JP2017033772A - Grounding device - Google Patents

Grounding device Download PDF

Info

Publication number
JP2017033772A
JP2017033772A JP2015152805A JP2015152805A JP2017033772A JP 2017033772 A JP2017033772 A JP 2017033772A JP 2015152805 A JP2015152805 A JP 2015152805A JP 2015152805 A JP2015152805 A JP 2015152805A JP 2017033772 A JP2017033772 A JP 2017033772A
Authority
JP
Japan
Prior art keywords
grounding
ground
electrode
external
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152805A
Other languages
Japanese (ja)
Other versions
JP6519790B2 (en
Inventor
宏行 榊原
Hiroyuki Sakakibara
宏行 榊原
明 日向野
Akira Higano
明 日向野
崇人 荘田
Takahito Shoda
崇人 荘田
元 廣瀬
Hajime Hirose
元 廣瀬
山本 和男
Kazuo Yamamoto
和男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Nippon Chiko Co Ltd
Chubu University
Original Assignee
Kandenko Co Ltd
Nippon Chiko Co Ltd
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd, Nippon Chiko Co Ltd, Chubu University filed Critical Kandenko Co Ltd
Priority to JP2015152805A priority Critical patent/JP6519790B2/en
Publication of JP2017033772A publication Critical patent/JP2017033772A/en
Application granted granted Critical
Publication of JP6519790B2 publication Critical patent/JP6519790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grounding device capable of easily obtaining desired ground resistance.SOLUTION: A grounding device is prepared with a magnitude of ground resistance that is adjusted in accordance with a shape of an external ground electrode 21 that encloses the surroundings of an internal ground electrode 20, a shape of the internal ground electrode 20 and resistivity of a filler 23 in the case a gap between the internal ground electrode 20 and the external ground electrode 21 is filled with the filler. The device is embedded in the ground in the vicinity of a place where the ground electrodes are required. An independent ground of an apparatus installed inside of a structure 11 is connected to the internal ground electrode 20 and the external ground electrode 21 is connected to a concatenation line 22 from a steel frame or reinforcement of the structure 11, thereby easily obtaining desired ground resistance. If an adjustment of the ground resistance is required after the grounding device is fitted, it can be easily performed by adjusting the resistivity of the filler.SELECTED DRAWING: Figure 1

Description

本発明は、設備や機器毎に独立して接地するための接地装置に関する。   The present invention relates to a grounding device for grounding independently for each facility or equipment.

一般に、接地は人等に対する感電防止、漏電による火災防止、変圧器内部の混触事故による低圧側電路への高電圧の侵入防止、変圧器低圧側の中性点の系統接地等の目的のために施され、その工事種別にはA種接地工事、B種接地工事、C種接地工事、D種接地工事等の種類がある。A種接地工事は、高圧用機器の金属製外箱や避雷器などに施され、B種接地工事は高圧と低圧とを変成する変圧器の低圧側に施される。C種接地工事は、300Vを超える低圧電気機械器具の金属製外箱や金属管などに施され、また、D種接地工事は300V以下の低圧電気機械器具や金属製外箱及び金属管などに施される。
接地方式には、設備や機器毎に独立した接地工事を施す独立接地方式と、複数の接地工事を一つの接地極に繋げて共用する共用接地方式とがある。独立接地方式は、接地極相互の影響をなくすために離隔距離を十分に確保することが必要となるが、現実には敷地の制限もあるため、B種接地以外のA種接地、C種接地、D種接地については、構造物の鉄骨や鉄筋に接続し共用接地されることがある(例えば、特許文献1参照)。
In general, grounding is used for the purpose of preventing electric shock to people, preventing fire due to electric leakage, preventing high voltage from entering the low-voltage circuit due to accidents in the interior of the transformer, and grounding the system at the neutral point of the transformer's low-voltage side. There are types of construction, such as Class A grounding, Class B grounding, Class C grounding, Class D grounding, and the like. Class A grounding work is applied to metal outer boxes and lightning arresters of high voltage equipment, and Class B grounding work is applied to the low voltage side of the transformer that transforms high voltage and low voltage. Class C grounding work is applied to metal outer boxes and metal tubes of low-voltage electric machinery and equipment exceeding 300V. Class D grounding work is applied to low-voltage electric machinery and equipment, metal outer boxes and metal pipes of 300V or less. Applied.
As a grounding method, there are an independent grounding method in which a grounding work is performed independently for each facility and equipment, and a common grounding method in which a plurality of grounding works are connected to a single grounding electrode. The independent grounding method requires a sufficient separation distance to eliminate the influence of the grounding electrodes, but in reality there are also site restrictions, so Class A grounding other than Class B grounding, Class C grounding As for D-type grounding, there is a case where it is connected to a steel frame or a reinforcing bar of a structure to be grounded in common (for example, see Patent Document 1).

