JP2017029881A - Salt water desalination plant and method of remodeling the salt water desalination plant - Google Patents

Salt water desalination plant and method of remodeling the salt water desalination plant Download PDF

Info

Publication number
JP2017029881A
JP2017029881A JP2015149619A JP2015149619A JP2017029881A JP 2017029881 A JP2017029881 A JP 2017029881A JP 2015149619 A JP2015149619 A JP 2015149619A JP 2015149619 A JP2015149619 A JP 2015149619A JP 2017029881 A JP2017029881 A JP 2017029881A
Authority
JP
Japan
Prior art keywords
pressure
salt water
osmosis membrane
reverse osmosis
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015149619A
Other languages
Japanese (ja)
Other versions
JP6600499B2 (en
Inventor
隆二 森島
Ryuji Morishima
隆二 森島
大介 石井
Daisuke Ishii
大介 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015149619A priority Critical patent/JP6600499B2/en
Publication of JP2017029881A publication Critical patent/JP2017029881A/en
Application granted granted Critical
Publication of JP6600499B2 publication Critical patent/JP6600499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient salt water desalination plant by effectively utilizing energy while saving cost of installation.SOLUTION: A salt water desalination plant that includes a reverse osmosis membrane device 3 that separates salt water into permeable water and concentrated salt water, a high pressure pump 5 that boosts low pressure salt water to a predetermined pressure and supplies to the reverse osmosis membrane device 3, a pressure exchange device 6 that boosts the low pressure salt water with high pressure concentrated salt water exhausted from the reverse osmosis membrane device 3, and a booster pump 7 that boosts the salt water boosted by the pressure exchange device 6 to the predetermined pressure and supplies to the reverse osmosis membrane 3, and further includes a residual pressure recovery device 8 that recovers the residual pressure of the concentrated salt water exhausted from the pressure exchange device 3.SELECTED DRAWING: Figure 1

Description

本発明は、海水等の塩水から淡水を得る塩水淡水化装置及び塩水淡水化装置の改造方法に関する。   The present invention relates to a salt water desalination apparatus for obtaining fresh water from salt water such as seawater and a method for remodeling the salt water desalination apparatus.

特許文献1に記載されているように、海水等の塩水から淡水を得るために塩水を蒸留処理すると蒸発という相変化を伴い多大なエネルギーを要するため、蒸留処理と比較してエネルギー効率がよい逆浸透膜装置を用いた塩水淡水化装置が注目されている。   As described in Patent Document 1, when salt water is distilled to obtain fresh water from salt water such as seawater, a large amount of energy is required with a phase change called evaporation. A saltwater desalination apparatus using an osmotic membrane apparatus has attracted attention.

逆浸透膜装置を用いた淡水化装置は、塩水を透過水と濃縮塩水に分離する逆浸透膜装置と、低圧の塩水を所定圧力に昇圧して逆浸透膜装置に供給する高圧ポンプと、逆浸透膜装置から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置と、圧力交換装置で昇圧された塩水をさらに所定圧力に昇圧して逆浸透膜装置に供給するブースターポンプとを備えている。   A desalination apparatus using a reverse osmosis membrane device includes a reverse osmosis membrane device that separates salt water into permeate and concentrated salt water, a high-pressure pump that boosts low-pressure salt water to a predetermined pressure and supplies the reverse osmosis membrane device to a reverse osmosis membrane device, A pressure exchanging device that boosts the low-pressure salt water with the high-pressure concentrated salt water discharged from the osmosis membrane device, and a booster pump that further boosts the salt water boosted by the pressure exchanging device to a predetermined pressure and supplies it to the reverse osmosis membrane device. I have.

逆浸透膜装置から排出された濃縮塩水の圧力エネルギーを塩水の昇圧のために回収するために圧力交換装置が組み込まれている。   A pressure exchange device is incorporated to recover the pressure energy of the concentrated brine discharged from the reverse osmosis membrane device for boosting the brine.

特許文献1には、塩水供給ポンプの負荷および消費電力を削減できる塩水淡水装置を提供することを目的として、塩水を逆浸透膜部材に供給する塩水供給手段と、前記逆浸透膜部材から放出される濃縮塩水が供給される正浸透膜部材と、前記正浸透膜部材から放出される混合水が供給されると共に、前記塩水供給手段に接続する補助デバイスと、を備え、前記補助デバイスは、前記塩水供給手段への供給電力、前記塩水供給手段への付与圧力および前記塩水供給手段への回転能力の少なくとも一つを増加させる塩水淡水装置が開示されている。   In Patent Document 1, for the purpose of providing a salt water fresh water device capable of reducing the load and power consumption of a salt water supply pump, salt water supplying means for supplying salt water to a reverse osmosis membrane member and the reverse osmosis membrane member are discharged. A normal osmosis membrane member to which concentrated salt water is supplied, and an auxiliary device to which the mixed water discharged from the forward osmosis membrane member is supplied and connected to the salt water supply means, Disclosed is a saltwater freshwater device that increases at least one of the power supplied to the saltwater supply means, the pressure applied to the saltwater supply means, and the rotational capacity of the saltwater supply means.

特に、図8には、逆浸透膜装置から排出された濃縮塩水の圧力エネルギーを塩水の昇圧のために回収するべく圧力交換装置が組み込まれ、圧力交換後の濃縮塩水が正浸透膜部材に供給されるように構成された塩水淡水装置が開示されている。   In particular, in FIG. 8, a pressure exchange device is incorporated to recover the pressure energy of the concentrated salt water discharged from the reverse osmosis membrane device for boosting the salt water, and the concentrated salt water after the pressure exchange is supplied to the forward osmosis membrane member. A saltwater freshwater apparatus configured as described is disclosed.

特開2014−200708号公報JP 2014-200708 A

一般的に海から取水した塩水を淡水化する場合、逆浸透膜装置に供給する前の塩水から異物等を除去するために精密ろ過膜や限外ろ過膜等を備えたろ過装置で前処理する必要がある。   In general, when salt water taken from the sea is desalinated, pre-treatment is performed with a filtration device equipped with a microfiltration membrane, ultrafiltration membrane, etc. to remove foreign substances from the salt water before being supplied to the reverse osmosis membrane device. There is a need.

このような前処理用の装置が設置される建屋と逆浸透膜装置が設置される建屋が異なる建屋である場合等、前処理後の塩水を逆浸透膜装置に給水するための長い管路と、前処理後の塩水を圧力交換装置に給水するための長い管路を併設して夫々にポンプを設ける必要がある場合には夫々に配管を設けるための設備費が嵩むという問題があった。   When the building where such a pretreatment device is installed and the building where the reverse osmosis membrane device is installed are different buildings, etc., a long pipeline for supplying saltwater after pretreatment to the reverse osmosis membrane device and When it is necessary to provide a long pipe for supplying salt water after pretreatment to the pressure exchange device and to provide a pump for each, there is a problem that the equipment cost for providing the piping increases.

