JP2002271964A - Arrester structure of building - Google Patents

Arrester structure of building

Info

Publication number
JP2002271964A
JP2002271964A JP2001071040A JP2001071040A JP2002271964A JP 2002271964 A JP2002271964 A JP 2002271964A JP 2001071040 A JP2001071040 A JP 2001071040A JP 2001071040 A JP2001071040 A JP 2001071040A JP 2002271964 A JP2002271964 A JP 2002271964A
Authority
JP
Japan
Prior art keywords
building
ground
lightning
grounding body
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001071040A
Other languages
Japanese (ja)
Inventor
Masahiko Isokawa
正彦 磯川
Ryoji Miyamoto
良治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Tech Corp
Original Assignee
Kansai Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Tech Corp filed Critical Kansai Tech Corp
Priority to JP2001071040A priority Critical patent/JP2002271964A/en
Publication of JP2002271964A publication Critical patent/JP2002271964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop an arrester structure of a building which can avoid erroneous operation of gages, burning of substrates and influence on a human body at the timing of lightning by equalizing the potential of all instruments and gages installed within the building. SOLUTION: The arrester is composed of a lighting rod (2) erected on the building (1), a grounding body (3) for potential equalization having high dielectric constant embedded to surround the periphery of the building (1), a low surge-impedance conductor (4) which is arranged along the building (1) to connect the lightning rod (2) and the grounding body (3) for potential equalization, and an earth terminal box (5) for connection devices of the building (1) having the common terminals (5a) to (5b) connected to the grounding body (3) for potential equalization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、落雷時に発生する
雷電流を瞬時に大地に流すことができて接地電位の上昇
を小さくすることができ、しかも落雷時に発生しやすい
建造物内の電子機器類の電磁誘導による障害発生を軽減
させることができる建造物の避雷構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device in a building which can instantaneously cause a lightning current generated at the time of lightning strike to flow to the ground, reduce the rise of the ground potential, and easily occur at the time of lightning strike. The present invention relates to a lightning arrester structure of a building capable of reducing the occurrence of disturbances due to electromagnetic induction of a kind.

【0002】[0002]

【従来の技術】一般的に、高いビルやマンション等の高
層建造物(101)には避雷針(102)を設置して落雷を誘導し
周辺に落雷するのを防止している。前記避雷針(102)に
は地面に埋設された接地体(103)に接続する導電体(104)
が取り付けられており、避雷針(102)に落雷した高圧高
周波の雷電流を大地にアースするようになっている。そ
して前記マンションやビルなどの建造物(101)にはアー
ス端子ボックス(105)が設けられており、10Ωから1
00Ωまでの接地抵抗を有するA種からD種までの各種
アース端子(105a)〜(105d)が取り付けられており、建造
物(101)内の変圧器を始めとする受電設備(106)その他建
造物(101)の各階に設置されている機器(107)〜(109)類
が各階毎に接続され、これら等のアースをとるようにし
ている。なお、前記アース端子(105a)〜(105d)のアース
の取り方はさまざまで、図4、5の場合はアース端子(1
05a)〜(105d)それぞれが独立してアースされるようにな
っている。
2. Description of the Related Art In general, a lightning rod (102) is installed on a high-rise building (101) such as a tall building or an apartment to guide lightning strikes and prevent lightning strikes in the vicinity. The lightning rod (102) has a conductor (104) connected to a grounding body (103) buried in the ground.
The lightning rod of the lightning rod (102) is grounded to ground the high-voltage high-frequency lightning current. The building (101) such as the condominium or the building is provided with a ground terminal box (105).
Various types of ground terminals (105a) to (105d) of Class A to Class D having a ground resistance of up to 00Ω are installed, and power receiving equipment (106) and other structures including transformers in the building (101) Devices (107) to (109) installed on each floor of the object (101) are connected to each floor, and these are grounded. The ground terminals (105a) to (105d) can be grounded in various ways. In the case of FIGS.
05a) to (105d) are independently grounded.

【0003】最近ではパソコンやファクスを始めとする
多種多様のデジタル電子機器(107)〜(109)がこれら建造
物(101)の各階に多数の設置されるようになって来てお
り、雷撃対策が十分なされているインテリジェントビル
と呼ばれるような高層ビルや高層マンションは別とし
て、そのような対策の行われていない建造物(101)にお
いては各階においてアースをとっていたとしても落雷で
発生する電子機器(107)〜(109)内の電磁誘導によって電
子機器(107)〜(109)の誤動作や基板の焼損などが発生し
電子機器(107)〜(109)に多大の被害を与える事故が多発
している。
Recently, a large number of digital electronic devices (107) to (109) such as a personal computer and a fax machine have been installed on each floor of the building (101). Apart from high-rise buildings and high-rise condominiums, which are called intelligent buildings, where there is sufficient space, in the building (101) where such measures are not taken, even if the ground is taken on each floor, electrons generated by lightning strikes Electromagnetic induction in the devices (107) to (109) causes malfunctions of the electronic devices (107) to (109) and burnout of the board, which frequently causes serious damage to the electronic devices (107) to (109). are doing.

【0004】以下、従来の建造物(101)の避雷方法につ
いて簡単に説明する。図4は第1の従来方法(簡略方法)
で、高層ビルや高層マンションなどの建造物(101)の屋
上に避雷針(102)が立設されており、建造物(101)の鉄骨
(110)或いは鉄筋に鬼撚り導線(104)を接続し、建造物(1
01a)の鉄骨(110)或いは鉄筋を通して建造物(101a)の周
囲に埋設したそれぞれ独立の避雷単独アース(103)に接
続してアースを取るようにしていた。
Hereinafter, a conventional lightning arrestering method for the building (101) will be briefly described. Fig. 4 shows the first conventional method (simplified method)
A lightning rod (102) is erected on the roof of a building (101) such as a high-rise building or high-rise apartment, and the steel frame of the building (101) is
(110) or rebar with a twisted conductor (104) to connect the building (1
The ground was connected to the independent lightning arrester (103) buried around the building (101a) through the steel frame (110) or the rebar of 01a).

【0005】この方法の利点としては、避雷導線(104)
の一部を建造物(101)の鉄骨(110)或いは鉄筋で代用する
ためその部分の避雷導線(104)を敷設する必要がないの
で施工費が安く済みしかも新築の建屋(101)の側面に避
雷導線(104)を引き下げる必要がないので美観的に優れ
ている。また、この方法の利点としては、大地固有抵抗
が低く簡単に接地抵抗が確保できる場合は安価に施工で
きる、という点があげられている。
The advantage of this method is that the lightning conductor (104)
It is not necessary to lay the lightning conductor (104) in that part because the steel frame (110) or the reinforcing bar of the building (101) is substituted for a part of the building, so the construction cost is low and the side of the new building (101) It is aesthetically pleasing because there is no need to lower the lightning conductor (104). Another advantage of this method is that if the ground resistance is low and the ground resistance can be easily secured, the method can be performed at low cost.

