JP2017003127A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2017003127A
JP2017003127A JP2015113894A JP2015113894A JP2017003127A JP 2017003127 A JP2017003127 A JP 2017003127A JP 2015113894 A JP2015113894 A JP 2015113894A JP 2015113894 A JP2015113894 A JP 2015113894A JP 2017003127 A JP2017003127 A JP 2017003127A
Authority
JP
Japan
Prior art keywords
pipe
pressure gas
refrigerant
indoor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015113894A
Other languages
Japanese (ja)
Inventor
一善 友近
Kazuyoshi Tomochika
一善 友近
吉田 直樹
Naoki Yoshida
直樹 吉田
立慈 川端
Tatsuji Kawabata
立慈 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015113894A priority Critical patent/JP2017003127A/en
Publication of JP2017003127A publication Critical patent/JP2017003127A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent gas shortage, to suppress reduction of a supercooling degree of a refrigerant, and to reduce dispersion of cooling capacity by optimizing an amount of refrigerant bypassing a liquid pipe from a high-pressure gas pipe.SOLUTION: An air conditioning device capable of operating a plurality of indoor units 12a, 12b, 12c in one of cooling and heating, and further operating the plurality of indoor units 12a, 12b, 12c in a state of mixing cooling and heating, includes a liquid pipe confluent portion 34 connected to an outdoor unit 11 and the indoor units 12a, 12b, 12c by a high-pressure gas pipe 20, a low-pressure gas pipe 21, and a liquid pipe 22, and disposed between a refrigerant branch portion 22a to the indoor unit 12a closest to the outdoor unit 11 in the liquid pipe 22, and the outdoor unit 11, and a bypass pipe 35 connecting a terminal end portion 33 of the high-pressure gas pipe 20 connected to the indoor unit 12c farthest from the outdoor unit 11, and the liquid pipe confluent portion 34.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和装置に関する。   The present invention relates to an air conditioner.

室外ユニットと複数台の室内ユニットとを有し、複数台の前記室内ユニットを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の前記室内ユニットを冷房及び暖房を混在して運転可能な空気調和装置が知られている(例えば、特許文献1参照)。このような空気調和装置では、圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器を備えた複数台の室内ユニットとが、ユニット間配管によって接続されている。詳細には、室外熱交換器の一端は、圧縮機の冷媒吐出管と冷媒吸込管とに択一に分岐して接続され、ユニット間配管は、上記冷媒吐出管に接続される高圧ガス管と、上記冷媒吸込管に接続される低圧ガス管と、上記室外熱交換器の他端に接続される液管とを備える。
上記構成では、暖房運転と冷房運転とを混在して運転する場合、高圧ガス管、低圧ガス管及び液管の3本の冷媒配管の全てが使用される。また、冷房運転のみが実行される場合、高圧ガス管は使用されず、低圧ガス管及び液管の2本の冷媒配管が使用される。また、暖房運転のみが実行される場合、低圧ガス管は使用されず、高圧ガス管及び液管の2本の冷媒配管が使用される。
上記構成では、冷房運転のみが実行される場合、高圧ガス管は使用されないが、この高圧ガス管は圧縮機の冷媒吐出管と連通しているため、高圧ガス管に流入した冷媒が高圧のまま外気温度によって冷却され、高圧ガス管内で凝縮して液状態で溜まることが起こり得る。この場合、高圧ガス管内に溜まった分だけシステム内の冷媒量が不足し、ガス欠によって効率が低下してしまう。
特許文献1では、高圧ガス管を液管にバイパスさせるバイパス手段を各室内ユニットに対して設けることで、冷房運転時に高圧ガス管に溜まった液冷媒を液管内に取り込み、ガス欠の発生を防止している。
Having an outdoor unit and a plurality of indoor units, the plurality of indoor units can be operated either by cooling or heating, and the plurality of indoor units are operated by mixing cooling and heating. A possible air conditioner is known (see, for example, Patent Document 1). In such an air conditioner, an outdoor unit including a compressor and an outdoor heat exchanger and a plurality of indoor units including an indoor heat exchanger are connected by inter-unit piping. More specifically, one end of the outdoor heat exchanger is alternatively branched and connected to a refrigerant discharge pipe and a refrigerant suction pipe of the compressor, and the inter-unit pipe is a high-pressure gas pipe connected to the refrigerant discharge pipe. And a low pressure gas pipe connected to the refrigerant suction pipe and a liquid pipe connected to the other end of the outdoor heat exchanger.
In the above configuration, when the heating operation and the cooling operation are mixed and operated, all three refrigerant pipes of the high pressure gas pipe, the low pressure gas pipe, and the liquid pipe are used. When only the cooling operation is performed, the high-pressure gas pipe is not used, and two refrigerant pipes, a low-pressure gas pipe and a liquid pipe, are used. When only the heating operation is performed, the low-pressure gas pipe is not used, and two refrigerant pipes, a high-pressure gas pipe and a liquid pipe, are used.
In the above configuration, when only the cooling operation is performed, the high-pressure gas pipe is not used, but since the high-pressure gas pipe communicates with the refrigerant discharge pipe of the compressor, the refrigerant flowing into the high-pressure gas pipe remains at a high pressure. It can be cooled by the outside air temperature, condensed in the high-pressure gas pipe, and accumulated in a liquid state. In this case, the amount of refrigerant in the system is insufficient by the amount accumulated in the high-pressure gas pipe, and the efficiency decreases due to lack of gas.
In Patent Document 1, by providing bypass means for bypassing the high-pressure gas pipe to the liquid pipe for each indoor unit, the liquid refrigerant accumulated in the high-pressure gas pipe during the cooling operation is taken into the liquid pipe to prevent the occurrence of gas shortage. doing.

特開2001−336858号公報JP 2001-336858 A

しかし、上記従来の空気調和装置では、冷房運転の際、室外ユニットの熱交換器で放熱して液管を流れる冷媒に、高圧ガス管から上記バイパス手段を通って液管に流れる冷媒が合流するため、冷媒の過冷却度が減少し、冷房性能が低下してしまう。詳細には、上記従来の空気調和装置では、室内ユニットの設置台数が増えた場合、上記バイパス手段の数も増えるため、バイパス手段に流れる冷媒量が過剰になり得るとともに、室内ユニットの設置状況によっては、過冷却度の減少度が室内ユニット毎に異なってしまい、冷房能力にバラツキが発生してしまうことが考えられ、改善の余地があった。
本発明は、上述した事情に鑑みてなされたものであり、空気調和装置において、高圧ガス管から液管にバイパスされる冷媒量を適切にして、ガス欠を防止し、且つ、冷媒の過冷却度の減少を抑制するとともに、冷房能力のバラツキを低減できるようにすることを目的とする。
However, in the conventional air conditioner, during the cooling operation, the refrigerant flowing from the high-pressure gas pipe to the liquid pipe through the bypass means merges with the refrigerant that radiates heat by the heat exchanger of the outdoor unit and flows through the liquid pipe. For this reason, the degree of supercooling of the refrigerant decreases, and the cooling performance decreases. Specifically, in the conventional air conditioner, when the number of indoor units installed increases, the number of bypass means also increases, so that the amount of refrigerant flowing through the bypass means can be excessive, and depending on the installation status of the indoor units. However, there is room for improvement because the degree of decrease in the degree of supercooling varies from one indoor unit to another, and the cooling capacity may vary.
The present invention has been made in view of the above-described circumstances. In an air conditioner, the amount of refrigerant bypassed from a high-pressure gas pipe to a liquid pipe is appropriately controlled to prevent out-of-gas, and the refrigerant is supercooled. The purpose is to reduce the variation in cooling capacity while suppressing the decrease in the degree of cooling.

上記目的を達成するため、本発明は、室外ユニットと複数台の室内ユニットとを有し、複数台の前記室内ユニットを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の前記室内ユニットを冷房及び暖房を混在して運転可能な空気調和装置において、前記室外ユニットと前記室内ユニットとは高圧ガス管、低圧ガス管、及び、液管で接続され、前記液管における前記室外ユニットに最も近い前記室内ユニットへの冷媒分岐部と前記室外ユニットとの間に液管合流部を備え、前記室外ユニットから最も離れた前記室内ユニットに繋がる前記高圧ガス管の終端部と前記液管合流部とを結ぶバイパス管を備えることを特徴とする。   In order to achieve the above object, the present invention includes an outdoor unit and a plurality of indoor units, the plurality of the indoor units can be operated either by cooling or heating, and a plurality of the units are operated. In an air conditioner capable of operating an indoor unit by mixing cooling and heating, the outdoor unit and the indoor unit are connected by a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe, and the outdoor unit in the liquid pipe A liquid pipe junction between the refrigerant branch to the indoor unit closest to the outdoor unit and the outdoor unit, and the liquid pipe junction and the terminal end of the high-pressure gas pipe connected to the indoor unit farthest from the outdoor unit A bypass pipe is provided to connect the two parts.

