JP6519083B2 - Grounding device - Google Patents

Grounding device Download PDF

Info

Publication number
JP6519083B2
JP6519083B2 JP2015152811A JP2015152811A JP6519083B2 JP 6519083 B2 JP6519083 B2 JP 6519083B2 JP 2015152811 A JP2015152811 A JP 2015152811A JP 2015152811 A JP2015152811 A JP 2015152811A JP 6519083 B2 JP6519083 B2 JP 6519083B2
Authority
JP
Japan
Prior art keywords
ground
pole
spd
ground pole
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152811A
Other languages
Japanese (ja)
Other versions
JP2017034859A (en
Inventor
宏行 榊原
宏行 榊原
明 日向野
明 日向野
裕征 杉原
裕征 杉原
英幸 廣井
英幸 廣井
崇人 荘田
崇人 荘田
元 廣瀬
元 廣瀬
山本 和男
和男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University Educational Foundation
Original Assignee
Chubu University Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu University Educational Foundation filed Critical Chubu University Educational Foundation
Priority to JP2015152811A priority Critical patent/JP6519083B2/en
Publication of JP2017034859A publication Critical patent/JP2017034859A/en
Application granted granted Critical
Publication of JP6519083B2 publication Critical patent/JP6519083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、設備や機器毎に独立して接地するための接地装置に関する。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a grounding device for independently grounding equipment and equipment.

一般に、接地は人等に対する感電防止、漏電による火災防止、変圧器内部の混触事故による低圧側電路への高電圧の侵入防止、変圧器低圧側の中性点の系統接地等の目的のために施され、その工事種別にはA種接地工事、B種接地工事、C種接地工事、D種接地工事がある。A種接地工事は、高圧用機器の金属製外箱や避雷器などに施され、B種接地工事は高圧と低圧とを変成する変圧器の低圧側に施される。C種接地工事は、300Vを超える低圧電気機械器具の金属製外箱や金属管などに施され、また、D種接地工事は300V以下の低圧電気機械器具や金属製外箱及び金属管などに施される。   In general, grounding is for the purpose of preventing electric shock to people etc., preventing fire due to leakage, preventing high voltage from entering the low voltage side due to a mixed accident inside the transformer, grounding the neutral point of the low voltage side of the transformer etc. The construction types include A-type grounding construction, B-type grounding construction, C-type grounding construction, and D-type grounding construction. The Class A grounding work is applied to a metal outer box for high-pressure equipment and a lightning arrester, and the Class B grounding work is applied to the low pressure side of a transformer that transforms high pressure and low pressure. Class C grounding work is applied to the metal outer box or metal tube of low voltage electric machine equipment exceeding 300 V, and Class D grounding work is applied to the low voltage electric machine equipment of 300 V or less, metal outer box and metal pipe etc. Applied.

接地方式には、設備や機器毎に独立した接地工事を施す独立接地方式と、複数の接地工事を一つの接地極に繋げて共用する共用接地方式とがある。独立接地方式は、接地極相互の影響をなくすために離隔距離を十分に確保することが必要となるが、現実には敷地の制限もあるため、B種接地以外のA種接地、C種接地、D種接地については、構造物の鉄骨や鉄筋に接続し共用接地されることがある。(例えば、特許文献1参照)。   Grounding methods include an independent grounding method in which grounding works are performed independently for each facility or device, and a common grounding method in which a plurality of grounding works are connected to one grounding electrode and shared. In the independent grounding method, it is necessary to secure a sufficient separation distance to eliminate the mutual influence of the grounding electrodes, but there is actually a limitation on the site, so A grounding and C grounding are other than B grounding. As for D-type grounding, common ground may be connected to the steel frame or rebar of the structure. (See, for example, Patent Document 1).

一方、設備や機器に侵入する雷サージ電圧を低減するために、設備や機器毎にサージ防護デバイスSPD(Surge Protective Device)(以下、単にSPDという)を設け、設備や機器に侵入する雷サージを接地(大地)に分流するとともに、設備や機器に加わる過電圧を一定の値に制限するようにしている。   On the other hand, in order to reduce the lightning surge voltage that invades equipment and equipment, a surge protection device SPD (Surge Protective Device) (hereinafter simply referred to as SPD) is provided for each equipment and equipment, and lightning surge that invades equipment and equipment is While shunting to the ground (earth), the overvoltage applied to equipment and equipment is limited to a certain value.

特開2002−271964号公報Unexamined-Japanese-Patent No. 2002-271964

しかし、構造物の鉄骨や鉄筋を共用接地極とし、独立接地極を構造物の外部に設けた場合には、雷撃電流が共用接地極である構造物の鉄骨や鉄筋に流入したとき、設備や機器に加わる電圧が大きくなることがある。これは、共用接地した設備や機器は等電位であるが、独立接地極は共用接地した構造物の外部に設けられていることから、共用接地極と独立接地極との間に電位差が生じるためであると考えられる。従って、SPDとして、雷撃電流があった場合に設備や機器に加わる大きな電圧・電流に耐え得るものを使用しなければならないのでSPDが大型化する。   However, if the steel frame and reinforcing bar of the structure are used as the common ground pole and the independent ground pole is provided outside the structure, when the lightning current flows into the steel frame and the reinforcing bar of the common ground pole, The voltage applied to the device may increase. This is because equipment and equipment connected to common ground are equipotential, but since the independent ground pole is provided outside the structure to which common ground is made, a potential difference occurs between the common ground pole and the independent ground pole. It is considered to be. Therefore, since SPD must be able to withstand large voltage and current applied to equipment and equipment when there is lightning current, SPD becomes larger.