そこで、前処理用の装置が設置された建屋から逆浸透膜装置が設置される建屋までの塩水の給水管路を共用し、逆浸透膜装置が設置される建屋で当該管路を分岐して逆浸透膜装置及び圧力交換装置の夫々に給水するように構成し、さらに高圧ポンプに給水する給水ポンプと圧力交換装置に給水する給水ポンプとを1台のポンプで兼用することで配管の敷設費用や設備費を低減することが考えられる。   Therefore, the salt water supply pipeline from the building where the pretreatment device is installed to the building where the reverse osmosis membrane device is installed is shared, and the pipeline is branched at the building where the reverse osmosis membrane device is installed. It is constructed so that water is supplied to each of the reverse osmosis membrane device and the pressure exchange device, and furthermore, the cost of laying the pipe by combining the water supply pump that supplies water to the high-pressure pump and the water supply pump that supplies water to the pressure exchange device with one pump. It is conceivable to reduce equipment costs.

しかし、高圧ポンプでキャビテーション等の不都合が生じないように給水ポンプの吐出し圧を調整すると、圧力交換装置に供給される塩水の圧力が圧力交換に最低限必要な圧力よりも高くなり、圧力交換後の濃縮塩水に残圧が発生する。   However, if the discharge pressure of the feed water pump is adjusted so that inconveniences such as cavitation do not occur with the high pressure pump, the pressure of the salt water supplied to the pressure exchange device will be higher than the minimum pressure required for the pressure exchange. Residual pressure is generated in the later concentrated brine.

そのため、従来は、図5に示すように、圧力交換装置6による圧力交換後の濃縮塩水の管路に減圧弁9を設けて減圧後にそのまま放水していた。   Therefore, conventionally, as shown in FIG. 5, a pressure reducing valve 9 is provided in the conduit of concentrated salt water after pressure exchange by the pressure exchange device 6, and water is discharged as it is after pressure reduction.

本発明の目的は、設備費を低減しながらもエネルギーを有効に活用し、効率の良い塩水淡水化装置及び塩水淡水化装置の改造方法を提供する点にある。   An object of the present invention is to provide an efficient salt water desalination apparatus and a method for remodeling a salt water desalination apparatus that efficiently uses energy while reducing facility costs.

上述の目的を達成するため、本発明による塩水淡水化装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、塩水を透過水と濃縮塩水に分離する逆浸透膜装置と、低圧の塩水を所定圧力に昇圧して前記逆浸透膜装置に供給する高圧ポンプと、前記逆浸透膜装置から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置と、前記圧力交換装置で昇圧された塩水をさらに前記所定圧力に昇圧して前記逆浸透膜装置に供給するブースターポンプと、を備えている塩水淡水化装置であって、前記圧力交換装置から排出される濃縮塩水の残圧を回収する残圧回収装置を備えている点にある。   In order to achieve the above object, the first characteristic configuration of the saltwater desalination apparatus according to the present invention is the reverse osmosis for separating the saltwater into permeate and concentrated saltwater as described in claim 1 of the claims. A membrane device, a high-pressure pump that boosts low-pressure salt water to a predetermined pressure and supplies the same to the reverse osmosis membrane device, and a pressure exchange device that boosts low-pressure salt water with high-pressure concentrated brine discharged from the reverse osmosis membrane device; A salt water desalination apparatus comprising a booster pump that further boosts the salt water boosted by the pressure exchange device to the predetermined pressure and supplies the boosted water to the reverse osmosis membrane device, and is discharged from the pressure exchange device A residual pressure recovery device that recovers the residual pressure of the concentrated salt water.

高圧ポンプで昇圧された塩水が逆浸透膜装置に供給されて淡水化され、圧力交換装置に供給された塩水が高圧の濃縮塩水と圧力交換されてブースターポンプに供給される。圧力交換装置から排出される濃縮塩水に残圧が生じても、濃縮塩水の残圧が残圧回収装置によって回収される。この残圧回収装置により濃縮塩水の排水に伴うエネルギー損失を十分に低減できるようになる。   The salt water pressurized by the high-pressure pump is supplied to the reverse osmosis membrane device to be desalinated, and the salt water supplied to the pressure exchange device is pressure-exchanged with the high-pressure concentrated salt water and supplied to the booster pump. Even if residual pressure is generated in the concentrated salt water discharged from the pressure exchange device, the residual pressure of the concentrated salt water is recovered by the residual pressure recovery device. This residual pressure recovery device can sufficiently reduce the energy loss accompanying the drainage of concentrated salt water.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記残圧回収装置は、前記圧力交換装置から排出される濃縮塩水により駆動される反動水車を備えて構成されている点にある。   In the second feature configuration, as described in claim 2, in addition to the first feature configuration described above, the residual pressure recovery device is a reaction driven by concentrated salt water discharged from the pressure exchange device. It is in the point comprised with the water wheel.

残圧回収装置として反動水車を用いることで、濃縮塩水の残圧が動力変換されて回収されるようになる。   By using a reaction water turbine as the residual pressure recovery device, the residual pressure of the concentrated salt water is recovered by power conversion.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記圧力交換装置は、圧力交換用の複数の流路が所定軸心周りに形成された筒状体と、前記流路の一端側から前記逆浸透膜装置から排出された高圧の濃縮塩水を給水するとともに圧力交換後の低圧の濃縮塩水を排水する濃縮塩水給排水部と、前記流路の他端側から低圧の塩水を給水するとともに圧力交換後の高圧の塩水を排水する塩水給排水部とを備え、前記濃縮塩水給排水部及び前記塩水給排水部が、前記筒状体と相対回転可能に構成されている点にある。   In the third feature configuration, as described in the third aspect, in addition to the first or second feature configuration described above, the pressure exchanging device has a plurality of pressure exchanging channels around a predetermined axis. And a concentrated salt water supply / drainage section for supplying high-pressure concentrated brine discharged from the reverse osmosis membrane device from one end side of the flow path and draining low-pressure concentrated brine after pressure exchange, A salt water supply / drainage unit that supplies low-pressure salt water from the other end of the flow path and drains high-pressure salt water after pressure exchange, and the concentrated salt water supply / drainage unit and the salt water supply / drainage unit are relative to the cylindrical body. The point is that it is configured to be rotatable.

上述した回転式の圧力交換装置を用いると、圧力交換装置の濃縮塩水給排水部から排出される濃縮塩水が安定的に一定の流量に維持される。そのため、残圧回収装置によって安定的且つ効率的に残圧が回収されるようになる。   When the rotary pressure exchanger described above is used, the concentrated salt water discharged from the concentrated salt water supply / drainage section of the pressure exchanger is stably maintained at a constant flow rate. Therefore, the residual pressure is recovered stably and efficiently by the residual pressure recovery device.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記高圧ポンプ及び前記圧力交換装置に塩水を供給する給水ポンプをさらに備えている点にある。   In the fourth feature configuration, as described in claim 4, in addition to any of the first to third feature configurations described above, a feed water pump for supplying salt water to the high pressure pump and the pressure exchange device is provided. Furthermore, it is in the point provided.

