JP2017036191A - Graphene derivative and use thereof - Google Patents

Graphene derivative and use thereof Download PDF

Info

Publication number
JP2017036191A
JP2017036191A JP2015159646A JP2015159646A JP2017036191A JP 2017036191 A JP2017036191 A JP 2017036191A JP 2015159646 A JP2015159646 A JP 2015159646A JP 2015159646 A JP2015159646 A JP 2015159646A JP 2017036191 A JP2017036191 A JP 2017036191A
Authority
JP
Japan
Prior art keywords
bond
component derived
water treatment
graphene derivative
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2015159646A
Other languages
Japanese (ja)
Inventor
昭子 鈴木
Akiko Suzuki
昭子 鈴木
敏弘 今田
Toshihiro Imada
敏弘 今田
内藤 勝之
Katsuyuki Naito
勝之 内藤
典裕 吉永
Norihiro Yoshinaga
典裕 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015159646A priority Critical patent/JP2017036191A/en
Publication of JP2017036191A publication Critical patent/JP2017036191A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material high in protein adsorption performance.SOLUTION: A graphene derivative has present amount of a component derived from O=C-O bond of 8 to 20% based on the total of present amounts of a component derived from C-C bond, a component derived from C=C bond, a component derived from C-O bond, a component derived from C-O-C bond, and the component derived from C=O-C bond, calculated with a wave shape separation of C1s spectrum measured by an X-ray photoelectron spectroscopy.SELECTED DRAWING: None

Description

本発明の実施形態は、グラフェン誘導体及びその利用に関する。   Embodiments described herein relate generally to a graphene derivative and use thereof.

抗菌性酵素であるリゾチームを逆浸透膜表面に修飾し、逆浸透膜に抗菌性を付与することにより、雑菌の繁殖による逆浸透膜のファウリングを抑制し、逆浸透膜の透水性を向上させる技術が知られている。   By modifying lysozyme, an antibacterial enzyme, on the surface of the reverse osmosis membrane and imparting antibacterial properties to the reverse osmosis membrane, fouling of the reverse osmosis membrane due to the propagation of various bacteria is suppressed and the water permeability of the reverse osmosis membrane is improved Technology is known.

特表2008−538531号公報Special table 2008-538531 gazette 特開2012−211043号公報JP 2012-211043 A 特開2002−126510号公報JP 2002-126510 A 特開2007−22873号公報JP 2007-22873 A

しかしながら、従来の方法による逆浸透膜表面へのリゾチームの結合には多段合成が必要であり煩雑であった。このため、リゾチーム等のタンパク質を容易に固定できる材料が求められていた。本発明が解決しようとする課題は、タンパク質吸着能の高い材料を提供することである。   However, binding of lysozyme to the reverse osmosis membrane surface by the conventional method requires multi-step synthesis and is complicated. For this reason, a material capable of easily fixing a protein such as lysozyme has been demanded. The problem to be solved by the present invention is to provide a material having a high protein adsorption capacity.

実施形態のグラフェン誘導体は、X線光電子分光分析で測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が8〜20%である。   The graphene derivative of the embodiment includes a component derived from C—C bond, a component derived from C═C bond, a component derived from C—O bond, C—, calculated by waveform separation of C1s spectrum measured by X-ray photoelectron spectroscopy. The abundance of the component derived from the O═C—O bond is 8 to 20% with respect to the total amount of the component derived from the O—C bond and the component derived from the O═C—O bond.

実験例1の結果を示すグラフ。The graph which shows the result of Experimental example 1. FIG. 実験例2の結果を示すグラフ。The graph which shows the result of Experimental example 2. 実施形態の水処理システムを示す模式図。The schematic diagram which shows the water treatment system of embodiment.

グラフェン表面を酸化したグラフェン誘導体は、その表面に水酸基、カルボキシル基等の官能基を持ち、組成、疎水性度、電気伝導度等の性質がグラフェンとは全く異なる。また、グラフェン誘導体の性質は、原料のグラファイトや反応条件により性状の異なるものになる。グラフェン誘導体は、毒性がなく、生分解性であることから、近年、水処理材料への適用も検討されはじめている。   A graphene derivative obtained by oxidizing a graphene surface has a functional group such as a hydroxyl group or a carboxyl group on the surface, and properties such as composition, hydrophobicity, and electrical conductivity are completely different from graphene. In addition, the properties of graphene derivatives vary depending on the raw material graphite and reaction conditions. Since graphene derivatives are non-toxic and biodegradable, their application to water treatment materials has recently begun to be studied.

発明者らは、特定のグラフェン誘導体が高いタンパク質吸着能を有することを見出した。以下、実施形態のグラフェン誘導体を説明する。   The inventors have found that specific graphene derivatives have high protein adsorption ability. Hereinafter, the graphene derivative of the embodiment will be described.

