13dは、室外側熱交換器9に設けられる伝熱管11の一端に接続され、伝熱管11の他端は、冷媒配管12により四方弁15を介して圧縮機3に接続される。   The flow divider outflow pipes 13a to 13d branched from the flow divider inner pipe 14 are connected to one end of the heat transfer pipe 11 provided in the outdoor heat exchanger 9, and the other end of the heat transfer pipe 11 is connected to the four-way valve 15 by the refrigerant pipe 12. Is connected to the compressor 3.

以上のように構成された室外側分流器8、室外側熱交換器9について、以下その動作、作用を説明する。
暖房運転時には、図1に示す四方弁15が点線に示すように切り替えられる。圧縮機3から吐出された冷媒は、四方弁15を介して冷媒配管12を流れ、室内側熱交換器4に流れる。室内側熱交換器4で放熱した冷媒は、室内側分流器5を経て室外機1に供給される。減圧装置6により減圧された冷媒は、分流器流入管7を経て室外側分流器8に流れ、分流器流出管13a〜13dにより分岐され、室外側熱交換器9に供給される。室外側熱交換器9で吸熱した冷媒は、四方弁15を経て圧縮機3に流れ、冷媒回路を循環する。
The operation and action of the outdoor shunt 8 and the outdoor heat exchanger 9 configured as described above will be described below.
During the heating operation, the four-way valve 15 shown in FIG. 1 is switched as indicated by the dotted line. The refrigerant discharged from the compressor 3 flows through the refrigerant pipe 12 via the four-way valve 15 and flows into the indoor heat exchanger 4. The refrigerant radiated by the indoor heat exchanger 4 is supplied to the outdoor unit 1 through the indoor flow divider 5. The refrigerant depressurized by the decompression device 6 flows to the outdoor flow divider 8 through the flow divider inflow pipe 7, is branched by the flow divider outflow pipes 13 a to 13 d, and is supplied to the outdoor heat exchanger 9. The refrigerant having absorbed heat by the outdoor heat exchanger 9 flows through the four-way valve 15 to the compressor 3 and circulates through the refrigerant circuit.

分流器流入管7に流入した冷媒の流れについて説明する。分流器流入管7の内径7Aおよび分流器内配管14の内径14Aは、伝熱管11の内径より小さくなっており、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aが、伝熱管11の内径より大きくなっている一般的な構成と比較すると、分流器流入管7および分流器内配管14を流れる冷媒流速は速くなる。これは、冷媒流量=断面積A×冷媒流速v×冷媒密度ρの関係のためである。分流器流入管7および分流器内配管14を流れる冷媒流速を速くすることで、これらの配管を流れる冷媒を環状流にすることができ、偏流の発生を抑制することができる。   The flow of the refrigerant flowing into the flow divider inlet pipe 7 will be described. The inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are smaller than the inner diameter of the heat transfer pipe 11, and the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are transferred. Compared with a general configuration that is larger than the inner diameter of the heat pipe 11, the flow velocity of the refrigerant flowing through the flow divider inflow pipe 7 and the flow divider inner pipe 14 becomes faster. This is because of the relationship of refrigerant flow rate = cross-sectional area A × refrigerant flow velocity v × refrigerant density ρ. By increasing the flow velocity of the refrigerant flowing through the flow divider inflow pipe 7 and the flow divider inner pipe 14, the refrigerant flowing through these pipes can be made into an annular flow, and the occurrence of drift can be suppressed.