また、本発明は、前記バイパス管の冷媒の流量を調整する流量調整手段を備えることを特徴とする。
また、本発明は、前記室内ユニットの室内熱交換器と前記高圧ガス管、前記低圧ガス管、及び、前記液管とを繋ぐ冷媒配管と、運転状態によって当該冷媒配管の冷媒の流れを切り替える開閉弁と、前記冷媒配管及び前記開閉弁を収納する筐体とが設けられ、前記冷媒配管、前記開閉弁及び前記筐体は、複数台の前記室内ユニットの前記冷媒配管及び前記開閉弁が前記筐体内に一体に設けられた集合電磁弁キットとして設けられ、前記バイパス管の一端は、前記集合電磁弁キットの前記高圧ガス管の前記終端部に接続され、前記バイパス管の他端は、前記集合電磁弁キットの前記液管と前記室外ユニットとの間に接続されることを特徴とする。
Further, the present invention is characterized by comprising a flow rate adjusting means for adjusting the flow rate of the refrigerant in the bypass pipe.
Further, the present invention provides a refrigerant pipe that connects the indoor heat exchanger of the indoor unit and the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe, and an open / close that switches a refrigerant flow in the refrigerant pipe according to an operating state. And a housing for housing the refrigerant pipe and the on-off valve. The refrigerant pipe, the on-off valve, and the housing are provided with the refrigerant pipe and the on-off valve of a plurality of the indoor units. Provided as a collective solenoid valve kit integrally provided in the body, one end of the bypass pipe is connected to the terminal portion of the high pressure gas pipe of the collective solenoid valve kit, and the other end of the bypass pipe is connected to the collective solenoid valve kit. The electromagnetic valve kit is connected between the liquid pipe and the outdoor unit.

本発明の空気調和装置によれば、冷房運転の際に、高圧ガス管に溜まる冷媒をバイパス管を通して液管に戻すことで、ガス欠を防止できるとともに、高圧ガス管の終端部と液管合流部とを結ぶバイパス管によって、室内ユニットの設置台数によらず、適切な量の冷媒を液管に戻すことができるため、冷媒の過冷却度の減少を低減して冷房能力の低下を抑制することができる。また、高圧ガス管の終端部から、室外ユニットから最も近い室内ユニット側の液管の液管合流部に冷媒が戻るため、液管から複数台設置された各室内ユニットへ流れる冷媒の温度差を小さくできる。このため、各室内ユニットの冷房能力のバラツキを低減できる。   According to the air conditioner of the present invention, during the cooling operation, the refrigerant accumulated in the high-pressure gas pipe is returned to the liquid pipe through the bypass pipe, so that the gas shortage can be prevented and the end portion of the high-pressure gas pipe and the liquid pipe merge The bypass pipe connecting the unit can return an appropriate amount of refrigerant to the liquid pipe regardless of the number of indoor units installed, so the reduction in the degree of cooling of the refrigerant is suppressed by reducing the decrease in the degree of supercooling of the refrigerant. be able to. In addition, since the refrigerant returns from the terminal end of the high pressure gas pipe to the liquid pipe junction of the liquid pipe on the indoor unit side closest to the outdoor unit, the temperature difference of the refrigerant flowing from the liquid pipe to each of the indoor units installed in a plurality is set. Can be small. For this reason, the variation in the cooling capacity of each indoor unit can be reduced.

本発明の実施の形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning an embodiment of the invention. 暖房運転時における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device at the time of heating operation. 冷房及び暖房の混在運転時における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of an air harmony device at the time of mixed operation of air conditioning and heating. 第2の実施の形態の空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus of 2nd Embodiment.

以下、図面を参照して本発明の一実施形態について説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る空気調和装置の冷媒回路図である。
空気調和装置10は、室外ユニット11と、室外ユニット11に接続される複数台の室内ユニット12a,12b,12cと、室外ユニット11と室内ユニット12a,12b,12cとを接続するユニット間配管13とを備える。
また、空気調和装置10は、ユニット間配管13と室内ユニット12a,12b,12cとをそれぞれ接続する電磁弁キット14a,14b,14cを備える。
空気調和装置10は、室内ユニット12a,12b,12cの全てを冷房運転もしくは暖房運転可能であり、且つ、室内ユニット12a,12b,12c間で冷房運転と暖房運転とを混在して運転する混在運転が可能である。
なお、ここでは、室外ユニット11に対し、ユニット間配管13を介して3台の室内ユニット12a,12b,12cが並列に接続される構成を例に挙げて説明するが、本発明はこれに限定されるものではなく、室内ユニットは、2台以上が並列に接続されていれば良い。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to the first embodiment of the present invention.
The air conditioner 10 includes an outdoor unit 11, a plurality of indoor units 12a, 12b, and 12c connected to the outdoor unit 11, and an inter-unit pipe 13 that connects the outdoor unit 11 and the indoor units 12a, 12b, and 12c. Is provided.
The air conditioner 10 includes electromagnetic valve kits 14a, 14b, and 14c that connect the inter-unit pipe 13 and the indoor units 12a, 12b, and 12c, respectively.
The air conditioner 10 is capable of cooling or heating all the indoor units 12a, 12b, and 12c, and is a mixed operation in which the cooling and heating operations are mixed between the indoor units 12a, 12b, and 12c. Is possible.
Here, a configuration in which three indoor units 12a, 12b, and 12c are connected in parallel to the outdoor unit 11 via the inter-unit piping 13 will be described as an example, but the present invention is limited to this. However, two or more indoor units may be connected in parallel.

室外ユニット11は、圧縮機15と、冷房運転、暖房運転及び冷房運転と暖房運転の混在運転の切り替えに用いられる切替弁16,17と、室外熱交換器18と、室外膨張弁19とを備える。
室外熱交換器18の一端に接続される冷媒配管は分岐しており、この分岐の一方は切替弁16を介して圧縮機15の吐出管15aに接続され、分岐の他方は切替弁17を介して圧縮機15の吸込管15bに接続される。すなわち、室外ユニット11では、室外熱交換器18の一端は、圧縮機15の吐出管15aと吸込管15bとに、切替弁16,17を介して択一に分岐して接続される。
室外膨張弁19は、室外熱交換器18の他端の冷媒配管に設けられる。室外ユニット11は、室外熱交換器18に送風して熱交換を促進させる送風機(不図示)を備える。切替弁16,17及び室外膨張弁19は、室外ユニット11の制御部(不図示)によって動作を制御される。
The outdoor unit 11 includes a compressor 15, switching valves 16 and 17 used for switching between cooling operation, heating operation, and mixed operation of cooling operation and heating operation, an outdoor heat exchanger 18, and an outdoor expansion valve 19. .
The refrigerant pipe connected to one end of the outdoor heat exchanger 18 is branched, and one of the branches is connected to the discharge pipe 15a of the compressor 15 via the switching valve 16, and the other of the branches is connected via the switching valve 17. Are connected to the suction pipe 15b of the compressor 15. That is, in the outdoor unit 11, one end of the outdoor heat exchanger 18 is branched and connected to the discharge pipe 15 a and the suction pipe 15 b of the compressor 15 via the switching valves 16 and 17.
The outdoor expansion valve 19 is provided in the refrigerant pipe at the other end of the outdoor heat exchanger 18. The outdoor unit 11 includes a blower (not shown) that blows air to the outdoor heat exchanger 18 to promote heat exchange. The operation of the switching valves 16 and 17 and the outdoor expansion valve 19 is controlled by a control unit (not shown) of the outdoor unit 11.

ユニット間配管13は、圧縮機15の吐出管15aに接続されて室内ユニット12a,12b,12c側へ延びる高圧ガス管20と、圧縮機15の吸込管15bに接続されて室内ユニット12a,12b,12c側へ延びる低圧ガス管21と、室外熱交換器18の他端に接続されて室内ユニット12a,12b,12c側へ延びる液管22とを備える。   The inter-unit pipe 13 is connected to the discharge pipe 15a of the compressor 15 and extends to the indoor units 12a, 12b, and 12c, and the suction pipe 15b of the compressor 15 is connected to the indoor units 12a, 12b, The low-pressure gas pipe 21 extending toward the 12c side and the liquid pipe 22 connected to the other end of the outdoor heat exchanger 18 and extending toward the indoor units 12a, 12b, and 12c are provided.

室内ユニット12a,12b,12cは、室内熱交換器23a,23b,23cと、液管22と室内熱交換器23a,23b,23cとの間において室内熱交換器23a,23b,23cの一端に設けられる室内膨張弁24a,24b,24cと、室内熱交換器23a,23b,23cに送風する送風機(不図示)とを備える。
室内ユニット12aは、室外ユニット11に最も距離が近い室内ユニットである。室内ユニット12cは、室外ユニット11から最も距離が遠い室内ユニットである。室内ユニット12bは、室内ユニット12aよりも室外ユニット11に遠く、室内ユニット12cよりも室外ユニット11に近い位置に配置されている。
すなわち、室外ユニット11からユニット間配管13を通じて供給される冷媒の流れにおいては、室内ユニット12aが最も上流側に位置し、室内ユニット12cが最も下流側に位置する。
The indoor units 12a, 12b, 12c are provided at one end of the indoor heat exchangers 23a, 23b, 23c between the indoor heat exchangers 23a, 23b, 23c and the liquid pipe 22 and the indoor heat exchangers 23a, 23b, 23c. Indoor expansion valves 24a, 24b, and 24c and a blower (not shown) that blows air to the indoor heat exchangers 23a, 23b, and 23c.
The indoor unit 12 a is an indoor unit that is closest to the outdoor unit 11. The indoor unit 12 c is an indoor unit farthest from the outdoor unit 11. The indoor unit 12b is arranged at a position farther from the outdoor unit 11 than the indoor unit 12a and closer to the outdoor unit 11 than the indoor unit 12c.
That is, in the flow of refrigerant supplied from the outdoor unit 11 through the inter-unit pipe 13, the indoor unit 12a is located on the most upstream side, and the indoor unit 12c is located on the most downstream side.