一方、B種接地は、A種接地、C種接地、D種接地と共通接地にすると、地絡時の回路には短絡電流に相当する大電流が流れ、他回路との保護協調が取れないことから、独立接地方式とし地絡事故時に微弱な地絡電流を確実に検出できるように所望の接地抵抗とすることが要請される。そのために、独立接地極の接地棒の本数、形状や長さを調整して所望の接地抵抗を得るようにしている。また、接地棒に接地導電体を螺旋状に巻回して所望の接地抵抗を得るようにしたものもある(特許文献2参照)。   On the other hand, if Class B grounding is Class A grounding, Class C grounding, Class D grounding and common grounding, a large current corresponding to a short circuit current flows in the circuit at the time of ground fault, and protection coordination with other circuits cannot be achieved. For this reason, it is required to use an independent grounding system and to have a desired grounding resistance so that a weak grounding current can be reliably detected in the event of a grounding fault. For this purpose, the number, shape and length of the grounding rods of the independent grounding electrodes are adjusted to obtain a desired grounding resistance. In addition, there is a type in which a ground conductor is spirally wound around a ground rod to obtain a desired ground resistance (see Patent Document 2).

特開2002−271964号公報JP 2002-271964 A 特開2008−152927号公報JP 2008-152927 A

しかし、接地抵抗は土中の抵抗率が未知であること、均一でないなどの理由や、近傍の構造体の影響を受けること等から、所望の値を確保するための事前検討から求めた接地棒の本数、形状や長さでは確保できず、施工場所での調整が必要となることが多い。特に土中の抵抗率が高い場合には所望の抵抗値を確保するには多大な労力を費やす作業である。   However, the grounding resistance is a grounding rod obtained from a preliminary study to ensure the desired value because the resistivity in the soil is unknown or not uniform, or because it is affected by nearby structures. The number, shape and length cannot be secured, and adjustment at the construction site is often required. In particular, when the resistivity in the soil is high, it takes a lot of labor to secure a desired resistance value.

図4は、構造物の接地装置の一例を示す従来例の構成図である。構造物11は例えばビルであり、図4では構造物11は3階建てのビルであり、構造物11の鉄骨や鉄筋(以下、鉄筋12という)の一部を地面13より下の土中に埋め込み鉄筋12を共用接地極とし、また、構造物11の外部に接地棒を埋め込み独立接地極14としたものである。   FIG. 4 is a configuration diagram of a conventional example showing an example of a grounding device for a structure. The structure 11 is, for example, a building. In FIG. 4, the structure 11 is a three-story building, and a part of the steel frame or the reinforcing bar (hereinafter referred to as a reinforcing bar 12) of the structure 11 is placed in the soil below the ground 13. The embedded rebar 12 is used as a common grounding electrode, and a grounding rod is embedded outside the structure 11 to form an independent grounding electrode 14.

構造物11の内部に設置された変圧器15の中性点は、B種接地され接地線16xにより構造物11の外部の独立接地極14に接続されている。また、変圧器15の外箱はA種接地され接地線16yにより鉄筋12yに接続されている。負荷17a、17b、17cの外箱はD種接地され接地線16a、16b、16cにより鉄筋12a、12b、12cに接続されている。   The neutral point of the transformer 15 installed inside the structure 11 is grounded by B type and connected to the independent grounding electrode 14 outside the structure 11 by a grounding wire 16x. Further, the outer box of the transformer 15 is A-type grounded and connected to the reinforcing bar 12y by a grounding wire 16y. The outer casings of the loads 17a, 17b, and 17c are D-type grounded and are connected to the reinforcing bars 12a, 12b, and 12c by grounding wires 16a, 16b, and 16c.

いま、図4のF1で地絡事故が発生したとすると、地絡電流は、矢印で示すように、地絡点F1→負荷17cの外箱(D種接地)→接地線16c→構造物11の鉄筋12c→土中18→独立接地極14→接地線16x→変圧器15の中性点(B種接地)→変圧器15の低圧巻線→電源線19c1、19c2→地絡点F1のルートで流れる。従って、独立接地極14を構造物の外部に設けなければならない場合には、構造物11の外部の土中18の大地抵抗率と構造体11と独立接地極14の位置関係により抵抗が変化するため、接地抵抗の調整も煩雑となる。   If a ground fault occurs at F1 in FIG. 4, the ground fault current is, as indicated by the arrow, ground fault point F1 → outer box of load 17c (class D grounding) → ground line 16c → structure 11 Rebar 12c → underground 18 → independent grounding electrode 14 → ground wire 16x → neutral point of transformer 15 (class B grounding) → low voltage winding of transformer 15 → power supply lines 19c1, 19c2 → route of ground fault point F1 It flows in. Therefore, when the independent ground electrode 14 must be provided outside the structure, the resistance varies depending on the earth resistivity of the soil 18 outside the structure 11 and the positional relationship between the structure 11 and the independent ground electrode 14. Therefore, the adjustment of the grounding resistance is also complicated.