なお、冷房運転時には、図1に示す四方弁15が実線に示すように切り替えられる。圧縮機3から吐出された冷媒は、四方弁15を介して冷媒配管12を流れ、室外側熱交換器9に流れる。室外側熱交換器9で放熱した冷媒は、室外側分流器8を経て減圧装置6を介して室内機2に供給される。室内側分流器5を経た冷媒は、室内側熱交換器4に供給される。室内側熱交換器4で吸熱した冷媒は、四方弁15を経て圧縮機3に流れ、冷媒回路を循環する。
冷房運転時には、分流器流出管13a〜13dから分流器流入管7および分流器内配管14に冷媒が流れる冷媒が高圧であるため、ここでの圧力損失は性能に大きな影響を与えることがなく、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aを、伝熱管11の内径より小さくしたとしても、冷房運転に大きな影響を与えない。
In the cooling operation, the four-way valve 15 shown in FIG. 1 is switched as shown by the solid line. The refrigerant discharged from the compressor 3 flows through the refrigerant pipe 12 via the four-way valve 15 and flows to the outdoor heat exchanger 9. The refrigerant radiated by the outdoor heat exchanger 9 is supplied to the indoor unit 2 through the outdoor flow divider 8 and the decompression device 6. The refrigerant that has passed through the indoor shunt 5 is supplied to the indoor heat exchanger 4. The refrigerant that has absorbed heat by the indoor heat exchanger 4 flows through the four-way valve 15 to the compressor 3 and circulates in the refrigerant circuit.
During the cooling operation, the refrigerant flowing from the flow divider outflow pipes 13a to 13d to the flow divider inflow pipe 7 and the flow divider inner pipe 14 has a high pressure, so that the pressure loss does not greatly affect the performance. Even if the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are made smaller than the inner diameter of the heat transfer pipe 11, the cooling operation is not greatly affected.

以上説明したように、本実施の形態によれば、分流器流入管7および分流器内配管14を流れる冷媒の流速が速くなることで、冷媒が分流器流出管13a〜13dにより分流される直前まで液とガスとに偏ることなく、比較的均一に混合した状態で冷媒を分流できるため、偏流の発生を抑制することができる。液とガスを環状流として分流器流入管7および分流器内配管14に流すことができる。
例えば、冷媒としてR32を用いた場合では、冷媒R410Aと比べて冷凍効果が大きく、冷媒循環量が少なくて済むため、冷媒流速が遅くなるので、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aを、伝熱管11の内径より小さくすることによる分流悪化抑制は、さらに効果的である。
As described above, according to the present embodiment, the flow velocity of the refrigerant flowing through the flow divider inflow pipe 7 and the flow divider inner pipe 14 is increased, so that the refrigerant is immediately divided by the flow divider outflow pipes 13a to 13d. Since the refrigerant can be diverted in a relatively uniformly mixed state without being unevenly distributed between the liquid and the gas, the occurrence of uneven flow can be suppressed. The liquid and gas can be flowed through the flow divider inlet pipe 7 and the flow divider internal pipe 14 as an annular flow.
For example, when R32 is used as the refrigerant, the refrigerant refrigeration effect is larger than that of the refrigerant R410A and the refrigerant circulation amount is small, so that the refrigerant flow rate is slowed. Therefore, the inner diameter 7A of the flow divider inflow pipe 7 and the pipe in the flow divider The suppression of the diversion of the diversion by making the inner diameter 14A of 14 smaller than the inner diameter of the heat transfer tube 11 is more effective.

また、本実施の形態によれば、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aを、伝熱管11の内径より小さくし、偏流の発生を抑制することができ、安定した分流を提供できるため、細径管調整の見積を容易にでき、分流器流出管13a〜13dの細径管の設計工数を軽減することができる。   Further, according to the present embodiment, the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 can be made smaller than the inner diameter of the heat transfer pipe 11, and the occurrence of drift can be suppressed and stabilized. Since the diversion can be provided, it is possible to easily estimate the adjustment of the small-diameter pipe, and the man-hours for designing the thin-diameter pipes of the diverter outflow pipes 13a to 13d can be reduced.