電磁弁キット14a,14b,14cは、液管22の冷媒分岐部22a,22b,22cから分岐して室内熱交換器23a,23b,23cの一端側に接続される液分岐管25a,25b,25cを備える。
また、電磁弁キット14a,14b,14cは、高圧ガス管20から分岐して室内熱交換器23a,23b,23cの一端側に接続される高圧ガス分岐管26a,26b,26cと、低圧ガス管21から分岐して室内熱交換器23a,23b,23cの一端側に接続される低圧ガス分岐管27a,27b,27cとを備える。
詳細には、高圧ガス分岐管26a,26b,26cと低圧ガス分岐管27a,27b,27cとは、室内ユニット12a,12b,12c側の端部で合流して一本の管となり、室内熱交換器23a,23b,23cの他端側に接続される。
また、電磁弁キット14a,14b,14cは、高圧ガス分岐管26a,26b,26cと低圧ガス分岐管27a,27b,27cとを接続するバランス管28a,28b,28cを備える。
電磁弁キット14a,14b,14cと室内ユニット12a,12b,12cとは、冷媒配管を介して接続される。
また、電磁弁キット14a,14b,14cは、電磁弁キット14aが室外ユニット11に最も近く、電磁弁キット14cが室外ユニット11に最も遠い。
The solenoid valve kits 14a, 14b, and 14c branch from the refrigerant branch portions 22a, 22b, and 22c of the liquid pipe 22 and are connected to one end sides of the indoor heat exchangers 23a, 23b, and 23c, and the liquid branch pipes 25a, 25b, and 25c. Is provided.
The solenoid valve kits 14a, 14b, and 14c are divided into a high-pressure gas branch pipes 26a, 26b, and 26c branched from the high-pressure gas pipe 20 and connected to one end side of the indoor heat exchangers 23a, 23b, and 23c, and a low-pressure gas pipe. And low-pressure gas branch pipes 27a, 27b, 27c connected to one end side of the indoor heat exchangers 23a, 23b, 23c.
Specifically, the high-pressure gas branch pipes 26a, 26b, and 26c and the low-pressure gas branch pipes 27a, 27b, and 27c merge at the end on the indoor unit 12a, 12b, and 12c side to form a single pipe, thereby exchanging indoor heat. Connected to the other end of each of the devices 23a, 23b, 23c.
The solenoid valve kits 14a, 14b, and 14c include balance pipes 28a, 28b, and 28c that connect the high-pressure gas branch pipes 26a, 26b, and 26c and the low-pressure gas branch pipes 27a, 27b, and 27c.
The solenoid valve kits 14a, 14b, 14c and the indoor units 12a, 12b, 12c are connected via a refrigerant pipe.
Further, in the solenoid valve kits 14a, 14b, and 14c, the solenoid valve kit 14a is closest to the outdoor unit 11, and the solenoid valve kit 14c is farthest from the outdoor unit 11.

高圧ガス分岐管26a,26b,26cは、高圧ガス分岐管26a,26b,26cの流路を開閉する高圧ガス管開閉弁29a,29b,29cを備える。
低圧ガス分岐管27a,27b,27cは、低圧ガス分岐管27a,27b,27cの流路を開閉する低圧ガス管開閉弁30a,30b,30cを備える。
バランス管28a,28b,28cは、バランス管28a,28b,28cの流路を開閉するバランス管開閉弁31a,31b,31cを備える。
また、電磁弁キット14a,14b,14cは、箱状の筐体32a,32b,32cを備える。
The high-pressure gas branch pipes 26a, 26b, and 26c include high-pressure gas pipe open / close valves 29a, 29b, and 29c that open and close the flow paths of the high-pressure gas branch pipes 26a, 26b, and 26c.
The low-pressure gas branch pipes 27a, 27b, and 27c include low-pressure gas pipe opening / closing valves 30a, 30b, and 30c that open and close the flow paths of the low-pressure gas branch pipes 27a, 27b, and 27c.
The balance tubes 28a, 28b, 28c include balance tube open / close valves 31a, 31b, 31c that open and close the flow paths of the balance tubes 28a, 28b, 28c.
The solenoid valve kits 14a, 14b, and 14c include box-shaped casings 32a, 32b, and 32c.

電磁弁キット14a,14b,14cでは、液分岐管25a,25b,25c、高圧ガス分岐管26a,26b,26c、低圧ガス分岐管27a,27b,27c、バランス管28a,28b,28c、高圧ガス管開閉弁29a,29b,29c、低圧ガス管開閉弁30a,30b,30c、及び、バランス管開閉弁31a,31b,31cが、筐体32a,32b,32c内にそれぞれ収納されている。
このように配管及び弁がまとめられた電磁弁キット14a,14b,14cを用いることで、ユニット間配管13と室内ユニット12a,12b,12cとを容易に接続できる。
高圧ガス管開閉弁29a,29b,29c、低圧ガス管開閉弁30a,30b,30c、及び、バランス管開閉弁31a,31b,31cは、室外ユニット11の制御部(不図示)によって動作を制御される。
In the solenoid valve kits 14a, 14b, 14c, liquid branch pipes 25a, 25b, 25c, high pressure gas branch pipes 26a, 26b, 26c, low pressure gas branch pipes 27a, 27b, 27c, balance pipes 28a, 28b, 28c, high pressure gas pipes. The on-off valves 29a, 29b, 29c, the low-pressure gas pipe on-off valves 30a, 30b, 30c, and the balance pipe on-off valves 31a, 31b, 31c are housed in the casings 32a, 32b, 32c, respectively.
By using the electromagnetic valve kits 14a, 14b, and 14c in which the piping and valves are combined in this way, the inter-unit piping 13 and the indoor units 12a, 12b, and 12c can be easily connected.
The operations of the high pressure gas pipe on / off valves 29a, 29b, 29c, the low pressure gas pipe on / off valves 30a, 30b, 30c, and the balance pipe on / off valves 31a, 31b, 31c are controlled by a control unit (not shown) of the outdoor unit 11. The

空気調和装置10は、室内ユニット12a,12b,12cの内、室外ユニット11から最も離れた室内ユニット12cに繋がる高圧ガス管20の終端部33と、液管22の冷媒分岐部22aと室外ユニット11との間で液管22に合流する液管合流部34とを結ぶバイパス管35を備える。言い換えれば、バイパス管35は、高圧ガス管20の下流端部と、液管22における最も上流側の冷媒分岐部22aよりもさらに上流の上流端部とを接続する。
ここで、冷媒分岐部22aは、室外ユニット11に最も近い室内ユニット12aへ分岐する冷媒分岐部である。また、高圧ガス管20の終端部33は、高圧ガス管20と高圧ガス分岐管26cとの接続部でもある。すなわち、バイパス管35は、室外ユニット11に最も遠い室内ユニット12c側の高圧ガス管20を、室外ユニット11に最も近い室内ユニット12aの冷媒分岐部22aよりも上流側の液管22の液管合流部34に接続する。なお、バイパス管35が接続される終端部33は、高圧ガス管20と高圧ガス分岐管26cとの接続部に限定されるものではなく、高圧ガス管20上において室内ユニット12bよりも室内ユニット12cに近い位置に設けられることが好ましい。
高圧ガス管20の冷媒は液管22の冷媒よりも高圧であるため、この圧力差によって、冷媒は、終端部33からバイパス管35を通り、液管合流部34で液管22に合流する。
また、バイパス管35は、バイパス管35の冷媒の流量を調整する流量調整手段36を備える。ここで、流量調整手段36は、室外ユニット11の制御部によって開度を制御される膨張弁である。
The air conditioner 10 includes an indoor unit 12a, 12b, and 12c, the end portion 33 of the high-pressure gas pipe 20 connected to the indoor unit 12c farthest from the outdoor unit 11, the refrigerant branching portion 22a of the liquid pipe 22, and the outdoor unit 11. And a bypass pipe 35 connecting the liquid pipe merging portion 34 that merges with the liquid pipe 22. In other words, the bypass pipe 35 connects the downstream end of the high-pressure gas pipe 20 and the upstream end of the liquid pipe 22 further upstream than the most upstream refrigerant branch portion 22a.
Here, the refrigerant branching portion 22 a is a refrigerant branching portion that branches to the indoor unit 12 a closest to the outdoor unit 11. The terminal portion 33 of the high pressure gas pipe 20 is also a connection portion between the high pressure gas pipe 20 and the high pressure gas branch pipe 26c. That is, the bypass pipe 35 joins the high-pressure gas pipe 20 on the side of the indoor unit 12c farthest to the outdoor unit 11 to the liquid pipe of the liquid pipe 22 on the upstream side of the refrigerant branching portion 22a of the indoor unit 12a closest to the outdoor unit 11. Connected to the unit 34. The end portion 33 to which the bypass pipe 35 is connected is not limited to the connection portion between the high pressure gas pipe 20 and the high pressure gas branch pipe 26c, and the indoor unit 12c is more on the high pressure gas pipe 20 than the indoor unit 12b. It is preferable to be provided at a position close to.
Since the refrigerant in the high-pressure gas pipe 20 has a higher pressure than the refrigerant in the liquid pipe 22, the refrigerant flows from the terminal end portion 33 through the bypass pipe 35 and joins the liquid pipe 22 at the liquid pipe joining portion 34 due to this pressure difference.
The bypass pipe 35 includes a flow rate adjusting unit 36 that adjusts the flow rate of the refrigerant in the bypass pipe 35. Here, the flow rate adjusting means 36 is an expansion valve whose opening degree is controlled by the control unit of the outdoor unit 11.