【0006】しかしながらこの方法では大地固有抵抗が
高い場合、個々の接地抵抗を確保するために大きな面積
の接地極(103)の施工が必要となり施工費用が増大する
という問題がある。また、避雷導線(104)の代わりに建
造物(101a)の鉄筋(110)や鉄骨を使用しているので、落
雷電流が家屋内に侵入し、建造物(101)内に設置されて
いる内部機器(106)〜(109)(特に情報通信機器)にサージ
電流を生成させ、これによる電磁誘導作用にて前記電子
機器(106)〜(109)の絶縁破壊や誤動作を発生させるし、
電気機器地絡事故時に流れる電流や落雷により流れるサ
ージ電流により、個々の接地極(103)に電位差が発生す
ることで、機器(特に電子系機器)の絶縁破壊を起こす可
能性もある。これは本発明の説明時に比較例として詳述
する。
However, this method has a problem that when the ground resistivity is high, it is necessary to construct a large-area ground electrode (103) in order to secure the individual ground resistance, and the construction cost increases. In addition, since the reinforcing rod (110) and the steel frame of the building (101a) are used instead of the lightning conductor (104), the lightning strike current enters the house, and the inside of the building (101) is installed inside. The devices (106) to (109) (especially information and communication devices) generate a surge current, and the electromagnetic induction thereby causes the electronic devices (106) to (109) to cause dielectric breakdown and malfunction,
The electric current flowing at the time of the ground fault of the electric equipment or the surge current flowing due to the lightning strike may cause a potential difference between the individual grounding poles (103), which may cause a dielectric breakdown of the equipment (especially electronic equipment). This will be described in detail as a comparative example when describing the present invention.

【0007】また、避雷針(102)の接地(103)は機器接地
(105d)と個別のアースを取っているので、落雷時に両者
(103)(105d)間に電位差が発生し、人体への障害が発生
するおそれもある。その他、前述のように避雷導線(10
4)の代わりに建造物(101)の鉄筋(110)や鉄骨を使用して
いるので、誘電率が低くサージ電流が流れにくく、接地
電位が高くなると同時に定常状態の復帰が遅いと言うよ
うな問題もある。
The ground (103) of the lightning rod (102) is the equipment ground.
(105d) and separate ground, so both
A potential difference may occur between (103) and (105d), which may cause damage to the human body. In addition, the lightning conductor (10
Since the rebar (110) and the steel frame of the building (101) are used instead of 4), the dielectric constant is low, surge current is unlikely to flow, and the ground potential increases and at the same time the steady state return is slow. There are also problems.

【0008】図5は第2の従来方法(直接方法)で、高層
ビルや高層マンションなど建造物(101)の屋上に避雷針
(102)を立設し、避雷針(102)に接続した鬼撚り導線(10
4)を建造物(101)の外面に這わせ、建造物(101)の周囲に
埋設したそれぞれ独立の避雷単独アース(103)に接続し
てアースを取るようにしている例である。
FIG. 5 shows a second conventional method (direct method) in which a lightning rod is provided on the roof of a building (101) such as a high-rise building or a high-rise apartment building.
(102) is erected and connected to the lightning rod (102).
In this example, 4) is laid on the outer surface of the building (101) and connected to independent lightning arrestors (103), which are buried around the building (101).

【0009】この方法では、避雷針(102)に落雷したサ
ージ電流が建造物(101)の外面に這わせた鬼撚り導線(10
4)を通ってアースされるため、サージ電流が直接建造物
(101a)内に流入しないため、建造物(101)内の電子機器
(106)〜(109)の電磁誘導による障害が発生しにくくなる
というメリットがある。
According to this method, a surge current that strikes the lightning rod (102) causes an on-strand wire (10) that crawls on the outer surface of the building (101).
4) Grounded through, so surge currents directly
Electronic equipment in the building (101) because it does not flow into (101a)
There is an advantage that failures due to the electromagnetic induction of (106) to (109) are less likely to occur.

【0010】しかしながら、前記簡略方法と同様、大地
固有抵抗が低く簡単に接地抵抗が確保できる場合は安価
に施工できるが、大地固有抵抗が高い場合、個々の接地
抵抗を確保するために大きな面積の接地極(103)の施工
が必要となり施工費用が増大する他、地絡事故時に流れ
る電流や落雷により流れる電流により、個々の接地極に
電位差(103)が発生することで、電子機器(106)〜(109)
の絶縁破壊を起こす可能性がある点は依然として解消さ
れていない。
However, similar to the above-mentioned simplification method, when the ground resistivity is low and the ground resistance can be easily secured, the construction can be performed at low cost. However, when the ground resistivity is high, a large area is required to secure the individual ground resistance. In addition to the necessity of construction of the ground electrode (103), construction costs increase, and the electric current (103) is generated at each ground electrode due to the current flowing at the time of ground fault or lightning strike, and the ~ (109)
However, the possibility of causing dielectric breakdown has not been solved.

【0011】また、避雷導線として鬼撚り導線(104)を
使用しているので、サージインピダンスが比較的高く、
鉄筋(110)や鉄骨の場合と同様落雷時のサージ電流が流
れにくいという問題もある。
In addition, since the lightning conductor (104) is used as the lightning conductor, the surge impedance is relatively high,
There is also a problem that a surge current during a lightning strike is unlikely to flow as in the case of the reinforcing bar (110) and the steel frame.

【0012】[0012]

【発明が解決しようとする課題】本発明の解決課題は、
まず第1に建造物に落雷した建造物に発生した雷電流を
大地に速やかに流すことができるような避雷構造の開発
にあり、第2には建造物の中に設置されている全ての機
器類を等電位化して落雷時における機器類の誤動作や基
板の焼損を防止や人体に影響を与えないようにすること
のできる建造物の避雷構造を開発することにある。
The problem to be solved by the present invention is as follows.
Firstly, there is the development of a lightning arrester that allows the lightning current generated in a building that has been struck by lightning to flow quickly to the ground. Secondly, all equipment installed in the building It is an object of the present invention to develop a lightning protection structure for a building that can equalize potentials to prevent malfunctions of equipment and a burnout of a board during a lightning strike and prevent the human body from being affected.

【0013】[0013]

【課題を解決するための手段】「請求項1」は本発明の
ビルやマンションのような建造物(1)の避雷構造の基本
で「建造物(1)に立設された避雷針(2)と、建造物(1)の
周囲を取り囲むように埋設された高誘電率を持つ等電位
用接地体(3)と、建造物(1)に沿って配設され、避雷針
(2)と等電位用接地体(3)とを接続する低サージインピー
ダンス導電体(4)と、前記等電位用接地体(3)に接続され
ている共通端子(5a)〜(5d)を有する前記建造物(1)の機
器接続用のアース端子ボックス(5)とで構成された」こ
とを特徴とする。
[Claim 1] Claim 1 is based on the lightning protection structure of a building (1) such as a building or condominium according to the present invention and is based on "a lightning rod (2) erected on the building (1)". And an equipotential grounding body (3) with a high dielectric constant buried around the building (1), and a lightning rod installed along the building (1)
(2) and a low surge impedance conductor (4) connecting the equipotential grounding body (3), and the common terminals (5a) to (5d) connected to the equipotential grounding body (3). And a ground terminal box (5) for connecting equipment to the building (1). "