また、本実施の形態によれば、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aは、この伝熱管11の内径の0.8倍以上であり、1.0倍未満に構成した。
そのため、例えば、本実施の形態において冷媒としてR32を用いた場合には、冷媒R410Aを用いて、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aが、伝熱管11の内径より大きくなっている従来技術よりも、分流器流入管7および分流器内配管14での圧力損失を+40%以下に抑えることができる。
通常、圧力損失は流速の2乗に比例するため、細径化し過ぎると圧力損失が過大となり、空調機としての性能が悪くなるが、本実施の形態によれば、圧力損失を一定範囲に抑えつつ、分流器流出管13a〜13dにより分流される直前まで液とガスとに偏ることなく、均一に混合した状態で冷媒を流すことができ、偏流の発生を抑制し、安定した分流を提供できる。
また、分流器流出管13a〜13dの細径管の調整の見積を容易にでき、分流器流出管13a〜13dの細径管の設計工数を軽減することができる。
Further, according to the present embodiment, the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe 11. Configured.
Therefore, for example, when R32 is used as the refrigerant in the present embodiment, the inner diameter 7A of the flow-divider inflow pipe 7 and the inner diameter 14A of the flow-divider inner pipe 14 are made larger than the inner diameter of the heat transfer pipe 11 using the refrigerant R410A. The pressure loss in the flow divider inflow pipe 7 and the flow divider internal pipe 14 can be suppressed to + 40% or less as compared with the conventional technology that is increasing.
Normally, the pressure loss is proportional to the square of the flow velocity, so if the diameter is too small, the pressure loss becomes excessive and the performance as an air conditioner deteriorates. However, according to this embodiment, the pressure loss is kept within a certain range. On the other hand, the refrigerant can be allowed to flow in a uniformly mixed state without being biased to liquid and gas until immediately before being shunted by the shunt flow-out pipes 13a to 13d, and the occurrence of drift can be suppressed and a stable shunt can be provided. .
Further, it is possible to easily estimate the adjustment of the small diameter pipes of the flow divider outflow pipes 13a to 13d, and to reduce the man-hours for designing the small diameter pipes of the flow divider outflow pipes 13a to 13d.

以上、本実施の形態に基づいて本発明を説明したが、本発明はこの実施形態に限定されるものではない。あくまでも本発明の実施の態様を例示するものであるから、本発明の趣旨を逸脱しない範囲で任意に変更、及び応用が可能である。
例えば、本実施の形態では、暖房運転時を基準とした場合に蒸発器として機能する室外側熱交換器9の上流に設けられる室外側分流器8について説明したが、冷房運転時を基準とした場合に蒸発器として機能する室内側熱交換器4の上流に設けられる室内側分流器5に適用することも可能である。この場合には、減圧装置6を冷房運転時を基準として室内側分流器5の上流であり室内機2内に設けることが望ましい。
As mentioned above, although this invention was demonstrated based on this Embodiment, this invention is not limited to this embodiment. Since the embodiments of the present invention are merely illustrated, modifications and applications can be arbitrarily made without departing from the spirit of the present invention.
For example, in the present embodiment, the outdoor shunt 8 provided upstream of the outdoor heat exchanger 9 that functions as an evaporator when the heating operation is used as a reference has been described, but the cooling operation is used as a reference. In this case, the present invention can be applied to an indoor shunt 5 provided upstream of the indoor heat exchanger 4 that functions as an evaporator. In this case, it is desirable to provide the decompression device 6 in the indoor unit 2 upstream of the indoor shunt 5 with reference to the cooling operation.

(実施の形態2)
実施の形態2において、実施の形態1と同様の構成については同一の符号を付し、その説明を省略する。本実施の形態では、空気調和装置10を暖房運転した場合を念頭に置いて説明する。
図4は、別の実施形態に係る凍結防止管16、室外側分流器8、室外側熱交換器9の構成図である。図5は、実施の形態2に係る冷媒のモリエル線図である。
(Embodiment 2)
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. In the present embodiment, the case where the air-conditioning apparatus 10 is operated for heating will be described.
FIG. 4 is a configuration diagram of an antifreezing tube 16, an outdoor shunt 8, and an outdoor heat exchanger 9 according to another embodiment. FIG. 5 is a Mollier diagram of the refrigerant according to the second embodiment.