本実施形態のグラフェン誘導体は、X線光電子分光分析で測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が8〜20%である。本明細書において、C−O−C結合由来の成分とは、エポキシ基に含まれる結合に由来する成分を意味する。   The graphene derivative of this embodiment is a component derived from a C—C bond, a component derived from a C═C bond, a component derived from a C—O bond, C, calculated by waveform separation of a C1s spectrum measured by X-ray photoelectron spectroscopy. The abundance of the component derived from the O═C—O bond is 8 to 20% with respect to the sum of the abundance of the component derived from the —O—C bond and the component derived from the O═C—O bond. In the present specification, a component derived from a C—O—C bond means a component derived from a bond contained in an epoxy group.

後述する実施例において示すように、本実施形態のグラフェン誘導体は、タンパク質吸着能が高い。したがって、本実施形態のグラフェン誘導体は、タンパク質吸着材であるということもできる。   As shown in the examples described later, the graphene derivative of the present embodiment has a high protein adsorption ability. Therefore, it can also be said that the graphene derivative of this embodiment is a protein adsorbent.

ここで、波形分離とは、X線光電子分光分析(XPS)で測定したC1sスペクトルの全体波形を、成分波形の和に分解することである。成分波形としては、ガウス関数、ローレンツ関数、ガウス/ローレンツ混合関数等が一般に用いられる。   Here, the waveform separation is to decompose the entire waveform of the C1s spectrum measured by X-ray photoelectron spectroscopy (XPS) into the sum of component waveforms. As the component waveform, a Gaussian function, a Lorentz function, a Gauss / Lorentz mixed function, or the like is generally used.

より具体的には、グラフェン誘導体のC1sスペクトルの全体波形を、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の各成分波形に分離することにより、各成分の存在量(相対値)を求めることができる。   More specifically, the entire waveform of the C1s spectrum of the graphene derivative is represented by a component derived from a C—C bond, a component derived from a C═C bond, a component derived from a C—O bond, a component derived from a C—O—C bond, and By separating each component waveform of components derived from O = C—O bond, the abundance (relative value) of each component can be obtained.

本実施形態のグラフェン誘導体において、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量は、12〜20%であってもよく、14〜20%であってもよい。   In the graphene derivative of this embodiment, a component derived from a C—C bond, a component derived from a C═C bond, a component derived from a C—O bond, a component derived from a C—O—C bond, and a component derived from an O═C—O bond 12-20% may be sufficient as the abundance of the component derived from an O = CO bond with respect to the total of the abundance of the component, and 14-20% may be sufficient as it.

本実施形態のグラフェン誘導体は、O=C−O結合由来の成分、すなわちカルボキシル基の他にも、水酸基、エポキシ基等を持っていてもよい。また、本実施形態のグラフェン誘導体に含まれるカルボキシル基や水酸基は塩を形成していてもよい。塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。   The graphene derivative of the present embodiment may have a hydroxyl group, an epoxy group, or the like in addition to a component derived from an O═C—O bond, that is, a carboxyl group. Moreover, the carboxyl group and hydroxyl group contained in the graphene derivative of this embodiment may form a salt. Examples of the salt include sodium salt, potassium salt, calcium salt, magnesium salt and the like.

本実施形態のグラフェン誘導体において、酸素と炭素との原子比(O/C)は、例えば50〜90%であってもよく、例えば52〜90%であってもよく、例えば54〜90%であってもよい。酸素と炭素との原子比(O/C)は、例えばX線光電子分光分析により測定することができる。   In the graphene derivative of the present embodiment, the atomic ratio (O / C) of oxygen to carbon may be, for example, 50 to 90%, for example, 52 to 90%, for example, 54 to 90%. There may be. The atomic ratio (O / C) between oxygen and carbon can be measured, for example, by X-ray photoelectron spectroscopy.

後述する実施例において示すように、酸素と炭素との原子比(O/C)が上記範囲であるグラフェン誘導体は、タンパク質吸着能が高い傾向にある。   As shown in Examples described later, graphene derivatives having an oxygen to carbon atomic ratio (O / C) in the above range tend to have a high protein adsorption capacity.

本実施形態のグラフェン誘導体は、酸化グラフェン合成法として知られているハマーズ法等により製造することができる。より具体的には、例えば、96%硫酸を機械攪拌装置で攪拌しながら約4℃に冷却し、硝酸ナトリウムを加え、更に小片グラファイトを加える。続いて、過マンガン酸カリウムを徐々に加える。続いて、室温の水浴で約3.5時間攪拌する。続いて、水浴で冷やしながら水を添加する。続いて、約130℃にセットした油浴で約1時間加熱する。続いて、35%過酸化水素水と水とを混合した液を滴下し、更に約10分間攪拌する。得られた懸濁液を遠心分離機にかけ、上澄み液を分別する。回収した沈殿を1N塩酸で洗浄し、室温で真空乾燥することにより、グラフェン誘導体を製造することができる。   The graphene derivative of the present embodiment can be produced by the Hammers method known as a graphene oxide synthesis method. More specifically, for example, 96% sulfuric acid is cooled to about 4 ° C. while stirring with a mechanical stirrer, sodium nitrate is added, and small piece graphite is further added. Subsequently, potassium permanganate is gradually added. Subsequently, the mixture is stirred for about 3.5 hours in a room temperature water bath. Subsequently, water is added while cooling in a water bath. Subsequently, it is heated in an oil bath set at about 130 ° C. for about 1 hour. Subsequently, a liquid obtained by mixing 35% hydrogen peroxide water and water is dropped, and the mixture is further stirred for about 10 minutes. The obtained suspension is centrifuged and the supernatant liquid is fractionated. A graphene derivative can be produced by washing the collected precipitate with 1N hydrochloric acid and vacuum drying at room temperature.