ここで、図1を参照し、冷房運転時の動作を説明する。
冷房運転時には、切替弁16は開かれ、切替弁17は閉じられ、低圧ガス管開閉弁30a,30b,30cは開かれ、高圧ガス管開閉弁29a,29b,29cは閉じられ、バランス管開閉弁31a,31b,31cは開かれる。これにより、冷房運転時には、冷媒は実線の矢印の方向に流れる。
詳細には、圧縮機15から吐出される高温高圧のガス冷媒は、切替弁16を通って室外熱交換器18に流入する。室外熱交換器18で外気に放熱して凝縮した高圧液冷媒は、室外膨張弁19を通り、液管22に流れる。このとき、室外膨張弁19は、室外熱交換器18の出口の冷媒の過冷却度が所定の値となるように制御される。
Here, the operation during the cooling operation will be described with reference to FIG.
During the cooling operation, the switching valve 16 is opened, the switching valve 17 is closed, the low pressure gas pipe on / off valves 30a, 30b, 30c are opened, the high pressure gas pipe on / off valves 29a, 29b, 29c are closed, and the balance pipe on / off valve is closed. 31a, 31b and 31c are opened. Thus, during the cooling operation, the refrigerant flows in the direction of the solid line arrow.
Specifically, the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 flows into the outdoor heat exchanger 18 through the switching valve 16. The high-pressure liquid refrigerant that has radiated heat to the outside air and condensed in the outdoor heat exchanger 18 passes through the outdoor expansion valve 19 and flows to the liquid pipe 22. At this time, the outdoor expansion valve 19 is controlled such that the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger 18 becomes a predetermined value.

液管22に流れた冷媒は、液分岐管25a,25b,25cに流れ、室内膨張弁24a,24b,24cを通過して低温低圧の気液2相状態となり、室内熱交換器23a,23b,23cで蒸発することで、室内を冷房する。室内熱交換器23a,23b,23cで低圧ガス状態となった冷媒は、低圧ガス分岐管27a,27b,27cを通って低圧ガス管21に流れ、圧縮機15に吸い込まれる。   The refrigerant that has flowed into the liquid pipe 22 flows into the liquid branch pipes 25a, 25b, and 25c, passes through the indoor expansion valves 24a, 24b, and 24c, becomes a low-temperature and low-pressure gas-liquid two-phase state, and the indoor heat exchangers 23a, 23b, The room is cooled by evaporating at 23c. The refrigerant that has become a low pressure gas state in the indoor heat exchangers 23a, 23b, and 23c flows into the low pressure gas pipe 21 through the low pressure gas branch pipes 27a, 27b, and 27c, and is sucked into the compressor 15.

また、冷房運転時は、圧縮機15から吐出される高温高圧のガス冷媒の一部は、図1の破線の矢印の方向にも流れる。
詳細には、圧縮機15から吐出される冷媒の一部は、高圧ガス管20に流れる。冷房運転時は、高圧ガス管開閉弁29a,29b,29cが閉じられているため、冷媒は、室内ユニット12a,12b,12c側へは流れず、高圧ガス管20を流れ、終端部33からバイパス管35に流入し、流量調整手段36を通過して液管合流部34で液管22に合流し、その後、室内ユニット12a,12b,12cへ流れる。このとき、流量調整手段36は、バイパス管35の冷媒が合流した後の液管22の冷媒の過冷却度が小さくなり過ぎないように所定の開度に制御される。
Further, during the cooling operation, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 also flows in the direction of the broken arrow in FIG.
Specifically, a part of the refrigerant discharged from the compressor 15 flows into the high-pressure gas pipe 20. During the cooling operation, the high-pressure gas pipe opening / closing valves 29a, 29b, and 29c are closed, so that the refrigerant does not flow to the indoor units 12a, 12b, and 12c but flows through the high-pressure gas pipe 20 and bypasses from the end portion 33. It flows into the pipe 35, passes through the flow rate adjusting means 36, joins the liquid pipe 22 at the liquid pipe joining section 34, and then flows to the indoor units 12a, 12b, 12c. At this time, the flow rate adjusting means 36 is controlled to a predetermined opening degree so that the degree of supercooling of the refrigerant in the liquid pipe 22 after the refrigerant in the bypass pipe 35 joins does not become too small.

このように、冷房運転時に高圧ガス管20の冷媒を、バイパス管35を通して液管22に戻すため、冷房運転時に不使用となる高圧ガス管20に冷媒が溜まってしまうことを防止でき、ガス欠状態となることを防止できる。
また、バイパス管35は、電磁弁キット14a,14b,14cの外側で、高圧ガス管20の終端部33と液管22の液管合流部34とを繋ぐため、室内ユニット12a,12b,12cの設置台数に応じて適切な特性を有するものを使用できる。このため、バイパス管35から液管22に戻る冷媒量が過剰になることを防止でき、冷媒の過冷却度の減少を低減して冷房能力の低下を抑制することができる。例えば、上述の従来技術のように、室内ユニット毎にバイパス手段を設けた場合、室内ユニットの数が増加するとバイパス手段の数も増加するため、液管に戻る冷媒量が過剰になってしまう。
Thus, since the refrigerant in the high-pressure gas pipe 20 is returned to the liquid pipe 22 through the bypass pipe 35 during the cooling operation, it is possible to prevent the refrigerant from accumulating in the high-pressure gas pipe 20 that is not used during the cooling operation. It can prevent becoming a state.
Further, the bypass pipe 35 is connected to the terminal part 33 of the high-pressure gas pipe 20 and the liquid pipe merging part 34 of the liquid pipe 22 outside the electromagnetic valve kits 14a, 14b, 14c, so that the indoor units 12a, 12b, 12c Those with appropriate characteristics can be used according to the number of installed units. For this reason, it is possible to prevent the amount of the refrigerant returning from the bypass pipe 35 to the liquid pipe 22 from being excessive, and to reduce a reduction in the degree of supercooling of the refrigerant, thereby suppressing a reduction in cooling capacity. For example, when the bypass unit is provided for each indoor unit as in the above-described conventional technology, the number of bypass units increases as the number of indoor units increases, so that the amount of refrigerant returning to the liquid pipe becomes excessive.

また、バイパス管35を通って液管22に戻る冷媒は、室外ユニット11に最も近い室内ユニット12aの冷媒分岐部22aよりも液管22の上流側の液管合流部34に戻るため、バイパス管35から液管22に戻る冷媒による過冷却度への影響は、各室内ユニット12a,12b,12cに対し同様となる。すなわち、液分岐管25a,25b,25cから室内ユニット12a,12b,12cに供給される冷媒の温度差を、室内ユニット12a,12b,12c間で小さくできるため、室内ユニット12a,12b,12cの冷房能力のバラツキを低減できる。これに対し、上述の従来技術のように、室内ユニット毎にバイパス手段を設けた場合、室外ユニットに近い室内ユニットほど、バイパス手段に流れる冷媒量が多くなるため、複数の室内ユニット間で冷房能力にバラツキが発生し易い。   Further, the refrigerant that returns to the liquid pipe 22 through the bypass pipe 35 returns to the liquid pipe junction 34 on the upstream side of the liquid pipe 22 with respect to the refrigerant branching section 22a of the indoor unit 12a closest to the outdoor unit 11, so that the bypass pipe The influence on the degree of supercooling by the refrigerant returning from the liquid pipe 22 to the liquid pipe 22 is the same for each indoor unit 12a, 12b, 12c. That is, since the temperature difference of the refrigerant supplied from the liquid branch pipes 25a, 25b, and 25c to the indoor units 12a, 12b, and 12c can be reduced between the indoor units 12a, 12b, and 12c, the indoor units 12a, 12b, and 12c are cooled. Capability variation can be reduced. On the other hand, when the bypass unit is provided for each indoor unit as in the above-described conventional technology, the amount of refrigerant flowing through the bypass unit increases as the indoor unit is closer to the outdoor unit. Are likely to vary.