図6は、構造物の鉄骨や鉄筋を共用接地極とし独立接地極を構造物の外部に設けた場合の接地装置の一例を示す従来例の構成図である。構造物11は例えばビルであり、図6では構造物11は3階建てのビルであり、構造物11の鉄骨や鉄筋(以下、鉄筋12という)の一部を地面13より下の土中に埋め込み鉄筋12を共用接地極とし、また、構造物11の外部に接地棒を埋め込み独立接地極14としたものである。   FIG. 6 is a configuration diagram of a conventional example showing an example of the grounding device in the case where the steel frame and the reinforcing bar of the structure are used as the common ground pole and the independent ground pole is provided outside the structure. The structure 11 is, for example, a building, and in FIG. 6, the structure 11 is a three-story building, and a part of the steel frame of the structure 11 and rebar (hereinafter referred to as rebar 12) is in the soil below the ground 13 The embedded reinforcing bar 12 is used as a common ground electrode, and a ground rod is embedded outside the structure 11 as an independent ground electrode 14.

構造物11の内部に設置された変圧器15の中性点は、B種接地され接地線16xにより構造物11の外部の独立接地極14に接続されている。また、変圧器15の外箱はA種接地され接地線16yにより鉄筋12yに接続されている。負荷17a、17b、17cの外箱はD種接地され接地線16a、16b、16cにより鉄筋12a、12b、12cに接続されている。   The neutral point of the transformer 15 installed inside the structure 11 is grounded to a B type and connected to the independent ground pole 14 outside the structure 11 by the ground wire 16x. Further, the outer box of the transformer 15 is A-type grounded and connected to the reinforcing bar 12y by the ground wire 16y. The outer box of the loads 17a, 17b, 17c is D-type grounded and connected to the reinforcing bars 12a, 12b, 12c by the ground wires 16a, 16b, 16c.

また、負荷17aの電源線19a1、19a2と接地線16aとの間に負荷17aを雷撃電流から保護するSPD20a1、20a2が設けられている。同様に、負荷17bの電源線19b1、19b2と接地線16bとの間に負荷17bを雷撃電流から保護するSPD20b1、20b2が設けられ、負荷17cの電源線19c1、19c2と接地線16cとの間に負荷17cを雷撃電流から保護するSPD20c1、20c2が設けられている。   Further, SPDs 20a1 and 20a2 for protecting the load 17a from lightning current are provided between the power supply lines 19a1 and 19a2 of the load 17a and the ground line 16a. Similarly, SPDs 20b1 and 20b2 for protecting load 17b from lightning current are provided between power supply lines 19b1 and 19b2 of load 17b and ground line 16b, and between power supply lines 19c1 and 19c2 of load 17c and ground line 16c. SPDs 20c1 and 20c2 are provided to protect the load 17c from lightning current.

いま、図6の構造物11の頭頂部Gに雷撃があったとする。頭頂部Gに流入した雷撃電流のほとんどは、矢印で示すように、頭頂部Gから分流して構造物11の鉄筋12z11、12z12〜12z41、12z42を介して共用接地極へ流れ遠方に分散する。   Now, it is assumed that there is a lightning strike at the top G of the structure 11 of FIG. Most of the lightning current that has flowed into the top of the head G branches from the top of the head G and flows to the shared ground electrode through the reinforcing bars 12z11, 12z12 to 12z41, 12z42 of the structure 11, as shown by the arrows.

一方、頭頂部Gに流入した雷撃電流の数%は、頭頂部G→構造物11の鉄筋12a→接地線16a→SPD20a1、20a2→負荷17aの電源線19a1、19a2と流れる。そして、負荷17cの電源線19c1、19c2において変圧器15側と負荷17c側に分流する。変圧器15側に分流した雷撃電流は、変圧器15の低圧巻線→変圧器15の中性点(B種接地)→接地線16x→独立接地極14と流れる。また、負荷17c側に分流した雷撃電流は、負荷17cのSPD20c1、20c2→接地線16c→構造物11の鉄筋12cに流れ、共用接地極に流れる。   On the other hand, several% of the lightning current flowing into the crown portion G flows from the crown portion G → rebar 12a of the structure 11 → ground wire 16a → SPD 20a1 and 20a2 → power supply lines 19a1 and 19a2 of the load 17a. Then, the power supply lines 19c1 and 19c2 of the load 17c are shunted to the transformer 15 side and the load 17c side. The lightning strike current shunted to the transformer 15 flows from the low voltage winding of the transformer 15 to the neutral point of the transformer 15 (type B ground) to the ground wire 16 x to the independent ground pole 14. Further, the lightning strike current branched to the load 17c side flows from the SPDs 20c1 and 20c2 of the load 17c → the grounding wire 16c → the rebar 12c of the structure 11 and flows to the common grounding electrode.