酸化剤の量、グラファイトと酸化剤との反応時間を調節することにより、グラフェン誘導体の酸素と炭素との原子比(O/C)、並びに、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量を調整することができる。   By adjusting the amount of oxidant and the reaction time between graphite and oxidant, the oxygen to carbon atomic ratio (O / C) of the graphene derivative, and the component derived from C—C bond, C═C bond derived The abundance of components derived from O = C—O bonds with respect to the sum of the abundance of components, components derived from C—O bonds, components derived from C—O—C bonds, and components derived from O═C—O bonds. Can be adjusted.

続いて、実施形態の複合体を説明する。
本実施形態の複合体は、上述したグラフェン誘導体と抗菌性タンパク質又はその誘導体との複合体である。
Then, the composite_body | complex of embodiment is demonstrated.
The complex of this embodiment is a complex of the graphene derivative described above and an antibacterial protein or derivative thereof.

本実施形態の複合体は、上述したグラフェン誘導体を、抗菌性タンパク質又はその誘導体を含む水溶液中に添加し、1〜24時間ミックスローター等で撹拌することにより、容易に形成することができる。形成後の複合体は、ろ過又は遠心分離等により回収するとよい。回収後は、例えば、純水で洗浄し、40℃程度で風乾又は真空乾燥するとよい。   The composite of this embodiment can be easily formed by adding the graphene derivative described above to an aqueous solution containing an antibacterial protein or a derivative thereof and stirring the mixture with a mix rotor or the like for 1 to 24 hours. The formed complex may be collected by filtration or centrifugation. After the collection, for example, it may be washed with pure water and air dried or vacuum dried at about 40 ° C.

本実施形態の複合体において、抗菌性タンパク質としては、例えば、リゾチーム、ディフェンシン、ピュロインドリン、チオニン、ラクトフェリン、アプリシアニンA等が挙げられる。   In the complex of this embodiment, examples of the antibacterial protein include lysozyme, defensin, puroindoline, thionine, lactoferrin, and apriocyanin A.

また、抗菌性タンパク質の誘導体としては、上記タンパク質の断片、上記タンパク質の変異体等のうち、抗菌性を有するものが挙げられる。   Examples of the antibacterial protein derivatives include those having antibacterial properties among the above-mentioned protein fragments and the above-mentioned protein mutants.

これらの抗菌性タンパク質又はその誘導体は、1種を単独で、又は2種以上を混合して用いることができる。   These antibacterial proteins or derivatives thereof can be used alone or in combination of two or more.

続いて、実施形態の繊維について説明する。
本実施形態の繊維は、上記実施形態の複合体を含有する。このため、本実施形態の繊維は、抗菌性を発揮することができる。
Subsequently, the fiber of the embodiment will be described.
The fiber of this embodiment contains the composite body of the said embodiment. For this reason, the fiber of this embodiment can exhibit antibacterial properties.

本実施形態の繊維は、その製造工程において、上記実施形態の複合体を、フィラーと同様に繊維の材料に添加することにより、製造することができる。   The fiber of this embodiment can be manufactured by adding the composite of the said embodiment to the material of a fiber similarly to a filler in the manufacturing process.

繊維の材料としては、タンパク質の機能を損なわない程度の低温で加工することができる材料が挙げられる。より具体的には、乾式紡糸、湿式紡糸又は電界紡糸が可能な観点から、アセテート樹脂、アクリル樹脂、ビニロン、ポリフッ化ビニリデン(PVDF)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリエーテルスルホン(PES)樹脂等が挙げられる。   Examples of the fiber material include materials that can be processed at a low temperature that does not impair the function of the protein. More specifically, from the viewpoint of enabling dry spinning, wet spinning, or electrospinning, acetate resin, acrylic resin, vinylon, polyvinylidene fluoride (PVDF) resin, polytetrafluoroethylene (PTFE) resin, polyethersulfone (PES) ) Resins and the like.

複合体の添加量は、複合体を構成するタンパク質の種類、繊維の用途等により調整すればよい。複合体の添加量は、繊維製品の重量に対して、例えば0.1〜10質量%程度であってよい。上記範囲であれば、上記複合体を構成するタンパク質の効果を得ることができ、製品の強度等に影響を与えることもない。   What is necessary is just to adjust the addition amount of a composite_body | complex by the kind of protein which comprises a composite_body | complex, the use of a fiber, etc. The amount of the composite added may be, for example, about 0.1 to 10% by mass with respect to the weight of the fiber product. If it is the said range, the effect of the protein which comprises the said composite_body | complex can be acquired, and the intensity | strength etc. of a product will not be affected.