給水ポンプにより塩水が高圧ポンプと圧力交換装置の夫々に供給され、高圧ポンプで昇圧された塩水が逆浸透膜装置に供給されて淡水化され、圧力交換装置に供給された塩水が高圧の濃縮塩水と圧力交換されてブースターポンプに供給される。高圧ポンプでキャビテーション等が生じないように給水ポンプの吐出し圧が調整されると、圧力交換装置から排出される濃縮塩水に残圧が生じる。そのような場合でも、残圧回収装置によって残圧が適正に回収され、エネルギー損失を十分に低減できるようになる。   Salt water is supplied to each of the high-pressure pump and the pressure exchange device by the feed pump, and the salt water pressurized by the high-pressure pump is supplied to the reverse osmosis membrane device for desalination, and the salt water supplied to the pressure exchange device is high-pressure concentrated brine The pressure is exchanged with the booster pump. When the discharge pressure of the feed water pump is adjusted so that cavitation or the like does not occur in the high pressure pump, residual pressure is generated in the concentrated salt water discharged from the pressure exchange device. Even in such a case, the residual pressure is properly recovered by the residual pressure recovery device, and energy loss can be sufficiently reduced.

同第五の特徴構成は、同請求項5に記載した通り、上述の第四の特徴構成に加えて、前記反動水車により得られた動力を前記給水ポンプの補助動力として伝達する動力伝達機構を備えている点にある。   In the fifth feature configuration, as described in claim 5, in addition to the fourth feature configuration described above, a power transmission mechanism that transmits power obtained by the reaction water turbine as auxiliary power to the water supply pump is provided. It is in the point to have.

反動水車により回収された動力が動力伝達機構を介して給水ポンプの動力を補助することに利用されるので、給水ポンプの駆動に必要なエネルギーを低減させることができるようになる。   Since the power collected by the reaction water turbine is used to assist the power of the feed water pump via the power transmission mechanism, the energy required for driving the feed water pump can be reduced.

同第六の特徴構成は、同請求項6に記載した通り、上述の第二から第四の何れかの特徴構成に加えて、前記反動水車により得られた動力を前記ブースターポンプの補助動力として伝達する動力伝達機構を備えている点にある。   In the sixth feature configuration, in addition to any one of the second to fourth feature configurations described above, the power obtained by the reaction water turbine is used as auxiliary power for the booster pump. It is in the point provided with the power transmission mechanism which transmits.

反動水車により回収された動力が動力伝達機構を介してブースターポンプの動力を補助することに利用されるので、ブースターポンプの駆動に必要なエネルギーを低減させることができるようになる。   Since the power recovered by the reaction water turbine is used to assist the power of the booster pump via the power transmission mechanism, the energy required for driving the booster pump can be reduced.

同第七の特徴構成は、同請求項7に記載した通り、上述の第二から第四の何れかの特徴構成に加えて、前記反動水車により得られた動力により発電する発電機が設けられている点にある。   In the seventh feature configuration, as described in claim 7, in addition to any one of the second to fourth feature configurations described above, a generator that generates power using the power obtained by the reaction water turbine is provided. There is in point.

反動水車により回収された動力により発電機が駆動され、回収された電力が例えば塩水淡水化装置に給電されると、塩水淡水化装置として省エネルギーな装置を構築できるようになる。   When the generator is driven by the power recovered by the reaction water turbine and the recovered power is supplied to, for example, the salt water desalination apparatus, an energy saving apparatus can be constructed as the salt water desalination apparatus.

本発明による塩水淡水化装置の改造方法の特徴構成は、同請求項8に記載した通り、塩水を透過水と濃縮塩水に分離する逆浸透膜装置と、低圧の塩水を所定圧力に昇圧して前記逆浸透膜装置に供給する高圧ポンプと、前記逆浸透膜装置から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置と、前記圧力交換装置で昇圧された塩水をさらに前記所定圧力に昇圧して前記逆浸透膜装置に供給するブースターポンプと、を備えている塩水淡水化装置の改造方法であって、前記圧力交換装置から排出される濃縮塩水の配管ラインに濃縮塩水の残圧を回収する残圧回収装置を取り付ける工程と、前記残圧回収装置で回収された残圧による得られる動力を前記給水ポンプまたは前記ブースターポンプに伝達し、或いは残圧回収装置に付属する発電機を駆動する動力伝達機構を組み込む工程と、を備えている点にある。   The characteristic configuration of the method for remodeling a saltwater desalination apparatus according to the present invention includes a reverse osmosis membrane device that separates saltwater into permeate and concentrated saltwater, and a low-pressure saltwater to a predetermined pressure as described in claim 8. A high-pressure pump that supplies the reverse osmosis membrane device, a pressure exchange device that boosts low-pressure salt water with high-pressure concentrated brine discharged from the reverse osmosis membrane device, and salt water that has been pressurized by the pressure exchange device A booster pump that boosts the pressure and supplies the reverse osmosis membrane device to the reverse osmosis membrane device, wherein the salt water desalination device is remodeled, and the concentrated salt water remains in a piping line of the concentrated salt water discharged from the pressure exchange device. A step of attaching a residual pressure recovery device for recovering pressure, and transmitting the power obtained by the residual pressure recovered by the residual pressure recovery device to the feed water pump or the booster pump, or attached to the residual pressure recovery device In that it includes a step of incorporating a power transmission mechanism for driving a generator, a.

既存の塩水淡水化装置で利用されていなかったエネルギーを回収して再利用することが可能になり、効率の良い塩水淡水化装置に改造することができるようになる。   Energy that has not been used in the existing salt water desalination apparatus can be recovered and reused, and can be remodeled into an efficient salt water desalination apparatus.

以上説明した通り、本発明によれば、設備費を低減しながらもエネルギーを有効に活用し、効率の良い塩水淡水化装置及び塩水淡水化装置の改造方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an efficient salt water desalination apparatus and a method for remodeling a salt water desalination apparatus that efficiently uses energy while reducing facility costs. .

(a)は海水淡水化施設の概略の構成図、(b)は前処理装置概略の構成図(A) is a schematic configuration diagram of a seawater desalination facility, (b) is a schematic configuration diagram of a pretreatment device. (a)は本発明に用いられる圧力交換装置の一例を示す側面図、(b)は同断面図(A) is a side view showing an example of a pressure exchange device used in the present invention, (b) is a sectional view of the same. 本発明に用いられる圧力交換装置の他の例を示す説明図Explanatory drawing which shows the other example of the pressure exchange apparatus used for this invention 別実施形態を示す海水淡水化施設の概略の構成図Schematic configuration diagram of seawater desalination facility showing another embodiment 従来の海水淡水化施設の概略の構成図Schematic configuration diagram of a conventional seawater desalination facility

以下に、本発明による塩水淡水化装置の好ましい実施形態を説明する。
図1(a)に示すように、塩水淡水化装置は、淡水化の対象である塩水として海水を取水する取水ポンプ1と、取水された塩水を逆浸透膜装置3に適した水質となるように前処理する前処理装置2と、前処理装置2で前処理された塩水を透過水と濃縮塩水に分離して淡水化する逆浸透膜装置3を備えて構成されている。逆浸透膜装置3から排出された淡水は飲料用水や工業用水として利用される。
Below, preferable embodiment of the salt water desalination apparatus by this invention is described.
As shown to Fig.1 (a), a salt water desalination apparatus is set as the water quality suitable for the reverse osmosis membrane apparatus 3 with the intake pump 1 which takes in seawater as the salt water which is the object of desalination, and the taken salt water. And a reverse osmosis membrane device 3 for separating the salt water pretreated by the pretreatment device 2 into permeated water and concentrated salt water to make fresh water. Fresh water discharged from the reverse osmosis membrane device 3 is used as drinking water or industrial water.