【0014】高層ビルや高層マンションのような建造物
(1)の機器接続用のアース端子ボックス(5)の共通端子(5
a)〜(5d)を建造物(1)の建設面あるいはその周囲全体を
囲繞するように配設された等電位用接地体(3)に接続し
ているので、アース端子ボックス(5)の共通端子(5a)〜
(5d)に接続された建造物(1)内の全ての機器(上階層から
下階層まで)の電位は等しくなり、いずれの機器間でも
電位差が発生せず、落雷時の高圧高周波サージ電流によ
って基板の焼損など損傷を受けることがなくなる。ま
た、避雷針(2)と等電位用接地体(3)とを接続する導電体
(4)を低サージインピーダンスとすることで、落雷時の
高圧高周波サージ電流を大地に瞬間的に流すことがで
き、建造物(1)内の機器類(6)〜(8)に落雷時の高圧高周
波サージ電圧による電位波頭部変動が小さく且つ短時間
に定常値に収束させることができ、サージ電圧による機
器類(6)〜(8)への悪影響を防止することができるように
なる。
Buildings such as high-rise buildings and high-rise apartments
Common terminal (5) of earth terminal box (5)
Since a) to (5d) are connected to the equipotential grounding body (3) disposed so as to surround the construction surface of the building (1) or the entire surrounding area, the ground terminal box (5) Common terminal (5a)-
The potential of all devices (from the upper level to the lower level) in the building (1) connected to (5d) is equal, no potential difference occurs between any devices, and the high-voltage high-frequency surge current during lightning strikes There is no damage such as burnout of the substrate. A conductor that connects the lightning rod (2) and the grounding body for equipotential (3)
By making (4) a low surge impedance, a high-voltage, high-frequency surge current during a lightning strike can flow instantaneously to the ground, and the equipment (6) to (8) in the building (1) will be The fluctuation of the potential wave head due to the high-frequency high-frequency surge voltage is small and can be converged to a steady value in a short time, so that it is possible to prevent the surge voltage from adversely affecting the devices (6) to (8).

【0015】「請求項2」は「請求項1」の改良に関し
「建造物(1)に立設された避雷針(2)と、建造物(1)の建
設面あるいはその周囲を取り囲むように埋設された高誘
電率を持つ等電位用接地体(3)と、建造物(1)に沿って配
設され、避雷針(2)と等電位用接地体(3)とを接続する低
サージインピーダンス導電体(4)と、前記等電位用接地
体(3)に接続されている共通端子(5a)〜(5d)を有する前
記建造物(1)の機器接続用のアース端子ボックス(5)と、
等電位用接地体(3)に接続され、地中に埋設された深打
電極(20)とで構成された」ことを特徴とする。
Claim 2 relates to an improvement of Claim 1 by describing a lightning rod (2) erected on the building (1) and buried so as to surround the construction surface of the building (1) or its periphery. Grounded body for equipotential (3) having a high dielectric constant and a low surge impedance conductor that is arranged along the building (1) and connects the lightning rod (2) and the grounded body for equipotential (3) Body (4), a ground terminal box (5) for equipment connection of the building (1) having common terminals (5a) to (5d) connected to the equipotential grounding body (3),
And a deep hitting electrode (20) buried in the ground connected to the equipotential grounding body (3). "

【0016】この場合は等電位用接地体(3)に深打電極
(20)を接続した場合で、請求項1の作用に加えて深打電
極(20)によるアース効果が加算される。即ち、サージイ
ンピーダンスはアース電極を深く打ち込めば打ち込む程
小さくなってアース効果が高くなるので、地中深く埋設
される深打電極(20)を併設することでより落雷時のサー
ジ電流をより早く大地に流すことが出来ると共に電位波
頭部変動をより小さくずることが出来、しかもサージ電
圧を短時間に定常値に収束させることができるようにな
る。
In this case, a deep hit electrode is attached to the grounding body for equipotential (3).
In the case where (20) is connected, in addition to the effect of the first aspect, the grounding effect of the deep hitting electrode (20) is added. In other words, the deeper the ground electrode is driven, the smaller the surge impedance becomes and the higher the ground effect becomes.The deeper the ground electrode (20) buried deep in the ground is, the faster the surge current during lightning strikes will be. And the fluctuation of the potential wave head can be further reduced, and the surge voltage can be converged to a steady value in a short time.

【0017】「請求項3」は低サージインピーダンス導
電体(4)の設置の仕方で「低サージインピーダンス導電
体(4)が建造物(1)の外壁(1a)に沿って配設されている」
ことを特徴とする。このようにすることで、建造物(1)
の鉄骨(10)や鉄筋或いはコンクリートが電磁遮蔽材料と
して働き、落雷時の電磁誘導による内部機器への影響を
軽減することができる。
The third aspect of the present invention relates to a method of installing a low surge impedance conductor (4) in which the low surge impedance conductor (4) is disposed along the outer wall (1a) of the building (1). "
It is characterized by the following. By doing so, the building (1)
The steel frame (10), reinforcing steel or concrete works as an electromagnetic shielding material, and can reduce the influence on internal devices due to electromagnetic induction during lightning.

【0018】[0018]

【発明の実施の形態】以下、本発明を図示実施例に従っ
て詳述する。図1は雷撃を受ける可能性があるような本
発明にかかるビルやマンションなどの高層建造物(1)の
避雷構造を示す概略構成図である。建造物(1)の壁や床
スラブ、屋上スラブ内には鉄筋や鉄骨(11)が縦横に張り
めぐらされており、壁面および床面、屋上面を構成する
コンクリートと共に電磁遮蔽機能を持っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 is a schematic configuration diagram showing a lightning arrester structure of a high-rise building (1) such as a building or an apartment according to the present invention which may be subjected to a lightning strike. Inside the walls, floor slabs and rooftop slab of the building (1), reinforcing bars and steel frames (11) are stretched vertically and horizontally, and they have an electromagnetic shielding function together with concrete that composes the wall surface, floor surface, and rooftop surface .

【0019】建造物(1)の屋上には1の避雷針(2)乃至所
定間隔を以て複数の避雷針(2)が立設されており、避雷
針(2)から低サージインピーダンス導電体(4)が導出され
ている。前記低サージインピーダンス導電体(4)は例え
ば、太くて表面積が大であり、高誘電率でコンデンサー
容量を持った銅線のようなものが使用される。本実施例
では、前記低サージインピーダンス導電体(4)は避雷針
(2)から四方に引き出され(勿論、四方に限られず、それ
以下或いはそれ以上であってもよい。)、建造物(1)の側
壁に沿って配設されている。前記低サージインピーダン
ス導電体(4)の配設方法としては、建造物(1)の側壁の外
側に這わす場合と、壁面内を通す場合とがあるが、電磁
遮蔽効果を得るためには壁面内を通す場合でも壁面内の
鉄筋や鉄骨(11)の外側に配設することが好ましい。
On the roof of the building (1), one lightning rod (2) or a plurality of lightning rods (2) are erected at predetermined intervals, and a low surge impedance conductor (4) is derived from the lightning rod (2). Have been. The low surge impedance conductor (4) is, for example, a thick copper wire having a large surface area, a high dielectric constant, and a capacitor capacity. In this embodiment, the low surge impedance conductor (4) is a lightning rod.
It is drawn out from (2) in all directions (of course, it is not limited to four sides, but may be smaller or larger) and is arranged along the side wall of the building (1). As a method of arranging the low surge impedance conductor (4), there are a case where it crawls outside the side wall of the building (1) and a case where it passes through the wall, but in order to obtain an electromagnetic shielding effect, Even when passing through the inside, it is preferable to dispose it outside the reinforcing bar or the steel frame (11) in the wall surface.