本発明の目的は、所望の接地抵抗を容易に得ることができる接地装置を提供することである。   An object of the present invention is to provide a grounding device capable of easily obtaining a desired grounding resistance.

本発明の接地装置は、構造物の内部に設置された機器のために独立接地される内部接地極と、構造物の鉄骨または鉄筋からの連接線に接続され前記内部接地極の周囲を包囲する外部接地極と、前記内部接地極と外部接地極との間に充填され接地抵抗を調整するための充填材とを備えたことを特徴とする。   The grounding device of the present invention is connected to an internal grounding pole that is independently grounded for equipment installed inside the structure and a connecting wire from a steel frame or a reinforcing bar of the structure and surrounds the periphery of the internal grounding pole. An external grounding electrode and a filler for adjusting a grounding resistance filled between the internal grounding electrode and the external grounding electrode are provided.

本発明によれば、本装置の接地抵抗は、内部接地極の周囲を包囲する外部接地極を設け、外部接地極は必要とする接地抵抗値に対して十分低い抵抗値を持つ構造体を構成する鉄骨または鉄筋からの連接線で接続するので、無限遠方から外部接地極までの接地抵抗を無視できる。接地装置の接地抵抗の大きさは内部接地極と外部接地極との間に充填される充填材の抵抗率や内部接地極と外部接地極の半径、長さを調整することによりに決定することができる。これにより、事前に接地抵抗値の大きさ、接地極の形状を計画でき、所望の接地抵抗を容易に得ることができる。また、接地装置取り付け後に接地抵抗の調整が必要な場合には、充填材の抵抗率を調整することで容易に行うことができる。   According to the present invention, the grounding resistance of this device is provided with an external grounding electrode that surrounds the periphery of the internal grounding electrode, and the external grounding electrode constitutes a structure having a sufficiently low resistance value with respect to the required grounding resistance value. Since it is connected with a connecting wire from the steel frame or reinforcing bar, the grounding resistance from infinity to the external grounding electrode can be ignored. The size of the grounding resistance of the grounding device shall be determined by adjusting the resistivity of the filler filled between the internal grounding electrode and the external grounding electrode, and adjusting the radius and length of the internal grounding electrode and the external grounding electrode. Can do. Thereby, the magnitude of the ground resistance value and the shape of the ground electrode can be planned in advance, and a desired ground resistance can be easily obtained. In addition, when it is necessary to adjust the grounding resistance after attaching the grounding device, it can be easily performed by adjusting the resistivity of the filler.

本発明の実施形態に係る接地装置の一例を示す構成図。The lineblock diagram showing an example of the grounding device concerning the embodiment of the present invention. 本発明の実施形態に係る接地装置の接地極部分の一例の構成図。The block diagram of an example of the ground pole part of the grounding device which concerns on embodiment of this invention. 本発明の実施形態に係る接地装置の抵抗を電磁界解析により構造物の影響を考慮して求める場合の接地極部分の説明図。Explanatory drawing of the grounding pole part in the case of calculating | requiring the resistance of the grounding apparatus which concerns on embodiment of this invention in consideration of the influence of a structure by electromagnetic field analysis. 構造物の接地装置の一例を示す従来例の構成図。The block diagram of the prior art example which shows an example of the grounding apparatus of a structure.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る接地装置の一例を示す構成図である。本発明の実施形態は、図4に示した従来例に対し、独立接地極14の接地棒に代えて、事前に所望の抵抗値になるように設定されたた寸法を持つ独立接地される内部接地極20と、内部接地極20の周囲を包囲する外部接地極21とで構成され、外部接地極21は共用接地に連接線22で接続され、内部接地極20と外部接地極21との間に充填材23を充填したものである。その他の構成は図4と同一であるので、同一要素には同一符号を付し重複する説明は省略する。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram showing an example of a grounding device according to an embodiment of the present invention. In the embodiment of the present invention, in place of the grounding rod of the independent grounding pole 14 in the conventional example shown in FIG. 4, an independently grounded internal having a dimension set to have a desired resistance value in advance. The grounding electrode 20 is composed of an external grounding electrode 21 that surrounds the internal grounding electrode 20, and the external grounding electrode 21 is connected to a common ground by a connecting line 22, and between the internal grounding electrode 20 and the external grounding electrode 21. Is filled with a filler 23. Since other configurations are the same as those in FIG. 4, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1において、内部接地極20は、構造物11の内部に設置された機器を独立接地する接地極であり、構造物11の外部に設けられている。図1では、内部接地極20は棒状に形成され、構造物11の内部に設置された機器は変圧器15であり、B種接地された変圧器15の中性点を接地線16xにより構造物11の外部の内部接地極20に接続したものを示している。   In FIG. 1, an internal grounding electrode 20 is a grounding electrode that independently grounds a device installed inside the structure 11, and is provided outside the structure 11. In FIG. 1, the internal grounding electrode 20 is formed in a rod shape, and the device installed inside the structure 11 is a transformer 15, and the neutral point of the class B grounded transformer 15 is represented by a grounding wire 16 x. 11 is connected to the external grounding electrode 20 outside.