さらに、空気調和装置10の起動直後や圧縮機15のオイル回収運転を実施した直後、及び、直前まで暖房運転をしていた場合等、高圧ガス管20内の冷媒の溜まり量が小さいときには、流量調整手段36は全閉に制御される。これにより、バイパス管35による冷媒のバイパスが不要な際にバイパスを行わないようにでき、室外熱交換器18に効率良く冷媒を流して冷房能力を向上できる。   Further, when the amount of refrigerant accumulated in the high-pressure gas pipe 20 is small, such as immediately after the start of the air conditioner 10, immediately after the oil recovery operation of the compressor 15 is performed, and when the heating operation is performed immediately before, the flow rate The adjusting means 36 is controlled to be fully closed. Thereby, when bypassing the refrigerant by the bypass pipe 35 is unnecessary, the bypass is not performed, and the cooling capacity can be improved by efficiently flowing the refrigerant through the outdoor heat exchanger 18.

図2は、暖房運転時における空気調和装置10の冷媒回路図である。
暖房運転時には、切替弁16は閉じられ、切替弁17は開かれ、低圧ガス管開閉弁30a,30b,30cは閉じられ、高圧ガス管開閉弁29a,29b,29cは開かれ、バランス管開閉弁31a,31b,31cは閉じられる。これにより、暖房運転時には、冷媒は実線の矢印の方向に流れる。
FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus 10 during heating operation.
During the heating operation, the switching valve 16 is closed, the switching valve 17 is opened, the low pressure gas pipe on / off valves 30a, 30b, 30c are closed, the high pressure gas pipe on / off valves 29a, 29b, 29c are opened, and the balance pipe on / off valve is opened. 31a, 31b, 31c are closed. Thus, during the heating operation, the refrigerant flows in the direction of the solid line arrow.

詳細には、圧縮機15から吐出される高温高圧のガス冷媒は、高圧ガス管20に流れ、高圧ガス分岐管26a,26b,26cを通って室内熱交換器23a,23b,23cに流れる。冷媒は、室内熱交換器23a,23b,23cで凝縮することで、室内を暖房し、室内膨張弁24a,24b,24cを通過して高圧液冷媒となる。このとき、室内膨張弁24a,24b,24cは、室内熱交換器23a,23b,23cの出口における冷媒の過冷却度が所定値となるように制御される。その後、冷媒は、液分岐管25a,25b,25cから液管22を通って室外ユニット11に流れ、室外膨張弁19で低温低圧の気液2相状態となり、次いで、室外熱交換器18で外気から吸熱して低圧ガス状態となり、切替弁17を通って圧縮機15に吸い込まれる。   Specifically, the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 flows to the high-pressure gas pipe 20, and then flows to the indoor heat exchangers 23a, 23b, and 23c through the high-pressure gas branch pipes 26a, 26b, and 26c. The refrigerant is condensed in the indoor heat exchangers 23a, 23b, and 23c, thereby heating the room and passing through the indoor expansion valves 24a, 24b, and 24c to become high-pressure liquid refrigerant. At this time, the indoor expansion valves 24a, 24b, and 24c are controlled so that the refrigerant subcooling degree at the outlets of the indoor heat exchangers 23a, 23b, and 23c becomes a predetermined value. Thereafter, the refrigerant flows from the liquid branch pipes 25a, 25b, and 25c through the liquid pipe 22 to the outdoor unit 11, enters a low-temperature low-pressure gas-liquid two-phase state by the outdoor expansion valve 19, and then the outdoor heat exchanger 18 Then, the heat is absorbed to enter a low-pressure gas state, and is sucked into the compressor 15 through the switching valve 17.

また、暖房運転時には、流量調整手段36が開かれている場合、図2に破線の矢印で示すように、高圧ガス管20の冷媒の一部は、終端部33からバイパス管35を通って液管合流部34に流れ、液管22に合流する。
詳細には、室外ユニット11の制御部は、室温等の影響により、室内ユニット12a,12b,12cの要求能力が所定値以上の場合、流量調整手段36を全閉とし、バイパス管35に冷媒が流れないようにする。これにより、冷媒がバイパス管35によって室内熱交換器23a,23b,23cをバイパスすることによる暖房能力の低下を防止できる。
In addition, during the heating operation, when the flow rate adjusting means 36 is open, a part of the refrigerant in the high-pressure gas pipe 20 passes through the bypass pipe 35 from the end portion 33 and passes through the bypass pipe 35 as shown by the broken line arrow in FIG. It flows to the pipe joining part 34 and joins the liquid pipe 22.
Specifically, when the required capacity of the indoor units 12a, 12b, and 12c exceeds a predetermined value due to the influence of room temperature or the like, the control unit of the outdoor unit 11 fully closes the flow rate adjusting unit 36, and refrigerant is supplied to the bypass pipe 35. Do not flow. Thereby, the fall of the heating capability by a refrigerant | coolant bypassing indoor heat exchanger 23a, 23b, 23c by the bypass pipe 35 can be prevented.

また、室外ユニット11の制御部は、室内ユニット12a,12b,12cの要求能力がある所定の値以下の場合、流量調整手段36を開き、室内ユニット12a,12b,12cの暖房能力が要求能力以上にならないように流量調整手段36の開度を制御する。これにより、例えば、圧縮機15を最低周波数で運転するとともに、室内熱交換器23a,23b,23cの送風機を最低回転数で運転したときの暖房能力よりも、室内ユニット12a,12b,12cの要求能力が小さい場合には、流量調整手段36を開いて冷媒をバイパス管35にバイパスさせることで、過剰に暖房してしまうことを防止できる。   When the required capacity of the indoor units 12a, 12b, and 12c is less than a predetermined value, the control unit of the outdoor unit 11 opens the flow rate adjusting means 36, and the heating capacity of the indoor units 12a, 12b, and 12c exceeds the required capacity. The opening degree of the flow rate adjusting means 36 is controlled so as not to become. Thereby, for example, while the compressor 15 is operated at the lowest frequency, the demand of the indoor units 12a, 12b, and 12c is higher than the heating capacity when the blowers of the indoor heat exchangers 23a, 23b, and 23c are operated at the minimum rotation speed. When the capacity is small, it is possible to prevent excessive heating by opening the flow rate adjusting means 36 and bypassing the refrigerant to the bypass pipe 35.

図3は、冷房及び暖房の混在運転時における空気調和装置10の冷媒回路図である。
図3では、2台の室内ユニット12a,12cが冷房運転され、室内ユニット12bが暖房運転されている状態が示されている。この場合、室外熱交換器18は凝縮器として使用される。
図3での混在運転時には、切替弁16は開かれ、切替弁17は閉じられ、低圧ガス管開閉弁30a,30cは開かれ、低圧ガス管開閉弁30bは閉じられ、高圧ガス管開閉弁29a,29cは閉じられ、高圧ガス管開閉弁29bは開かれ、バランス管開閉弁31a,31cは開かれ、バランス管開閉弁31bは閉じられる。これにより、混在運転時には、冷媒は実線の矢印の方向に流れる。
FIG. 3 is a refrigerant circuit diagram of the air conditioner 10 during mixed operation of cooling and heating.
FIG. 3 shows a state in which the two indoor units 12a and 12c are in the cooling operation and the indoor unit 12b is in the heating operation. In this case, the outdoor heat exchanger 18 is used as a condenser.
In the mixed operation in FIG. 3, the switching valve 16 is opened, the switching valve 17 is closed, the low pressure gas pipe on / off valves 30a and 30c are opened, the low pressure gas pipe on / off valve 30b is closed, and the high pressure gas pipe on / off valve 29a. 29c are closed, the high-pressure gas pipe on / off valve 29b is opened, the balance pipe on / off valves 31a and 31c are opened, and the balance pipe on / off valve 31b is closed. As a result, during mixed operation, the refrigerant flows in the direction of the solid arrow.

詳細には、圧縮機15から吐出される高温高圧のガス冷媒は、一部が冷房用に室外熱交換器18側へ分岐して流れ、他部が暖房用に高圧ガス管20へ分岐して流れる。
冷房用の冷媒は、切替弁16を通って室外熱交換器18に流入する。室外熱交換器18で外気に放熱して凝縮した高圧液冷媒は、室外膨張弁19を通り、液管22に流れる。このとき、室外膨張弁19は、室外熱交換器18の出口の冷媒の過冷却度が所定の値となるように制御される。
液管22に流れた冷媒は、液分岐管25a,25cに流れ、室内膨張弁24a,24cを通過して低温低圧の気液2相状態となり、室内熱交換器23a,23cで蒸発することで、室内を冷房する。室内熱交換器23a,23cで低圧ガス状態となった冷媒は、低圧ガス分岐管27a,27cを通って低圧ガス管21に流れ、圧縮機15に吸い込まれる。
Specifically, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 branches to the outdoor heat exchanger 18 for cooling, and the other part branches to the high-pressure gas pipe 20 for heating. Flowing.
The cooling refrigerant flows into the outdoor heat exchanger 18 through the switching valve 16. The high-pressure liquid refrigerant that has radiated heat to the outside air and condensed in the outdoor heat exchanger 18 passes through the outdoor expansion valve 19 and flows to the liquid pipe 22. At this time, the outdoor expansion valve 19 is controlled such that the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger 18 becomes a predetermined value.
The refrigerant that has flowed into the liquid pipe 22 flows into the liquid branch pipes 25a and 25c, passes through the indoor expansion valves 24a and 24c, becomes a low-temperature and low-pressure gas-liquid two-phase state, and evaporates in the indoor heat exchangers 23a and 23c. Cool the room. The refrigerant that has become a low-pressure gas state in the indoor heat exchangers 23 a and 23 c flows into the low-pressure gas pipe 21 through the low-pressure gas branch pipes 27 a and 27 c and is sucked into the compressor 15.