図1(a)に二点鎖線で示すように、前処理装置2と逆浸透膜装置3とはそれぞれ異なる建屋に設置されている。   As shown by a two-dot chain line in FIG. 1A, the pretreatment device 2 and the reverse osmosis membrane device 3 are installed in different buildings.

図1(b)に示すように、前処理装置2には、海水中の夾雑物を取り除く夾雑物除去装置2Aと、夾雑物除去装置2Aで夾雑物が取り除かれた海水を貯留するろ過海水槽2Bと、保安フィルター2Cと、ろ過海水槽2Bに貯留された塩水を保安フィルター2Cに給水する送水ポンプ2D等を備えている。保安フィルター2Cは海水中の微細な異物を除去するための精密ろ過膜や限外ろ過膜を備えて構成され、逆浸透膜装置3の詰まりを防止するために設けられている。   As shown in FIG. 1B, the pretreatment device 2 includes a contaminant removal device 2A that removes contaminants in seawater, and a filtered seawater tank that stores seawater from which contaminants have been removed by the contaminant removal device 2A. 2B, a safety filter 2C, and a water feed pump 2D for supplying salt water stored in the filtered seawater tank 2B to the safety filter 2C. The safety filter 2C includes a microfiltration membrane and an ultrafiltration membrane for removing fine foreign matters in seawater, and is provided to prevent the reverse osmosis membrane device 3 from being clogged.

前処理装置2が設置された建屋から逆浸透膜装置3が設置された建屋に配管Lが敷設され、前処理装置2で前処理された塩水が配管Lを介して送水されている。   The pipe L is laid from the building where the pretreatment device 2 is installed to the building where the reverse osmosis membrane device 3 is installed, and the salt water pretreated by the pretreatment device 2 is sent through the pipe L.

逆浸透膜装置3が設置された建屋には、低圧の塩水を所定圧力に昇圧して逆浸透膜装置3に供給する高圧ポンプ5と、逆浸透膜装置3から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置6と、圧力交換装置6で昇圧された塩水をさらに所定圧力に昇圧して逆浸透膜装置3に供給するブースターポンプ7とが設けられている。   In the building where the reverse osmosis membrane device 3 is installed, the high-pressure pump 5 supplies the reverse osmosis membrane device 3 with the low-pressure salt water increased to a predetermined pressure, and the high-pressure concentrated salt water discharged from the reverse osmosis membrane device 3 There are provided a pressure exchanging device 6 for boosting low-pressure salt water and a booster pump 7 for further boosting the salt water boosted by the pressure exchanging device 6 to a predetermined pressure and supplying it to the reverse osmosis membrane device 3.

配管Lには給水ポンプ4が設けられ、前処理された塩水が当該給水ポンプ4によって昇圧されて高圧ポンプ5及び圧力交換装置6に分岐供給される。逆浸透膜装置3は、逆浸透膜の一方側の海水に圧力をかけることにより、逆浸透膜の他方側に海水中の各種塩類が除去された淡水を染み出させる装置であり、逆浸透膜でろ過するために、海水が浸透圧以上の所定圧力に昇圧される。   A water supply pump 4 is provided in the pipe L, and the pretreated salt water is boosted by the water supply pump 4 and branched and supplied to the high pressure pump 5 and the pressure exchange device 6. The reverse osmosis membrane device 3 is a device that exudes fresh water from which various salts in seawater have been removed to the other side of the reverse osmosis membrane by applying pressure to the seawater on one side of the reverse osmosis membrane. In order to filter with, seawater is pressure | voltage-risen to the predetermined pressure more than an osmotic pressure.

給水ポンプ4で2〜4barに昇圧された塩分濃度4%程度の塩水は高圧ポンプ5で40〜80bar程度に昇圧されて逆浸透膜装置3に供給され、略40%が淡水化されて排出され、60%が塩分濃度8%程度に濃縮された塩水として排出される。逆浸透膜装置3から排出された濃縮海水は40〜80ba程度の圧力を保持したまま圧力交換装置6に供給される。圧力交換装置6に供給された濃縮海水は給水ポンプ4から圧力交換装置6に分岐供給される2〜4barの塩水との間で圧力交換されて、塩水が58〜78bar程度の圧力に昇圧されるとともに、濃縮海水が1.4〜3.4bar程度の圧力に減圧される。   The salt water having a salt concentration of about 4%, which has been boosted to 2 to 4 bar by the feed water pump 4, is boosted to about 40 to 80 bar by the high pressure pump 5 and supplied to the reverse osmosis membrane device 3, and about 40% is desalinated and discharged. , 60% is discharged as salt water concentrated to a salt concentration of about 8%. The concentrated seawater discharged from the reverse osmosis membrane device 3 is supplied to the pressure exchange device 6 while maintaining a pressure of about 40 to 80 ba. The concentrated seawater supplied to the pressure exchange device 6 is pressure-exchanged with 2 to 4 bar salt water branched and supplied from the feed pump 4 to the pressure exchange device 6, and the salt water is increased to a pressure of about 58 to 78 bar. At the same time, the concentrated seawater is depressurized to a pressure of about 1.4 to 3.4 bar.

圧力交換装置6で58〜78bar程度の圧力に昇圧された塩水はブースターポンプ7で60〜80bar程度の圧力に昇圧された後に高圧ポンプ5の吐出し側配管の塩水と合流して逆浸透膜装置3に供給される。   The salt water that has been boosted to a pressure of about 58 to 78 bar by the pressure exchange device 6 is boosted to a pressure of about 60 to 80 bar by the booster pump 7, and then merges with the salt water in the discharge side piping of the high pressure pump 5. 3 is supplied.

高圧ポンプ5でキャビテーション等の不都合が生じないように、給水ポンプ4の吐出し圧は2〜4barに設定されている。圧力交換装置6に供給される塩水の必要圧力は給水ポンプ4の吐出圧力よりも十分に低い例えば0.6bar程度である。そのため、圧力交換装置6で圧力交換され排出される低圧の濃縮塩水には1.4〜3.4bar程度の残圧が保持されている。   The discharge pressure of the feed water pump 4 is set to 2 to 4 bar so that inconvenience such as cavitation does not occur in the high pressure pump 5. The required pressure of the salt water supplied to the pressure exchange device 6 is, for example, about 0.6 bar, which is sufficiently lower than the discharge pressure of the feed water pump 4. Therefore, a residual pressure of about 1.4 to 3.4 bar is held in the low-pressure concentrated salt water that is pressure-exchanged and discharged by the pressure exchange device 6.

この残圧を回収するために、圧力交換装置6から排出される濃縮塩水の残圧を回収する残圧回収装置8が設けられている。   In order to recover this residual pressure, a residual pressure recovery device 8 for recovering the residual pressure of the concentrated salt water discharged from the pressure exchange device 6 is provided.