図7は、図6の構造物11の頭頂部Gに雷撃があった場合の雷撃電流Ig、SPD両端電圧Vs、SPD電流Isの一例を示すグラフである。負荷17aのSPD20a1、20a2に現れるSPD両端電圧Vsは、接地線16aと負荷17aの電源線19a1、19a2との間の電圧である。この場合、SPD両端電圧VsはSPD制限電圧VLに抑えられ、また、SPD20a1、20a2に流れるSPD電流Isの波形は、雷撃電流Igに似た波形となる。負荷17aに設置されるSPD20a1、20a2の処理エネルギーは、SPD20a1、20a2のSPD制限電圧VLとSPD電流Isとを乗じた値の積分となる。   FIG. 7 is a graph showing an example of the lightning current Ig, the SPD both-end voltage Vs, and the SPD current Is when a lightning strike occurs on the top G of the structure 11 of FIG. The SPD both-ends voltage Vs appearing in the SPDs 20a1 and 20a2 of the load 17a is a voltage between the ground line 16a and the power supply lines 19a1 and 19a2 of the load 17a. In this case, the voltage Vs across the SPD is suppressed to the SPD limit voltage VL, and the waveform of the SPD current Is flowing through the SPDs 20a1 and 20a2 is similar to the lightning current Ig. The processing energy of the SPDs 20a1 and 20a2 installed in the load 17a is an integral of a value obtained by multiplying the SPD limit voltage VL of the SPDs 20a1 and 20a2 by the SPD current Is.

ここで、構造体11の鉄筋12を共用接地極とし、独立接地極14を構造物の外部に設けた場合には、構造物11に雷撃があると、雷撃により共用接地極の電位が上昇し、共用接地極と独立接地極14との電位が等電位とならない。SPD両端電圧Vsは、接地線16aと負荷17aの電源線19a1、19a2との間の電圧であり、前述のように、雷撃時には、SPD20a1、20a2に雷撃電流Igの一部が変圧器15のB種接地を介して独立接地極14に、雷撃電流波形に似た波形で長時間流れる。従って、独立接地極14を構造物の外部に設けた場合には、SPD20a1、20a2が雷撃電流に対して処理しなければならないエネルギーは大きくなりSPD20a1、20a2が大型化する。   Here, in the case where the reinforcing bar 12 of the structure 11 is used as a common ground pole and the independent ground pole 14 is provided outside the structure, if there is a lightning strike on the structure 11, the electric potential of the common ground pole is increased by the lightning strike. The potentials of the common ground electrode and the independent ground electrode 14 do not become equal. The SPD both-end voltage Vs is a voltage between the ground line 16a and the power supply lines 19a1 and 19a2 of the load 17a, and as described above, at the time of lightning strike, part of the lightning strike current Ig in the SPDs 20a1 and 20a2 is B of the transformer 15. It flows for a long time in a waveform similar to a lightning strike current waveform to the independent ground pole 14 via the seed ground. Therefore, when the independent ground electrode 14 is provided outside the structure, the energy which the SPDs 20a1 and 20a2 have to process for the lightning current becomes large, and the SPDs 20a1 and 20a2 become large.

本発明の目的は、独立接地極を構造物の外部に設ける場合であってもSPDが処理するエネルギーを低減させることができ、SPDの小型化を図ることができる接地装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a grounding device capable of reducing the energy processed by the SPD even when the independent ground pole is provided outside the structure, and achieving the miniaturization of the SPD. .

本発明の接地装置は、構造物の鉄骨や鉄筋を共用接地極とし独立接地極を構造物の外部に設けた接地装置において、前記独立接地極は、前記構造物の内部に設置された機器のうち独立接地される機器の接地線に接続され前記構造物の外部に地面から所定の深さに埋設して独立接地される内部接地極と、前記構造物の鉄骨または鉄筋からの連接線に接続され前記内部接地極の周囲を包囲し前記地面から所定の深さに埋設して独立接地され雷撃電流によって電位が上昇する場合でも共用接地極と同じ電位に維持される外部接地極とを備え、前記構造物の雷撃電流によって電位が上昇する場合でも前記外部接地極が前記共用接地極と同じ電位に維持されることにより前記外部接地極に包囲された前記内部接地極に流れる雷撃電流は小さくなることを特徴とする接地装置。
The grounding device of the present invention is a grounding device in which a steel frame or a reinforcing bar of a structure is used as a common ground pole and an independent ground pole is provided outside the structure, wherein the independent ground pole is an apparatus of the device installed inside the structure. Among them, the internal ground pole connected to the ground wire of the equipment to be independently grounded and embedded at a predetermined depth from the ground outside the structure and connected to the connection line from the steel frame or rebar of the structure And an external ground pole which is surrounded by the internal ground pole and buried at a predetermined depth from the ground and is independently grounded and maintained at the same potential as the common ground pole even when the potential is increased by a lightning strike current , Even when the potential increases due to the lightning current of the structure, the external ground pole is maintained at the same potential as the common ground pole, whereby the lightning current flowing to the internal ground pole surrounded by the external ground pole is reduced. To Ground apparatus according to symptoms.

本発明によれば、構造物の外部に独立接地される内部接地極の周囲を包囲する外部接地極を設け、外部接地極は共用接地された鉄骨または鉄筋からの連接線に接続されて共用接地の電位に保持されるので、SPD挿入箇所の発生電圧、継続時間が低減され、SPDの通電電流、通電時間を短くできる。従って、SPDが処理するエネルギーを低減させることができ、SPDの小型化を図ることができる。   According to the present invention, an external ground pole surrounding the periphery of the independently grounded internal ground pole is provided outside the structure, and the external ground pole is connected to the joint line from the commonly grounded steel frame or rebar for common ground Therefore, the generated voltage and the duration time of the SPD insertion point can be reduced, and the conduction current and the conduction time of the SPD can be shortened. Therefore, the energy processed by the SPD can be reduced, and miniaturization of the SPD can be achieved.