外部接地極21は、内部接地極20の周囲を包囲して設けられる。図1では、外部接地極21は円筒形に形成され、その円筒内に棒状の内部接地極20を収納して内部接地極20の側面を包囲したものを示している。また、外部接地極21は、構造物11の内部に設置された機器を共用接地した構造物11の鉄筋12に連接線22で接続されている。これにより、外部接地極21は共用接地した構造物11の鉄筋12と同じ電位に維持される。   The external ground electrode 21 is provided so as to surround the internal ground electrode 20. In FIG. 1, the external grounding electrode 21 is formed in a cylindrical shape, and a rod-shaped internal grounding electrode 20 is housed in the cylinder and the side surface of the internal grounding electrode 20 is surrounded. Further, the external grounding electrode 21 is connected to the reinforcing bar 12 of the structure 11 in which the equipment installed inside the structure 11 is commonly grounded by a connecting wire 22. Thereby, the external grounding electrode 21 is maintained at the same potential as the reinforcing bar 12 of the structure 11 that is commonly grounded.

さらに、内部接地極20と外部接地極21との間、すなわち、外部接地極21の円筒内に、事前に所望の抵抗値になるように設定された抵抗率を持つ充填材23が充填されている。   Furthermore, a filling material 23 having a resistivity set in advance so as to have a desired resistance value is filled between the internal ground electrode 20 and the external ground electrode 21, that is, in the cylinder of the external ground electrode 21. Yes.

いま、図1のF1で地絡事故が発生したとすると、地絡電流は、矢印で示すように、地絡点F1→負荷17cの外箱(D種接地)→接地線16c→構造物11の鉄筋12c→連接線22→外部接地極21→充填材23→内部接地極20→接地線16x→変圧器15の中性点(B種接地)→変圧器15の低圧巻線→電源線19c1、19c2→地絡点F1のルートで流れる。なお、構造物11の鉄筋12cから外部接地極21には、連接線22に加えて土中18を通って地絡電流が流れるが、連接線22の抵抗は土中18の抵抗より小さいので、ほとんどの地絡電流は連接線22に流れる。   Assuming that a ground fault has occurred at F1 in FIG. 1, the ground fault current is the ground fault point F1 → the outer box of the load 17c (class D grounding) → the ground line 16c → the structure 11 as indicated by the arrow. Rebar 12c → connecting wire 22 → external grounding electrode 21 → filling material 23 → internal grounding electrode 20 → grounding wire 16x → neutral point of transformer 15 (class B grounding) → low voltage winding of transformer 15 → power supply line 19c1 , 19c2 → flows along the ground fault point F1. The ground fault current flows from the reinforcing bar 12c of the structure 11 to the external grounding electrode 21 through the soil 18 in addition to the connecting wire 22, but the resistance of the connecting wire 22 is smaller than the resistance of the soil 18; Most of the ground fault current flows through the connecting line 22.

外部接地極21は共用接地した構造物11の鉄筋12cに連接線22で接続されるので、外部接地極21は共用接地した構造物11の鉄筋12cと同じ電位に維持される。従って、近傍の構造体の影響を受けることがなく、土中18の抵抗を考慮する必要がないので、事前に所望の抵抗値になるように設定されたた寸法を持つ内部接地極、外部接地極および充填材からなる接地装置を取り付けるだけで所望の接地抵抗を容易に得ることができる。また、接地装置取り付け後、接地抵抗値の変更が必要な場合でも充填材の抵抗率を調整するだけで所望の接地抵抗を容易に得ることができる。   Since the external grounding electrode 21 is connected to the reinforcing bar 12c of the common-grounded structure 11 by the connecting wire 22, the external grounding electrode 21 is maintained at the same potential as the reinforcing bar 12c of the common-grounded structure 11. Therefore, since there is no influence of a nearby structure and it is not necessary to consider the resistance of the soil 18, the internal grounding electrode and the external grounding having dimensions set in advance so as to obtain a desired resistance value. A desired grounding resistance can be easily obtained simply by attaching a grounding device made of a pole and a filler. In addition, even when the ground resistance value needs to be changed after the grounding device is attached, a desired grounding resistance can be easily obtained simply by adjusting the resistivity of the filler.