また、暖房用の冷媒は、高圧ガス管20に流れ、高圧ガス分岐管26bを通って室内熱交換器23bに流れる。冷媒は、室内熱交換器23bで凝縮することで、室内を暖房し、室内膨張弁24bを通過して高圧液冷媒となる。このとき、室内膨張弁24bは、室内熱交換器23bの出口における冷媒の過冷却度が所定値となるように制御される。その後、冷媒は、液分岐管25bを通って液管22に合流する。   Further, the heating refrigerant flows into the high-pressure gas pipe 20, and then flows through the high-pressure gas branch pipe 26b to the indoor heat exchanger 23b. The refrigerant is condensed in the indoor heat exchanger 23b, thereby heating the room and passing through the indoor expansion valve 24b to become a high-pressure liquid refrigerant. At this time, the indoor expansion valve 24b is controlled so that the degree of supercooling of the refrigerant at the outlet of the indoor heat exchanger 23b becomes a predetermined value. Thereafter, the refrigerant joins the liquid pipe 22 through the liquid branch pipe 25b.

また、混在運転時には、流量調整手段36が開かれている場合、図3に破線の矢印で示すように、高圧ガス管20の冷媒の一部は、終端部33からバイパス管35を通って液管合流部34に流れ、液管22に合流する。混在運転時は、流量調整手段36を全閉としておいても良い。   Further, during mixed operation, when the flow rate adjusting means 36 is open, a part of the refrigerant in the high-pressure gas pipe 20 passes through the bypass pipe 35 from the end portion 33 as shown by the broken arrow in FIG. It flows to the pipe joining part 34 and joins the liquid pipe 22. During the mixed operation, the flow rate adjusting means 36 may be fully closed.

以上説明したように、本発明を適用した第1の実施の形態によれば、空気調和装置10は、室外ユニット11と複数台の室内ユニット12a,12b,12cとを有し、複数台の室内ユニット12a,12b,12cを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の室内ユニット12a,12b,12cを冷房及び暖房を混在して運転可能であり、室外ユニット11と室内ユニット12a,12b,12cとは高圧ガス管20、低圧ガス管21、及び、液管22で接続され、液管22における室外ユニット11に最も近い室内ユニット12aへの冷媒分岐部22aと室外ユニット11との間に液管合流部34を備え、室外ユニット11から最も離れた室内ユニット12cに繋がる高圧ガス管20の終端部33と液管合流部34とを結ぶバイパス管35を備える。これにより、冷房運転の際に、高圧ガス管20に溜まる冷媒をバイパス管35を通して液管22に戻すことができ、ガス欠を防止できるとともに、高圧ガス管20の終端部33と液管合流部34とを結ぶバイパス管35によって、室内ユニット12a,12b,12cの設置台数によらず、適切な量の冷媒を液管22に戻すことができるため、冷媒の過冷却度の減少を低減して冷房能力の低下を抑制することができる。また、高圧ガス管20の終端部33から、室外ユニット11から最も近い室内ユニット12a側の液管22の液管合流部34に冷媒が戻るため、液管22から複数台設置された各室内ユニット12a,12b,12cへ流れる冷媒の温度差を小さくできる。このため、各室内ユニット12a,12b,12cの冷房能力のバラツキを低減できる。   As described above, according to the first embodiment to which the present invention is applied, the air conditioner 10 includes the outdoor unit 11 and the plurality of indoor units 12a, 12b, and 12c, and includes a plurality of indoor units. The units 12a, 12b, and 12c can be operated either by cooling or heating, and the plurality of indoor units 12a, 12b, and 12c can be operated by mixing cooling and heating. The units 12a, 12b, and 12c are connected by a high-pressure gas pipe 20, a low-pressure gas pipe 21, and a liquid pipe 22, and the refrigerant branch portion 22a to the indoor unit 12a closest to the outdoor unit 11 in the liquid pipe 22 and the outdoor unit 11 are connected. The liquid pipe merging portion 34 is provided between the terminal portion 33 of the high pressure gas pipe 20 connected to the indoor unit 12c farthest from the outdoor unit 11 and the liquid pipe merging portion. It comprises a bypass pipe 35 that connects the 34. Thereby, during the cooling operation, the refrigerant accumulated in the high-pressure gas pipe 20 can be returned to the liquid pipe 22 through the bypass pipe 35, so that the gas shortage can be prevented and the end portion 33 of the high-pressure gas pipe 20 and the liquid pipe joining portion can be prevented. 34, an appropriate amount of refrigerant can be returned to the liquid pipe 22 regardless of the number of indoor units 12a, 12b, and 12c installed, thereby reducing a decrease in the degree of supercooling of the refrigerant. A decrease in cooling capacity can be suppressed. In addition, since the refrigerant returns from the terminal portion 33 of the high-pressure gas pipe 20 to the liquid pipe merging portion 34 of the liquid pipe 22 on the indoor unit 12a side closest to the outdoor unit 11, a plurality of indoor units installed from the liquid pipe 22 are installed. The temperature difference of the refrigerant flowing to 12a, 12b, 12c can be reduced. For this reason, variation in the cooling capacity of each indoor unit 12a, 12b, 12c can be reduced.

また、バイパス管35の冷媒の流量を調整する流量調整手段36を備えるため、流量調整手段36でバイパス管35の冷媒の流量を適切にでき、液管22の冷媒の過冷却度の減少を低減して冷房能力の低下を抑制することができる。   Further, since the flow rate adjusting means 36 for adjusting the flow rate of the refrigerant in the bypass pipe 35 is provided, the flow rate adjusting means 36 can appropriately set the flow rate of the refrigerant in the bypass pipe 35 and reduce the decrease in the degree of supercooling of the refrigerant in the liquid pipe 22. As a result, a decrease in cooling capacity can be suppressed.

[第2の実施の形態]
以下、図4を参照して、本発明を適用した第2の実施の形態について説明する。この第2の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
上記第1の実施の形態では、室内ユニット12a,12b,12cに個別に電磁弁キット14a,14b,14cが接続されるものとして説明したが、本第2の実施の形態は、各室内ユニット用の複数の電磁弁キットが一体化された集合電磁弁キット114が用いられる点が、上記第1の実施の形態と異なる。
[Second Embodiment]
Hereinafter, a second embodiment to which the present invention is applied will be described with reference to FIG. In the second embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the electromagnetic valve kits 14a, 14b, and 14c are individually connected to the indoor units 12a, 12b, and 12c. However, the second embodiment is used for each indoor unit. This is different from the first embodiment in that a collective electromagnetic valve kit 114 in which a plurality of electromagnetic valve kits are integrated is used.

図4は、第2の実施の形態の空気調和装置110の冷媒回路図である。
空気調和装置110は、室外ユニット11と、室内ユニット12a,12b,12cと、ユニット間配管113と、集合電磁弁キット114とを備える。
ユニット間配管113は、高圧ガス管20と、低圧ガス管21と、液管22とを備える。
FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus 110 according to the second embodiment.
The air conditioner 110 includes an outdoor unit 11, indoor units 12a, 12b, and 12c, an inter-unit pipe 113, and a collective solenoid valve kit 114.
The inter-unit pipe 113 includes a high-pressure gas pipe 20, a low-pressure gas pipe 21, and a liquid pipe 22.

詳細には、高圧ガス管20は、室外ユニット11と集合電磁弁キット114とを繋ぐ高圧ガス管120と、集合電磁弁キット114内に設けられるキット内高圧ガス管120kとを備える。
低圧ガス管21は、室外ユニット11と集合電磁弁キット114とを繋ぐ低圧ガス管121と、集合電磁弁キット114内に設けられるキット内低圧ガス管121kとを備える。
液管22は、室外ユニット11と集合電磁弁キット114とを繋ぐ液管122と、集合電磁弁キット114内に設けられるキット内液管122kとを備える。
Specifically, the high pressure gas pipe 20 includes a high pressure gas pipe 120 that connects the outdoor unit 11 and the collective solenoid valve kit 114, and an in-kit high pressure gas pipe 120 k provided in the collective solenoid valve kit 114.
The low pressure gas pipe 21 includes a low pressure gas pipe 121 that connects the outdoor unit 11 and the collective solenoid valve kit 114, and an in-kit low pressure gas pipe 121 k provided in the collective solenoid valve kit 114.
The liquid pipe 22 includes a liquid pipe 122 that connects the outdoor unit 11 and the collective solenoid valve kit 114, and an in-kit liquid pipe 122 k provided in the collective solenoid valve kit 114.