本発明の実施形態に係る接地装置の一例を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows an example of the earthing | grounding apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る接地装置の接地極部分の一例の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of an example of the ground pole part of the earthing | grounding apparatus which concerns on embodiment of this invention. 内部接地極を外部接地極で包囲した接地極及び単独の内部接地極によるSPD挿入箇所の電圧を電磁界解析により求める場合の接地極部分の説明図。Explanatory drawing of the grounding pole part in the case of calculating | requiring the voltage of the SPD insertion location by the grounding pole which surrounded the internal grounding pole by the external grounding pole, and a single internal grounding pole by electromagnetic field analysis. 図3に示した外部接地極有りの場合及び外部接地極無しの場合の雷撃電流及びSPD挿入箇所の電圧の波形図。FIG. 4 is a waveform chart of the lightning current and the voltage at the SPD insertion point with and without the external ground pole shown in FIG. 3. 図1の構造物の頭頂部Gに雷撃があった場合の雷撃電流Ig、SPD両端電圧Vs、SPD電流Isの一例を示すグラフ。The graph which shows an example of the lightning strike current Ig in case a lightning strike was carried out to the crown part G of the structure of FIG. 1, the SPD both-ends voltage Vs, and the SPD electric current Is. 構造物の鉄骨や鉄筋を共用接地極とし独立接地極を構造物の外部に設け接地装置の一例を示す従来例の構成図。The block diagram of the conventional example which provides the steel frame of a structure and rebar as a common ground pole, provides an independent ground pole in the exterior of a structure, and shows an example of a grounding device. 図6の構造物の頭頂部Gに雷撃があった場合の雷撃電流Ig、SPD両端電圧Vs、SPD電流Isの一例を示すグラフ。FIG. 7 is a graph showing an example of a lightning strike current Ig, an SPD both-end voltage Vs, and an SPD current Is when a lightning strike occurs on the top G of the structure of FIG. 6.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る接地装置の一例を示す構成図である。本発明の実施形態は、図6に示した従来例に対し、独立接地極14の接地棒に代えて、独立接地される内部接地極22と、内部接地極22の周囲を包囲する外部接地極23とで構成され、外部接地極23は共用接地に連接線24で接続したものである。その他の構成は図6と同一であるので、同一要素には同一符号を付し重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a block diagram showing an example of a grounding device according to an embodiment of the present invention. According to the embodiment of the present invention, in contrast to the conventional example shown in FIG. 6, the internal grounding pole 22 which is independently grounded instead of the grounding bar of the independent grounding pole 14 and the external grounding pole surrounding the periphery of the internal grounding pole 22. The external ground pole 23 is connected to the common ground by a connecting line 24. Since the other configuration is the same as that of FIG. 6, the same reference numerals are given to the same elements, and duplicate explanations will be omitted.

図1において、内部接地極22は、構造物11の内部に設置された機器を独立接地する接地極であり、構造物11の外部に設けられている。図1では、内部接地極22は棒状に形成されたものを示しているが、板状、円筒形などでもよい。また、構造物11の内部に設置された機器は変圧器15であり、B種接地された変圧器15の中性点を接地線16xにより構造物11の外部の内部接地極22に接続したものを示している。   In FIG. 1, the internal ground electrode 22 is a ground electrode for independently grounding a device installed inside the structure 11, and is provided outside the structure 11. In FIG. 1, the internal ground electrode 22 is in the form of a rod, but may be plate-like, cylindrical or the like. The device installed inside the structure 11 is a transformer 15, in which the neutral point of the B-type grounded transformer 15 is connected to the internal ground pole 22 outside the structure 11 by the ground wire 16x. Is shown.

外部接地極23は、内部接地極22の周囲を包囲して設けられる。図1では、外部接地極23は円筒形に形成され、その円筒内に棒状の内部接地極22を収納して内部接地極22の側面を包囲したものを示している。また、外部接地極23は、構造物11の鉄筋12に連接線24で接続されている。これにより、外部接地極23は共用接地した構造物11の鉄筋12と同じ電位に維持される。図1では、外部接地極23は円筒形に形成されたものを示しているが、円筒形に代えて球形や多角筒形であってもよい。   The external ground pole 23 is provided to surround the inner ground pole 22. In FIG. 1, the external ground electrode 23 is formed in a cylindrical shape, and a rod-like internal ground electrode 22 is accommodated in the cylinder to surround the side surface of the internal ground electrode 22. Further, the external ground pole 23 is connected to the reinforcing bar 12 of the structure 11 by a connecting line 24. As a result, the external ground electrode 23 is maintained at the same potential as the rebar 12 of the structure 11 that is commonly grounded. In FIG. 1, the external ground electrode 23 is formed in a cylindrical shape, but may be a spherical or polygonal cylinder instead of the cylindrical shape.

いま、図1の構造物11の頭頂部Gに雷撃があったとする。頭頂部Gに流入した雷撃電流のほとんどは、矢印で示すように、頭頂部Gから分流して構造物11の鉄筋12z11、12z12〜12z41、12z42を介して共用接地極へ流れ遠方に分散する。また、鉄筋12cに流れる電流の一部は連接線24を介して外部接地極23へ流れ分散する。   Now, it is assumed that there is a lightning strike at the top G of the structure 11 of FIG. Most of the lightning current that has flowed into the top of the head G branches from the top of the head G and flows to the shared ground electrode through the reinforcing bars 12z11, 12z12 to 12z41, 12z42 of the structure 11, as shown by the arrows. In addition, a part of the current flowing to the reinforcing bar 12 c flows and disperses to the external ground pole 23 through the connecting line 24.