以上の説明では、内部接地極20は、B種接地された機器を独立接地する場合について説明したが、B種接地に代えて、A種接地、C種接地、D種接地された機器を独立接地する場合であってもよい。また、内部接地極20と外部接地極21とで構成された接地装置を構造物11の外部に設けた場合を示したが、構造物11の内部に設けるようにしてもよい。   In the above description, the internal grounding electrode 20 has been described with respect to the case where the B-grounded device is independently grounded, but instead of the B-type grounding, the A-grounding, the C-grounding, and the D-grounded device are independent. It may be a case of grounding. Moreover, although the case where the grounding device comprised by the internal grounding electrode 20 and the external grounding electrode 21 was provided in the exterior of the structure 11 was shown, you may make it provide in the structure 11 inside.

次に、本発明の実施形態に係る接地装置の接地抵抗について説明する。図2は、本発明の実施形態に係る接地装置の接地極部分の一例の構成図である。図2に示すように、内部接地極20及び外部接地極21の長さをlとし、地面13から埋設深さtの位置に内部接地極20及び外部接地極21を埋設するものとする。また、棒状の内部接地極20の半径はaであり、外部接地極21の半径はbであるとする。充填材23の抵抗率はρであるとする。   Next, the grounding resistance of the grounding device according to the embodiment of the present invention will be described. FIG. 2 is a configuration diagram of an example of a ground pole portion of the ground device according to the embodiment of the present invention. As shown in FIG. 2, the lengths of the internal ground electrode 20 and the external ground electrode 21 are assumed to be l, and the internal ground electrode 20 and the external ground electrode 21 are embedded at the embedded depth t from the ground 13. Further, it is assumed that the radius of the rod-shaped internal ground electrode 20 is a, and the radius of the external ground electrode 21 is b. It is assumed that the resistivity of the filler 23 is ρ.

いま、表1に示す4種類の接地装置を用意した。すなわち、条件1、条件2、条件3及び条件4の接地装置を用意した。これら条件1、条件2、条件3及び条件4の接地装置の内部接地極20及び外部接地極21が設置される箇所の大地抵抗率ρeは100Ωmとした。条件1及び条件2の充填材の抵抗率ρは大地抵抗率ρeと同じ100Ωmとし、条件3及び条件4では充填材の抵抗率ρは、条件1、2の100Ωmと比較するため、50Ωm、80Ωmとした。   Now, four kinds of grounding devices shown in Table 1 are prepared. That is, grounding devices of Condition 1, Condition 2, Condition 3, and Condition 4 were prepared. The earth resistivity ρe at the location where the internal grounding electrode 20 and the external grounding electrode 21 of the grounding devices of conditions 1, 2, 3, and 4 are installed is 100 Ωm. The resistivity ρ of condition 1 and condition 2 is 100 Ωm, which is the same as the ground resistivity ρe. In conditions 3 and 4, the resistivity ρ of the filler is 50 Ωm and 80 Ωm to compare with 100 Ωm in conditions 1 and 2. It was.

Figure 2017033772
条件1、条件2、条件3及び条件4の接地装置の内部接地極20と外部接地極21との間の抵抗は(1)式で示す算出式から求められる。
Figure 2017033772
The resistance between the internal grounding electrode 20 and the external grounding electrode 21 of the grounding device of Condition 1, Condition 2, Condition 3 and Condition 4 is obtained from the calculation formula shown by Formula (1).

R=(ρ/2πl)・ln(b/a) …(1)
(1)式は、近傍の構造体11の影響を考慮せず、内部接地極20を包囲する外部接地極21を円筒形で構成した接地装置単体を独立接地極とした場合の抵抗値を表す式である。
R = (ρ / 2πl) · ln (b / a) (1)
Equation (1) represents the resistance value when a single grounding device in which the external grounding electrode 21 surrounding the internal grounding electrode 20 is formed into a cylindrical shape is used as an independent grounding electrode without considering the influence of the nearby structure 11. It is a formula.