続いて、実施形態のろ過材について説明する。
本実施形態のろ過材は、上記実施形態の複合体を含有する。このため、本実施形態のろ過材は、抗菌性を発揮することができる。
Then, the filter medium of embodiment is demonstrated.
The filter medium of this embodiment contains the composite body of the said embodiment. For this reason, the filter medium of this embodiment can exhibit antibacterial properties.

本実施形態のろ過材は、その製造工程において、上記実施形態の複合体を、フィラーと同様にろ過材の材料に添加することにより、製造することができる。ろ過材の材料に対する複合体の添加量は、複合体を構成するタンパク質の種類、ろ過材の用途等により調整すればよい。複合体の添加量は、ろ過材製品の重量に対して、例えば0.1〜10質量%程度であってよい。上記範囲であれば、上記複合体を構成するタンパク質の効果を得ることができ、製品の強度等に影響を与えることもない。   The filter medium of this embodiment can be manufactured by adding the composite of the said embodiment to the material of a filter medium similarly to a filler in the manufacturing process. What is necessary is just to adjust the addition amount of the composite_body | complex with respect to the material of a filter medium with the kind of protein which comprises a composite_body | complex, the use of a filter medium, etc. The addition amount of a composite_body | complex may be about 0.1-10 mass% with respect to the weight of a filter material product, for example. If it is the said range, the effect of the protein which comprises the said composite_body | complex can be acquired, and the intensity | strength etc. of a product will not be affected.

ろ過材の材料としては、上述した繊維の材料と同様のものが挙げられる。また、ろ過材は、例えば上述した繊維から構成されたものであってもよい。具体的には、上述した繊維からなる織布又は不織布等が挙げられる。あるいは、ろ過材は、膜であってもよく、例えばろ過用担体であってもよい。膜は、例えば、平面膜や中空糸膜等の形状であってもよく、また、精密ろ過膜、限外ろ過膜、逆浸透膜等であってもよい。   Examples of the material for the filter medium include the same materials as the fiber materials described above. Moreover, the filter medium may be composed of the above-described fibers, for example. Specifically, a woven fabric or a non-woven fabric made of the above-described fibers can be used. Alternatively, the filter medium may be a membrane, for example, a filter carrier. The membrane may be in the form of, for example, a flat membrane or a hollow fiber membrane, or may be a microfiltration membrane, an ultrafiltration membrane, a reverse osmosis membrane, or the like.

続いて、実施形態の吸着剤について説明する。
本実施形態の吸着剤は、上記実施形態の複合体を含有する。このため、本実施形態のイオン交換樹脂は、抗菌性を発揮することができる。
Subsequently, the adsorbent of the embodiment will be described.
The adsorbent of this embodiment contains the composite of the said embodiment. For this reason, the ion exchange resin of this embodiment can exhibit antibacterial properties.

吸着剤は、表面に他の物質を吸着する性質の強い部材であり、例えば活性炭、活性アルミナ、シリカゲル等の材料から形成されたものが挙げられる。吸着剤は、脱色、脱臭等に利用することができる。   The adsorbent is a member having a strong property of adsorbing other substances on the surface, and examples thereof include those formed from materials such as activated carbon, activated alumina, and silica gel. The adsorbent can be used for decolorization, deodorization and the like.

本実施形態の吸着剤は、造粒工程において、材料に上記実施形態の複合体を添加することにより製造することができる。   The adsorbent of this embodiment can be manufactured by adding the composite of the said embodiment to material in a granulation process.

続いて、実施形態のイオン交換樹脂について説明する。
本実施形態のイオン交換樹脂は、上記実施形態の複合体を含有する。このため、本実施形態のイオン交換樹脂は、抗菌性を発揮することができる。
Then, the ion exchange resin of embodiment is demonstrated.
The ion exchange resin of this embodiment contains the composite body of the said embodiment. For this reason, the ion exchange resin of this embodiment can exhibit antibacterial properties.

イオン交換樹脂は、分子構造の一部にイオン基として電離する構造を有する合成樹脂の一種であり、水等の溶媒中のイオンとイオン交換作用を示すものである。本実施形態のイオン交換樹脂としては、特に制限されず、一般的なものを使用することができる。   The ion exchange resin is a kind of synthetic resin having a structure that ionizes as part of a molecular structure as an ionic group, and exhibits an ion exchange action with ions in a solvent such as water. It does not restrict | limit especially as an ion exchange resin of this embodiment, A general thing can be used.

本実施形態のイオン交換樹脂は、造粒工程において、材料に上記実施形態の複合体を添加することにより製造することができる。   The ion exchange resin of this embodiment can be manufactured by adding the composite of the said embodiment to material in a granulation process.

続いて、実施形態の水処理システムを、図面を参照して説明する。
本実施形態の水処理システムは、上述したろ過材、吸着剤又はイオン交換樹脂を持つ。
Then, the water treatment system of embodiment is demonstrated with reference to drawings.
The water treatment system of this embodiment has the above-described filter medium, adsorbent, or ion exchange resin.

