JP2013204461A - Pressure exchanging device - Google Patents

Pressure exchanging device Download PDF

Info

Publication number
JP2013204461A
JP2013204461A JP2012072210A JP2012072210A JP2013204461A JP 2013204461 A JP2013204461 A JP 2013204461A JP 2012072210 A JP2012072210 A JP 2012072210A JP 2012072210 A JP2012072210 A JP 2012072210A JP 2013204461 A JP2013204461 A JP 2013204461A
Authority
JP
Japan
Prior art keywords
pressure
fluid
side member
rotating body
end cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012072210A
Other languages
Japanese (ja)
Other versions
JP5996902B2 (en
Inventor
Yoshifumi Hirosawa
慶文 廣澤
Norihiro Teramoto
憲博 寺本
Akira Shozaki
晃 庄▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012072210A priority Critical patent/JP5996902B2/en
Priority to EP12835947.8A priority patent/EP2762730B1/en
Priority to CN201280045496.3A priority patent/CN103814223B/en
Priority to US14/346,566 priority patent/US9546671B2/en
Priority to DK12835947.8T priority patent/DK2762730T3/en
Priority to PCT/JP2012/074495 priority patent/WO2013047487A1/en
Publication of JP2013204461A publication Critical patent/JP2013204461A/en
Application granted granted Critical
Publication of JP5996902B2 publication Critical patent/JP5996902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient pressure exchanging device which can be compact with reduced cost without reducing a processing flow rate.SOLUTION: A first end cover side first pressure part communicating with a first fluid inlet part 21, a first end cover side second pressure part communicating with a first fluid outlet part 24, and a first end cover side intermediate pressure part between the first end cover side first pressure part and the first end cover side second pressure part, are formed to a joint part between a first end cover 20 and a first side member 50, so that they respectively correspond to a first pressure region communicating with a first fluid inlet path 51 and a second pressure region communicating with the first fluid outlet path 54 which are formed to a clearance between a rotor 40 and the first side member 50, and an intermediate pressure region between the first pressure region and the second pressure region.

Description

本発明は、第1流体と第2流体との間で圧力を交換する圧力交換装置に関する。   The present invention relates to a pressure exchange device that exchanges pressure between a first fluid and a second fluid.

逆浸透膜装置を用いる海水淡水化施設では、逆浸透膜装置から排水される高圧濃縮流体である高圧濃縮海水がもつ圧力を、逆浸透膜装置に給水される被濃縮流体である低圧海水の昇圧に利用する圧力交換装置が設けられている。   In seawater desalination facilities that use reverse osmosis membrane devices, the pressure of high-pressure concentrated seawater, which is high-pressure concentrated fluid drained from the reverse osmosis membrane device, is increased by the pressure of low-pressure seawater, which is the concentrated fluid supplied to the reverse osmosis membrane device. A pressure exchanging device is provided.

図14に示すように、特許文献1には、管状の圧力伝達部が回転軸心周りに複数本配設されたロータ80を備えた圧力交換装置が記載されている。   As shown in FIG. 14, Patent Document 1 describes a pressure exchange device including a rotor 80 in which a plurality of tubular pressure transmission units are arranged around a rotation axis.

該圧力交換装置は、ロータ80の回転に伴って、高圧入口側ポート82へ供給される高圧濃縮海水と低圧入口側ポート81へ供給される低圧海水とを圧力伝達部で接触させて、高圧濃縮海水の圧力によって昇圧した低圧海水を、高圧出口側ポート83から高圧海水として排水し、低圧入口側ポート81へ供給される低圧海水によって前記圧力を伝達し終えた低圧濃縮海水を低圧出口側ポート84から排水するように構成されている。   As the rotor 80 rotates, the pressure exchange device causes the high-pressure concentrated seawater supplied to the high-pressure inlet-side port 82 and the low-pressure seawater supplied to the low-pressure inlet-side port 81 to come into contact with each other by the pressure transmission unit. The low-pressure seawater boosted by the pressure of the seawater is drained as high-pressure seawater from the high-pressure outlet-side port 83, and the low-pressure concentrated seawater that has been transmitted by the low-pressure seawater supplied to the low-pressure inlet-side port 81 It is configured to drain from.

図15に示すように、特許文献2には、一対の回転板91、92と当該回転板91、92を連接する軸93とで構成される回転体90を備えた圧力交換装置が記載されている。   As shown in FIG. 15, Patent Document 2 describes a pressure exchanging device including a rotating body 90 including a pair of rotating plates 91 and 92 and a shaft 93 connecting the rotating plates 91 and 92. Yes.

一方の回転板91には、低圧入口側ポート95に供給された低圧海水を圧力伝達部96に案内する流路91aと、圧力伝達部96から排水される高圧海水を高圧出口側ポート97に案内する流路91bが形成されている。   One rotating plate 91 guides the low-pressure seawater supplied to the low-pressure inlet side port 95 to the pressure transmission unit 96 and the high-pressure seawater drained from the pressure transmission unit 96 to the high-pressure outlet side port 97. A flow path 91b is formed.

他方の回転板92には、高圧入口側ポート94に供給された高圧濃縮海水を圧力伝達部96に案内する流路92bと、圧力伝達部96から排水される低圧濃縮海水を低圧出口側ポート98に案内する流路92aが形成されている。   The other rotary plate 92 has a flow path 92b for guiding the high-pressure concentrated seawater supplied to the high-pressure inlet side port 94 to the pressure transmission unit 96, and the low-pressure concentrated seawater drained from the pressure transmission unit 96 at the low-pressure outlet side port 98. A flow path 92a is formed to guide the flow.

該圧力交換装置は、回転体90の回転に伴って、高圧入口側ポート94へ供給される高圧濃縮海水と、低圧入口側ポート95へ供給される低圧海水を、管状の圧力伝達部96内で接触させて、高圧濃縮海水の圧力によって昇圧した低圧海水を高圧出口側ポート97から高圧海水として排水し、低圧入口側ポート95へ供給される低圧海水によって前記圧力を伝達し終えた低圧濃縮海水を低圧出口側ポート98から排水するように構成されている。   The pressure exchanging device converts the high-pressure concentrated seawater supplied to the high-pressure inlet-side port 94 and the low-pressure seawater supplied to the low-pressure inlet-side port 95 in the tubular pressure transmission unit 96 as the rotating body 90 rotates. The low-pressure seawater that has been brought into contact and drained as high-pressure seawater from the high-pressure outlet side port 97 is increased by the pressure of the high-pressure concentrated seawater. It is configured to drain from the low pressure outlet side port 98.

米国特許出願公開第2009180903号明細書US Patent Application Publication No. 2008090903 中国特許出願公開第200710056401号明細書Chinese Patent Application Publication No. 200710056401

特許文献1に記載された圧力交換装置では、ロータ80に配設された管状の圧力伝達部の断面積に依存して圧力伝達される処理流量が定まるので、処理流量を増やすためには、圧力伝達部の配設本数を増加させるか、圧力伝達部の一本あたりの断面積を大きくする必要があり、何れの場合であってもロータ80が大きくなり、それに伴って圧力交換装置が大型になり重量も増大する。   In the pressure exchanging device described in Patent Document 1, since the processing flow rate to which pressure is transmitted is determined depending on the cross-sectional area of the tubular pressure transmission portion disposed in the rotor 80, in order to increase the processing flow rate, It is necessary to increase the number of transmission parts or to increase the cross-sectional area per pressure transmission part. In any case, the rotor 80 becomes large, and the pressure exchange device becomes large accordingly. The weight also increases.

一般的にロータ80は、軽量化、高剛性、耐摩耗性、低摩擦係数等の条件を満足させるために、セラミックス等の高価な材料で形成されているため、圧力交換装置を大型化するとそれに伴って材料費、製造費が嵩むという問題があった。   In general, the rotor 80 is formed of an expensive material such as ceramics in order to satisfy conditions such as weight reduction, high rigidity, wear resistance, and a low friction coefficient. Along with this, there is a problem that material costs and manufacturing costs increase.