実施の形態2では、図4に示すように、蒸発器として機能する室外側熱交換器9内部の下段の位置に凍結防止管16が設けられている。この凍結防止管16は、冷媒回路中の減圧装置6と分流器流入管7との間に設けられている。すなわち、暖房運転時の冷媒の流れを基準とすると、分流器流入管7の上流であり減圧装置6の下流の位置に凍結防止管16が設けられている。
分流器流入管7の内径7Aおよび分流器内配管14の内径14Aは、伝熱管11の内径および凍結防止管16の内径より小さく構成されており、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aは、この伝熱管11の内径および凍結防止管16の内径の0.8倍以上であり、1.0倍未満に構成される。
In the second embodiment, as shown in FIG. 4, an antifreeze pipe 16 is provided at a lower position inside the outdoor heat exchanger 9 that functions as an evaporator. The antifreezing pipe 16 is provided between the decompression device 6 and the flow divider inflow pipe 7 in the refrigerant circuit. That is, on the basis of the refrigerant flow during the heating operation, the freeze prevention pipe 16 is provided at a position upstream of the flow divider inflow pipe 7 and downstream of the decompression device 6.
The inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are configured to be smaller than the inner diameter of the heat transfer pipe 11 and the inner diameter of the freeze prevention pipe 16, and the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter of the flow divider The inner diameter 14A of the pipe 14 is 0.8 times or more the inner diameter of the heat transfer tube 11 and the inner diameter of the freeze prevention tube 16, and is configured to be less than 1.0 times.

以上のように構成された凍結防止管16、室外側分流器8、室外側熱交換器9について、以下その動作、作用を説明する。
暖房運転時において、図1に示す四方弁15が点線に示すように切り替えられ、圧縮機3から吐出された冷媒は、四方弁を介して冷媒配管12を流れ、室内側熱交換器4に流れる。室内側熱交換器4で放熱した冷媒は、室内側分流器5を経て室外機1に供給される。減圧装置6により減圧された冷媒は、凍結防止管16を通過、すなわち室外側熱交換器9の内部下段側を通過し、分流器流入管7を流れ、室外側分流器8の内部にて分流器流出管13a〜13dにより分岐され、室外側熱交換器9の伝熱管11に供給され、四方弁15を経て圧縮機3に流れ、冷媒回路を循環する。
The operation and action of the antifreezing tube 16, the outdoor flow divider 8 and the outdoor heat exchanger 9 configured as described above will be described below.
During the heating operation, the four-way valve 15 shown in FIG. 1 is switched as indicated by the dotted line, and the refrigerant discharged from the compressor 3 flows through the refrigerant pipe 12 through the four-way valve and flows into the indoor heat exchanger 4. . The refrigerant radiated by the indoor heat exchanger 4 is supplied to the outdoor unit 1 through the indoor flow divider 5. The refrigerant depressurized by the decompression device 6 passes through the antifreezing pipe 16, that is, passes through the lower inner side of the outdoor heat exchanger 9, flows through the flow divider inflow pipe 7, and is divided in the outdoor flow divider 8. Branched by the outflow pipes 13a to 13d, supplied to the heat transfer pipe 11 of the outdoor heat exchanger 9, flows through the four-way valve 15 to the compressor 3, and circulates in the refrigerant circuit.

分流器流入管7の内径7Aおよび分流器内配管14の内径14Aを、伝熱管11の内径および凍結防止管16の内径より小さくすることで、分流器流入管7および分流器内配管14での圧力損失が大きくなる。通常は、図5(a)に示すように、室内側熱交換器(凝縮器)4出口での冷媒19は、減圧装置6での圧力降下と室外側分流器(分流器)8での圧力損失によって減圧され、室外側熱交換器(蒸発器)9入口での冷媒20になる。本実施の形態では、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aを小さくしたことで、図5(b)に示すように、分流器流入管7および分流器内配管14での圧力損失が大きくなるため、減圧装置6での減圧幅は小さくできる。そのため、従来と比べて圧力および温度の高い冷媒18bを凍結防止管16に流すことができ、凍結防止管16での凍結防止能力を向上させることができる。   By making the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 smaller than the inner diameter of the heat transfer pipe 11 and the inner diameter of the antifreeze pipe 16, the flow divider inflow pipe 7 and the flow divider inner pipe 14 Pressure loss increases. Normally, as shown in FIG. 5A, the refrigerant 19 at the outlet of the indoor heat exchanger (condenser) 4 has a pressure drop at the decompression device 6 and a pressure at the outdoor flow divider (divider) 8. The pressure is reduced due to the loss, and the refrigerant 20 at the inlet of the outdoor heat exchanger (evaporator) 9 is obtained. In the present embodiment, by reducing the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider internal pipe 14, as shown in FIG. 5B, the flow divider inflow pipe 7 and the flow divider internal pipe 14 are provided. The pressure loss at the pressure reducing device 6 can be reduced. Therefore, the refrigerant 18b having a higher pressure and temperature than the conventional one can be passed through the freeze prevention pipe 16, and the freeze prevention ability in the freeze prevention pipe 16 can be improved.