給水ポンプ4により塩水が高圧ポンプ5及び圧力交換装置6に供給され、高圧ポンプ5で昇圧された塩水が逆浸透膜装置3に供給されて淡水化され、圧力交換装置6に供給された塩水が高圧の濃縮塩水と圧力交換されてブースターポンプ7に供給される。   Salt water is supplied to the high-pressure pump 5 and the pressure exchange device 6 by the feed water pump 4, and the salt water pressurized by the high-pressure pump 5 is supplied to the reverse osmosis membrane device 3 to be desalinated, and the salt water supplied to the pressure exchange device 6 is The pressure is exchanged with high-pressure concentrated brine and supplied to the booster pump 7.

高圧ポンプ5でキャビテーション等が生じないように給水ポンプ4の吐出し圧が調整されるため、圧力交換装置6から排出される濃縮塩水に残圧が生じるが、残圧回収装置によって当該残圧が回収されるので濃縮塩水が放流される際のエネルギー損失を十分に低減できるようになる。   Since the discharge pressure of the feed water pump 4 is adjusted so that cavitation or the like does not occur in the high pressure pump 5, residual pressure is generated in the concentrated salt water discharged from the pressure exchange device 6, but the residual pressure is reduced by the residual pressure recovery device. Since it is recovered, the energy loss when the concentrated salt water is discharged can be sufficiently reduced.

残圧回収装置8は、圧力交換装置6から排出される濃縮塩水により駆動される反動水車8aを備え、機械カプラ8bを介してブースターポンプ7の駆動用の電動モータ8cに連結されている。さらにモータ8cとブースターポンプ7の回転軸とは機械カプラ8dを介して連結されている。   The residual pressure recovery device 8 includes a reaction water turbine 8a driven by concentrated salt water discharged from the pressure exchange device 6, and is connected to an electric motor 8c for driving the booster pump 7 via a mechanical coupler 8b. Furthermore, the motor 8c and the rotating shaft of the booster pump 7 are connected via a mechanical coupler 8d.

反動水車8aとしてフランシス水車が好適に用いられ、濃縮塩水により駆動されるフランシス水車の回転動力が電動モータ8cを補助する動力として用いられる。その結果、電動モータ8cで消費される電力を低減できるようになる。機械カプラ8bが、反動水車8aにより得られた動力を電動モータ8cを介してブースターポンプ7に伝達する動力伝達機構となる。反動水車8aと機械カプラ8bによりポンプに対する駆動力をアシストする装置が構成される。   A Francis turbine is preferably used as the reaction turbine 8a, and the rotational power of the Francis turbine driven by concentrated salt water is used as power to assist the electric motor 8c. As a result, the power consumed by the electric motor 8c can be reduced. The mechanical coupler 8b serves as a power transmission mechanism that transmits the power obtained by the reaction water turbine 8a to the booster pump 7 via the electric motor 8c. The reaction water turbine 8a and the mechanical coupler 8b constitute a device that assists the driving force for the pump.

図2には、容積式かつ回転式の圧力交換装置6の一例が示されている。当該圧力交換装置6は、圧力交換用の複数の流路41,42が所定軸心周りに形成された筒状体40と、筒状体40の一端部に逆浸透膜装置から排出された高圧の濃縮塩水を流路の一端側に給水するとともに圧力交換後の低圧の濃縮塩水を排水する濃縮塩水給排水部16,17と、低圧の塩水を流路の他端側に給水するとともに圧力交換後の高圧の塩水を排水する塩水給排水部15,18とを備えている。   FIG. 2 shows an example of a positive displacement and rotary pressure exchange device 6. The pressure exchange device 6 includes a cylindrical body 40 in which a plurality of pressure exchange channels 41 and 42 are formed around a predetermined axis, and a high pressure discharged from the reverse osmosis membrane device at one end of the cylindrical body 40. Concentrated salt water is supplied to one end side of the flow path and the concentrated salt water supply / drainage sections 16 and 17 for discharging the low pressure concentrated salt water after pressure exchange, and the low pressure salt water is supplied to the other end side of the flow path and after pressure exchange. Salt water supply / drainage sections 15 and 18 for draining the high-pressure salt water.

当該圧力交換装置6は、連結部材11を介して締結された第1エンドカバー20と第2エンドカバー30の間に備えられた円筒形状のケーシング12を備えている。ケーシング12内には、第1側方部材50と、第1側方部材50と支軸13及び保持部材14を介して連結された第2側方部材60とが収容されている。さらに、第1側方部材50第2側方部材60との間には、上述した筒状体40が支軸13周りに回転可能に挟持されている。   The pressure exchanging device 6 includes a cylindrical casing 12 provided between a first end cover 20 and a second end cover 30 fastened via a connecting member 11. The casing 12 accommodates a first side member 50 and a second side member 60 connected to the first side member 50 via the support shaft 13 and the holding member 14. Further, between the first side member 50 and the second side member 60, the cylindrical body 40 described above is sandwiched so as to be rotatable around the support shaft 13.

第1側方部材50には、逆浸透膜装置から排水された高圧濃縮塩水が供給される第1流体流入路51と、昇圧された高圧塩水Hoが逆浸透膜装置6へと排出される第2流体流出路52と、逆浸透膜装置へと供給するために昇圧される前の低圧塩水が供給される第2流体流入路53と、圧力を伝達し終えた低圧濃縮塩水が排出される第1流体流出路54とが、その厚み方向に形成されている。   The first side member 50 is supplied with the first fluid inflow passage 51 to which the high-pressure concentrated brine drained from the reverse osmosis membrane device is supplied, and the pressurized high-pressure salt water Ho is discharged to the reverse osmosis membrane device 6. A second fluid outflow passage 52, a second fluid inflow passage 53 to which low-pressure salt water before being pressurized to be supplied to the reverse osmosis membrane device is supplied, and a low-pressure concentrated salt water that has finished transmitting pressure is discharged. One fluid outflow passage 54 is formed in the thickness direction.

筒状体40には、複数本の第1流路41と第2流路42とが、その回転軸心方向に貫通するように回転軸心周りに配設されている。第1流体流入路51から第1流路41に高圧濃縮塩水が供給されると、筒状体40内で低圧塩水は昇圧されて高圧塩水となり、高圧塩水が第2流路42から第2流体流出路52へと流出する。第2流体流入路53から第2流路42に低圧塩水が供給されると、回転体40内で低圧塩水に圧力を伝達した高圧濃縮塩水が第1流路41から第1流体流出路54へと流出する。   In the cylindrical body 40, a plurality of first flow paths 41 and second flow paths 42 are disposed around the rotation axis so as to penetrate in the rotation axis direction. When high-pressure concentrated salt water is supplied from the first fluid inflow path 51 to the first flow path 41, the low-pressure salt water is pressurized in the cylindrical body 40 to become high-pressure salt water, and the high-pressure salt water is supplied from the second flow path 42 to the second fluid. It flows out to the outflow path 52. When the low-pressure salt water is supplied from the second fluid inflow path 53 to the second flow path 42, the high-pressure concentrated salt water that has transmitted pressure to the low-pressure salt water in the rotating body 40 is transferred from the first flow path 41 to the first fluid outflow path 54. And leaked.