さらに、大型のロータ80を回転させるために要するトルクも増大し、小型のロータ80を回転させる場合よりも大きなエネルギーが必要になり、効率が低下するという問題もあった。このような理由によって、圧力交換装置1台あたりの処理流量を増加させるのは極めて困難であった。   Furthermore, the torque required to rotate the large rotor 80 also increases, requiring more energy than the case of rotating the small rotor 80, and there is a problem that efficiency is lowered. For these reasons, it has been extremely difficult to increase the processing flow rate per pressure exchange device.

そのため、大量の海水を淡水化処理する大型の海水淡水化施設には、多数の圧力交換装置が設置されていた。しかし、圧力交換装置の設置台数が増加すると、各圧力交換装置を接続する配管の施工及び管理が煩雑になるという問題があった。   Therefore, a large number of pressure exchange devices have been installed in a large-scale seawater desalination facility that desalinates a large amount of seawater. However, when the number of installed pressure exchange devices increases, there is a problem that the construction and management of piping connecting the pressure exchange devices becomes complicated.

特許文献2に記載された圧力交換装置では、一方の回転板91に形成された流路91bと他方の回転板92に形成された流路92bの夫々が、回転体内部で軸心方向に沿った流路に円周方向に形成された流路が連通するように構成されているため、回転板91、92に流路を形成するための厚みが必要となる。そのため、回転板91、92が大型になり材料費や加工費が嵩むという問題があった。   In the pressure exchanging device described in Patent Document 2, each of the flow path 91b formed in one rotary plate 91 and the flow path 92b formed in the other rotary plate 92 extends along the axial direction inside the rotary body. Since the flow path formed in the circumferential direction communicates with the remaining flow path, a thickness for forming the flow path on the rotating plates 91 and 92 is required. For this reason, there is a problem that the rotating plates 91 and 92 become large and material costs and processing costs increase.

さらに、回転板91、92の大型化によって重量が増すと、回転体90の回転時に軸部93に作用するねじりや曲げ応力が大きくなり、その変形や破損を防止するために軸部93を太くする必要があるばかりでなく、回転のために要するエネルギーが増加し、効率が低下するという問題もあった。   Further, when the weight increases due to an increase in the size of the rotating plates 91 and 92, torsional and bending stress acting on the shaft portion 93 when the rotating body 90 rotates increases, and the shaft portion 93 is thickened to prevent deformation and breakage. In addition to this, there is a problem in that the energy required for rotation increases and efficiency decreases.

本発明の目的は、処理流量を減らすことなくコンパクト化、低コスト化が可能な効率の良い圧力交換装置を提供する点にある。   An object of the present invention is to provide an efficient pressure exchange device that can be made compact and cost-effective without reducing the processing flow rate.

上述の目的を達成するため、本発明による圧力交換装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載したとおり、第1流体と第2流体との間で圧力を交換する圧力交換装置であって、第1流体が流入及び流出する第1流路と、第2流体が流入及び流出する第2流路とが回転軸心方向に貫通するように前記回転軸心周りに配設された回転体と、第1流体を前記第1流路に案内する第1流体流入路と、第2流体との間で圧力交換された第1流体を前記第1流路から案内する第1流体流出路とが、厚み方向に形成された第1側方部材と、前記第1側方部材との間で前記回転体を回転可能に挟持する第2側方部材と、前記第1側方部材の外側に配置され前記第1流体流入路と連通する第1流体流入部と、前記第1流体流出路と連通する第1流体流出部が形成された第1エンドカバーと、前記第2側方部材の外側に配置された第2エンドカバーとを備え、前記第1側方部材の前記回転体への対向面に形成された、第1流体流入路から供給された第1流体の圧力を受ける第1圧力領域と、第2流体との間で圧力交換された第1流体の圧力を受ける第2圧力領域と、前記第1圧力領域と前記第2圧力領域の間の中間圧力領域と夫々対応するように、前記第1エンドカバーと前記第1側方部材との接合部に、前記第1流体流入部と連通する第1エンドカバー側第1圧力部と、前記第1流体流出部と連通する第1エンドカバー側第2圧力部と、前記第1エンドカバー側第1圧力部と前記第1エンドカバー側第2圧力部の間に第1エンドカバー側中間圧力部が形成されている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the pressure exchange device according to the present invention is that pressure is applied between the first fluid and the second fluid as described in claim 1 of the claims. A pressure exchanging device for exchanging, wherein the first flow path through which the first fluid flows in and out and the second flow path through which the second fluid flows in and out pass in the direction of the rotation axis. A rotating body disposed around, a first fluid inflow passage for guiding the first fluid to the first flow path, and a first fluid pressure-exchanged between the second fluid from the first flow path. A first fluid outflow passage that guides the first side member formed in the thickness direction; a second side member that rotatably sandwiches the rotating body between the first side member; A first fluid inflow portion that is disposed outside the first side member and communicates with the first fluid inflow passage, and communicates with the first fluid outflow passage. A first end cover in which a first fluid outflow portion is formed; and a second end cover disposed outside the second side member; and a surface of the first side member facing the rotating body. A formed first pressure region for receiving the pressure of the first fluid supplied from the first fluid inflow path, and a second pressure region for receiving the pressure of the first fluid exchanged with the second fluid; The first fluid inflow portion communicates with a joint portion between the first end cover and the first side member so as to correspond to an intermediate pressure region between the first pressure region and the second pressure region, respectively. A first end cover side first pressure portion, a first end cover side second pressure portion communicating with the first fluid outflow portion, the first end cover side first pressure portion, and the first end cover side first pressure portion. The first end cover side intermediate pressure part is formed between the two pressure parts.

回転体と第1側方部材との間や、回転体と第2側方部材との間には適度な隙間が形成され、この隙間には回転体に流入するまたは回転体から流出する第1流体や第2流体が進入する。この隙間に進入した第1流体や第2流体は、回転体を円滑に回転させるための潤滑剤の役割をする。回転体と第1側方部材の隙間に進入した第1流体や第2流体の圧力は回転体を第2側方部材に向けて押すように作用する。回転体と第2側方部材の隙間に進入した第1流体や第2流体の圧力は回転体を第1側方部材に向けて押すように作用する。   Appropriate gaps are formed between the rotating body and the first side member, or between the rotating body and the second side member, and the first gap that flows into or out of the rotating body is formed in this gap. Fluid or second fluid enters. The first fluid and the second fluid that have entered the gap serve as a lubricant for smoothly rotating the rotating body. The pressure of the first fluid and the second fluid that have entered the gap between the rotating body and the first side member acts to push the rotating body toward the second side member. The pressure of the first fluid and the second fluid that have entered the gap between the rotating body and the second side member acts to push the rotating body toward the first side member.

このように、前記各隙間に進入した第1流体や第2流体により、回転体は第1側方部材または第2側方部材との間で回転姿勢が保たれ、円滑な回転が可能となる。回転体と第1側方部材及び回転体と第2側方部材とが摺動する虞が低減されるので、高価な耐磨耗性材料を用いなくとも、その寿命を延長することができる。また、処理流量を稼ぐために回転体を大径に形成し、圧力伝達部を構成する第1流路及び第2流路の断面積を大きくした場合でも摺動する虞が低減されるため、回転駆動するために要するエネルギーが低く抑えられるようになる。   As described above, the rotating body is maintained in the rotation posture with the first side member or the second side member by the first fluid and the second fluid that have entered the gaps, thereby enabling smooth rotation. . Since the possibility of sliding between the rotating body and the first side member and between the rotating body and the second side member is reduced, the lifetime can be extended without using an expensive wear-resistant material. In addition, since the rotating body is formed to have a large diameter in order to increase the processing flow rate, and the cross-sectional area of the first flow path and the second flow path constituting the pressure transmission unit is increased, the possibility of sliding is reduced. Energy required for rotational driving can be kept low.