図3は、実施形態の水処理システムを示す模式図である。水処理システム100は、被処理水流入管10と、水処理ユニット20と、処理水流出管30とを持つ。水処理ユニット20は、その内部に、例えば、繊維、吸着剤、イオン交換樹脂、膜、ろ過用担体等を収容している。水処理ユニット20に収容された、繊維、吸着剤、イオン交換樹脂、膜、ろ過用担体等の少なくとも一部は、上述したろ過材、吸着剤又はイオン交換樹脂で構成されている。   Drawing 3 is a mimetic diagram showing the water treatment system of an embodiment. The water treatment system 100 includes a treated water inflow pipe 10, a water treatment unit 20, and a treated water outflow pipe 30. The water treatment unit 20 accommodates, for example, fibers, adsorbents, ion exchange resins, membranes, filtration carriers, and the like. At least some of the fibers, the adsorbent, the ion exchange resin, the membrane, the filtration carrier, and the like housed in the water treatment unit 20 are composed of the above-described filter medium, adsorbent, or ion exchange resin.

本実施形態の水処理システム100は、例えば、海水淡水化システム、逆浸透水製造システム等であってもよい。   The water treatment system 100 of this embodiment may be a seawater desalination system, a reverse osmosis water production system, or the like, for example.

続いて、実施形態の水処理方法を、図3を参照しながら説明する。
本実施形態の水処理方法は、上述した水処理システムで水を処理するものである。まず、被処理水流入管10を通じて、被処理水を水処理システム100の内部の水処理ユニット20に導入する。
Then, the water treatment method of embodiment is demonstrated, referring FIG.
The water treatment method of this embodiment treats water with the water treatment system described above. First, the water to be treated is introduced into the water treatment unit 20 inside the water treatment system 100 through the water to be treated inflow pipe 10.

水処理ユニット20では、被処理水を処理する。水処理ユニット20における処理としては、例えば、精密ろ過、限外ろ過、ナノろ過、逆浸透等の膜ろ過、吸着、イオン交換等が挙げられる。   In the water treatment unit 20, the water to be treated is treated. Examples of the treatment in the water treatment unit 20 include microfiltration, ultrafiltration, nanofiltration, membrane filtration such as reverse osmosis, adsorption, ion exchange, and the like.

続いて、水処理ユニット20で処理後の処理水を、処理水流出管30を通じて水処理システム100の外部へと排出し、必要に応じて次の処理設備に送る。   Subsequently, the treated water treated by the water treatment unit 20 is discharged to the outside of the water treatment system 100 through the treated water outflow pipe 30 and sent to the next treatment facility as necessary.

本実施形態の水処理方法において、水処理ユニット20に収容された、繊維、吸着剤、イオン交換樹脂、膜、ろ過用担体等の少なくとも一部は、上述したろ過材、吸着剤又はイオン交換樹脂で構成されている。このため、水処理システム100を用いた水処理方法によれば、雑菌の繁殖を抑制することができ、水処理ユニット20の目詰まり(ファウリング)を抑制することができる。   In the water treatment method of this embodiment, at least some of the fibers, adsorbents, ion exchange resins, membranes, filtration carriers and the like housed in the water treatment unit 20 are the above-mentioned filter media, adsorbents, or ion exchange resins. It consists of For this reason, according to the water treatment method using the water treatment system 100, propagation of various bacteria can be suppressed, and clogging (fouling) of the water treatment unit 20 can be suppressed.

[実施例1]
グラファイト(商品名「Z−5F」、伊藤黒鉛製)40gと、濃硫酸1000mLと、硝酸ナトリウム30gとを混合し、4℃以下に冷却した。続いて、過マンガン酸カリウム150gを冷却しながら徐々に加え、6℃以下で1時間、室温で5時間撹拌した。その後加熱して10分間環流させた後、室温まで冷却した。続いて、過酸化水素水を添加し、得られた反応物をろ過し、希塩酸でよく洗浄した。続いて、反応物を、空気気流で乾燥させた後、60℃で真空乾燥することにより、実施例1のグラフェン誘導体68gを得た。
[Example 1]
40 g of graphite (trade name “Z-5F”, manufactured by Ito Graphite), 1000 mL of concentrated sulfuric acid, and 30 g of sodium nitrate were mixed and cooled to 4 ° C. or lower. Subsequently, 150 g of potassium permanganate was gradually added while cooling, and the mixture was stirred at 6 ° C. or lower for 1 hour and at room temperature for 5 hours. Thereafter, the mixture was heated and refluxed for 10 minutes, and then cooled to room temperature. Subsequently, hydrogen peroxide was added and the resulting reaction product was filtered and washed thoroughly with dilute hydrochloric acid. Subsequently, the reaction product was dried with an air stream and then vacuum-dried at 60 ° C. to obtain 68 g of the graphene derivative of Example 1.

実施例1のグラフェン誘導体は、XPSで測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が11%であった。また、原子比(O/C)が52%であった。   The graphene derivative of Example 1 is a component derived from C—C bond, a component derived from C═C bond, a component derived from C—O bond, C—O—C, calculated by waveform separation of C1s spectrum measured by XPS. The abundance of the component derived from the O═C—O bond was 11% with respect to the total of the abundance of the component derived from the bond and the component derived from the O═C—O bond. The atomic ratio (O / C) was 52%.