筒状体40は、第1側方部材50から流入する各流体及び第1側方部材50へと流出する各流体のエネルギーによって、第1側方部材50と第2側方部材60、及び保持部材14で区画された空間内で支軸13周りに回転するように構成されている。回転体40の回転に伴って、複数の第1流路41が順に第1流体流入路51、第1流体流出路54と連通し、複数の第2流路42が順に第2流体流入路53、第2流体流出路52と連通し、回転体40への各流体の流入及び流出が連続的に行われる。つまり、濃縮塩水給排水部16,17及び塩水給排水部15,18を備えた第1エンドカバー20と筒状体40とは相対回転可能に構成されている。   The cylindrical body 40 has the first side member 50, the second side member 60, and the holding by the energy of each fluid flowing from the first side member 50 and the energy of each fluid flowing out to the first side member 50. It is configured to rotate around the support shaft 13 in a space defined by the member 14. Along with the rotation of the rotating body 40, the plurality of first flow paths 41 communicate with the first fluid inflow path 51 and the first fluid outflow path 54 in order, and the plurality of second flow paths 42 in order with the second fluid inflow path 53. The second fluid outflow passage 52 communicates with each other, and the inflow and outflow of each fluid to the rotating body 40 are continuously performed. That is, the 1st end cover 20 provided with the concentrated salt water supply / drainage parts 16 and 17 and the salt water supply / drainage parts 15 and 18 and the cylindrical body 40 are comprised so that relative rotation is possible.

筒状体40に形成された一部流路の一端から供給される高圧の濃縮塩水により当該流路の他端から供給される低圧の塩水が昇圧されて排出されるとともに、他の一部流路の他端から供給される低圧の塩水により圧力交換後の濃縮塩水が排出される動作が上述の相対回転により連続的に行なわれることで、圧力交換装置の濃縮塩水給排水部から排出される濃縮塩水が安定的に一定の流量に維持されるようになり、残圧回収装置8によって安定的且つ効率的に残圧が回収されるようになる。   The high-pressure concentrated brine supplied from one end of the partial flow path formed in the tubular body 40 is pressurized and discharged from the other end of the flow path, and the other partial flow Concentration discharged from the concentrated salt water supply / drainage section of the pressure exchange device by continuously performing the operation of discharging the concentrated salt water after pressure exchange by the low-pressure salt water supplied from the other end of the path by the relative rotation described above. The salt water is stably maintained at a constant flow rate, and the residual pressure is recovered stably and efficiently by the residual pressure recovery device 8.

図3には、容積式かつ回転式の圧力交換装置6の他の例が示されている。当該圧力交換装置6は、圧力交換用の複数の流路が所定軸心周りに形成された筒状体40と、筒状体40の端部に逆浸透膜装置から排出された高圧の濃縮塩水を流路の一端側に給水するとともに圧力交換後の低圧の濃縮塩水を排水する濃縮塩水給排水部16,17と、低圧の塩水を流路の他端側に給水するとともに圧力交換後の高圧の塩水を排水する塩水給排水部15,18とを備えている。そして、濃縮塩水給排水部16,17及び塩水給排水部15,18と筒状体40とは相対回転可能に構成されている。   FIG. 3 shows another example of the positive and rotary pressure exchange device 6. The pressure exchange device 6 includes a cylindrical body 40 in which a plurality of flow paths for pressure exchange are formed around a predetermined axis, and high-pressure concentrated brine discharged from the reverse osmosis membrane device at the end of the cylindrical body 40. Is supplied to one end of the flow path and drains the low-pressure concentrated salt water after pressure exchange, and the low-pressure salt water is supplied to the other end side of the flow path and the high-pressure after pressure exchange. And salt water supply / drainage sections 15 and 18 for draining the salt water. And the concentrated salt water supply / drainage parts 16 and 17 and the salt water supply / drainage parts 15 and 18 and the cylindrical body 40 are comprised so that relative rotation is possible.

圧力交換装置として、筒状体40のような回転体を備えずに、塩水と濃縮塩水との間で直接圧力交換する方式、例えばピストン式の圧力交換装置等を用いることも可能である。   As the pressure exchange device, a method of directly exchanging pressure between salt water and concentrated salt water without using a rotating body such as the cylindrical body 40, for example, a piston type pressure exchange device or the like can be used.

しかし、回転体を備えない場合は各流路へ流体を導入する切替弁を備えて流体の流入及び流出を切り替える必要があり、そのために濃縮排水の流れや圧力に変動が生じる。その結果、残圧の回収が安定して行なえない。また、塩水と濃縮塩水との間に部材を介して圧力を交換する構成を採用した圧力交換装置もあるが、部材の摩擦損失が生じる。そのため、塩水と濃縮塩水とが筒状体40の回転により他の部材を介さず直接に圧力を直接交換する図2,3に示したような圧力交換装置を用いるのが最適である。   However, when a rotating body is not provided, it is necessary to provide a switching valve that introduces fluid into each flow path to switch between inflow and outflow of the fluid, which causes fluctuations in the flow and pressure of the concentrated drainage. As a result, the residual pressure cannot be recovered stably. In addition, there is a pressure exchange device that employs a configuration in which pressure is exchanged between salt water and concentrated salt water via a member, but friction loss of the member occurs. Therefore, it is optimal to use a pressure exchange device as shown in FIGS. 2 and 3 in which the salt water and the concentrated salt water directly exchange the pressure without rotating through the other members by the rotation of the cylindrical body 40.

さらに、水車による圧力交換装置でも本願に適用可能ではあるが濃縮排水の残圧が低いため残圧回収装置での残圧の回収量が少なく容積式かつ回転式の圧力交換装置ほど効果は高くない。   Furthermore, although a pressure exchange device using a water wheel is applicable to the present application, since the residual pressure of the concentrated waste water is low, the amount of residual pressure recovered by the residual pressure recovery device is small, and the effect is not as high as that of a positive displacement and rotary pressure exchange device .

図4に示すように、同様の目的で、残圧回収装置8で回収されたエネルギー、つまり反動水車8aにより得られた動力を給水ポンプ4の補助動力として伝達する動力伝達機構8bを備えてもよい。   As shown in FIG. 4, for the same purpose, a power transmission mechanism 8b for transmitting the energy recovered by the residual pressure recovery device 8, that is, the power obtained by the reaction water turbine 8a, as auxiliary power for the feed water pump 4 may be provided. Good.

さらに、反動水車8aにより得られた動力により発電する発電機を備えて発電し、塩水淡水化装置に備えた各種の電気設備に給電するように構成してもよい。   Furthermore, you may comprise with the generator which generate | occur | produces with the motive power obtained by the reaction water turbine 8a, and it may comprise so that it may supply electric power to the various electrical equipment with which the salt water desalination apparatus was equipped.

尚、反動水車は水車の羽根車で圧力を回収する能力に優れており、容積式かつ回転式の圧力回収装置のように残圧が残る場合には、速度を回収する能力に優れている衝動水車より好適な残圧を回収する装置となる。   In addition, the reaction water turbine is excellent in the ability to collect pressure with the impeller of the water wheel, and when the residual pressure remains like the positive displacement type rotary pressure recovery device, the impulse is excellent in the ability to recover the speed. This is a device for recovering the residual pressure more suitable than the water wheel.