ところで、第1側方部材には、回転体と第1側方部材の隙間に進入した第1流体の圧力と、第1流体流入路の回転体と対向する面にかかる第1流体の圧力により、その外側に配置された第1エンドカバー側へ押される力が作用している。このような押圧力により回転体と第1側方部材と間の隙間が変動すると、隙間内の流体の圧力分布が変動することになり回転体の回転が不安定になってしまう。また、隙間が大きくなると漏れ量が増加するので圧力交換の効率が低下してしまう。   By the way, the first side member is caused by the pressure of the first fluid that has entered the gap between the rotating body and the first side member and the pressure of the first fluid applied to the surface of the first fluid inflow path that faces the rotating body. The force pushed to the first end cover side arranged on the outside acts. If the gap between the rotating body and the first side member varies due to such a pressing force, the pressure distribution of the fluid in the gap varies, and the rotation of the rotating body becomes unstable. Moreover, since the amount of leakage increases when the gap increases, the efficiency of pressure exchange decreases.

そこで、第1側方部材を第1エンドカバー側から回転体側へ押圧することが考えられる。しかし、この押圧力が回転体側の押圧力より大きければ、回転体と第1側方部材の隙間が小さくなって摺動し回転抵抗が増加するという問題がある。逆に、第1側方部材の第1エンドカバー側の押圧力が回転体側の押圧力より小さければ、回転体と第1側方部材の隙間が大きくなって流体の漏れ量が増加して圧力交換の効率が低下するという問題がある。   Therefore, it is conceivable to press the first side member from the first end cover side to the rotating body side. However, if this pressing force is greater than the pressing force on the rotating body side, there is a problem that the clearance between the rotating body and the first side member becomes smaller and the sliding resistance increases. On the other hand, if the pressing force on the first end cover side of the first side member is smaller than the pressing force on the rotating body side, the gap between the rotating body and the first side member becomes large and the amount of fluid leakage increases and the pressure increases. There is a problem that the efficiency of the exchange is lowered.

また、第1側方部材は全域に亘って均一な圧力で第1エンドカバー側へ押されているわけではない。前記第1側方部材の前記回転体への対向面のうち、第1流体流入路から供給される第1流体が進入した領域は、その第1流体の圧力が作用する第1圧力領域となっている。前記対向面のうち、第2流体との間で圧力交換された第1流体が進入した領域は、その第1流体の圧力が作用する第2圧力領域となっている。また、前記対向面のうち、前記第1圧力領域と前記第2圧力領域の間の領域は、第1圧力領域の第1流体の圧力と、第2圧力領域の第1流体の圧力の中間的な圧力が作用する中間圧力領域となっている。つまり、第1側方部材の回転体との対向面では位置によって作用する圧力が異なっている。   Further, the first side member is not pushed toward the first end cover with a uniform pressure over the entire area. Of the surface of the first side member facing the rotating body, the region where the first fluid supplied from the first fluid inflow path enters is the first pressure region where the pressure of the first fluid acts. ing. The area | region where the 1st fluid pressure-exchanged between the 2nd fluids approached among the said opposing surfaces becomes the 2nd pressure area | region where the pressure of the 1st fluid acts. In addition, the region between the first pressure region and the second pressure region in the facing surface is an intermediate between the pressure of the first fluid in the first pressure region and the pressure of the first fluid in the second pressure region. This is an intermediate pressure region where a large pressure acts. That is, the pressure acting on the surface of the first side member facing the rotating body varies depending on the position.

そこで、第1エンドカバーと第1側方部材との接合部に、第1側方部材の回転体側の面に形成された各圧力領域と第1側方部材をはさんで回転体の軸心方向視で夫々に対応するように、第1流体流入部と連通する第1エンドカバー側第1圧力部と、第1流体流出部と連通する第1エンドカバー側第2圧力部と、第1エンドカバー側第1圧力部と第1エンドカバー側第2圧力部の間に第1エンドカバー側中間圧力部を形成する。   Therefore, the axial center of the rotating body is sandwiched between each pressure region formed on the rotating body side surface of the first side member and the first side member at the joint between the first end cover and the first side member. The first end cover side first pressure part communicating with the first fluid inflow part, the first end cover side second pressure part communicating with the first fluid outflow part, and the first so as to correspond respectively to the direction view A first end cover side intermediate pressure part is formed between the end cover side first pressure part and the first end cover side second pressure part.

このように、第1側方部材を第1エンドカバー側へ押す圧力分布に応じて、第1側方部材を回転体側へ押す圧力分布を第1側方部材をはさんで回転体の軸心方向視で夫々に対応させることで、第1側方部材の両面に作用する押圧力をつり合わせることができる。これにより、第1側方部材に撓みが発生することを抑制する。撓みの発生が抑制されるので、第1側方部材を薄肉化することができる。従って、圧力交換装置のコンパクト化と低コスト化を図ることができる。   In this way, according to the pressure distribution that pushes the first side member toward the first end cover, the pressure distribution that pushes the first side member toward the rotator is sandwiched between the first side member and the axis of the rotator. By making each correspond in the direction view, it is possible to balance the pressing force acting on both surfaces of the first side member. Thereby, it is suppressed that bending occurs in the 1st side member. Since generation | occurrence | production of bending is suppressed, a 1st side member can be thinned. Accordingly, it is possible to reduce the size and cost of the pressure exchange device.

なお、前記隙間は、狭すぎると回転体が第1側方部材と摺動しやすくなる。逆に、広すぎると第1流体や第2流体の漏れ量が多くなり、圧力の交換効率が低下してしまう。従って、前記隙間は、好ましくは1〜100μm程度に設定されている。   If the gap is too narrow, the rotating body can easily slide with the first side member. Conversely, if it is too wide, the amount of leakage of the first fluid and the second fluid increases, and the pressure exchange efficiency decreases. Accordingly, the gap is preferably set to about 1 to 100 μm.

同第二の特徴構成は、同請求項2に記載したとおり、上述の第一特徴構成に加えて、 前記第1側方部材に、第2流体を前記第2流路に案内する第2流体流入路と、第1流体との間で圧力交換された第2流体を前記第2流路から案内する第2流体流出路とが厚み方向に形成され、第1エンドカバーに前記第2流体流入路と連通する第2流体流入部と、前記第2流体流出路と連通する第2流体流出部が形成され、前記第1側方部材の前記回転体への対向面に形成された、第2流体流入路から供給された第2流体の圧力を受ける第2圧力領域と、第1流体との間で圧力交換された第2流体の圧力を受ける第1圧力領域と、前記第2圧力領域と前記第1圧力領域の間の中間圧力領域と夫々対応するように、前記第1エンドカバーと前記第1側方部材との接合部に、前記第2流体流入部と連通する第1エンドカバー側第2圧力部と、前記第2流体流出部と連通する第1エンドカバー側第1圧力部と、前記第1エンドカバー側第2圧力部と前記第1エンドカバー側第1圧力部の間に第1エンドカバー側中間圧力部が形成されている点にある。   As described in the second aspect, in addition to the first feature configuration described above, the second feature configuration includes a second fluid that guides a second fluid to the first side member and the second fluid. An inflow path and a second fluid outflow path for guiding the second fluid pressure-exchanged between the first fluid from the second flow path are formed in the thickness direction, and the second fluid inflow into the first end cover A second fluid inflow portion communicating with the passage and a second fluid outflow portion communicating with the second fluid outflow passage are formed, and the second fluid inflow portion is formed on a surface of the first side member facing the rotating body. A second pressure region that receives the pressure of the second fluid supplied from the fluid inflow path, a first pressure region that receives the pressure of the second fluid exchanged with the first fluid, and the second pressure region. The first end cover and the first side member so as to correspond to an intermediate pressure region between the first pressure regions, respectively. A first end cover side second pressure portion communicating with the second fluid inflow portion, a first end cover side first pressure portion communicating with the second fluid outflow portion, and the first end cover. A first end cover side intermediate pressure part is formed between the side second pressure part and the first end cover side first pressure part.