一方、頭頂部Gに流入した雷撃電流の数%は、頭頂部G→構造物11の鉄筋12a→接地線16a→SPD20a1、20a2→負荷17aの電源線19a1、19a2と流れる。そして、負荷17cの電源線19c1、19c2において変圧器15側と負荷17c側に分流する。変圧器15側に分流した雷撃電流は変圧器15の低圧巻線→変圧器15の中性点(B種接地)→接地線16x→内部接地極22と流れる。   On the other hand, several% of the lightning current flowing into the crown portion G flows from the crown portion G → rebar 12a of the structure 11 → ground wire 16a → SPD 20a1 and 20a2 → power supply lines 19a1 and 19a2 of the load 17a. Then, the power supply lines 19c1 and 19c2 of the load 17c are shunted to the transformer 15 side and the load 17c side. The lightning strike current shunted to the transformer 15 flows from the low voltage winding of the transformer 15 to the neutral point of the transformer 15 (type B ground) to the ground wire 16 x to the internal ground pole 22.

また、負荷17c側に分流した雷撃電流は、負荷17cのSPD20c1、20c2→接地線16c→構造物11の鉄筋12cに流れ共用接地極に流れる。それに加えて、雷撃電流は構造物11の鉄筋12cから連接線24を通って外部接地極23に流れる。   Further, the lightning strike current branched to the load 17c side flows from the SPDs 20c1 and 20c2 of the load 17c → the grounding wire 16c → the rebar 12c of the structure 11 and flows to the common grounding electrode. In addition, lightning current flows from the rebar 12c of the structure 11 through the connecting line 24 to the external ground pole 23.

外部接地極23は共用接地した構造物11の鉄筋12cに連接線24で接続されるので、外部接地極23は共用接地した構造物11の鉄筋12cと同じ電位に維持される。すなわち、雷撃により共用接地極の電位が上昇しても、外部接地極23の電位も共用接地極の電位と同じように上昇する。従って、外部接地極23に包囲された内部接地極22に流れる雷撃電流は小さくなり、通電時間も短くなるのでSPDの小型化が図れる。   Since the external ground pole 23 is connected to the rebar 12c of the structure 11 with common ground by the connecting line 24, the external ground pole 23 is maintained at the same potential as the rebar 12c of the structure 11 with common earth. That is, even if the potential of the common ground electrode rises due to a lightning strike, the potential of the external ground electrode 23 also rises in the same manner as the potential of the common ground electrode. Therefore, the lightning strike current flowing to the internal ground pole 22 surrounded by the external ground pole 23 becomes small, and the conduction time becomes short, so that the SPD can be miniaturized.

以上の説明では、内部接地極22は、B種接地された機器を独立接地する場合について説明したが、B種接地に代えて、A種接地、C種接地、D種接地された機器を独立接地する場合であってもよい。   In the above description, the case where the internal grounding electrode 22 independently grounds the apparatus to which the B ground is connected has been described. However, instead of the B ground, the A ground, the C ground, and the D ground equipment are independent. It may be the case of grounding.

次に、本発明の実施形態に係る接地装置によるSPD挿入箇所の電圧Vs0の低減について説明する。図2は、本発明の実施形態に係る接地装置の接地極部分の一例の構成図である。図2に示すように、内部接地極22及び外部接地極23の長さをlとし、地面13から埋設深さtの位置に内部接地極22及び外部接地極23を埋設するものとする。また、棒状の内部接地極22の半径はaであり、外部接地極23の半径はbであるとする。   Next, the reduction of the voltage Vs0 at the SPD insertion point by the grounding device according to the embodiment of the present invention will be described. FIG. 2 is a configuration diagram of an example of a ground pole portion of the grounding device according to the embodiment of the present invention. As shown in FIG. 2, the lengths of the internal ground electrode 22 and the external ground electrode 23 are l, and the internal ground electrode 22 and the external ground electrode 23 are embedded at a position of the embedded depth t from the ground 13. Further, it is assumed that the radius of the rod-like inner ground electrode 22 is a, and the radius of the outer ground electrode 23 is b.

いま、表1に示す条件1の接地装置を用意した。すなわち、a=0.014m、b=0.3m、l=2.0m、t=0.8mとした。   Now, the grounding device of condition 1 shown in Table 1 is prepared. That is, it was set as a = 0.014 m, b = 0.3 m, l = 2.0 m, t = 0.8 m.

Figure 0006519083
図3は、内部接地極22を外部接地極23で包囲した接地極及び単独の内部接地極22によるSPD挿入箇所の電圧Vs0を電磁界解析のうちFDTD(Finite-difference time-domain method)法:有限差分時間領域法による電磁界解析(以下、単に電磁界解析という)により求める場合の接地極部分の説明図であり、図3(a)は内部接地極22を外部接地極23で包囲した接地極によるSPD挿入箇所の電圧Vs0を電磁界解析により求める場合の説明図、図3(b)は単独の内部接地極22によるSPD挿入箇所の電圧Vs0を電磁界解析により求める場合の説明図である。
Figure 0006519083
FIG. 3 shows the FDTD (Finite-difference time-domain method) method in the electromagnetic field analysis of the voltage Vs0 at the SPD insertion point by the ground electrode in which the internal ground electrode 22 is surrounded by the external ground electrode 23 and the single internal ground electrode 22: FIG. 3A is an explanatory view of a ground electrode portion in the case of obtaining by electromagnetic field analysis by the finite difference time domain method (hereinafter simply referred to as electromagnetic field analysis), and FIG. Explanatory drawing in the case of calculating | requiring the voltage Vs0 of the SPD insertion location by an electrode by electromagnetic field analysis, FIG.3 (b) is explanatory drawing in the case of calculating | requiring voltage Vs0 of the SPD insertion location by the single internal grounding electrode 22 by electromagnetic field analysis .