【0020】建造物(1)には機器接続用のアース端子ボ
ックス(5)が設置されており、各アース端子A種(5a)〜
D種(5d)が設けられている。前記各アース端子A種(5a)
〜D種(5d)の内、アース端子C種(5c)は、建造物(1)の
各階層に設けられたアース端子(図示せず)に接続され、
建造物(1)の各階層に据付られた機器類(7)(8)にアース
接続され、すべての電子機器(7)(8)が共通アース接続さ
れるようになっている。
A ground terminal box (5) for connecting equipment is installed in the building (1), and each ground terminal A type (5a) to
Type D (5d) is provided. Class A of each ground terminal (5a)
Of the ~ D types (5d), the ground terminal type C (5c) is connected to the ground terminal (not shown) provided at each level of the building (1),
The equipment (7) (8) installed on each level of the building (1) is grounded, and all the electronic devices (7) (8) are connected to a common ground.

【0021】前記アース端子A種(5a)は10Ω以下の接
地抵抗を有する端子で、建造物(1)の変圧器や受電設備
(6)のアースラインが接続されている。アース端子B種
(5b)は建造物(1)の変圧器の中性点のアース端子であ
る。アース端子C種(5c)は前述のように、10Ω以下の
接地抵抗を有するもので、建造物(1)の各階層に設置さ
れている各種機器類(7)(8)用のアース端子である。アー
ス端子D種(5d)は100Ω以下の接地抵抗を有するその
他の機器類のアース端子である。本発明ではアース端子
ボックス(5)のアース端子(5a)〜(5d)が次に述べる等電
位用接地体(3)に共通して接続され、アース端子(5a)〜
(5d)全てが等電位用接地体(3)と等電位に保持されるこ
とになる。図2はその場合の等価回路図である。
The grounding terminal type A (5a) is a terminal having a grounding resistance of 10 Ω or less, and is used as a transformer or power receiving equipment for the building (1).
The ground line of (6) is connected. Ground terminal B
(5b) is a neutral terminal of the transformer of the building (1). As described above, the ground terminal C class (5c) has a ground resistance of 10Ω or less, and is a ground terminal for various devices (7) and (8) installed at each level of the building (1). is there. The ground terminal D type (5d) is a ground terminal of other equipment having a ground resistance of 100Ω or less. In the present invention, the ground terminals (5a) to (5d) of the ground terminal box (5) are commonly connected to the equipotential grounding body (3) described below, and the ground terminals (5a) to
(5d) Everything is held at the same potential as the equipotential grounding body (3). FIG. 2 is an equivalent circuit diagram in that case.

【0022】等電位用接地体(3)は、建造物(1)の建設面
あるいはその周囲全体を取り囲むように埋設された高誘
電率を持つ例えば銅のメッシュ体(勿論、メッシュ体に
限られず銅の平板でもよい。)である。図の場合は建造
物(1)の周囲全体を取り囲むように等電位用接地体(3)が
埋設されている。そして前記アース端子ボックス(5)の
各アース端子(5a)〜(5d)並びに前記建造物(1)の鉄骨(1
1)及び鉄筋が等電位用接地体(3)に共通して接続されて
いる。これによって、建造物(1)内のすべての電子機器
(6)(7)及び建造物(1)の鉄骨(11)の電位は共通接地電位
を持つ事になる。
The grounding body for equipotential (3) is, for example, a copper mesh body having a high dielectric constant and buried so as to surround the construction surface of the building (1) or the entire periphery thereof. A copper flat plate may be used.) In the case of the figure, an equipotential grounding body (3) is buried so as to surround the entire periphery of the building (1). Each of the ground terminals (5a) to (5d) of the ground terminal box (5) and the steel frame (1) of the building (1)
1) and the rebar are commonly connected to the equipotential grounding body (3). This ensures that all electronic devices in the building (1)
(6) The potential of (7) and the steel frame (11) of the building (1) will have a common ground potential.

【0023】アース電極(=前記等電位用接地体(3)や次
に述べる深打電極(20))は地中に深く埋設されればされ
るほどサージインピーダンスが小さくなり、サージ電流
を地中に流しやすくなるものであるので、地中に深く持
ち込まれた深打電極(20)を等電位用接地体(3)に接続す
ればアース効果は更に高まる。従って、深打電極(20)は
必要に応じて設置され、等電位用接地体(3)に接続され
ることになる。深打電極(20)が等電位用接地体(3)に接
続されて併設されている場合には、より円滑に雷電流を
大地に流すことができ、大地からの電圧の負反射を抑制
することができる。
The deeper the earth electrode (= the grounding body for equipotential (3) and the deeply striking electrode (20) described below) is buried in the ground, the lower the surge impedance becomes, and the surge current becomes lower. The grounding effect can be further enhanced by connecting the deep-punched electrode (20) brought deep into the ground to the equipotential grounding body (3). Therefore, the deep hitting electrode (20) is installed as needed, and is connected to the equipotential grounding body (3). When the deep hitting electrode (20) is connected to and connected to the equipotential grounding body (3), lightning current can flow more smoothly to the ground, and negative reflection of voltage from the ground is suppressed. be able to.

【0024】前記深打電極(20)の構造としては、金属粉
やカーボン粉あるいは短炭素繊維など導電体粉末(23)が
混入された導電コンクリート柱(21)内に銅線あるいは銅
棒のような導電体(22)がインサートされたものが用いら
れている。前記深打電極(20)の製造方法は次のようであ
る。所定場所に所定深さにてボーリング孔を穿設し、当
該ボーリング孔に導電体(22)を配設し、前述の導電体粉
末(23)が混入されたセメントミルクを注入し、これを固
化することで形成する。勿論、既設で前記構造をもつ深
打電極(20)をボーリング孔に挿入し、ボーリング孔と深
打電極(20)との間の間隙に前述のセメントミルクを注入
してボーリング孔と深打電極(20)との密着を図るように
してもよい。
The deep hitting electrode (20) has a structure such as a copper wire or a copper rod in a conductive concrete column (21) mixed with a conductive powder (23) such as metal powder, carbon powder or short carbon fiber. What has inserted the suitable conductor (22) is used. The method of manufacturing the deep-hit electrode (20) is as follows. A boring hole is drilled at a predetermined depth at a predetermined location, a conductor (22) is arranged in the boring hole, and cement milk mixed with the above-described conductor powder (23) is injected and solidified. It forms by doing. Of course, the existing deep hitting electrode (20) having the above-mentioned structure is inserted into the boring hole, and the above-mentioned cement milk is injected into the gap between the boring hole and the deep hitting electrode (20) to thereby form the boring hole and the deep hitting electrode. You may make it contact with (20).