回転体は支軸を介して連結された前記第1側方部材と第2側方部材との間で回転可能に挟持されている。回転体には第1流路と第2流路が回転軸心方向に貫通するように前記回転軸心周りに配設され、回転体の一端側から第1流体または第2流体を流入させて、第1流体と第2流体との間で圧力を交換し、該一端側から第1流体または第2流体を流出させる構成となっている。   The rotating body is rotatably held between the first side member and the second side member connected via a support shaft. The rotating body is disposed around the rotation axis so that the first flow path and the second flow path penetrate in the direction of the rotation axis, and the first fluid or the second fluid is allowed to flow from one end side of the rotation body. The pressure is exchanged between the first fluid and the second fluid, and the first fluid or the second fluid flows out from the one end side.

従って、特許文献1に記載された従来の圧力交換装置のような、直管で構成された圧力伝達部と比較して、同じ流量の圧力交換を行なう場合に回転体の回転軸心方向の長さを短く構成することができるので、装置のコンパクト化と低コスト化を図ることができる。また、圧力交換の流量を増加させる場合でも、装置の極端な大型化を回避することができる。   Therefore, the length of the rotating body in the direction of the rotation axis of the rotating body is higher when pressure exchange at the same flow rate is performed as compared with a pressure transmission unit configured by a straight pipe, such as the conventional pressure exchange device described in Patent Document 1. Since the length can be shortened, it is possible to reduce the size and cost of the apparatus. Even when the pressure exchange flow rate is increased, it is possible to avoid an extreme increase in size of the apparatus.

また、従来の圧力交換装置は、回転体の両端側に各流体流入路または流出路と接続される配管が設置される。圧力交換装置の両端側に配管を設置するスペースを広く確保しておく必要があった。   Further, in the conventional pressure exchange device, piping connected to each fluid inflow path or outflow path is installed on both ends of the rotating body. It was necessary to secure a large space for installing the piping on both ends of the pressure exchange device.

第1流体流入路、第2流体流出路、第2流体流入路及び第1流体流出路を、第1側方部材に設けることで各流体流入路と流出路と接続する各配管は第1側方部材側に纏めて設置することができる。従って、配管を含めた設置スペースをコンパクト化ができる。さらに、各配管の設置作業やメンテナンス作業等の作業性が向上する。   By providing the first fluid inflow path, the second fluid outflow path, the second fluid inflow path, and the first fluid outflow path in the first side member, each pipe connecting the fluid inflow path and the outflow path is the first side. It can be installed collectively on the side member side. Therefore, the installation space including the piping can be made compact. Furthermore, workability such as installation work and maintenance work of each pipe is improved.

さらに、前記第1側方部材の前記回転体への対向面に形成された、前記第1側方部材と前記回転体との隙間に進入した第2流体流入路から供給された第2流体の圧力を受ける第2圧力領域と、前記隙間に進入した第1流体との間で圧力交換された第2流体の圧力を受ける第1圧力領域と、前記第2圧力領域と前記第1圧力領域の間の中間圧力領域と第1側方部材をはさんで回転体の軸心方向視で夫々に対応するように、第1エンドカバーと第1側方部材との接合部に、第2流体流入部と連通する第1エンドカバー側第2圧力部と、第2流体流出部と連通する第1エンドカバー側第1圧力部と、第1エンドカバー側第1圧力部と第1エンドカバー側第2圧力部の間に第1エンドカバー側中間圧力部を形成することで、第1側方部材を第1エンドカバー側へ押す圧力分布に応じて、第1側方部材を回転体側へ押す圧力分布を対応させて、第1側方部材の両面に作用する押圧力をつり合わせることができる。これにより、第1側方部材に撓みが発生することを抑制する。   Furthermore, the second fluid supplied from the second fluid inflow passage formed in the surface of the first side member facing the rotating body and entering the gap between the first side member and the rotating body. A second pressure region that receives pressure, a first pressure region that receives the pressure of the second fluid that has been pressure-exchanged between the first fluid that has entered the gap, and the second pressure region and the first pressure region. The second fluid flows into the joint between the first end cover and the first side member so as to correspond to the intermediate pressure region between the first side member and the first side member, respectively. A first end cover side second pressure part communicating with the first end cover side, a first end cover side first pressure part communicating with the second fluid outflow part, a first end cover side first pressure part, and a first end cover side first pressure part. By forming the first end cover side intermediate pressure part between the two pressure parts, the first side member is connected to the first end. Depending on the pressure distribution pressing the bar side, the pressure distribution to press the first side member to the rotor side so as to correspond, it is possible to balance the pressing force acting on both surfaces of the first side member. Thereby, it is suppressed that bending occurs in the 1st side member.

同第三の特徴構成は、同請求項3に記載したとおり、上述の第一または第二の特徴構成に加えて、前記中間圧力領域の流体を前記第1エンドカバー側中間圧力部へと導く連通部を備えている点にある。   In the third feature configuration, in addition to the first or second feature configuration described above, the fluid in the intermediate pressure region is guided to the first end cover side intermediate pressure portion. It is in the point provided with a communication part.

第1エンドカバー側中間圧力部には連通部を介して中間圧力領域の流体が導かれるので、中間圧力領域と第1エンドカバー側中間圧力部には同じ流体の圧力が作用する。このような連通部は、第1側方部材を厚み方向に貫通形成した連通孔や、第1側方部材の周囲に厚み方向に貫通形成した連通溝等で構成することができる。   Since the fluid in the intermediate pressure region is guided to the first end cover side intermediate pressure portion via the communicating portion, the same fluid pressure acts on the intermediate pressure region and the first end cover side intermediate pressure portion. Such a communication part can be constituted by a communication hole formed by penetrating the first side member in the thickness direction, a communication groove formed by penetrating the first side member in the thickness direction, or the like.

同第四の特徴構成は、同請求項4に記載したとおり、上述の第三の特徴構成に加えて、前記第1エンドカバーと前記第2エンドカバーとの間に、前記回転体と前記第1側方部材と前記第2側方部材とを収容する筒状ケーシングが配置され、前記連通部は前記第1側方部材と前記円筒ケーシングとの間に形成されている点にある。   In the fourth feature configuration, as described in claim 4, in addition to the third feature configuration described above, the rotating body and the second end cover are disposed between the first end cover and the second end cover. A cylindrical casing that accommodates the first side member and the second side member is disposed, and the communication portion is formed between the first side member and the cylindrical casing.

連通部は、第1側方部材を厚み方向に貫通形成した連通孔や、第1側方部材の周囲に厚み方向に貫通形成した連通溝や、筒状ケーシングに形成した連通溝や、第1側方部材の外周面と筒状ケーシングの内周面の隙間で構成することができる。   The communication part includes a communication hole formed through the first side member in the thickness direction, a communication groove formed through the first side member in the thickness direction, a communication groove formed in the cylindrical casing, It can comprise by the clearance gap between the outer peripheral surface of a side member, and the internal peripheral surface of a cylindrical casing.

同第五の特徴構成は、同請求項5に記載したとおり、上述の第四特徴構成に加えて、前記回転体と前記筒状ケーシングの間に、前記第1側方部材と前記第2側方部材で挟持された保持部材を備え、前記保持部材には、保持部材の内周面と外周面を連通する連通路が形成されている点にある。   In the fifth feature configuration, as described in the fifth aspect, in addition to the fourth feature configuration described above, the first side member and the second side are disposed between the rotating body and the cylindrical casing. The holding member is sandwiched by the two-way members, and the holding member is formed with a communication path communicating the inner peripheral surface and the outer peripheral surface of the holding member.