集合電磁弁キット114は、キット内高圧ガス管120kと、キット内低圧ガス管121kと、キット内液管122kとを備える。キット内高圧ガス管120k、キット内低圧ガス管121k、及び、キット内液管122kは、互いに略平行に直線的に延びる。
また、集合電磁弁キット114は、キット内液管122kの冷媒分岐部22a,22b,22cから分岐して室内熱交換器23a,23b,23cの一端側に接続される液分岐管25a,25b,25cを備える。
さらに、集合電磁弁キット114は、キット内高圧ガス管120kから分岐して室内熱交換器23a,23b,23cの一端側に接続される高圧ガス分岐管26a,26b,26cと、キット内低圧ガス管121kから分岐して室内熱交換器23a,23b,23cの一端側に接続される低圧ガス分岐管27a,27b,27cと、バランス管28a,28b,28cとを備える。
集合電磁弁キット114と室内ユニット12a,12b,12cとは、冷媒配管を介して接続される。
The collective solenoid valve kit 114 includes a high-pressure gas pipe 120k in the kit, a low-pressure gas pipe 121k in the kit, and a liquid pipe 122k in the kit. The in-kit high-pressure gas pipe 120k, the in-kit low-pressure gas pipe 121k, and the in-kit liquid pipe 122k linearly extend substantially parallel to each other.
The collective solenoid valve kit 114 is branched from the refrigerant branch portions 22a, 22b, 22c of the liquid pipe 122k in the kit and is connected to one end side of the indoor heat exchangers 23a, 23b, 23c. 25c.
Furthermore, the collective solenoid valve kit 114 includes a high-pressure gas branch pipes 26a, 26b, 26c branched from the high-pressure gas pipe 120k in the kit and connected to one end side of the indoor heat exchangers 23a, 23b, 23c, and a low-pressure gas in the kit. Low pressure gas branch pipes 27a, 27b, 27c branched from the pipe 121k and connected to one end side of the indoor heat exchangers 23a, 23b, 23c, and balance pipes 28a, 28b, 28c are provided.
The collective solenoid valve kit 114 and the indoor units 12a, 12b, and 12c are connected via a refrigerant pipe.

集合電磁弁キット114は、箱状の筐体132を備える。キット内高圧ガス管120k、キット内低圧ガス管121k、キット内液管122k、液分岐管25a,25b,25c、高圧ガス分岐管26a,26b,26c、低圧ガス分岐管27a,27b,27c、バランス管28a,28b,28c、高圧ガス管開閉弁29a,29b,29c、低圧ガス管開閉弁30a,30b,30c、及び、バランス管開閉弁31a,31b,31cは、筐体132内に収納されて一体化されている。   The collective solenoid valve kit 114 includes a box-shaped housing 132. In-kit high-pressure gas pipe 120k, in-kit low-pressure gas pipe 121k, in-kit liquid pipe 122k, liquid branch pipes 25a, 25b, 25c, high-pressure gas branch pipes 26a, 26b, 26c, low-pressure gas branch pipes 27a, 27b, 27c, balance The pipes 28a, 28b, 28c, the high pressure gas pipe on / off valves 29a, 29b, 29c, the low pressure gas pipe on / off valves 30a, 30b, 30c, and the balance pipe on / off valves 31a, 31b, 31c are housed in a housing 132. It is integrated.

キット内低圧ガス管121kの一端は、筐体132の一端側で低圧ガス管121に接続され、キット内低圧ガス管121kの他端は、筐体132の他端側で塞がれている。
キット内液管122kの一端は、筐体132の一端側で液管122に接続され、キット内液管122kの他端は、筐体132の他端側で塞がれている。
キット内高圧ガス管120kの一端は、筐体132の一端側で高圧ガス管120に接続され、キット内高圧ガス管120kの他端は、筐体132の他端側の終端部133でバイパス管35の一端に接続されている。バイパス管35の他端は、液管122に設けられた液管合流部34に接続されている。液管合流部34は、液管22において冷媒分岐部22aよりも上流側に設けられるとともに、キット内液管122kと液管122との接続部122Lの近傍に配置される。
One end of the low-pressure gas pipe 121k in the kit is connected to the low-pressure gas pipe 121 on one end side of the casing 132, and the other end of the low-pressure gas pipe 121k in the kit is closed on the other end side of the casing 132.
One end of the in-kit liquid tube 122k is connected to the liquid tube 122 on one end side of the housing 132, and the other end of the in-kit liquid tube 122k is closed on the other end side of the housing 132.
One end of the high-pressure gas pipe 120 k in the kit is connected to the high-pressure gas pipe 120 on one end side of the housing 132, and the other end of the high-pressure gas pipe 120 k in the kit is a bypass pipe at the terminal portion 133 on the other end side of the housing 132. 35 is connected to one end. The other end of the bypass pipe 35 is connected to the liquid pipe junction 34 provided in the liquid pipe 122. The liquid pipe merging portion 34 is provided on the upstream side of the refrigerant branching portion 22 a in the liquid pipe 22 and is disposed in the vicinity of the connection portion 122 </ b> L between the in-kit liquid pipe 122 k and the liquid pipe 122.

本第2の実施の形態では、電磁弁キットを集合電磁弁キット114としてコンパクトに構成し、集合電磁弁キット114の他端側に位置する終端部133と集合電磁弁キット114の一端側に位置する液管合流部34とにバイパス管35を接続するため、バイパス管35を短くできる。このため、バイパス管35の接続が容易になり、施工性が向上する。また、終端部133及び液管合流部34が、集合電磁弁キット114の他端側及び一端側に位置して判別し易い位置にあるため、バイパス管35の施工性が良い。   In the second embodiment, the solenoid valve kit is configured compactly as a collective solenoid valve kit 114, and is located on one end side of the collective solenoid valve kit 114 and a terminal portion 133 located on the other end side of the collective solenoid valve kit 114. Since the bypass pipe 35 is connected to the liquid pipe junction 34 to be performed, the bypass pipe 35 can be shortened. For this reason, the connection of the bypass pipe 35 becomes easy and the workability is improved. In addition, since the end portion 133 and the liquid pipe merging portion 34 are located on the other end side and one end side of the collective solenoid valve kit 114 and are easily distinguishable, the workability of the bypass pipe 35 is good.

以上説明したように、本発明を適用した第2の実施の形態によれば、室内ユニット12a,12b,12cの室内熱交換器23a,23b,23cと高圧ガス管20、低圧ガス管21、及び、液管22とを繋ぐ冷媒配管である高圧ガス分岐管26a,26b,26c、低圧ガス分岐管27a,27b,27c及び液分岐管25a,25b,25cと、高圧ガス分岐管26a,26b,26c及び低圧ガス分岐管27a,27b,27cの冷媒の流れ方向を制御する(流れを切り替える)高圧ガス管開閉弁29a,29b,29c、低圧ガス管開閉弁30a,30b,30c、及び、バランス管開閉弁31a,31b,31cと、高圧ガス分岐管26a,26b,26c、低圧ガス分岐管27a,27b,27c、液分岐管25a,25b,25c、高圧ガス管開閉弁29a,29b,29c、低圧ガス管開閉弁30a,30b,30c、及び、バランス管開閉弁31a,31b,31cを収納する筐体132とが設けられ、これら冷媒配管、開閉弁及び筐体132は、複数台の室内ユニット12a,12b,12cの冷媒配管及び開閉弁が筐体132内に一体に設けられた集合電磁弁キット114として設けられ、バイパス管35の一端は、集合電磁弁キット114の他端部の高圧ガス管20の終端部133に接続され、バイパス管35の他端は、集合電磁弁キット114の一端部の液管22と室外ユニット11との間に接続される。集合電磁弁キット114を用いることで、高圧ガス管20の終端部133と液管合流部34との距離を小さくできるため、バイパス管35の接続が容易になり、施工性が向上する。また、コンパクトな集合電磁弁キット114により、高圧ガス管20の終端部133及び液管合流部34の位置を確認し易いため、施工性が向上する。なお、バイパス管35の一端は、集合電磁弁キット114の他端部に設けられるが、この位置は、他端部であれば集合電磁弁キット114の長手方向の端面に限らず、側面であっても良い。   As described above, according to the second embodiment to which the present invention is applied, the indoor heat exchangers 23a, 23b, 23c of the indoor units 12a, 12b, 12c, the high pressure gas pipe 20, the low pressure gas pipe 21, and , High-pressure gas branch pipes 26a, 26b, 26c, low-pressure gas branch pipes 27a, 27b, 27c and liquid branch pipes 25a, 25b, 25c, and high-pressure gas branch pipes 26a, 26b, 26c. And high pressure gas pipe on / off valves 29a, 29b, 29c, low pressure gas pipe on / off valves 30a, 30b, 30c, and balance pipe on / off for controlling the flow direction of refrigerant in the low pressure gas branch pipes 27a, 27b, 27c (switching the flow). Valves 31a, 31b, 31c, high-pressure gas branch pipes 26a, 26b, 26c, low-pressure gas branch pipes 27a, 27b, 27c, liquid branch pipes 25a, 25b, 2 c, high-pressure gas pipe opening / closing valves 29a, 29b, 29c, low-pressure gas pipe opening / closing valves 30a, 30b, 30c, and a housing 132 for storing balance pipe opening / closing valves 31a, 31b, 31c, and these refrigerant pipes, The on-off valve and housing 132 is provided as a collective electromagnetic valve kit 114 in which the refrigerant pipes and on-off valves of the plurality of indoor units 12a, 12b, and 12c are integrally provided in the housing 132, and one end of the bypass pipe 35 is The other end of the collective solenoid valve kit 114 is connected to the terminal portion 133 of the high-pressure gas pipe 20, and the other end of the bypass pipe 35 is between the liquid pipe 22 at one end of the collective solenoid valve kit 114 and the outdoor unit 11. Connected to. By using the collective solenoid valve kit 114, the distance between the terminal portion 133 of the high-pressure gas pipe 20 and the liquid pipe merging section 34 can be reduced, so that the connection of the bypass pipe 35 is facilitated and the workability is improved. In addition, the compact collective solenoid valve kit 114 makes it easy to confirm the positions of the terminal portion 133 and the liquid pipe merging portion 34 of the high-pressure gas pipe 20, thereby improving the workability. One end of the bypass pipe 35 is provided at the other end of the collective solenoid valve kit 114, but this position is not limited to the end face in the longitudinal direction of the collective solenoid valve kit 114 as long as it is the other end. May be.