[実施例2]
環流時間を20分間に変更した以外は実施例1と同様にして、実施例2のグラフェン誘導体72gを得た。
[Example 2]
72 g of the graphene derivative of Example 2 was obtained in the same manner as Example 1 except that the reflux time was changed to 20 minutes.

実施例2のグラフェン誘導体は、XPSで測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が14%であった。また、原子比(O/C)が54%であった。   The graphene derivative of Example 2 is a component derived from C—C bond, a component derived from C═C bond, a component derived from C—O bond, C—O—C, calculated by waveform separation of C1s spectrum measured by XPS. The abundance of the component derived from the O═C—O bond was 14% with respect to the total of the abundance of the component derived from the bond and the component derived from the O═C—O bond. The atomic ratio (O / C) was 54%.

[実施例3]
過マンガン酸カリウム添加後の室温における撹拌時間を6時間に変更し、環流時間を60分間に変更した以外は実施例1と同様にして、実施例3のグラフェン誘導体70gを得た。
[Example 3]
70 g of the graphene derivative of Example 3 was obtained in the same manner as in Example 1 except that the stirring time at room temperature after the addition of potassium permanganate was changed to 6 hours and the reflux time was changed to 60 minutes.

実施例3のグラフェン誘導体は、XPSで測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が14%であった。また、原子比(O/C)が87%であった。   The graphene derivative of Example 3 is a component derived from C—C bond, a component derived from C═C bond, a component derived from C—O bond, C—O—C, calculated by waveform separation of C1s spectrum measured by XPS. The abundance of the component derived from the O═C—O bond was 14% with respect to the total of the abundance of the component derived from the bond and the component derived from the O═C—O bond. The atomic ratio (O / C) was 87%.

[比較例1]
グラファイト(商品名「Z−5F」、伊藤黒鉛製)50gと、過マンガン酸カリウム150gとを混合し、60℃で3時間撹拌した。得られた反応物をろ過し、希塩酸でよく洗浄した。続いて、反応物を、空気気流で乾燥させた後、60℃で真空乾燥することにより比較例1のグラフェン誘導体60gを得た。
[Comparative Example 1]
50 g of graphite (trade name “Z-5F”, manufactured by Ito Graphite) and 150 g of potassium permanganate were mixed and stirred at 60 ° C. for 3 hours. The resulting reaction product was filtered and washed well with dilute hydrochloric acid. Subsequently, the reaction product was dried with an air stream and then vacuum-dried at 60 ° C. to obtain 60 g of a graphene derivative of Comparative Example 1.

比較例1のグラフェン誘導体は、XPSで測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が2%であった。また、原子比(O/C)が10%であった。   The graphene derivative of Comparative Example 1 is a component derived from C—C bond, a component derived from C═C bond, a component derived from C—O bond, C—O—C, calculated by waveform separation of C1s spectrum measured by XPS. The abundance of the component derived from the O═C—O bond was 2% with respect to the total of the abundance of the component derived from the bond and the component derived from the O═C—O bond. The atomic ratio (O / C) was 10%.

[比較例2]
グラファイト(商品名「Z−5F」、伊藤黒鉛製)50gと、濃硫酸1000mLと、硝酸ナトリウム22gとを混合し、4℃以下に冷却した。続いて、過マンガン酸カリウム110gを冷却しながら徐々に加え、6℃以下で1時間、室温で4時間撹拌した。その後加熱して20分間環流させた後、室温まで冷却した。続いて、過酸化水素水を添加し、得られた反応物をろ過し、希塩酸でよく洗浄した。続いて、反応物を、空気気流で乾燥させた後、60℃で真空乾燥することにより、比較例2のグラフェン誘導体65gを得た。
[Comparative Example 2]
50 g of graphite (trade name “Z-5F”, manufactured by Ito Graphite), 1000 mL of concentrated sulfuric acid, and 22 g of sodium nitrate were mixed and cooled to 4 ° C. or lower. Subsequently, 110 g of potassium permanganate was gradually added while cooling, and the mixture was stirred at 6 ° C. or lower for 1 hour and at room temperature for 4 hours. Thereafter, the mixture was heated and refluxed for 20 minutes, and then cooled to room temperature. Subsequently, hydrogen peroxide was added and the resulting reaction product was filtered and washed thoroughly with dilute hydrochloric acid. Subsequently, the reaction product was dried with an air stream and then vacuum-dried at 60 ° C., thereby obtaining 65 g of a graphene derivative of Comparative Example 2.

比較例2のグラフェン誘導体は、XPSで測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が6%であった。また、原子比(O/C)が30%であった。   The graphene derivative of Comparative Example 2 is a component derived from C—C bond, a component derived from C═C bond, a component derived from C—O bond, C—O—C, calculated by waveform separation of C1s spectrum measured by XPS. The abundance of the component derived from the O═C—O bond was 6% with respect to the total of the abundance of the component derived from the bond and the component derived from the O═C—O bond. The atomic ratio (O / C) was 30%.