保持部材によって第1側方部材と第2側方部材の距離を回転体の軸心方向の長さよりわずかに広くすることで、回転体と第1側方部材との隙間や、回転体と第2側方部材との隙間を管理することが容易になる。   By making the distance between the first side member and the second side member slightly longer than the length of the rotating body in the axial direction by the holding member, the clearance between the rotating body and the first side member, It becomes easy to manage the gap between the two side members.

回転体と保持部材との間には適度な隙間が形成され、この隙間には第1流体または第2流体が進入する。この隙間に進入した第1流体または第2流体は、回転体を円滑に回転させるための潤滑剤の役割をする。回転体と保持部材の隙間に進入した第1流体または第2流体を連通路を介して保持部材の内周面から外周面に導いて、保持部材の周面の内外に作用する圧力差を減らすことができる。従って、保持部材を薄く構成することができる。また、保持部材の外周面に導いた流体を第1エンドカバー側中間圧力部に導くこともできる。   An appropriate gap is formed between the rotating body and the holding member, and the first fluid or the second fluid enters the gap. The first fluid or the second fluid that has entered the gap serves as a lubricant for smoothly rotating the rotating body. The first fluid or the second fluid that has entered the gap between the rotating body and the holding member is guided from the inner peripheral surface of the holding member to the outer peripheral surface via the communication path to reduce the pressure difference acting on the inner and outer surfaces of the holding member. be able to. Accordingly, the holding member can be made thin. Further, the fluid guided to the outer peripheral surface of the holding member can be guided to the first end cover side intermediate pressure portion.

同第六の特徴構成は、同請求項6に記載したとおり、上述の第一から第五の何れかの特徴構成に加えて、前記第2側方部材の前記回転体への対向面のうち、前記第1圧力領域と前記回転体を介して対向する領域に第1圧力領域が、前記第2圧力領域と前記回転体を介して対向する領域に第2圧力領域が、前記中間圧力領域と前記回転体を介して対向する領域に中間圧力領域が形成され、前記第2エンドカバーと前記第2側方部材との接合部には、前記第1圧力領域に対応する第2エンドカバー側第1圧力部が、前記第2圧力領域に対応する第2エンドカバー側第2圧力部が、前記中間圧力領域に対応する第2エンドカバー側中間圧力部が形成されている点にある。   In the sixth feature configuration, as described in claim 6, in addition to any one of the first to fifth feature configurations described above, the second side member is a surface facing the rotating body. A first pressure region in a region facing the first pressure region through the rotating body, a second pressure region in a region facing the second pressure region through the rotating body, and the intermediate pressure region. An intermediate pressure region is formed in a region facing through the rotating body, and a second end cover side corresponding to the first pressure region is formed at a joint portion between the second end cover and the second side member. One pressure part is that a second end cover side second pressure part corresponding to the second pressure region is formed, and a second end cover side intermediate pressure part corresponding to the intermediate pressure region is formed.

回転体の第1側方部材との対向面と、第2側方部材との対向面には、夫々第1圧力領域と、第2圧力領域と、中間圧力領域が回転体をはさんで回転体の軸心方向視で夫々に対応するように形成されるので、回転体の前記両対向面に作用する押圧力をつり合わせることができる。従って、回転体は円滑に回転することができる。   The first pressure region, the second pressure region, and the intermediate pressure region rotate across the rotating body on the surface facing the first side member of the rotating body and the surface facing the second side member, respectively. Since they are formed so as to correspond to each other when viewed in the axial direction of the body, it is possible to balance the pressing forces acting on the two opposing surfaces of the rotating body. Therefore, the rotating body can rotate smoothly.

第2側方部材は全域に亘って均一な圧力で第2エンドカバー側へ押されているわけではない。第2側方部材の回転体との対向面に形成された第2圧力領域と、第1圧力領域と、中間圧力領域では夫々その押圧力が異なっている。つまり、第2側方部材の回転体との対向面では位置によって作用する圧力が異なっている。   The second side member is not pushed toward the second end cover side with a uniform pressure over the entire area. The second pressure region, the first pressure region, and the intermediate pressure region formed on the surface of the second side member facing the rotating body have different pressing forces. That is, the pressure acting on the surface of the second side member facing the rotating body varies depending on the position.

そこで、第2エンドカバーと第2側方部材との接合部に、第2側方部材の回転体側の面に形成された各圧力領域と第2側方部材をはさんで回転体の軸心方向視で夫々に対応するように、第2エンドカバー側第1圧力部と、第2エンドカバー側第2圧力部と、第2エンドカバー側中間圧力部を形成する。   Therefore, the axial center of the rotating body is sandwiched between each pressure region and the second side member formed on the surface of the second side member on the rotating body side at the joint between the second end cover and the second side member. A second end cover-side first pressure part, a second end cover-side second pressure part, and a second end cover-side intermediate pressure part are formed so as to correspond to each when viewed from the direction.

このように、第2側方部材を第2エンドカバー側へ押す圧力分布に応じて、第2側方部材を回転体側へ押す圧力分布を対応させることで、第2側方部材の両面に作用する押圧力をつり合わせることができる。これにより、第2側方部材に撓みが発生することを抑制する。撓みの発生が抑制されるので、第2側方部材を薄肉化することができる。従って、圧力交換装置のコンパクト化と低コスト化を図ることができる。   In this way, the pressure distribution that pushes the second side member toward the rotating body is made to correspond to the pressure distribution that pushes the second side member toward the second end cover, thereby acting on both surfaces of the second side member. The pressing force to be balanced can be balanced. Thereby, it is suppressed that bending occurs in the 2nd side member. Since generation | occurrence | production of bending is suppressed, a 2nd side member can be thinned. Accordingly, it is possible to reduce the size and cost of the pressure exchange device.

同第七の特徴構成は、同請求項7に記載したとおり、上述の第六の特徴構成に加えて、前記第2側方部材は、前記中間圧力領域の流体を前記第2エンドカバー側中間圧力部へと導く連通部を備えている点にある。   In the seventh feature configuration, as described in the seventh aspect, in addition to the sixth feature configuration described above, the second side member is configured to cause the fluid in the intermediate pressure region to flow in the middle of the second end cover side. It is in the point provided with the communicating part which leads to a pressure part.

第2エンドカバー側中間圧力部には、連通部を介して、中間圧力領域の流体が導かれるので、第2側方部材の中間圧力領域と第2エンドカバー側中間圧力部では同じ流体の圧力が作用する。このような連通部は、第1側方部材を厚み方向に貫通形成した連通孔や、第2側方部材の周囲に厚み方向に貫通形成した連通溝等で構成することができる。   Since the fluid in the intermediate pressure region is guided to the second end cover side intermediate pressure portion via the communicating portion, the pressure of the same fluid in the intermediate pressure region of the second side member and the second end cover side intermediate pressure portion is the same. Works. Such a communication part can be constituted by a communication hole formed by penetrating the first side member in the thickness direction, a communication groove formed by penetrating in the thickness direction around the second side member, and the like.

同第八の特徴構成は、同請求項8に記載したとおり、上述の第七の特徴構成に加えて、前記第1エンドカバーと前記第2エンドカバーとの間に、前記回転体と前記第1側方部材と前記第2側方部材とを収容する筒状ケーシングが配置され、前記連通部は前記第2側方部材と前記円筒ケーシングとの間に形成されている点にある。   In the eighth feature configuration, in addition to the seventh feature configuration described above, between the first end cover and the second end cover, the rotating body and the second feature configuration are provided. A cylindrical casing that accommodates the first side member and the second side member is disposed, and the communication portion is formed between the second side member and the cylindrical casing.

連通部は、第2側方部材を厚み方向に貫通形成した連通孔や、第2側方部材の周囲に厚み方向に貫通形成した連通溝や、筒状ケーシングに形成した連通溝や、第2側方部材の外周面と筒状ケーシングの内周面の隙間で構成することができる。   The communication portion includes a communication hole formed through the second side member in the thickness direction, a communication groove formed through the second side member in the thickness direction, a communication groove formed in the cylindrical casing, It can comprise by the clearance gap between the outer peripheral surface of a side member, and the internal peripheral surface of a cylindrical casing.