なお、上記実施の形態は本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されるものではない。
上記第1及び第2の実施の形態では、流量調整手段36は膨張弁であるものとして説明したが、本発明はこれに限定されるものではない。例えば、流量調整手段36をキャピラリーチューブで構成して冷媒を減圧しても良い。
In addition, the said embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said embodiment.
In the first and second embodiments, the flow rate adjusting means 36 has been described as an expansion valve, but the present invention is not limited to this. For example, the flow rate adjusting means 36 may be constituted by a capillary tube to depressurize the refrigerant.

10,110 空気調和装置
11 室外ユニット
12a 室内ユニット(室外ユニットに最も近い室内ユニット)
12b 室内ユニット
12c 室内ユニット(室外ユニットから最も離れた室内ユニット)
20 高圧ガス管
21 低圧ガス管
22 液管
22a 冷媒分岐部
25a,25b,25c 液分岐管(冷媒配管)
26a,26b,26c 高圧ガス分岐管(冷媒配管)
27a,27b,27c 低圧ガス分岐管(冷媒配管)
29a,29b,29c 高圧ガス管開閉弁(開閉弁)
30a,30b,30c 低圧ガス管開閉弁(開閉弁)
33,133 終端部
34 液管合流部
35 バイパス管
36 流量調整手段
114 集合電磁弁キット
132 筐体
10,110 Air conditioner 11 Outdoor unit 12a Indoor unit (indoor unit closest to outdoor unit)
12b Indoor unit 12c Indoor unit (indoor unit farthest from outdoor unit)
20 High-pressure gas pipe 21 Low-pressure gas pipe 22 Liquid pipe 22a Refrigerant branch part 25a, 25b, 25c Liquid branch pipe (refrigerant pipe)
26a, 26b, 26c High-pressure gas branch pipe (refrigerant pipe)
27a, 27b, 27c Low-pressure gas branch pipe (refrigerant pipe)
29a, 29b, 29c High pressure gas pipe open / close valve (open / close valve)
30a, 30b, 30c Low pressure gas pipe open / close valve (open / close valve)
33, 133 Terminal part 34 Liquid pipe confluence part 35 Bypass pipe 36 Flow rate adjusting means 114 Collective solenoid valve kit 132 Case

Claims (3)

室外ユニットと複数台の室内ユニットとを有し、複数台の前記室内ユニットを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の前記室内ユニットを冷房及び暖房を混在して運転可能な空気調和装置において、
前記室外ユニットと前記室内ユニットとは高圧ガス管、低圧ガス管、及び、液管で接続され、
前記液管における前記室外ユニットに最も近い前記室内ユニットへの冷媒分岐部と前記室外ユニットとの間に液管合流部を備え、
前記室外ユニットから最も離れた前記室内ユニットに繋がる前記高圧ガス管の終端部と前記液管合流部とを結ぶバイパス管を備えることを特徴とする空気調和装置。
Having an outdoor unit and a plurality of indoor units, the plurality of indoor units can be operated either by cooling or heating, and the plurality of indoor units are operated by mixing cooling and heating. In possible air conditioning equipment,
The outdoor unit and the indoor unit are connected by a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe,
A liquid pipe merging portion is provided between the refrigerant branching portion to the indoor unit closest to the outdoor unit in the liquid pipe and the outdoor unit;
An air conditioner comprising a bypass pipe connecting a terminal portion of the high-pressure gas pipe connected to the indoor unit farthest from the outdoor unit and the liquid pipe junction.
前記バイパス管の冷媒の流量を調整する流量調整手段を備えることを特徴とする請求項1記載の空気調和装置。   The air conditioner according to claim 1, further comprising a flow rate adjusting unit that adjusts a flow rate of the refrigerant in the bypass pipe. 前記室内ユニットの室内熱交換器と前記高圧ガス管、前記低圧ガス管、及び、前記液管とを繋ぐ冷媒配管と、運転状態によって当該冷媒配管の冷媒の流れを切り替える開閉弁と、前記冷媒配管及び前記開閉弁を収納する筐体とが設けられ、
前記冷媒配管、前記開閉弁及び前記筐体は、複数台の前記室内ユニットの前記冷媒配管及び前記開閉弁が前記筐体内に一体に設けられた集合電磁弁キットとして設けられ、
前記バイパス管の一端は、前記集合電磁弁キットの前記高圧ガス管の前記終端部に接続され、前記バイパス管の他端は、前記集合電磁弁キットの前記液管と前記室外ユニットとの間に接続されることを特徴とする請求項1または2記載の空気調和装置。
A refrigerant pipe connecting the indoor heat exchanger of the indoor unit to the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe; an on-off valve that switches a flow of refrigerant in the refrigerant pipe according to an operating state; and the refrigerant pipe And a housing for housing the on-off valve,
The refrigerant pipe, the on-off valve, and the housing are provided as a collective electromagnetic valve kit in which the refrigerant pipe and the on-off valve of the plurality of indoor units are integrally provided in the housing,
One end of the bypass pipe is connected to the terminal portion of the high-pressure gas pipe of the collective solenoid valve kit, and the other end of the bypass pipe is between the liquid pipe and the outdoor unit of the collective solenoid valve kit. The air conditioner according to claim 1, wherein the air conditioner is connected.
JP2015113894A 2015-06-04 2015-06-04 Air conditioning device Pending JP2017003127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015113894A JP2017003127A (en) 2015-06-04 2015-06-04 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113894A JP2017003127A (en) 2015-06-04 2015-06-04 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2017003127A true JP2017003127A (en) 2017-01-05

Family

ID=57753751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113894A Pending JP2017003127A (en) 2015-06-04 2015-06-04 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2017003127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874662A (en) * 2019-05-23 2021-12-31 Lg电子株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874662A (en) * 2019-05-23 2021-12-31 Lg电子株式会社 Air conditioner
CN113874662B (en) * 2019-05-23 2023-08-29 Lg电子株式会社 air conditioner

Similar Documents

Publication Publication Date Title
US10082323B2 (en) Air conditioner with user control between simultaneous heating and cooling operation and alternating heating and cooling operation
JP2021509945A (en) Air conditioner system
EP2383529B1 (en) Air conditioner and method of returning refrigerating machine oil
JP2008513725A (en) Heat pump with reheat and economizer functions
JP4553761B2 (en) Air conditioner
US6817205B1 (en) Dual reversing valves for economized heat pump
KR20160005460A (en) A a regenerative air-conditioning apparatus and a method controlling the same
JP2011133177A (en) Air conditioner
EP2597400A2 (en) Heat pump system
JP2011242048A (en) Refrigerating cycle device
JP2008070053A (en) Air conditioner
JP6643630B2 (en) Air conditioner
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
KR102080836B1 (en) An air conditioning system
JP2008267653A (en) Refrigerating device
JP2007032857A (en) Refrigerating device
JP5968540B2 (en) Refrigerant circuit and air conditioner
KR102122510B1 (en) An air conditioning system
JP2017003127A (en) Air conditioning device
JP2011127785A (en) Refrigerating device
JP2006090683A (en) Multiple room type air conditioner
JP2018173191A (en) Air conditioner
JP2018080883A (en) Multi-room type air conditioner
WO2016152039A1 (en) Air-conditioning apparatus
JP4391261B2 (en) Air conditioner