【0025】次に本発明の作用を従来例と比較しつつ説
明する。前記避雷構造を持つマンションやビルなどの建
造物(1)の避雷針(2)に落雷すると、図2に示すように雷
電流は避雷導線(4)を通って等電位用接地体(3)に流れ
る。深打電極(20)が設けられている場合には、深打電極
(20)を通って地中に流れる。深打電極(20)が設置されて
いない場合には、等電位用接地体(3)が埋設されている
地面の最もサージインピーダンスの低いところから地中
に流れることになる。
Next, the operation of the present invention will be described in comparison with a conventional example. When a lightning strike occurs on a lightning rod (2) of a building (1) such as an apartment or building having the lightning protection structure, a lightning current passes through a lightning conductor (4) to an equipotential grounding body (3) as shown in FIG. Flows. If a deep-depth electrode (20) is provided,
Flows through the ground through (20). If the deep hitting electrode (20) is not installed, the grounding body for equipotential (3) flows into the ground from the place where the surge impedance is the lowest on the ground where it is buried.

【0026】今、避雷針(2)に入力するサージ電流量を
100とすると、地中にアースされる避雷電流量は大略
98であり、残る数%が接地を共通にする建造物(1)内
の各種機器(6)〜(8)に逆流することになるが、電気はそ
の性質上サージインピーダンスが無限大の方向に流れな
いので、共通アース端子(5a)〜(5d)に繋がっている前記
機器(6)〜(8)には逆流による機器障害の発生は殆ど生じ
ない。従って、アース端子(5a)〜(5d)を避雷導線(4)が
接続されている等電位用接地体(3)に接続しても何ら問
題がないということになる。
Now, assuming that the amount of surge current input to the lightning rod (2) is 100, the amount of lightning current grounded in the ground is about 98, and the remaining few percent are in the building (1) having a common ground. Although it will flow back to the various devices (6) to (8), the electricity is connected to the common ground terminals (5a) to (5d) because the surge impedance does not flow in the direction of infinity due to its nature. In the devices (6) to (8), almost no device failure occurs due to the backflow. Accordingly, there is no problem even if the ground terminals (5a) to (5d) are connected to the equipotential grounding body (3) to which the lightning conductor (4) is connected.

【0027】図3の山形の破線は、落雷時おける建造物
(1)の電位傾向を示し、山形の破線の頂点と、建造物(1)
内に設置されている各機器(6)〜(8)から垂直に立ち上げ
た破線と電位傾向を示す山形の破線との交点間がその機
器(6)〜(8)の電位差を示している。従来のように、建造
物(1)内に設置されている各機器(6)〜(8)同士がアース
端子(5a)〜(5c)に接続され、個別にアースされている場
合には避雷針(2)の直下に位置している機器(7)の電位が
最も高くなり、そこから離れるにつれて次第に電位が下
がっていく。即ち、落雷時に建造物(1)内の機器(6)〜
(8)間で電位差が生じ、その間で電流が流れ、機器(6)〜
(8)の誤動作あるいは絶縁破壊が生じ、甚だしい場合に
は感電などを生じ人体に影響を与える。
The dashed line of the chevron in FIG. 3 indicates a building during a lightning strike.
The potential trend of (1) is shown.
The intersection between the dashed line vertically rising from each of the devices (6) to (8) and the dashed line indicating the potential tendency indicates the potential difference between the devices (6) to (8). . As before, each device (6) to (8) installed in the building (1) is connected to the ground terminals (5a) to (5c), and if individually grounded, a lightning rod The electric potential of the device (7) located immediately below (2) becomes the highest, and the electric potential gradually decreases as the distance from the device (7) increases. That is, equipment (6) in building (1) during lightning strike
(8), a potential difference occurs between them, a current flows between them, and the devices (6) to
(8) Malfunction or dielectric breakdown may occur, and in severe cases, electric shock may occur, affecting the human body.

【0028】これに対して、本発明の場合は建造物(1)
内の各機器(6)〜(8)はすべてアース端子ボックス(5)の
共通端子(5a)〜(5d)に接続されており、且つ電位用接地
体(3)に接続されているので、共通端子(5a)〜(5d)の接
地電位は電位用接地体(3)に等しく且つ従来の各機器(10
6)〜(108)の接地電位よりも低くなる。深打電極(20)を
併用すると更に接地電位が下がる。従って、たとえ落雷
があったとしても建造物(1)内の各機器(6)〜(8)間には
電位差が発生せず且つ接地電位そのものが従来に比べて
低いので機器(6)〜(8)の誤動作や絶縁破壊あるいは感電
など人体への影響なくすことができる。
On the other hand, in the case of the present invention, the building (1)
Since all the devices (6) to (8) are connected to the common terminals (5a) to (5d) of the ground terminal box (5) and are connected to the potential grounding body (3), The ground potential of the common terminals (5a) to (5d) is equal to the potential grounding body (3) and the conventional devices (10
6) It becomes lower than the ground potential of (108). The ground potential is further reduced when the deep hitting electrode (20) is used together. Therefore, even if there is a lightning strike, there is no potential difference between the devices (6) to (8) in the building (1) and the ground potential itself is lower than before, so the devices (6) to ( 8) Influence on human body such as malfunction, insulation breakdown or electric shock can be eliminated.

【0029】なお、建造物(1)の外にある通信線や電源
線については前記電位用接地体(3)による電位差の制御
ができないので、通信線や電源線が接続されている機器
の入力端子に避雷器(23)を設置することで通信線や電源
先からのサージ電流の機器への入力を防止する。
The potential difference between the communication line and the power supply line outside the building (1) cannot be controlled by the potential grounding body (3). By installing a lightning arrester (23) at the terminal, input of surge current from the communication line or power source to the equipment is prevented.

【0030】「実施例」 次に、本発明の実施例を従来
例との比較において説明する。前述のようにビルやマン
ションのような建造物にあっては、雷撃時にビル内の電
子/ディジタル機器への影響が問題となる可能性があ
る。ビルには避雷針接地、ビル接地、フロア接地などが
存在し、これらの接地が独立な場合、各接地極間に電位
差が生じる。そこで、各種接地方式の差異について検討
するため、スケールモデルを用い実験的検討を行った。
Next, an embodiment of the present invention will be described in comparison with a conventional example. As described above, in a building such as a building or a condominium, there is a possibility that the effect on electronic / digital devices in the building during a lightning strike may become a problem. In a building, there are a lightning rod ground, a building ground, a floor ground, and the like. When these grounds are independent, a potential difference occurs between the respective grounding poles. Therefore, in order to examine the difference between various grounding methods, an experimental study was conducted using a scale model.

【0031】接地モデル実験回路は、長さ20m、高さ4m
の印加線を用い、ビルの1/10スケールモデルにパルス
を印加した。モデルは3階立てのビルを模擬しており、
縦1,280mm、横1,835mm、高さ1,200mmとした。鉄筋を模
擬する銅パイプの半径は柱70mm、梁30mmとしている。ま
た、ビルのフロア接地(i)(ii)(iii)、ビル接地、避雷針
接地等に対応する接地極を設置した。スケールモデル各
点の配置を図7に示す。なお、電位測定用電位基準点と
して20m遠方に接地極を設置した。以下、前記モデルに
よる測定結果を示す。
The grounding model experimental circuit has a length of 20 m and a height of 4 m.
The pulse was applied to the 1/10 scale model of the building using the application line of. The model simulates a three-story building,
The height was 1,280 mm, the width was 1,835 mm, and the height was 1,200 mm. The radius of the copper pipe simulating the reinforcing steel is 70 mm for columns and 30 mm for beams. In addition, grounding poles corresponding to building floor grounding (i) (ii) (iii), building grounding, lightning rod grounding, etc. were installed. FIG. 7 shows the arrangement of each point of the scale model. A ground electrode was set at a distance of 20 m as a potential reference point for potential measurement. Hereinafter, the measurement results by the above model are shown.