上述した実施形態では、逆浸透膜装置3の近傍に給水ポンプ4を設けた構成を説明したが、給水ポンプを設置せず、前処理装置2に備えた送水ポンプ2Dで代用してもよい。   In the embodiment described above, the configuration in which the water supply pump 4 is provided in the vicinity of the reverse osmosis membrane device 3 has been described. However, the water supply pump 2D provided in the pretreatment device 2 may be used instead of the water supply pump.

この場合、ブースターポンプ7に必要な圧力を送水ポンプ2Dで供給する必要があり、送水ポンプ2Dの能力アップに伴うコスト上昇や、前処理装置2からブースターポンプ7までの配管Lを高い圧力に耐えるように材質を変更したり管厚を厚くすることからコスト上昇をもたらしたりするので、上述した実施形態のように給水ポンプ4を逆浸透膜装置3の近傍に設けるのが好ましい。   In this case, it is necessary to supply the pressure required for the booster pump 7 with the water pump 2D, and the cost increases due to the increased capacity of the water pump 2D, and the piping L from the pretreatment device 2 to the booster pump 7 can withstand high pressure. Thus, since the material is changed or the tube thickness is increased, the cost is increased. Therefore, it is preferable to provide the water supply pump 4 in the vicinity of the reverse osmosis membrane device 3 as in the above-described embodiment.

塩水を透過水と濃縮塩水に分離する逆浸透膜装置と、低圧の塩水を所定圧力に昇圧して前記逆浸透膜装置に供給する高圧ポンプと、前記逆浸透膜装置から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置と、前記圧力交換装置で昇圧された塩水をさらに前記所定圧力に昇圧して前記逆浸透膜装置に供給するブースターポンプとを備えている既存の塩水淡水化装置に対して、上述した塩水淡水化装置に改造することにより、利用されていなかったエネルギーを回収して再利用することが可能になり、効率の良い塩水淡水化装置に改造することができるようになる。   A reverse osmosis membrane device that separates salt water into permeate and concentrated salt water, a high-pressure pump that boosts low-pressure salt water to a predetermined pressure and supplies the reverse osmosis membrane device, and high-pressure concentration discharged from the reverse osmosis membrane device Existing salt water fresh water comprising a pressure exchanging device that boosts low-pressure salt water with salt water, and a booster pump that further boosts the salt water boosted by the pressure exchanging device to the predetermined pressure and supplies it to the reverse osmosis membrane device By remodeling the above-described saltwater desalination apparatus, the energy that has not been used can be recovered and reused, and can be remodeled into an efficient saltwater desalination apparatus. It becomes like this.

即ち、塩水淡水化装置の改造方法は、圧力交換装置から排出される濃縮塩水の配管ラインに濃縮塩水の残圧を回収する残圧回収装置を取り付ける工程と、残圧回収装置で回収された残圧による得られる動力を給水ポンプまたはブースターポンプに伝達し、或いは残圧回収装置に付属する発電機を駆動する動力伝達機構を組み込む工程とを備えて構成されている。   That is, the salt water desalination device is modified by attaching a residual pressure recovery device for recovering the residual pressure of the concentrated salt water to the piping line of the concentrated salt water discharged from the pressure exchange device, and the residual pressure recovered by the residual pressure recovery device. The power obtained by pressure is transmitted to a feed water pump or a booster pump, or a power transmission mechanism for driving a generator attached to the residual pressure recovery device is incorporated.

残圧回収装置8が上述した反動水車8aを備えて構成される場合、機械カプラ8b等が動力伝達機構となる。   When the residual pressure recovery device 8 is configured to include the above-described reaction water turbine 8a, the mechanical coupler 8b and the like serve as a power transmission mechanism.

以上説明した塩水淡水化装置の具体的構成は実施形態の記載に限定されるものではなく、本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。   It is needless to say that the specific configuration of the salt water desalination apparatus described above is not limited to the description of the embodiment, and can be appropriately changed and designed within the scope of the effects of the present invention.

3:逆浸透膜装置
4:給水ポンプ
5:高圧ポンプ
6:圧力交換装置
7:ブースターポンプ
8:残圧回収装置
8a:反動水車
3: Reverse osmosis membrane device 4: Water supply pump 5: High pressure pump 6: Pressure exchange device 7: Booster pump 8: Residual pressure recovery device 8a: Reaction water turbine

Claims (8)