図3(a)に示すように、内部接地極22を外部接地極23で包囲した接地極に対し、外部接地極23には構造物11の鉄筋12からの連接線24を設け、構造物11の頭頂部Gに雷撃を模擬した雷撃電流(100kA、10/350μs)を流し込み、連接線24に流れる電流、及び内部接地極22と外部接地極23との間の電圧(SPD挿入箇所の電圧Vs0)を、電磁界解析により条件1の接地装置の形状で求めた。SPD挿入箇所の電圧Vs0は、雷撃があった接地線16aと負荷17aの電源線19a1、19a2との間の電圧である。この場合、条件1の接地装置の内部接地極22及び外部接地極23が設置される箇所の大地抵抗率ρは100Ωmとし、鉄筋12と内部接地極22との距離dは5mとした。   As shown in FIG. 3 (a), a connecting wire 24 from the reinforcing bar 12 of the structure 11 is provided on the external ground pole 23 with respect to the ground pole in which the internal ground pole 22 is surrounded by the external ground pole 23. A lightning strike current (100 kA, 10/350 μs) simulating a lightning strike is applied to the top of the head G, and the current flowing through the connecting line 24 and the voltage between the internal ground pole 22 and the external ground pole 23 (voltage Vs0 at the SPD insertion point) ) Was obtained by electromagnetic field analysis in the shape of the grounding device of condition 1. The voltage Vs0 at the SPD insertion point is a voltage between the ground line 16a where the lightning strikes and the power supply lines 19a1 and 19a2 of the load 17a. In this case, the ground resistivity ρ of the location where the internal ground pole 22 and the external ground pole 23 of the grounding device of condition 1 are installed is 100 Ωm, and the distance d between the rebar 12 and the internal ground pole 22 is 5 m.

同様に、図3(b)に示すように、単独の内部接地極22に対し、構造物11の頭頂部Gに雷撃を模擬した雷撃電流(100kV、10/350μs)を流し込み、構造物11の鉄筋と内部接地極22との間の電圧(SPD挿入箇所の電圧Vs0)を、電磁界解析により条件1(ただし、外部接地極無し)の接地装置の形状で求めた。   Similarly, as shown in FIG. 3B, a lightning strike current (100 kV, 10/350 μs) simulating a lightning strike is poured into the top portion G of the structure 11 with respect to a single internal ground pole 22 to The voltage between the rebar and the internal ground electrode 22 (voltage Vs0 at the SPD insertion point) was determined by electromagnetic field analysis in the shape of the grounding device under condition 1 (with no external ground electrode).

図4は、図3に示した外部接地極有りの場合及び外部接地極無しの場合の雷撃電流及びSPD挿入箇所の電圧の波形図であり、図4(a)は雷撃電流Igの波形図、図4(b)は図3(a)に示した外部接地極有りの場合のSPD挿入箇所の電圧Vs01の波形図、図4(c)は図3(b)に示した外部接地極無しの場合のSPD挿入箇所の電圧Vs02の波形図である。   Fig. 4 is a waveform diagram of the lightning current and the voltage at the SPD insertion point with and without the external ground electrode shown in Fig. 3, and Fig. 4 (a) is a waveform diagram of the lightning current Ig. 4 (b) is a waveform diagram of the voltage Vs01 at the SPD insertion point in the presence of the external ground pole shown in FIG. 3 (a), and FIG. 4 (c) is the absence of the external ground pole shown in FIG. It is a wave form diagram of voltage Vs02 of the SPD insertion part in the case.

外部接地極有りの場合のSPD挿入箇所の電圧Vs01の最大値Vs0m1は、図4(b)から分かるように、約1.75[kV]であり、外部接地極無しの場合のSPD挿入箇所の電圧Vs02の最大値Vs0m2は、図4(c)から分かるように、約21.7[kV]である。   The maximum value Vs0m1 of the voltage Vs01 at the SPD insertion point in the presence of the external ground pole is about 1.75 [kV], as can be seen from FIG. 4B, and the SPD insertion point at the absence of the external ground pole. The maximum value Vs0m2 of the voltage Vs02 is approximately 21.7 [kV], as can be seen from FIG. 4 (c).

また、SPD挿入箇所の電圧Vs0がSPD制限電圧VLを超える制限電圧発生時間Tは、SPD制限電圧VLが1kVであるとした場合、外部接地極有りの場合の制限電圧発生時間T1は図4(b)から分かるように約7μsecであり、外部接地極無しの場合の制限電圧発生時間T2は図4(c)から分かるように20μsec以上である。表2に、これらの値をまとめた。   In addition, when the voltage Vs0 at the SPD insertion point exceeds the SPD limit voltage VL, the limit voltage generation time T1 when the SPD limit voltage VL is 1 kV is as shown in FIG. As can be seen from b), it is about 7 μsec, and the limited voltage generation time T2 without the external ground electrode is 20 μsec or more as can be seen from FIG. 4 (c). Table 2 summarizes these values.