【0032】(1=従来例)独立接地時;この場合は、各
フロア接地、ビル接地および避雷針接地がすべて独立と
なっているケースである。図8(a)に示すように1Fの接
地極を接地極(i)へ、2Fの接地極を接地極(ii)へ、3Fの
接地極を接地極(iii)へと接続した。測定結果を図8(b)
に示す。図中、横軸は時間、縦軸は電圧であり、実線は
1Fのサージ電圧、破線は2Fのサージ電圧、細破線は3Fの
サージ電圧を示す。図8(b)より、各フロア独立接地で
は各フロア間の電位上昇の差異が大である。サージ電圧
の第1波は雷撃位置に最も近い3Fが最大で1Fが最小とな
っており、これは印加線からの誘導であると考えられ
る。第2波は接地電位上昇分である。サージ電圧の大き
さは印加点と各接地極との距離に依存し、遠距離となる
ほど接地電位上昇は小となる。
(1 = conventional example) At the time of independent grounding; in this case, each floor grounding, building grounding, and lightning rod grounding are all independent. As shown in FIG. 8 (a), the ground electrode of 1F was connected to the ground electrode (i), the ground electrode of 2F was connected to the ground electrode (ii), and the ground electrode of 3F was connected to the ground electrode (iii). Fig. 8 (b) shows the measurement results.
Shown in In the figure, the horizontal axis is time, the vertical axis is voltage, and the solid line is
A surge voltage of 1F, a broken line indicates a surge voltage of 2F, and a thin broken line indicates a surge voltage of 3F. As shown in FIG. 8B, the difference in potential rise between the floors is large in each floor independent grounding. The first wave of the surge voltage has a maximum of 3F closest to the lightning strike position and a minimum of 1F, which is considered to be induction from the applied line. The second wave is a rise in the ground potential. The magnitude of the surge voltage depends on the distance between the application point and each ground electrode, and the farther the distance, the smaller the rise of the ground potential.

【0033】(2=従来例)各フロアー共通接地時;この
場合は、図9(a)に示すように各フロアを共通接地と
し、フロア接地、ビル接地、避雷針接地をそれぞれ独立
とした場合で、その測定結果を図14(b)に示す。図か
らわかるように実線、破線および細破線はほぼ一致して
おり、各フロア共通接地では各フロア間の電位上昇の差
異は殆どない。第2波の接地電位上昇分は(1=従来例)
の独立接地時に比べて小となっているが、なお、第1
波、第2波は大きい。
(2 = conventional example) At the time of common grounding of each floor; in this case, as shown in FIG. 9 (a), the common grounding of each floor and the grounding of the floor, the building, and the lightning rod are independent. FIG. 14B shows the measurement results. As can be seen from the figure, the solid line, the dashed line, and the fine dashed line almost coincide with each other, and there is almost no difference in the potential rise between the floors at the common ground of each floor. The rise in the ground potential of the second wave is (1 = conventional example)
Although it is smaller than that at the time of independent grounding,
The wave, the second wave, is large.

【0034】(3=従来例)各フロア−ビル接続時;この
場合は、図10(a)に示すように各フロア接地がビルの
鉄骨或いは鉄筋に接続されており避雷針接地とビル接地
との間が独立しているケースである。測定結果を図10
(b)に示す。図より、各フロアに電位上昇が見受けられ
るが、これは各フロア電位が接続されたビル各点の電位
に等しくなっているためと考えられる。
(3 = conventional example) When connecting each floor to a building; in this case, as shown in FIG. 10 (a), each floor ground is connected to a steel frame or a reinforcing bar of the building. This is the case where the intervals are independent. FIG. 10 shows the measurement results.
It is shown in (b). From the figure, a potential rise is observed on each floor, which is considered to be because each floor potential is equal to the potential of each point of the connected building.

【0035】(4=本発明)避雷針−ビル底部接続時;
図11(a)のように各フロア接地がビルの鉄筋あるいは
鉄骨に接続されており、更に避雷針接地とビル接地が接
続されている場合である。避雷針接地は電位用接地体に
接続されている。測定結果を図11(b)に示す。図よ
り、サージ電圧の各フロア電位波頭部変動が小で定常値
への収束が速いことがわかる。
(4 = the present invention) When connecting the lightning rod to the bottom of the building;
As shown in FIG. 11A, each floor ground is connected to a reinforcing bar or a steel frame of a building, and furthermore, a lightning rod ground and a building ground are connected. The lightning rod ground is connected to the potential grounding body. FIG. 11B shows the measurement results. From the figure, it can be seen that the fluctuation of the surge voltage at each floor potential wave head is small and the convergence to the steady value is fast.

【0036】(5=従来例)ビル鉄筋で避雷針代用時;こ
の場合は、図12(a)のように各フロア接地がビルに接
続されており、避雷針接地用接地線がビル鉄骨となって
いるケースで、測定結果を図12(b)に示す。図より電
圧最大値は全独立接地の場合と同程度である。しかしな
がら、フロア間の電位差は小である。
(5 = conventional example) When a lightning rod is used as a substitute for a building reinforcing bar; in this case, as shown in FIG. 12 (a), each floor ground is connected to the building, and the grounding wire for the lightning rod is a building steel frame. In this case, the measurement results are shown in FIG. As shown in the figure, the maximum voltage value is almost the same as in the case of all independent grounds. However, the potential difference between floors is small.

【0037】以上から、接地極間相互の影響に関する検
討より、すべての接地極を統合するとビル雷撃時、各種
接地極は同電位となり接地極間に電位差が生じず、機器
に対して影響を与えにくい。最も有効な接地方式はビル
の各フロアに接続し、避雷針接地とビルを接続した場合
である、即ち、(4)のケースと言える。更に、深打電極
を電位用接地体に併設接続すればなお好ましい。
As described above, from the consideration of the mutual influence between the grounding electrodes, when all the grounding electrodes are integrated, the various grounding electrodes have the same potential at the time of the lightning strike in the building, so that no potential difference occurs between the grounding electrodes and the equipment is affected. Hateful. The most effective grounding method is a case where the building is connected to each floor of the building and the lightning rod ground is connected to the building, that is, the case (4) can be said. Further, it is more preferable to connect the deep hitting electrode to the potential grounding body.