[実験例1]
(吸着試験)
タンパク質(リゾチーム)600mg/Lを含む被処理水を準備した。実施例1〜3及び比較例1〜2のグラフェン誘導体、並びに対照として粉末活性炭を、各25mgずつ上記の被処理水50mLにそれぞれ添加し、ミックスローターで100rpm、3時間撹拌した。反応容器にはポリプロピレン製遠沈管を用いた。その後、各被処理水30mLずつを強遠心用のポリエチレン製遠沈管に移し、15,000rpmで5分間遠心分離を行い、被処理水中のグラフェン誘導体を分離した。
[Experiment 1]
(Adsorption test)
Water to be treated containing 600 mg / L of protein (lysozyme) was prepared. The graphene derivatives of Examples 1 to 3 and Comparative Examples 1 to 2 and powdered activated carbon as a control were respectively added to 50 mL of the water to be treated, and stirred at 100 rpm for 3 hours with a mix rotor. A polypropylene centrifuge tube was used as the reaction vessel. Thereafter, 30 mL of each water to be treated was transferred to a polyethylene centrifuge tube for strong centrifugation, and centrifuged at 15,000 rpm for 5 minutes to separate the graphene derivative in the water to be treated.

遠心分離後の各上澄み液の吸収スペクトル(280nm)により、各被処理水中のタンパク質濃度を算出した。続いて、初期濃度との差分から、各グラフェン誘導体又は粉末活性炭1g当たりのタンパク質の吸着量を求めた。結果を図1に示す。また、試験に使用したグラフェン誘導体のXPS測定結果を表1に示す。   The protein concentration in each treated water was calculated from the absorption spectrum (280 nm) of each supernatant after centrifugation. Subsequently, the amount of protein adsorbed per 1 g of each graphene derivative or powdered activated carbon was determined from the difference from the initial concentration. The results are shown in FIG. Table 1 shows the XPS measurement results of the graphene derivatives used in the test.

[実験例2]
(吸着試験)
タンパク質として、リゾチームの代わりにウシ血清アルブミン(BSA)を用いた以外は実験例1と同様にして、吸着試験を実施した。結果を図2に示す。BSAのほうがリゾチームと比較して吸着量が少なかった。BSAは、アミノ酸配列情報に基づく疎水性度がリゾチームよりも顕著に低いことが報告されており、このような物性の違いがグラフェン誘導体に対する吸着量に影響を与えていると推察された。
[Experiment 2]
(Adsorption test)
An adsorption test was performed in the same manner as in Experimental Example 1 except that bovine serum albumin (BSA) was used instead of lysozyme as a protein. The results are shown in FIG. BSA adsorbed less than lysozyme. It has been reported that BSA has a significantly lower hydrophobicity based on amino acid sequence information than lysozyme, and it was speculated that such a difference in physical properties affects the amount of adsorption to graphene derivatives.

Figure 2017036191
Figure 2017036191

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…被処理水流入管、20…水処理ユニット、30…処理水流出管、100…水処理システム。   DESCRIPTION OF SYMBOLS 10 ... Treated water inflow pipe, 20 ... Water treatment unit, 30 ... Treated water outflow pipe, 100 ... Water treatment system.

Claims (12)

X線光電子分光分析で測定したC1sスペクトルの波形分離で算出した、C−C結合由来の成分、C=C結合由来の成分、C−O結合由来の成分、C−O−C結合由来の成分及びO=C−O結合由来の成分の存在量の合計に対する、O=C−O結合由来の成分の存在量が8〜20%であるグラフェン誘導体。   Component derived from C—C bond, component derived from C═C bond, component derived from C—O bond, component derived from C—O—C bond, calculated by waveform separation of C1s spectrum measured by X-ray photoelectron spectroscopy And a graphene derivative in which the abundance of components derived from O = C—O bonds is 8 to 20% of the total abundance of components derived from O═C—O bonds. 酸素と炭素との原子比(O/C)が50〜90%である、請求項1に記載のグラフェン誘導体。   The graphene derivative according to claim 1, wherein the atomic ratio (O / C) of oxygen to carbon is 50 to 90%. 請求項1又は2に記載のグラフェン誘導体と抗菌性タンパク質又はその誘導体との複合体。   A complex of the graphene derivative according to claim 1 or 2 and an antibacterial protein or a derivative thereof. 前記抗菌性タンパク質が、リゾチーム、ディフェンシン、ピュロインドリン、チオニン、ラクトフェリン又はアプリシアニンAである、請求項3に記載の複合体。   The complex according to claim 3, wherein the antibacterial protein is lysozyme, defensin, puroindoline, thionine, lactoferrin or apriocyanin A. 請求項3又は4に記載の複合体を含有する繊維。   The fiber containing the composite_body | complex of Claim 3 or 4. 請求項3又は4に記載の複合体を含有するろ過材。   A filter medium containing the composite according to claim 3 or 4. 請求項3又は4に記載の複合体を含有する吸着剤。   An adsorbent containing the complex according to claim 3 or 4. 請求項3又は4に記載の複合体を含有するイオン交換樹脂。   An ion exchange resin containing the composite according to claim 3. 請求項6に記載のろ過材を備えた水処理システム。   A water treatment system comprising the filter medium according to claim 6. 請求項7に記載の吸着剤を備えた水処理システム。   A water treatment system comprising the adsorbent according to claim 7. 請求項8に記載のイオン交換樹脂を備えた水処理システム。   A water treatment system comprising the ion exchange resin according to claim 8. 請求項9〜11のいずれか一項に記載の水処理システムで水を処理する水処理方法。   The water treatment method which processes water with the water treatment system as described in any one of Claims 9-11.
JP2015159646A 2015-08-12 2015-08-12 Graphene derivative and use thereof Abandoned JP2017036191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159646A JP2017036191A (en) 2015-08-12 2015-08-12 Graphene derivative and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159646A JP2017036191A (en) 2015-08-12 2015-08-12 Graphene derivative and use thereof