一方、本発明の実施形態では、接地装置の外部接地極21と構造体11の鉄筋12cとを連接線22で接続し、かつ内部接地極20と接地線16xとが接続されていることから、これらの条件を加味した構造物11の影響を考慮した接地装置の抵抗値を、電磁界解析のうちFDTD(Finite-difference time-domain method)法(有限差分時間領域法による電磁界解析(以下、単に電磁界解析という))により求めた。   On the other hand, in the embodiment of the present invention, the external grounding electrode 21 of the grounding device and the reinforcing bar 12c of the structure 11 are connected by the connecting wire 22, and the internal grounding electrode 20 and the grounding wire 16x are connected. The resistance value of the grounding device in consideration of the influence of the structure 11 in consideration of these conditions is calculated using the FDTD (Finite-difference time-domain method) method (electromagnetic field analysis by the finite difference time domain method (hereinafter referred to as the finite difference time domain method)). It was simply obtained by electromagnetic field analysis)).

図3は、接地装置の抵抗を電磁界解析により構造物11の影響を考慮して求める場合の接地極部分の説明図であり、図3(a)は構造物11の影響を考慮して内部接地極20と構造体11と間の電圧を電磁界解析により求め接地装置の抵抗値を求める場合の説明図、図3(b)は構造物11を考慮して内部接地極20と無限遠方との間の電圧を電磁界解析により求め接地装置の接地抵抗値を求める場合の説明図である。   FIG. 3 is an explanatory diagram of the grounding electrode portion when the resistance of the grounding device is obtained by considering the influence of the structure 11 by electromagnetic field analysis. FIG. FIG. 3B is an explanatory diagram in the case where the voltage between the grounding electrode 20 and the structure 11 is obtained by electromagnetic field analysis and the resistance value of the grounding device is obtained. FIG. It is explanatory drawing in the case of calculating | requiring the voltage between these by an electromagnetic field analysis, and calculating | requiring the grounding resistance value of a grounding apparatus.

図3(a)において、内部接地極20に注入線24を接続し、外部接地極21と構造体11の鉄筋12cとを連接線22で接続する回路において、構造物11の影響を考慮した接地装置の抵抗値を求めるものである。図3(a)の注入線24から地絡事故発生時に流れる模擬電流を流し、注入線24(内部接地極20)と構造体11(鉄筋12c)と間の電圧を電磁界解析により計算して接地装置の抵抗値を求めた。これにより、構造物11の影響を考慮したB種接地を想定した接地装置の抵抗値の算出ができる。   In FIG. 3A, in the circuit in which the injection line 24 is connected to the internal grounding electrode 20 and the external grounding electrode 21 and the reinforcing bar 12c of the structure 11 are connected by the connecting wire 22, the grounding in consideration of the influence of the structure 11 is considered. The resistance value of the device is obtained. A simulated current flowing at the time of occurrence of a ground fault is caused to flow from the injection line 24 in FIG. 3A, and the voltage between the injection line 24 (internal grounding electrode 20) and the structure 11 (reinforcing bar 12c) is calculated by electromagnetic field analysis. The resistance value of the grounding device was obtained. Thereby, it is possible to calculate the resistance value of the grounding device assuming B-type grounding in consideration of the influence of the structure 11.

また、図3(b)においても同様に、図3(a)と同様の回路において、注入線24から地絡事故発生時に流れる模擬電流を流し、注入線24(内部接地極20)と無限遠方の基準点25と間の電圧を電磁界解析により計算して接地装置の接地抵抗値を求めた。これにより、無限遠方から見た構造物11の影響を考慮したB種接地を想定した接地装置の接地抵抗値が算出できる。   Similarly in FIG. 3 (b), in the same circuit as in FIG. 3 (a), a simulated current flowing from the injection line 24 at the time of the occurrence of the ground fault is caused to flow away from the injection line 24 (internal grounding electrode 20). The voltage between the reference point 25 was calculated by electromagnetic field analysis, and the ground resistance value of the grounding device was obtained. Thereby, the grounding resistance value of the grounding device which assumed the B class grounding which considered the influence of the structure 11 seen from infinity can be calculated.

表2に、(1)式の算出式から求めた抵抗値と、図3(a)、(b)の電磁界解析により求めた抵抗値を示す。   Table 2 shows the resistance value obtained from the equation (1) and the resistance value obtained by the electromagnetic field analysis of FIGS. 3 (a) and 3 (b).