【0038】[0038]

【発明の効果】本発明にあっては、建造物に立設された
避雷針と建造物の建設面あるいはその周囲を取り囲むよ
うに埋設された高誘電率を持つ等電位用接地体とを低サ
ージインピーダンス導電体で接続し更に建造物のアース
端子ボックスの共通端子を前記等電位用接地体に接続し
ているので、建造物内の全ての機器(上階層から下階層
まで)の電位は等しくなり、いずれの機器間の電位差が
発生せず、落雷時の高圧高周波サージ電流によって基板
の焼損など損傷を受けることがなくなる。加えて深打電
極を併用すれば更に接地電圧を下げることができる。
According to the present invention, a lightning arrester erected on a building and a grounding body for equipotential having a high dielectric constant buried so as to surround the construction surface of the building or its surroundings have a low surge. Since the common terminal of the ground terminal box of the building is connected to the equipotential grounding body by connecting with the impedance conductor, the potentials of all devices (from the upper hierarchy to the lower hierarchy) in the building are equal. In addition, no potential difference occurs between any of the devices, and there is no damage such as burning of the substrate due to the high-voltage high-frequency surge current at the time of lightning. In addition, the ground voltage can be further reduced by using a deep hitting electrode.

【0039】また前述の低サージインピーダンス導電体
を建造物の外壁に沿って配設することで、建造物の鉄骨
や鉄筋或いはコンクリートが電磁遮蔽材料として働き、
落雷時の電磁誘導による内部機器への影響を軽減するこ
とができる。
By arranging the above-mentioned low surge impedance conductor along the outer wall of the building, the steel frame, the reinforcing steel or the concrete of the building functions as an electromagnetic shielding material,
It is possible to reduce the influence on the internal devices due to the electromagnetic induction during a lightning strike.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明構造を適用した建造物(ビル或はマンシ
ョン)の概略斜視図
FIG. 1 is a schematic perspective view of a building (a building or an apartment) to which the structure of the present invention is applied.

【図2】図1の等価回路図FIG. 2 is an equivalent circuit diagram of FIG.

【図3】図1の建造物の落雷時おける電位傾向を示した
FIG. 3 is a diagram showing a potential tendency of the building of FIG. 1 during a lightning strike;

【図4】従来1の避雷構造の建造物(ビル或はマンショ
ン)の概略斜視図
FIG. 4 is a schematic perspective view of a building (building or condominium) having a conventional lightning arrester structure.

【図5】従来2の避雷構造の建造物(ビル或はマンショ
ン)の概略斜視図
FIG. 5 is a schematic perspective view of a building (building or condominium) having a conventional lightning arrester structure 2;

【図6】従来2の避雷構造の建造物(ビル或はマンショ
ン)の雷による被害状況を示す概略正面図
FIG. 6 is a schematic front view showing a lightning damage situation of a building (building or condominium) having a conventional lightning arrester structure according to the second related art.

【図7】本発明と従来例の比較実験におけるモデルの平
面図
FIG. 7 is a plan view of a model in a comparative experiment of the present invention and a conventional example.

【図8】各階のフロア接地、ビル接地および避雷針接地
を独立してアースした場合の従来モデルの部分正面図
FIG. 8 is a partial front view of a conventional model in which the floor ground, the building ground and the lightning rod ground of each floor are independently grounded.

【図9】各階のフロア接地を共通接地とし、ビル接地お
よび避雷針接地とは独立してアースした場合の従来モデ
ルの部分正面図
FIG. 9 is a partial front view of a conventional model when the floor ground of each floor is set to a common ground and grounded independently of the building ground and the lightning rod grounding.

【図10】各階のフロア接地をビルの鉄骨に接続して共
通接地とし、避雷針接地はこれに独立してアースした場
合の従来モデルの部分正面図
FIG. 10 is a partial front view of a conventional model in which the floor ground of each floor is connected to a building steel frame to form a common ground, and a lightning rod ground is independently grounded.

【図11】各階のフロア接地をビルの鉄骨に接続して共
通接地とし、更にビル接地を避雷針接地に接続した場合
の本発明モデルの部分正面図
FIG. 11 is a partial front view of the model of the present invention in which the floor ground of each floor is connected to a building steel frame to form a common ground, and the building ground is connected to a lightning rod ground;

【図12】各階のフロア接地をビルの鉄骨に接続して共
通接地とし、更にビル接地を避雷針接地に代用した場合
の従来モデルの部分正面図
FIG. 12 is a partial front view of a conventional model in which the floor ground of each floor is connected to a steel frame of a building to form a common ground, and the building ground is replaced with a lightning rod ground;

【符号の説明】[Explanation of symbols]

(1)建造物 (2)避雷針 (3)等電位用接地体 (4)低サージインピーダンス導電体 (5)アース端子ボックス (5a)〜(5d) 共通端子 (1) Building (2) Lightning rod (3) Grounding body for equipotential (4) Low surge impedance conductor (5) Earth terminal box (5a) to (5d) Common terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 建造物に立設された避雷針と、建造物
の建設面あるいはその周囲を取り囲むように埋設された
高誘電率を持つ等電位用接地体と、建造物に沿って配設
され、避雷針と等電位用接地体とを接続する低サージイ
ンピーダンス導電体と、前記等電位用接地体に接続され
ている共通端子を有する前記建造物の機器接続用のアー
ス端子ボックスとで構成されたことを特徴とする建造物
の避雷構造。
1. A lightning rod erected on a building, an equipotential grounding body having a high dielectric constant buried so as to surround the construction surface of the building or its periphery, and arranged along the building. A low surge impedance conductor connecting the lightning rod and the equipotential grounding body, and a ground terminal box for connecting equipment of the building having a common terminal connected to the equipotential grounding body. A lightning protection structure for buildings.
【請求項2】 建造物に立設された避雷針と、建造物
の建設面あるいはその周囲を取り囲むように埋設された
高誘電率を持つ等電位用接地体と、建造物に沿って配設
され、避雷針と等電位用接地体とを接続する低サージイ
ンピーダンス導電体と、前記等電位用接地体に接続され
ている共通端子を有する前記建造物の機器接続用のアー
ス端子ボックスと、等電位用接地体に接続され、地中に
埋設された深打電極とで構成されたことを特徴とする建
造物の避雷構造。
2. A lightning rod installed upright on a building, an equipotential grounding body having a high dielectric constant buried so as to surround the construction surface of the building or its periphery, and disposed along the building. A low surge impedance conductor for connecting the lightning rod to the grounding body for equipotential; a ground terminal box for connecting equipment of the building having a common terminal connected to the grounding body for equipotential; A lightning arrester for a building, comprising: a deep hitting electrode connected to a grounding body and buried underground.
【請求項3】 低サージインピーダンス導電体が建造
物の外壁に沿って配設されていることを特徴とする請求
項1〜3のいずれかに記載の建造物の避雷構造。
3. The lightning protection structure for a building according to claim 1, wherein the low surge impedance conductor is disposed along an outer wall of the building.
JP2001071040A 2001-03-13 2001-03-13 Arrester structure of building Pending JP2002271964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071040A JP2002271964A (en) 2001-03-13 2001-03-13 Arrester structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071040A JP2002271964A (en) 2001-03-13 2001-03-13 Arrester structure of building

Publications (1)

Publication Number Publication Date
JP2002271964A true JP2002271964A (en) 2002-09-20

Family

ID=18928816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071040A Pending JP2002271964A (en) 2001-03-13 2001-03-13 Arrester structure of building

Country Status (1)