Figure 0006519083
図3(a)に示した外部接地極有りの本発明の実施形態の場合は、図3(b)に示した外部接地極無しの従来例の場合に比較し、SPD挿入箇所の最大電圧Vs0m1は、1.75kVであり、外部接地極無しの場合のSPD挿入箇所の最大電圧Vs0mが大幅に小さくなっていることが分かる。また、SPDの制限電圧発生時間T1は7μsecでありSPDの制限電圧発生時間Tが大幅に短縮していることが分かる。
Figure 0006519083
In the case of the embodiment of the present invention with the external ground pole shown in FIG. 3A, the maximum voltage Vs0m1 at the SPD insertion point is compared with the conventional example without the external ground pole shown in FIG. Is 1.75 kV, and it can be seen that the maximum voltage Vs0m at the SPD insertion point when there is no external ground electrode is significantly reduced. Further, it can be seen that the limit voltage generation time T1 of the SPD is 7 μsec, and the limit voltage generation time T of the SPD is significantly shortened.

このように、内部接地極22に外部接地極23を設けた場合には、外部接地極23を設けない場合に比較して、雷撃電流があった場合にはSPD挿入箇所の最大電圧Vs0mが大幅に小さくなる。このことから、SPD挿入箇所にSPDを挿入すれば、内部接地電極22に外部接地極23を設けた場合では、外部接地極23を設けない場合に比べ、SPDの通電電流は大幅に小さくなる。また、SPDの制限電圧発生時間Tも大幅に小さくなる。   As described above, when the external ground pole 23 is provided on the internal ground pole 22, the maximum voltage Vs0m at the SPD insertion point is significantly greater in the presence of the lightning current than in the case where the external ground pole 23 is not provided. Smaller. From this, when the SPD is inserted into the SPD insertion point, when the external ground electrode 23 is provided on the internal ground electrode 22, the current flow of the SPD becomes significantly smaller than in the case where the external ground electrode 23 is not provided. In addition, the limit voltage generation time T of the SPD is also significantly reduced.

図5は、図1の構造物11の頭頂部Gに雷撃があった場合の雷撃電流Ig、SPD両端電圧Vs、SPD電流Isの一例を示すグラフである。いま、図7の場合と同じ雷撃があったとすると雷撃電流Igは、図7の場合と同じである。負荷17aのSPD20a1、20a2に現れるSPD両端電圧Vsの大きさは図7と同じであるが、その制限電圧の発生時間は図7の場合と異なり、大幅に短かくなる。また、SPDの通電電流、通電時間が小さくなるので、SPDで処理されるエネルギー(SPDの制限電圧VLにSPDに流れる電流Isを乗じた値の積分値)が小さくなるため、SPD20の小型化が図れる。   FIG. 5 is a graph showing an example of the lightning current Ig, the SPD both-end voltage Vs, and the SPD current Is in the case where there is a lightning strike at the top G of the structure 11 of FIG. Now, assuming that there is the same lightning strike as in the case of FIG. 7, the lightning strike current Ig is the same as in the case of FIG. The magnitude of the voltage Vs across the SPD that appears in the SPDs 20a1 and 20a2 of the load 17a is the same as in FIG. 7, but the time of occurrence of the limiting voltage is significantly shorter unlike in the case of FIG. In addition, since the SPD conduction current and conduction time decrease, the energy processed by the SPD (an integral value of the SPD limit voltage VL multiplied by the current Is flowing through the SPD) decreases, so the SPD 20 can be miniaturized. It can be done.

これは、外部接地極23が共用接地である鉄骨12に連接線24で接続され、外部接地極23が共用接地の電位と同じ電位となり、また、雷撃電流Igの一部が外部接地極23を介して遠方に拡散するためであると考えられる。   This is because the external ground pole 23 is connected to the steel frame 12 which is the common ground via the connecting wire 24, the external ground pole 23 has the same potential as the common ground potential, and part of the lightning current Ig is the external ground pole 23 It is thought that it is for spreading to a distant place via.

本発明の実施形態によれば、構造物11の外部に独立接地される内部接地極22の周囲を包囲する外部接地極23を設け、外部接地極23は共用接地された鉄骨または鉄筋からの連接線24に接続されて共用接地の電位に保持される。従って、外部接地極23が共用接地の電位と同じ電位となり、また、雷撃電流Igの一部が外部接地極23を介して遠方に拡散するので、雷撃があった場合にSPD挿入箇所の電圧を低減でき、SPD制限電圧発生時間も短縮され、SPD20が処理するエネルギーを低減させることができる。これにより、SPD20の小型化を図ることができる。   According to the embodiment of the present invention, the external ground pole 23 surrounding the periphery of the internal ground pole 22 which is independently grounded to the outside of the structure 11 is provided, and the external ground pole 23 is a connection from the common earthed steel frame or rebar. It is connected to the line 24 and held at the common ground potential. Therefore, since the external ground pole 23 has the same potential as the common ground potential, and part of the lightning current Ig is diffused to the distant via the external ground pole 23, the voltage at the SPD insertion point is Thus, the SPD limiting voltage generation time can be shortened, and the energy processed by the SPD 20 can be reduced. Thereby, the miniaturization of the SPD 20 can be achieved.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. This novel embodiment can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…構造物、12…鉄筋、13…地面、14…独立接地極、15…変圧器、16…接地線、17…負荷、19…電源線、20a1〜20c2…SPD、22…内部接地極、23…外部接地極、24…連接線 DESCRIPTION OF SYMBOLS 11 ... Structure, 12 ... Rebar, 13 ... Ground, 14 ... Independent ground pole, 15 ... Transformer, 16 ... Ground wire, 17 ... Load, 19 ... Power wire, 20a1-20c2 ... SPD, 22 ... Internal ground pole, 23: External ground pole, 24: Connected line