Figure 2017033772
表2において、条件1、条件2、条件3、条件4の(1)式の算出式から求めた抵抗値と、電磁界解析から求めた抵抗値とは、それぞれの条件において近い値になっていることがわかる。(1)式の算出式と図3の電磁界解析から求めた抵抗値の差は、外部接地極21が構造物11の鉄筋12cに接続されているためと考えられるが、接地装置の抵抗値は(1)式で近似できることが分かる。
Figure 2017033772
In Table 2, the resistance value obtained from the calculation formula (1) of Condition 1, Condition 2, Condition 3, and Condition 4 and the resistance value obtained from the electromagnetic field analysis are close to each other. I understand that. The difference between the calculated value of the equation (1) and the resistance value obtained from the electromagnetic field analysis of FIG. 3 is considered that the external grounding electrode 21 is connected to the reinforcing bar 12c of the structure 11, but the resistance value of the grounding device Can be approximated by equation (1).

表2において、外部接地極21の半径b、接地極の長さlを変更した条件1、条件2より、外部接地極の半径bや接地極の長さlを変更することで任意の抵抗値を確保することができることがわかる。   In Table 2, from the condition 1 and the condition 2 in which the radius b of the external ground electrode 21 and the length l of the ground electrode are changed, any resistance value can be obtained by changing the radius b of the external ground electrode and the length l of the ground electrode. It can be seen that can be secured.

表2において、充填剤23の抵抗率ρを変更した条件1(条件2)、条件3、条件4より充填剤23の抵抗率ρを変更することで任意の抵抗値を確保することができることがわかる。   In Table 2, by changing the resistivity ρ of the filler 23 from Condition 1 (Condition 2), Condition 3, and Condition 4 in which the resistivity ρ of the filler 23 is changed, an arbitrary resistance value can be secured. Recognize.

また、条件1、条件2、条件3、条件4において電磁解析により求めた独立接地極としての接地抵抗値も(1)式の算出式から求めた接地抵抗値や電磁界解析から求めた抵抗値と、それぞれの条件において近い値になっていることは、構造物11の鉄骨または鉄筋からの連接線22に接続した本発明の実施形態の接地装置を使用することで独立接地極としての値を確保していることになる。   In addition, the grounding resistance value as an independent grounding electrode obtained by electromagnetic analysis in conditions 1, 2, 3, and 4 is also the grounding resistance value obtained from the calculation formula (1) and the resistance value obtained from electromagnetic field analysis. The close values in the respective conditions indicate that the value as the independent grounding pole can be obtained by using the grounding device of the embodiment of the present invention connected to the connecting wire 22 from the steel frame or the reinforcing bar of the structure 11. It will be secured.

以上述べたように、本発明の実施形態によれば、構造物11の外部に独立接地される内部接地極20の周囲を包囲する外部接地極21を設け、外部接地極20は共用接地された鉄骨または鉄筋からの連接線22に接続されて共用接地の電位に保持されるので、地絡電流による接地装置の内部接地極20と構造物11との間の電圧Vを小さくできる。内部接地極20と外部接地極21との間に充填される充填材23の抵抗率ρを調整するだけで接地抵抗を調整できる。これにより、地絡電流を確実に検出できる所望の接地抵抗を容易に得ることができる。   As described above, according to the embodiment of the present invention, the external grounding electrode 21 surrounding the internal grounding electrode 20 that is independently grounded is provided outside the structure 11, and the external grounding electrode 20 is commonly grounded. Since it is connected to the connecting wire 22 from the steel frame or the reinforcing bar and is held at the common ground potential, the voltage V between the internal ground electrode 20 of the grounding device and the structure 11 due to the ground fault current can be reduced. The ground resistance can be adjusted only by adjusting the resistivity ρ of the filler 23 filled between the internal ground electrode 20 and the external ground electrode 21. This makes it possible to easily obtain a desired ground resistance that can reliably detect a ground fault current.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…構造物、12…鉄筋、13…地面、14…独立接地極、15…変圧器、16…接地線、17…負荷、18…土中、19…電源線、20…内部接地極、21…外部接地極、22…連接線、23…充填材、24…注入線、25…無限遠方の基準点 DESCRIPTION OF SYMBOLS 11 ... Structure, 12 ... Reinforcing bar, 13 ... Ground, 14 ... Independent earthing pole, 15 ... Transformer, 16 ... Grounding wire, 17 ... Load, 18 ... Underground, 19 ... Power line, 20 ... Internal earthing pole, 21 ... external ground electrode, 22 ... connecting line, 23 ... filler, 24 ... injection line, 25 ... reference point at infinity

Claims (1)