Country Link
JP (1) JP2002271964A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271965A (en) * 2001-03-13 2002-09-20 Kansai Tech Corp Deeply embedded electrode for lightning and structure of arrester of building utilizing the same electrode
JP2002345146A (en) * 2001-05-15 2002-11-29 Otowa Denki Kogyo Kk Lightning protection system for electric facility
JP2003219547A (en) * 2002-01-18 2003-07-31 Takayasu Kanemura Lightning protection method in steel frame building
JP2004187416A (en) * 2002-12-04 2004-07-02 Asahi Electric Works Ltd Electrically conductive connection method and structure thereof
KR100680644B1 (en) 2005-02-04 2007-02-08 (주)의제전기설비연구원 Lighteng arrester system employing the triangle method of lighting protection
KR100867663B1 (en) * 2008-07-10 2008-11-10 (주)의제전기설비연구원 Lightning arrester system employing the double-triangle method
JP2011032718A (en) * 2009-07-31 2011-02-17 Taisei Corp Equipotentiality of important room in building and structure grounding mechanism
KR200455987Y1 (en) 2009-06-18 2011-10-06 김유정 Horizontal Bus Bar Lightning Arrester
JP2013105787A (en) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd Solar light power generation module, solar light power generation panel, and flexible printed wiring board for solar light power generation module
JP2013123323A (en) * 2011-12-12 2013-06-20 Taisei Corp Device for reducing thunder electromagnetic field for building
JP2015173303A (en) * 2015-07-10 2015-10-01 住友電気工業株式会社 Photovoltaic power generation module, photovoltaic power generation panel, and flexible printed wiring board for photovoltaic power generation module
JP2017033772A (en) * 2015-07-31 2017-02-09 株式会社関電工 Grounding device
JP2017034859A (en) * 2015-07-31 2017-02-09 株式会社関電工 Grounding device
CN107895850A (en) * 2017-12-18 2018-04-10 苏宇宁 Electricity consumption calculator room equipment conductor connects thunder and lightning equipotential lightening arresting method
CN109950711A (en) * 2019-04-12 2019-06-28 上海建筑设计研究院有限公司 Electrical grounding case between a kind of light current
CN110100504A (en) * 2017-01-11 2019-08-06 株式会社落雷抑制系统 Thunderbolt suppressive lightning arrester
JP2020135181A (en) * 2019-02-15 2020-08-31 株式会社Nttファシリティーズ Lightning surge analysis system and lightning surge analysis method
JP2022022850A (en) * 2020-07-08 2022-02-07 株式会社落雷抑制システムズ Lightning suppression type lightning arrester obtained by transforming protruded rod type lightning arrester

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271965A (en) * 2001-03-13 2002-09-20 Kansai Tech Corp Deeply embedded electrode for lightning and structure of arrester of building utilizing the same electrode
JP2002345146A (en) * 2001-05-15 2002-11-29 Otowa Denki Kogyo Kk Lightning protection system for electric facility
JP2003219547A (en) * 2002-01-18 2003-07-31 Takayasu Kanemura Lightning protection method in steel frame building
JP2004187416A (en) * 2002-12-04 2004-07-02 Asahi Electric Works Ltd Electrically conductive connection method and structure thereof
KR100680644B1 (en) 2005-02-04 2007-02-08 (주)의제전기설비연구원 Lighteng arrester system employing the triangle method of lighting protection
KR100867663B1 (en) * 2008-07-10 2008-11-10 (주)의제전기설비연구원 Lightning arrester system employing the double-triangle method
KR200455987Y1 (en) 2009-06-18 2011-10-06 김유정 Horizontal Bus Bar Lightning Arrester
JP2011032718A (en) * 2009-07-31 2011-02-17 Taisei Corp Equipotentiality of important room in building and structure grounding mechanism
JP2013105787A (en) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd Solar light power generation module, solar light power generation panel, and flexible printed wiring board for solar light power generation module
JP2013123323A (en) * 2011-12-12 2013-06-20 Taisei Corp Device for reducing thunder electromagnetic field for building
JP2015173303A (en) * 2015-07-10 2015-10-01 住友電気工業株式会社 Photovoltaic power generation module, photovoltaic power generation panel, and flexible printed wiring board for photovoltaic power generation module
JP2017033772A (en) * 2015-07-31 2017-02-09 株式会社関電工 Grounding device
JP2017034859A (en) * 2015-07-31 2017-02-09 株式会社関電工 Grounding device
CN110100504A (en) * 2017-01-11 2019-08-06 株式会社落雷抑制系统 Thunderbolt suppressive lightning arrester
EP3570644A4 (en) * 2017-01-11 2020-08-19 Lightning Suppression Systems Co., Ltd. Thunderbolt arrest-type lightning protection device
US11322924B2 (en) 2017-01-11 2022-05-03 Lightning Suppression Systems Co., Ltd. Thunderbolt arrest-type lightning protection device
CN107895850A (en) * 2017-12-18 2018-04-10 苏宇宁 Electricity consumption calculator room equipment conductor connects thunder and lightning equipotential lightening arresting method
JP2020135181A (en) * 2019-02-15 2020-08-31 株式会社Nttファシリティーズ Lightning surge analysis system and lightning surge analysis method
JP7123825B2 (en) 2019-02-15 2022-08-23 株式会社Nttファシリティーズ Lightning surge analysis system and lightning surge analysis method
CN109950711A (en) * 2019-04-12 2019-06-28 上海建筑设计研究院有限公司 Electrical grounding case between a kind of light current
JP2022022850A (en) * 2020-07-08 2022-02-07 株式会社落雷抑制システムズ Lightning suppression type lightning arrester obtained by transforming protruded rod type lightning arrester

Similar Documents

Publication Publication Date Title
JP2002271964A (en) Arrester structure of building
CN101513133B (en) Lightning arrester, grounding electrode, and reduction method of lightning surge voltage
JP4453923B2 (en) Equipotential grounding system and its construction method
Fallah et al. Lightning protection techniques for roof-top PV systems
CN106095186A (en) Touch-control display panel and preparation method thereof, display device
CN103902092B (en) Touch screen
KR100680644B1 (en) Lighteng arrester system employing the triangle method of lighting protection
JP2008166104A (en) Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage
TWM601920U (en) Grounding resistance device of iron tower, and iron tower having low grounding resistance device
JP4397780B2 (en) Grounding device
KR100962248B1 (en) High performance dipole lightning rod
JP2006288126A (en) Lightning protection wiring system for building
JP3436344B2 (en) Potential lowering equipment for lightning strikes in base-isolated buildings
TWI731723B (en) Power transmission tower with low grounding resistance and grounding device thereof
KR100617900B1 (en) Grounding apparatus type having needles
JP4359002B2 (en) Lightning protection structure of building
CN205752597U (en) A kind of lightning protection earthing system
JP6672738B2 (en) Power conversion system
JP2946223B2 (en) Laying of communication and power cables in buildings
CN216218555U (en) Lightning protection construction is with electromagnetic shielding faraday cage structure
CN211790685U (en) Lightning stroke prevention device for overhead transmission line
KR100548978B1 (en) An Air Terminal of Space Charge Dissipation Type
KR100751830B1 (en) Ground line having restraint of potential raising
CN201197259Y (en) Electronic equipment with shielding case
Visacro et al. Lightning performance of grounding systems of overhead lines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215