以上説明したように、本実施の形態によれば、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aを小さくすることで、分流器流入管7および分流器内配管14での圧力損失が大きくなり、減圧装置6での減圧幅を小さくできる。
そのため、凍結防止管16に流入する冷媒18bの圧力、温度を、分流器流入管7の内径7Aおよび分流器内配管14の内径14Aが、伝熱管11の内径より大きくなっている従来技術による凍結防止管16での冷媒18aの圧力、温度と比べ、高くすることができる。従来と比べて圧力および温度の高い冷媒18bを凍結防止管16に流すことができるため、凍結防止管16での凍結防止能力を向上させ、暖房運転時に蒸発器として機能する室外側熱交換器9の凍結を防止することができる。
As described above, according to the present embodiment, the inner diameter 7A of the flow divider inflow pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are reduced, so that the flow distribution in the flow divider inflow pipe 7 and the flow divider inner pipe 14 is reduced. The pressure loss increases, and the pressure reduction width in the pressure reducing device 6 can be reduced.
Therefore, the pressure and temperature of the refrigerant 18b flowing into the antifreezing pipe 16 are set according to the prior art freezing in which the inner diameter 7A of the flow divider inlet pipe 7 and the inner diameter 14A of the flow divider inner pipe 14 are larger than the inner diameter of the heat transfer pipe 11. The pressure and temperature of the refrigerant 18a in the prevention pipe 16 can be increased. Since the refrigerant 18b having a higher pressure and temperature than the conventional one can flow through the antifreezing pipe 16, the antifreezing ability of the antifreezing pipe 16 is improved, and the outdoor heat exchanger 9 functioning as an evaporator during heating operation. Can be prevented from freezing.

以上、本実施の形態に基づいて本発明を説明したが、本発明はこれらの実施形態に限定されるものではない。あくまでも本発明の実施の態様を例示するものであるから、本発明の趣旨を逸脱しない範囲で任意に変更、及び応用が可能である。   As mentioned above, although this invention was demonstrated based on this Embodiment, this invention is not limited to these embodiment. Since the embodiments of the present invention are merely illustrated, modifications and applications can be arbitrarily made without departing from the spirit of the present invention.

以上のように本発明は、冷媒の分流悪化を抑制できる空気調和機として利用できる。   As described above, the present invention can be used as an air conditioner that can suppress the deterioration of refrigerant diversion.

1 室外機
2 室内機
3 圧縮機
4 室内側熱交換器(凝縮器)
5 室内側分流器
6 減圧装置
7 分流器流入管
7A 内径
8 室外側分流器(分流器)
9 室外側熱交換器(蒸発器)
10 空気調和装置
11 伝熱管
12 冷媒配管
13a、13b、13c、13d 分流器流出管
14 分流器内配管
14A 内径
15 四方弁
16 凍結防止管
18 凍結防止管での冷媒
19 凝縮器出口での冷媒
20 蒸発器入口での冷媒
1 Outdoor Unit 2 Indoor Unit 3 Compressor 4 Indoor Heat Exchanger (Condenser)
5 indoor side flow divider 6 decompressor 7 flow divider inflow pipe 7A inner diameter 8 outdoor flow divider (flow divider)
9 Outdoor heat exchanger (evaporator)
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 11 Heat transfer pipe 12 Refrigerant piping 13a, 13b, 13c, 13d Divider outflow pipe 14 Divider inner pipe 14A Inner diameter 15 Four-way valve 16 Freezing prevention pipe 18 Refrigerant in freezing prevention pipe 19 Refrigerant 20 in condenser outlet Refrigerant at the evaporator inlet