同第九の特徴構成は、同請求項9に記載したとおり、上述の第一から第八の何れかの特徴構成に加えて、前記第1側方部材と前記回転体と前記第2側方部材とを貫通する支軸と、前記第1側方部材と前記第1エンドカバーとの間に形成された前記支軸の一端を含む第1閉空間と、前記第2側方部材と前記第2エンドカバーとの間に形成された前記支軸の他端を含む第2閉空間と、前記回転体に形成された前記支軸の挿通空間と、前記第1閉空間と前記挿通空間とを連通する第1連通路と、前記第2閉空間と前記挿通空間とを連通する第2連通路とを備えている点にある。   In the ninth feature configuration, in addition to any one of the first to eighth feature configurations described above, the first lateral member, the rotating body, and the second lateral configuration, as described in claim 9. A support shaft penetrating the member, a first closed space including one end of the support shaft formed between the first side member and the first end cover, the second side member, and the first A second closed space including the other end of the support shaft formed between the two end covers, an insertion space of the support shaft formed in the rotating body, and the first closed space and the insertion space. It is in the point provided with the 1st communicating path which connects, and the 2nd communicating path which connects the 2nd closed space and the insertion space.

回転体に形成された支軸の挿通空間内には第1流体や第2流体が流入する。第1側方部材や第2側方部材の夫々挿通空間と対向する面には、これら流体の圧力により外側への押圧力が作用する。第1連通路により第1閉空間と挿通空間とを連通することで、第1閉空間内に進入した流体の圧力が第1閉空間を内側へ押す圧力が作用する。第2連通路により第2閉空間と挿通空間とを連通することで、第2閉空間内に進入した流体の圧力が第2閉空間を内側へ押す圧力が作用する。このように、第1側方部材や第2側方部材の夫々挿通空間と対向する部分の両面に作用する押圧力を同じようにすることができるので、第1側方部材や第2側方部材の撓みの発生を抑制することができる。   The first fluid and the second fluid flow into the insertion space of the support shaft formed in the rotating body. A pressing force to the outside acts on the surfaces of the first side member and the second side member facing the insertion space, respectively, by the pressure of these fluids. By connecting the first closed space and the insertion space through the first communication path, the pressure of the fluid that has entered the first closed space pushes the first closed space inwardly acts. By connecting the second closed space and the insertion space through the second communication path, the pressure of the fluid that has entered the second closed space acts to push the second closed space inward. In this way, since the pressing force acting on both surfaces of the first side member and the second side member facing the insertion space can be made the same, the first side member and the second side member can be made the same. Generation | occurrence | production of the bending of a member can be suppressed.

同第十の特徴構成は、同請求項10に記載したとおり、上述の第二から第九の何れかの特徴構成に加えて、前記第1流路と前記第2流路との流路連通部が前記第2側方部材に形成されている点にある。   In the tenth feature, as described in claim 10, in addition to any one of the second to ninth features described above, flow communication between the first flow channel and the second flow channel. The point exists in the point currently formed in the said 2nd side member.

第2側方部材に形成され流路連通部によって第1流路と第2流路が連通され、第1流体と第2流体との間で圧力が交換される。   The first flow path and the second flow path are communicated with each other by the flow path communicating portion formed in the second side member, and pressure is exchanged between the first fluid and the second fluid.

同第十一の特徴構成は、同請求項11に記載したとおり、上述の第十の特徴構成に加えて、前記流路連通部が前記第2側方部材に貫通形成されている点にある。   The eleventh characteristic configuration is that, as described in claim 11, in addition to the tenth characteristic configuration described above, the flow passage communicating portion is formed so as to penetrate the second side member. .

第2側方部材には、第1流体または第2流体によって第2エンドカバー側へと押す力がかからない。従って、第2側方部材を薄肉化することができる。また、流路連通部を貫通形成することで製作が容易となる。   The second side member is not applied with a force that pushes the second end member toward the second end cover by the first fluid or the second fluid. Therefore, the second side member can be thinned. In addition, manufacturing is facilitated by forming the flow passage communicating portion therethrough.

同第十二の特徴構成は、同請求項12に記載したとおり、上述の第十または第十一の特徴構成に加えて、前記第2エンドカバーの一部から前記回転体が目視可能に構成されている点にある。   The twelfth feature configuration is configured such that, in addition to the tenth or eleventh feature configuration described above, the rotating body is visible from a part of the second end cover. It is in the point.

例えば、第2エンドカバーの一部を透過性の部材で構成したり、または、その一部に回転体を目視可能な点検窓を備えたりすることで、圧力交換装置の試運転や運転時や点検の際に、回転体が円滑に回転しているか否かを外部から容易に確認することができる。   For example, a part of the second end cover is made of a permeable member, or a part of the second end cover is provided with an inspection window through which the rotating body can be visually checked. In this case, it can be easily confirmed from the outside whether or not the rotating body is rotating smoothly.

同第十三の特徴構成は、同請求項13に記載したとおり、上述の第一から第九の何れかの特徴構成に加えて、前記第1流路と前記第2流路との流路連通部が前記回転体に形成されている点にある。   The thirteenth feature configuration is the channel of the first channel and the second channel in addition to any one of the first to ninth feature configurations described above. The communication portion is formed in the rotating body.

回転体に形成された流路連通部によって第1流路と第2流路が連通され、第1流体と第2流体との間で圧力が交換される。   The first flow path and the second flow path are communicated with each other by a flow path communication portion formed in the rotating body, and pressure is exchanged between the first fluid and the second fluid.

以上説明したとおり、本発明によれば、処理流量を減らすことなくコンパクト化、低コスト化が可能な効率の良い圧力交換装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an efficient pressure exchange device that can be made compact and cost-effective without reducing the processing flow rate.

海水淡水化施設の概略フロー図Outline flow chart of seawater desalination facility 圧力交換装置の説明図であって、(a)は正面図、(b)は側断面図It is explanatory drawing of a pressure exchange apparatus, (a) is a front view, (b) is a sectional side view 回転体の説明図であって、(a)は正面図、(b)は側断面図It is explanatory drawing of a rotary body, Comprising: (a) is a front view, (b) is sectional side view 第1側方部材の説明図であって(a)は正面図、(b)は図4(a)のA−A線断面図、(c)は背面図It is explanatory drawing of a 1st side member, (a) is a front view, (b) is the sectional view on the AA line of Fig.4 (a), (c) is a rear view. (a)は図4(a)に示す第1流体流入路のB−B線矢視図、(b)は図4(a)に示す第2流体流出路のC−C線矢視図、(c)は図4(a)に示す第2流体流入路のD−D線矢視図、(d)は図4(a)に示す第1流体流出路のE−E線矢視図(A) is a BB line arrow view of the 1st fluid inflow passage shown in Drawing 4 (a), (b) is a CC line arrow view of the 2nd fluid outflow passage shown in Drawing 4 (a), (C) is a DD line arrow view of the 2nd fluid inflow passage shown in Drawing 4 (a), (d) is an EE line arrow view of the 1st fluid outflow passage shown in Drawing 4 (a). 第2側方部材の説明図であって、(a)は正面図、(b)は図6(a)のF−F線断面図、(c)は背面図It is explanatory drawing of a 2nd side member, Comprising: (a) is a front view, (b) is FF sectional view taken on the line of Fig.6 (a), (c) is a rear view. 保持部材の説明図であって、(a)は正面図、(b)は側断面図It is explanatory drawing of a holding member, Comprising: (a) is a front view, (b) is sectional side view 第1エンドカバーの説明図であって(a)は正面図、(b)は図8(a)のG−G線断面図、(c)は背面図It is explanatory drawing of a 1st end cover, (a) is a front view, (b) is the GG sectional view taken on the line of FIG. 8 (a), (c) is a rear view. 第2エンドカバーの説明図であって(a)は正面図、(b)は図9(a)のH−H線断面図、(c)は背面図It is explanatory drawing of a 2nd end cover, (a) is a front view, (b) is HH sectional view taken on the line of FIG. 9 (a), (c) is a rear view. 回転体に形成された各流路と第1側方部材に形成された各流入路及び各流出路の位置を示す説明図Explanatory drawing which shows the position of each inflow path and each outflow path formed in each flow path formed in the rotating body and the first side member. 圧力交換装置の概略図Schematic diagram of pressure exchange device (a)は回転体の側断面図、(b)は回転体の側断面図(A) is a sectional side view of the rotating body, (b) is a sectional side view of the rotating body. 圧力交換装置の説明図であって、(a)は正面図、(b)は側断面図、(c)は背面図It is explanatory drawing of a pressure exchange apparatus, (a) is a front view, (b) is a sectional side view, (c) is a rear view. 従来の圧力交換装置の説明図Explanatory drawing of conventional pressure exchange device 従来の圧力交換装置の説明図Explanatory drawing of conventional pressure exchange device