Publications (1)

Publication Number Publication Date
JP2017036191A true JP2017036191A (en) 2017-02-16

Family

ID=58047106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159646A Abandoned JP2017036191A (en) 2015-08-12 2015-08-12 Graphene derivative and use thereof

Country Status (1)

Country Link
JP (1) JP2017036191A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060916A (en) * 2018-07-31 2018-12-21 山东师范大学 Electrochemical sensor electrodes nano surface material method of modifying and sensor
CN110193358A (en) * 2019-06-27 2019-09-03 中素新科技有限公司 Composite sponge and its preparation method and application containing amino modified graphene
JP2019155292A (en) * 2018-03-14 2019-09-19 オルガノ株式会社 Water treatment chemical and water treatment method
CN110467175A (en) * 2019-09-19 2019-11-19 深圳烯创先进材料研究院有限公司 A kind of graphene enhances the preparation method of biomass porous carbon electromagnetic-wave absorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155292A (en) * 2018-03-14 2019-09-19 オルガノ株式会社 Water treatment chemical and water treatment method
JP7117117B2 (en) 2018-03-14 2022-08-12 オルガノ株式会社 Water treatment agent, method for producing water treatment agent, and water treatment method
CN109060916A (en) * 2018-07-31 2018-12-21 山东师范大学 Electrochemical sensor electrodes nano surface material method of modifying and sensor
CN110193358A (en) * 2019-06-27 2019-09-03 中素新科技有限公司 Composite sponge and its preparation method and application containing amino modified graphene
CN110193358B (en) * 2019-06-27 2022-04-22 中素新科技有限公司 Composite sponge containing amino modified graphene and preparation method and application thereof
CN110467175A (en) * 2019-09-19 2019-11-19 深圳烯创先进材料研究院有限公司 A kind of graphene enhances the preparation method of biomass porous carbon electromagnetic-wave absorbent

Similar Documents

Publication Publication Date Title
JP2017036191A (en) Graphene derivative and use thereof
US9441011B2 (en) Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous substrate
KR101935933B1 (en) Polymeric composition for hydrophilic separation membrane containing sulfonated carbon nano tubes and sulfonated graphene oxides
JP2019048987A (en) Support for ligand immobilization, adsorbent, and method for producing support for ligand immobilization
Zhang et al. A three-dimensional amylopectin-reduced graphene oxide framework for efficient adsorption and removal of hemoglobin
Huang et al. Facile one-pot synthesis of β-cyclodextrin-polymer-modified Fe 3 O 4 microspheres for stereoselective absorption of amino acid compounds
WO2015178458A1 (en) Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
Lim et al. Amylosucrase-mediated synthesis and self-assembly of amylose magnetic microparticles
CN103157388A (en) Hydrophilic reverse osmosis composite membrane and preparation method thereof
JP2016215147A (en) Membrane fouling factor agent absorbent
US10189007B2 (en) Method for producing porous cellulose beads and adsorbent employing same
CN108114614A (en) A kind of high-flux composite reverse osmosis membrane containing ZSM-5 zeolite and preparation method thereof
KR20190027507A (en) Membrane filter stacked with porous layer which contains adhesive protein, and method for preparing the same
JP6767141B2 (en) Polyvinylidene fluoride porous membrane and its manufacturing method
Sun et al. Synthesis of membrane adsorbers via surface initiated ATRP of 2-dimethylaminoethyl methacrylate from microporous PVDF membranes
CN109569500B (en) Microorganism-loaded acid-modified sepiolite biological nanocomposite and preparation method and application thereof
Kusumawati et al. Synergistic ability of PSf and pvdf to develop high-performance PSf/PVDF coated membrane for water treatment
JP2010193720A (en) Method for separating virus using porous membrane having immobilized anion exchange group
JP5389342B2 (en) Adsorption carrier and production method of adsorption carrier
KR20160054367A (en) Positive electric charge-coating agent for antivirus media, Antivirus media using that and Preparing method thereof
JP2017018842A (en) Hydrophilic polymer adsorbent material and water treatment method using the same
KR20150079152A (en) Positive electric charge-coating agent for antivirus media, Antivirus media using that and Preparing method thereof
Foglia et al. Brackish water treatment with carbon nanotubes
US10040053B2 (en) Production method for porous cellulose beads, and adsorbent employing same
EP3059251B1 (en) Method for manufacturing porous cellulose beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20180528