Claims (1)

構造物の鉄骨や鉄筋を共用接地極とし独立接地極を構造物の外部に設けた接地装置において、前記独立接地極は、
前記構造物の内部に設置された機器のうち独立接地される機器の接地線に接続され前記構造物の外部に地面から所定の深さに埋設して独立接地される内部接地極と、
前記構造物の鉄骨または鉄筋からの連接線に接続され前記内部接地極の周囲を包囲し前記地面から所定の深さに埋設して独立接地され雷撃電流によって電位が上昇する場合でも共用接地極と同じ電位に維持される外部接地極とを備え、
前記構造物の雷撃電流によって電位が上昇する場合でも前記外部接地極が前記共用接地極と同じ電位に維持されることにより前記外部接地極に包囲された前記内部接地極に流れる雷撃電流は小さくなることを特徴とする接地装置。
In a grounding device in which a steel frame or a reinforcing bar of a structure is used as a common ground pole and an independent ground pole is provided outside the structure, the independent ground pole is
An internal grounding electrode is independently grounded embedded therein to be connected to a ground line of the equipment to be independent ground of equipment installed is outside of a predetermined from the ground depth of the structure of the structure,
The common ground pole is connected to the connecting line from the steel frame or rebar of the structure, surrounds the inner ground pole, is buried at a predetermined depth from the ground, and is independently grounded and the potential increases due to lightning current. And an external ground pole maintained at the same potential .
Even when the potential increases due to the lightning current of the structure, the external ground pole is maintained at the same potential as the common ground pole, whereby the lightning current flowing to the internal ground pole surrounded by the external ground pole is reduced. A grounding device characterized by
JP2015152811A 2015-07-31 2015-07-31 Grounding device Active JP6519083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152811A JP6519083B2 (en) 2015-07-31 2015-07-31 Grounding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152811A JP6519083B2 (en) 2015-07-31 2015-07-31 Grounding device

Publications (2)

Publication Number Publication Date
JP2017034859A JP2017034859A (en) 2017-02-09
JP6519083B2 true JP6519083B2 (en) 2019-05-29

Family

ID=57989221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152811A Active JP6519083B2 (en) 2015-07-31 2015-07-31 Grounding device

Country Status (1)

Country Link
JP (1) JP6519083B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892870B2 (en) * 1991-10-16 1999-05-17 中央防雷 株式会社 Building grounding automatic switch
JPH10149851A (en) * 1996-11-20 1998-06-02 Kira Mitsuaki Radial grounding conductor
JP2002271964A (en) * 2001-03-13 2002-09-20 Kansai Tech Corp Arrester structure of building
JP2003208929A (en) * 2002-01-16 2003-07-25 Tadahiro Omi Earthing system of building
JP2004111328A (en) * 2002-09-20 2004-04-08 Misato Kk Air charge neutralizing device
JP2008166104A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage
JP4709715B2 (en) * 2006-08-30 2011-06-22 新日本製鐵株式会社 Lightning arrester, structural pillar having lightning protection function, and method of reducing lightning surge voltage
JP6265800B2 (en) * 2014-03-17 2018-01-24 株式会社関電工 Ground wire terminal box
JP6519790B2 (en) * 2015-07-31 2019-05-29 株式会社関電工 Grounding device

Also Published As

Publication number Publication date
JP2017034859A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
EP3293839A3 (en) Protection of a surge arrester with a better protection against failure from thermal overload in case of a temporary overvoltage in an electrical grid line
CN105652093A (en) Grounding device impact grounding impedance test method
Piantini Lightning-induced voltages on distribution lines with shield wires
JP6519790B2 (en) Grounding device
CN203456602U (en) Radial grounding device capable of reducing impulse grounding impedance
JP6519083B2 (en) Grounding device
CN105529617B (en) A kind of leakage conductor
CN203812641U (en) High-voltage single-core cable sheath grounding structure
CN206293858U (en) A kind of power equipment lightning arrester
Yasui et al. Reduction measures of the overvoltage in the TN system of a building struck directly by lightning
CN209072066U (en) A kind of multichannel stage isolation and the joint grounding device for inhibiting thunder and lightning electromagnetic surge
CN202103417U (en) Lightning protection device for integrated logging instrument
US20220399708A1 (en) Apparatus and method for diagonal grounding
de Souza et al. The effect of soil ionization on the lightning performance of transmission lines
Schoene Direct and nearby lightning strike interaction with test power distribution lines
CN204304163U (en) Ultra-high-tension power transmission line down conductor
JP2013054841A (en) Lightning potential rise suppressor of building
CN204131118U (en) A kind of earth potential counterattack protector
CN103811882B (en) A kind of method to set up of overhead distribution reinforced concrete pole protective grounding
Omidiora et al. Experimental performance of induced voltage on power line due to lightning discharge to nearby tree
Visacro et al. Lightning performance of grounding systems of overhead lines
CN203883314U (en) Transmission line lightning eliminator
Han et al. Analysis of lightning overvoltage according to the location of overhead ground wire in Korea distribution system
CN203445252U (en) Annular grounding device possessing function of reducing impact grounding impedance
KR200496701Y1 (en) Strike apparatus of ground rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190405

R150 Certificate of patent or registration of utility model

Ref document number: 6519083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250