以下に、本発明による圧力交換装置の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the pressure exchange device according to the present invention will be described.

図1に示すように、海水淡水化施設は、海水を淡水化する施設であって、前処理装置1と、ろ過海水槽2と、供給ポンプ3と、保安フィルター4と、昇圧ポンプ5と、逆浸透膜装置6等を備えている。   As shown in FIG. 1, the seawater desalination facility is a facility that desalinates seawater, and includes a pretreatment device 1, a filtered seawater tank 2, a supply pump 3, a safety filter 4, a booster pump 5, A reverse osmosis membrane device 6 is provided.

まず、海水は前処理装置1で夾雑物が取り除かれ、ろ過水槽2に貯留される。ろ過水槽2に貯留された海水は供給ポンプ3で保安フィルター4に供給される。保安フィルター4は、後段に設置された逆浸透膜装置6の逆浸透膜の詰まりを防止するために、海水に含まれる微細な異物を除去する。昇圧ポンプ5によって浸透圧以上の所定の圧力に昇圧された海水が逆浸透膜装置6に供給される。   First, the seawater is decontaminated by the pretreatment device 1 and stored in the filtered water tank 2. Seawater stored in the filtered water tank 2 is supplied to the security filter 4 by the supply pump 3. The safety filter 4 removes fine foreign substances contained in seawater in order to prevent clogging of the reverse osmosis membrane of the reverse osmosis membrane device 6 installed in the subsequent stage. Seawater that has been boosted to a predetermined pressure equal to or higher than the osmotic pressure by the booster pump 5 is supplied to the reverse osmosis membrane device 6.

逆浸透膜装置6に供給された高圧の海水は前記逆浸透膜でろ過され、海水中の各種塩類が除去された淡水が得られる。こうして得られた淡水が飲料用水や工業用水等として利用される。   The high-pressure seawater supplied to the reverse osmosis membrane device 6 is filtered through the reverse osmosis membrane to obtain fresh water from which various salts in the seawater have been removed. The fresh water thus obtained is used as drinking water, industrial water or the like.

ところで、逆浸透膜装置6は供給された海水のすべてを淡水化できるものではない。例えば、逆浸透膜装置6に供給される海水のうち40%は淡水化されるが、残りの60%は淡水化されずに逆浸透膜装置6から排水される。この淡水化されなかった60%の濃縮海水は非常に高い圧力をもっている。   By the way, the reverse osmosis membrane device 6 cannot desalinate all the supplied seawater. For example, 40% of the seawater supplied to the reverse osmosis membrane device 6 is desalinated, but the remaining 60% is drained from the reverse osmosis membrane device 6 without being desalinated. This 60% concentrated seawater that has not been desalinated has very high pressure.

そこで、海水淡水化施設は圧力交換装置10を備えて、逆浸透膜装置6から排水される非常に高い圧力をもった濃縮海水(以下「高圧濃縮海水Hi」と記す)の圧力を逆浸透膜装置6に供給される海水の昇圧に利用することで、海水淡水化施設全体のエネルギー効率の向上を図っている。   Therefore, the seawater desalination facility is equipped with a pressure exchange device 10, and the pressure of the concentrated seawater (hereinafter referred to as "high pressure concentrated seawater Hi") discharged from the reverse osmosis membrane device 6 with a very high pressure is reverse osmosis membrane. By using it for boosting the seawater supplied to the device 6, the energy efficiency of the seawater desalination facility as a whole is improved.

例えば、保安フィルター4から逆浸透膜装置6に供給される海水のうち、供給量の40%の海水は、高圧ポンプ5によって浸透圧以上の所定の圧力の6.9MPaに昇圧する。残りの60%の海水(以下、「低圧海水Li」と記す)は、圧力交換装置10と、ブースターポンプ7によりに6.9MPaに昇圧する。   For example, 40% of the supply amount of seawater supplied from the safety filter 4 to the reverse osmosis membrane device 6 is increased by the high pressure pump 5 to a predetermined pressure of 6.9 MPa that is equal to or higher than the osmotic pressure. The remaining 60% seawater (hereinafter referred to as “low-pressure seawater Li”) is pressurized to 6.9 MPa by the pressure exchanger 10 and the booster pump 7.

圧力交換装置10には低圧海水Liと、逆浸透膜装置6から排水された高圧濃縮海水Hiが供給される。圧力交換装置10内では高圧濃縮海水Hiの圧力によって低圧海水Liが6.75MPaに昇圧され、高圧海水Hoとして排水される。この高圧海水Hoがブースターポンプ7によって6.9MPaに昇圧されて、逆浸透膜装置6に供給されるのである。なお、圧力交換装置10内で低圧海水Liに圧力を伝達した高圧濃縮海水Hiは、低圧濃縮海水Loとして排水される。本実施形態では、高圧濃縮海水Hiと低圧濃縮海水Loが第1流体であり、低圧海水Liと高圧海水Hoが第2流体である。また、低圧海水Liが被濃縮流体である。   The pressure exchange device 10 is supplied with low-pressure seawater Li and high-pressure concentrated seawater Hi drained from the reverse osmosis membrane device 6. In the pressure exchanger 10, the low-pressure seawater Li is boosted to 6.75 MPa by the pressure of the high-pressure concentrated seawater Hi, and discharged as high-pressure seawater Ho. The high-pressure seawater Ho is boosted to 6.9 MPa by the booster pump 7 and supplied to the reverse osmosis membrane device 6. The high-pressure concentrated seawater Hi that has transmitted pressure to the low-pressure seawater Li in the pressure exchange device 10 is drained as low-pressure concentrated seawater Lo. In the present embodiment, the high-pressure concentrated seawater Hi and the low-pressure concentrated seawater Lo are the first fluid, and the low-pressure seawater Li and the high-pressure seawater Ho are the second fluid. Further, the low-pressure seawater Li is the fluid to be concentrated.

圧力交換装置10の構成を説明する。
図2(a),(b)に示すように、圧力交換装置10は、連結部材11を介して締結された第1エンドカバー20と第2エンドカバー30の間に備えられた円筒形状のケーシング12を備えている。ケーシング12内には、第1側方部材50と、第1側方部材50と支軸13及び保持部材14を介して連結された第2側方部材60とが収容されている。さらに、第1側方部材50第2側方部材60との間には、回転体40が支軸13周りに回転可能に挟持されている。各構成部材は、海水に対する耐食性があり十分に強度のある材料により形成されている。
The configuration of the pressure exchange device 10 will be described.
As shown in FIGS. 2A and 2B, the pressure exchanging device 10 is a cylindrical casing provided between a first end cover 20 and a second end cover 30 fastened via a connecting member 11. 12 is provided. The casing 12 accommodates a first side member 50 and a second side member 60 connected to the first side member 50 via the support shaft 13 and the holding member 14. Further, the rotating body 40 is sandwiched between the first side member 50 and the second side member 60 so as to be rotatable around the support shaft 13. Each component is made of a material having corrosion resistance to seawater and sufficient strength.