塩水を透過水と濃縮塩水に分離する逆浸透膜装置と、低圧の塩水を所定圧力に昇圧して前記逆浸透膜装置に供給する高圧ポンプと、前記逆浸透膜装置から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置と、前記圧力交換装置で昇圧された塩水をさらに前記所定圧力に昇圧して前記逆浸透膜装置に供給するブースターポンプと、を備えている塩水淡水化装置であって、
前記圧力交換装置から排出される濃縮塩水の残圧を回収する残圧回収装置を備えている塩水淡水化装置。
A reverse osmosis membrane device that separates salt water into permeate and concentrated salt water, a high-pressure pump that boosts low-pressure salt water to a predetermined pressure and supplies the reverse osmosis membrane device, and high-pressure concentration discharged from the reverse osmosis membrane device Salt water desalination comprising: a pressure exchanging device that boosts low-pressure salt water with salt water; and a booster pump that further boosts the salt water boosted by the pressure exchanging device to the predetermined pressure and supplies it to the reverse osmosis membrane device. A device,
A salt water desalination apparatus comprising a residual pressure recovery device for recovering a residual pressure of concentrated salt water discharged from the pressure exchange device.
前記残圧回収装置は、前記圧力交換装置から排出される濃縮塩水により駆動される反動水車を備えて構成されている請求項1記載の塩水淡水化装置。   The salt water desalination apparatus according to claim 1, wherein the residual pressure recovery apparatus includes a reaction water turbine driven by concentrated salt water discharged from the pressure exchange device. 前記圧力交換装置は、圧力交換用の複数の流路が所定軸心周りに形成された筒状体と、前記流路の一端側から前記逆浸透膜装置から排出された高圧の濃縮塩水を給水するとともに圧力交換後の低圧の濃縮塩水を排水する濃縮塩水給排水部と、前記流路の他端側から低圧の塩水を給水するとともに圧力交換後の高圧の塩水を排水する塩水給排水部とを備え、前記濃縮塩水給排水部及び前記塩水給排水部が、前記筒状体と相対回転可能に構成されている請求項1または2記載の塩水淡水化装置。   The pressure exchange device supplies a cylindrical body in which a plurality of flow channels for pressure exchange are formed around a predetermined axis, and high-pressure concentrated salt water discharged from the reverse osmosis membrane device from one end of the flow channel. And a salt water supply / drainage section for draining low-pressure concentrated salt water after pressure exchange, and a salt water supply / drainage section for feeding low-pressure salt water from the other end of the flow path and draining high-pressure salt water after pressure exchange. The salt water desalination apparatus according to claim 1 or 2, wherein the concentrated salt water supply / drainage unit and the salt water supply / drainage unit are configured to be rotatable relative to the cylindrical body. 前記高圧ポンプ及び前記圧力交換装置に塩水を供給する給水ポンプをさらに備えている請求項1から3の何れかに記載の塩水淡水化装置。   The salt water desalination apparatus in any one of Claim 1 to 3 further equipped with the feed water pump which supplies salt water to the said high pressure pump and the said pressure exchange apparatus. 前記反動水車により得られた動力を前記給水ポンプの補助動力として伝達する動力伝達機構を備えている請求項4記載の塩水淡水化装置。   The salt water desalination apparatus of Claim 4 provided with the power transmission mechanism which transmits the motive power obtained by the said reaction water turbine as auxiliary power of the said water supply pump. 前記反動水車により得られた動力を前記ブースターポンプの補助動力として伝達する動力伝達機構を備えている請求項2から4の何れかに記載の塩水淡水化装置。   The salt water desalination apparatus in any one of Claim 2 to 4 provided with the power transmission mechanism which transmits the motive power obtained by the said reaction water turbine as auxiliary power of the said booster pump. 前記反動水車により得られた動力により発電する発電機が設けられている請求項2から4の何れかに記載の塩水淡水化装置。   The salt water desalination apparatus in any one of Claim 2 to 4 provided with the generator which produces electric power with the motive power obtained by the said reaction water turbine. 塩水を透過水と濃縮塩水に分離する逆浸透膜装置と、低圧の塩水を所定圧力に昇圧して前記逆浸透膜装置に供給する高圧ポンプと、前記逆浸透膜装置から排出された高圧の濃縮塩水で低圧の塩水を昇圧する圧力交換装置と、前記圧力交換装置で昇圧された塩水をさらに前記所定圧力に昇圧して前記逆浸透膜装置に供給するブースターポンプと、を備えている塩水淡水化装置の改造方法であって、
前記圧力交換装置から排出される濃縮塩水の配管ラインに濃縮塩水の残圧を回収する残圧回収装置を取り付ける工程と、
前記残圧回収装置で回収された残圧による得られる動力を前記給水ポンプまたは前記ブースターポンプに伝達し、或いは残圧回収装置に付属する発電機を駆動する動力伝達機構を組み込む工程と、を備えている塩水淡水化装置の改造方法。
A reverse osmosis membrane device that separates salt water into permeate and concentrated salt water, a high-pressure pump that boosts low-pressure salt water to a predetermined pressure and supplies the reverse osmosis membrane device, and high-pressure concentration discharged from the reverse osmosis membrane device Salt water desalination comprising: a pressure exchanging device that boosts low-pressure salt water with salt water; and a booster pump that further boosts the salt water boosted by the pressure exchanging device to the predetermined pressure and supplies it to the reverse osmosis membrane device. A method of remodeling the device,
Attaching a residual pressure recovery device for recovering the residual pressure of the concentrated salt water to a piping line of the concentrated salt water discharged from the pressure exchange device;
A step of transmitting power obtained by the residual pressure recovered by the residual pressure recovery device to the feed water pump or the booster pump, or incorporating a power transmission mechanism for driving a generator attached to the residual pressure recovery device. Remodeling method of salt water desalination equipment.
JP2015149619A 2015-07-29 2015-07-29 Salt water desalination device and method for remodeling salt water desalination device Active JP6600499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149619A JP6600499B2 (en) 2015-07-29 2015-07-29 Salt water desalination device and method for remodeling salt water desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149619A JP6600499B2 (en) 2015-07-29 2015-07-29 Salt water desalination device and method for remodeling salt water desalination device

Publications (2)

Publication Number Publication Date
JP2017029881A true JP2017029881A (en) 2017-02-09
JP6600499B2 JP6600499B2 (en) 2019-10-30

Family

ID=57986636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149619A Active JP6600499B2 (en) 2015-07-29 2015-07-29 Salt water desalination device and method for remodeling salt water desalination device

Country Status (1)

Country Link
JP (1) JP6600499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019775A (en) * 2018-08-20 2018-12-18 辽宁莱特莱德环境工程有限公司 The counter-infiltration system and method for high concentration ratio suitable for high strong brine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081462A (en) * 2010-09-15 2012-04-26 Toshiba Corp Membrane filtration system
JP2013204461A (en) * 2012-03-27 2013-10-07 Kubota Corp Pressure exchanging device
JP2013223855A (en) * 2012-03-19 2013-10-31 Toshiba Corp Seawater desalination apparatus
JP2014200708A (en) * 2013-04-02 2014-10-27 協和機電工業株式会社 Salt water desalinator
JP2014210230A (en) * 2013-04-18 2014-11-13 株式会社東芝 Power recovery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081462A (en) * 2010-09-15 2012-04-26 Toshiba Corp Membrane filtration system
JP2013223855A (en) * 2012-03-19 2013-10-31 Toshiba Corp Seawater desalination apparatus
JP2013204461A (en) * 2012-03-27 2013-10-07 Kubota Corp Pressure exchanging device
JP2014200708A (en) * 2013-04-02 2014-10-27 協和機電工業株式会社 Salt water desalinator
JP2014210230A (en) * 2013-04-18 2014-11-13 株式会社東芝 Power recovery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019775A (en) * 2018-08-20 2018-12-18 辽宁莱特莱德环境工程有限公司 The counter-infiltration system and method for high concentration ratio suitable for high strong brine

Also Published As

Publication number Publication date
JP6600499B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
KR101822567B1 (en) Concentration difference power generation device and method for operating same
EP2021586B1 (en) Hybrid ro/pro system
KR102266110B1 (en) Pressure-reduced saline water treatment system
JP6762258B2 (en) Reverse osmosis treatment system and reverse osmosis treatment method
WO2018150980A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
KR101335445B1 (en) Device and Method for Desalination
JP5538572B2 (en) Seawater desalination equipment
JP6965680B2 (en) Seawater desalination method and seawater desalination system
WO2013094427A1 (en) Reverse osmosis treatment device
KR101726393B1 (en) Seawater desalination and power generation system for cleaning semi-permeable membrane for pressure retarded osmosis, and cleaning method for the same
KR101817685B1 (en) See water desalination system using pressure-retarded osmosis
WO2015087063A1 (en) Forward osmosis
CN100537464C (en) Method for reclaiming and utilizing paper-making industrial waste water
JP6600499B2 (en) Salt water desalination device and method for remodeling salt water desalination device
US9895663B2 (en) Integrated reverse osmosis/pressure retarded osmosis system
KR20160054230A (en) See water desalination system using pressure-retarded osmosis
WO2017170013A1 (en) Water production system
JPWO2016080085A1 (en) Fresh water generation system and fresh water generation method
JP2014133189A (en) Desalination system
JP2017176929A (en) Water production system
JP2016097331A (en) Water generation system and water generation method
WO2016006344A1 (en) Desalination system
JP7286419B2 (en) MEMBRANE FILTRATION SYSTEM, OPERATING METHOD OF MEMBRANE FILTRATION SYSTEM, ELECTRICAL SUPPLY DEVICE AND METHOD OF ELECTRICITY SUPPLY TO MEMBRANE FILTRATION SYSTEM
WO2022059737A1 (en) Seawater desalination system
JP2017074532A (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6600499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150