Claims (3)

圧縮機で圧縮した冷媒を、凝縮器、減圧装置、分流器流入管、分流器、蒸発器と循環して前記圧縮機に戻す空気調和装置において、
前記分流器流入管の内径および前記分流器内に設けられる分流器内配管の内径は、前記蒸発器内に設けられる伝熱管の内径よりも小さいことを特徴とする空気調和装置。
In the air conditioner that circulates the refrigerant compressed by the compressor, the condenser, the decompression device, the flow divider inlet pipe, the flow divider, the evaporator, and returns it to the compressor,
An air conditioner characterized in that an inner diameter of the flow divider inlet pipe and an inner diameter of a pipe in the flow divider provided in the flow divider are smaller than an inner diameter of a heat transfer pipe provided in the evaporator.
前記分流器流入管の内径および前記分流器内配管の内径は、前記伝熱管の内径の0.8倍以上であり1.0倍未満であることを特徴とする請求項1に記載の空気調和装置。   2. The air conditioner according to claim 1, wherein an inner diameter of the flow divider inlet pipe and an inner diameter of the pipe in the flow divider are 0.8 times or more and less than 1.0 times the inner diameter of the heat transfer pipe. apparatus. 前記分流器流入管の上流であり前記減圧装置の下流の位置に凍結防止管を備え、
前記凍結防止管は、前記蒸発器内に設けられていることを特徴とする請求項1又は請求項2に記載の空気調和装置。
An anti-freezing pipe upstream of the flow divider inlet pipe and downstream of the pressure reducing device;
The air conditioning apparatus according to claim 1 or 2, wherein the anti-freezing pipe is provided in the evaporator.
JP2015157175A 2015-08-07 2015-08-07 Air conditioning device Pending JP2017036860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157175A JP2017036860A (en) 2015-08-07 2015-08-07 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157175A JP2017036860A (en) 2015-08-07 2015-08-07 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2017036860A true JP2017036860A (en) 2017-02-16

Family

ID=58047910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157175A Pending JP2017036860A (en) 2015-08-07 2015-08-07 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2017036860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143539A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
WO2022172359A1 (en) * 2021-02-10 2022-08-18 三菱電機株式会社 Outdoor heat exchanger and air conditioner
JP7523602B2 (en) 2021-02-10 2024-07-26 三菱電機株式会社 Outdoor heat exchanger and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143539A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
WO2022172359A1 (en) * 2021-02-10 2022-08-18 三菱電機株式会社 Outdoor heat exchanger and air conditioner
JP7523602B2 (en) 2021-02-10 2024-07-26 三菱電機株式会社 Outdoor heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
US9822994B2 (en) Refrigeration cycle system with internal heat exchanger
WO2018002983A1 (en) Refrigeration cycle device
JP2021509945A (en) Air conditioner system
CN108061409B (en) Variable orifice for a chiller unit
KR101095483B1 (en) Heat pump heating and cooling system using sea water source
JP5931412B2 (en) Heat pump system
JP2017146015A (en) Air conditioner
US10119730B2 (en) Hybrid air handler cooling unit with bi-modal heat exchanger
JP2015108492A (en) Air conditioning system
JP2017036860A (en) Air conditioning device
JP2019060544A (en) Air conditioner
JP6422590B2 (en) Heat source system
JP2011127785A (en) Refrigerating device
JP2015158326A (en) Refrigeration device and air conditioner using refrigeration device
JP2016084970A (en) Heat exchanger
KR100880496B1 (en) Air conditioner
JP2014001916A (en) Refrigeration cycle device
TWI557385B (en) Heat pump for heating and cooling
JP6476445B2 (en) Temperature control device
JP2010230288A (en) Branch unit
JP2016142419A (en) Air conditioner and air-conditioning method
JP2010216778A (en) Refrigerating cycle device
JP2017003127A (en) Air conditioning device
KR101283252B1 (en) Thermal media equal distribution type air conditioning unit
KR102411439B1 (en) Chilled water direct cooling apparatus for saving energy