構造物の内部に設置された機器のために独立接地される内部接地極と、
構造物の鉄骨または鉄筋からの連接線に接続され前記内部接地極の周囲を包囲する外部接地極と、
前記内部接地極と前記外部接地極との間に充填され接地抵抗を調整するための充填材と、
を備えたことを特徴とする接地装置。
An internal grounding pole that is independently grounded for equipment installed inside the structure;
An external grounding electrode connected to a connecting line from a steel frame or a reinforcing bar of the structure and surrounding the inner grounding electrode;
A filler filled between the internal ground electrode and the external ground electrode for adjusting the ground resistance;
A grounding device comprising:
JP2015152805A 2015-07-31 2015-07-31 Grounding device Active JP6519790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152805A JP6519790B2 (en) 2015-07-31 2015-07-31 Grounding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152805A JP6519790B2 (en) 2015-07-31 2015-07-31 Grounding device

Publications (2)

Publication Number Publication Date
JP2017033772A true JP2017033772A (en) 2017-02-09
JP6519790B2 JP6519790B2 (en) 2019-05-29

Family

ID=57988647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152805A Active JP6519790B2 (en) 2015-07-31 2015-07-31 Grounding device

Country Status (1)

Country Link
JP (1) JP6519790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034859A (en) * 2015-07-31 2017-02-09 株式会社関電工 Grounding device
CN107508309A (en) * 2017-09-29 2017-12-22 南方电网科学研究院有限责任公司 Earthing or grounding means and DC transmission system in a kind of current conversion station
KR101812060B1 (en) 2016-09-08 2018-01-30 이규복 Terminal Board for Measurement Continuity Electric Resistanc of Structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144952A (en) * 1978-05-02 1979-11-12 Watanabe Tsuguhiko Antiicorrosion installation of earth pole
JPH10149851A (en) * 1996-11-20 1998-06-02 Kira Mitsuaki Radial grounding conductor
JP2002271964A (en) * 2001-03-13 2002-09-20 Kansai Tech Corp Arrester structure of building
JP2006089584A (en) * 2004-09-24 2006-04-06 Nippon Kouatsu Electric Co Ground resistance-reducing material and method for applying the same material
JP2008166104A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144952A (en) * 1978-05-02 1979-11-12 Watanabe Tsuguhiko Antiicorrosion installation of earth pole
JPH10149851A (en) * 1996-11-20 1998-06-02 Kira Mitsuaki Radial grounding conductor
JP2002271964A (en) * 2001-03-13 2002-09-20 Kansai Tech Corp Arrester structure of building
JP2006089584A (en) * 2004-09-24 2006-04-06 Nippon Kouatsu Electric Co Ground resistance-reducing material and method for applying the same material
JP2008166104A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034859A (en) * 2015-07-31 2017-02-09 株式会社関電工 Grounding device
KR101812060B1 (en) 2016-09-08 2018-01-30 이규복 Terminal Board for Measurement Continuity Electric Resistanc of Structure
CN107508309A (en) * 2017-09-29 2017-12-22 南方电网科学研究院有限责任公司 Earthing or grounding means and DC transmission system in a kind of current conversion station

Also Published As

Publication number Publication date
JP6519790B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2017033772A (en) Grounding device
Ravlić et al. Simulation models for various neutral earthing methods in medium voltage systems
JP4839812B2 (en) Ground resistance management method
CN104407179A (en) Insulating rod experimental apparatus
JP2017173212A (en) Sensor for current detection and ground fault locating system
JP2013079974A (en) Method of checking grounding system connections
Payshetti et al. Analysis of grounding grid of substation
Rahi et al. Design of Earthing System for a Substation: A Case Study
Yasui et al. Reduction measures of the overvoltage in the TN system of a building struck directly by lightning
JP6519083B2 (en) Grounding device
JP5305394B2 (en) Method and apparatus for suppressing potential rise of steel tower base
Zoro et al. External Lightning Protection System at Pulp and Paper Industry in Areas with High Lightning Density
JP6265800B2 (en) Ground wire terminal box
CN206134958U (en) Stake of pre -buried formula ground connection
CN103811882B (en) A kind of method to set up of overhead distribution reinforced concrete pole protective grounding
CN204131118U (en) A kind of earth potential counterattack protector
KR101191936B1 (en) Pile for ground, and ground method of pile
JP5270470B2 (en) Pipeline electromagnetic induction voltage reduction device
RU2629370C1 (en) Method of determining general lightning protection zone for cable and core lightning-rod in oil and petroleum reservoirs
Grbic et al. Determining the zone of influence of transmission overhead power lines from the aspect of non-ionizing radiation
CN109038232A (en) A kind of embedded part structure for lightning rod
Esobinenwu et al. Earth Mat Design for 132/33Kv Substation in Rivers State Using ETAP
Martin Safety issues and damage to equipment with both Smart Grid and home network connections
Rabah et al. Electrostatic and electromagnetic effects of HV overhead power line on above metallic pipeline
CZUMBIL et al. Induced voltages in metallic pipelines due to lightning strikes to nearby power lines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6519790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250