第1側方部材50には、逆浸透膜装置6から排水された高圧濃縮海水Hiが供給される第1流体流入路51と、昇圧された高圧海水Hoが逆浸透膜装置6へと排出される第2流体流出路52と、逆浸透膜装置6へと供給するために昇圧される前の低圧海水Liが供給される第2流体流入路53と、圧力を伝達し終えた低圧濃縮海水Loが排出される第1流体流出路54とが、その厚み方向に形成されている。   The first side member 50 is supplied with the first fluid inflow passage 51 to which the high-pressure concentrated seawater Hi drained from the reverse osmosis membrane device 6 is supplied, and the pressurized high-pressure seawater Ho is discharged to the reverse osmosis membrane device 6. The second fluid outflow passage 52, the second fluid inflow passage 53 to which the low-pressure seawater Li before being pressurized to be supplied to the reverse osmosis membrane device 6 is supplied, and the low-pressure concentrated seawater Lo that has finished transmitting pressure. Is formed in the thickness direction of the first fluid outflow passage.

回転体40には、複数本の第1流路41と第2流路42とが、その回転軸心方向に貫通するように回転軸心周りに配設されている。第1流体流入路51から第1流路41に高圧濃縮海水Hiが供給されると、回転体40内で低圧海水Liは昇圧されて高圧海水Hoとなり、高圧海水Hoが第2流路42から第2流体流出路52へと流出する。第2流体流入路53から第2流路42に低圧海水Liが供給されると、回転体40内で低圧海水Liに圧力を伝達した高圧濃縮海水Hiが第1流路41から第1流体流出路54へと流出する。   In the rotating body 40, a plurality of first flow paths 41 and second flow paths 42 are arranged around the rotation axis so as to penetrate in the rotation axis direction. When the high-pressure concentrated seawater Hi is supplied from the first fluid inflow path 51 to the first flow path 41, the low-pressure seawater Li is pressurized in the rotating body 40 to become high-pressure seawater Ho, and the high-pressure seawater Ho is discharged from the second flow path 42. It flows out to the second fluid outflow passage 52. When the low-pressure seawater Li is supplied from the second fluid inflow path 53 to the second flow path 42, the high-pressure concentrated seawater Hi that has transmitted pressure to the low-pressure seawater Li in the rotating body 40 flows out of the first flow path 41 from the first fluid. It flows out to the road 54.

回転体40は、第1側方部材50から流入する各流体及び第1側方部材50へと流出する各流体のエネルギーによって、第1側方部材50と第2側方部材60、及び保持部材14で区画された空間内で支軸13周りに回転するように構成されている。回転体40の回転に伴って、複数の第1流路41が順に第1流体流入路51、第1流体流出路54と連通し、複数の第2流路42が順に第2流体流入路53、第2流体流出路52と連通し、回転体40への各流体の流入及び流出が連続的に行われる。   The rotating body 40 has a first side member 50, a second side member 60, and a holding member by the fluid flowing in from the first side member 50 and the energy of each fluid flowing out to the first side member 50. 14 is configured to rotate around the support shaft 13 in the space defined by 14. Along with the rotation of the rotating body 40, the plurality of first flow paths 41 communicate with the first fluid inflow path 51 and the first fluid outflow path 54 in order, and the plurality of second flow paths 42 in order with the second fluid inflow path 53. The second fluid outflow passage 52 communicates with each other, and the inflow and outflow of each fluid to the rotating body 40 are continuously performed.

回転体40の外周面と第1側方部材50、第2側方部材60及び保持部材14の夫々の対向面には僅かに隙間が形成され、当該隙間には第1流体または第2流体が進入する。回転体40の回転時には、当該隙間に進入した第1流体または第2流体が潤滑剤の役割をし、回転体40は、第1側方部材50、第2側方部材60及び保持部材14で区画される空間内で円滑に回転する。   A slight gap is formed between the outer circumferential surface of the rotating body 40 and the opposing surfaces of the first side member 50, the second side member 60, and the holding member 14, and the first fluid or the second fluid is formed in the gap. enter in. When the rotating body 40 rotates, the first fluid or the second fluid that has entered the gap acts as a lubricant, and the rotating body 40 is composed of the first side member 50, the second side member 60, and the holding member 14. It rotates smoothly in the partitioned space.

このように、圧力交換装置10は、内部で回転する回転体40に逆浸透膜装置6から排水される高圧濃縮海水Hiと、逆浸透膜装置6へと供給すべき低圧海水Liを供給して、高圧濃縮海水Hiの圧力により、低圧海水Liを昇圧して高圧海水Hoとして排出するとともに、圧力を伝達し終えた高圧濃縮海水Hiを低圧濃縮海水Loとして排水する圧力交換を連続的に行なうのである。   In this way, the pressure exchange device 10 supplies the high-pressure concentrated seawater Hi drained from the reverse osmosis membrane device 6 to the rotating body 40 that rotates inside, and the low-pressure seawater Li to be supplied to the reverse osmosis membrane device 6. Because the pressure of the high-pressure concentrated seawater Hi is increased, the low-pressure seawater Li is boosted and discharged as high-pressure seawater Ho, and pressure exchange is continuously performed to drain the high-pressure concentrated seawater Hi that has been transmitted as low-pressure concentrated seawater Lo. is there.

以下に、圧力交換装置10の各部を順に説明する。   Below, each part of the pressure exchange apparatus 10 is demonstrated in order.

まず、図2(b)及び図3(a),(b)に基づいて、回転体40について説明する。
回転体40は、円柱の中央に支軸13を挿通可能な挿通空間43が形成されるとともに、挿通空間43の周囲に夫々16本の第1流路41と第2流路42が回転軸心周りに放射状に配置されて構成されている。第1流路41と第2流路42は、回転体40の端面40aと端面40b間をその回転軸心方向に貫通するように形成されている。第1流路41と第2流路42は、夫々流路断面積が略等しくなるように形成されている。
First, the rotating body 40 will be described with reference to FIGS. 2B and 3A, 3B.
In the rotating body 40, an insertion space 43 into which the support shaft 13 can be inserted is formed at the center of the cylinder, and 16 first flow paths 41 and second flow paths 42 are arranged around the insertion space 43. It is configured to be arranged radially around. The first channel 41 and the second channel 42 are formed so as to penetrate between the end surface 40a and the end surface 40b of the rotating body 40 in the direction of the rotation axis. The first flow path 41 and the second flow path 42 are formed so that the cross-sectional areas of the flow paths are substantially equal.

高圧濃縮海水Hiは端面40aから第1流路41に流入し、圧力を伝達し終えた低圧濃縮海水Loは第1流路41から端面40aを介して流出する。低圧海水Liは端面40aから第2流路42に流入し、昇圧された高圧海水Hoは第2流路42から端面40aを介して流出する。   The high-pressure concentrated seawater Hi flows into the first flow path 41 from the end face 40a, and the low-pressure concentrated seawater Lo that has finished transmitting pressure flows out of the first flow path 41 through the end face 40a. The low-pressure seawater Li flows into the second flow path 42 from the end face 40a, and the pressurized high-pressure seawater Ho flows out from the second flow path 42 through the end face 40a.

挿通空間43の両端には、挿通空間43より拡径された軸受部44a,44bが形成されている。軸受部44a,44bには、第1側方部材50と第2側方部材60の夫々に、回転体40の軸受部44a,44bに向けて突出するように形成された軸部45a,45bが夫々挿入され、回転体40は軸部45a,45bに軸支されて回転するように構成されている。なお、回転体40を回転可能に支持する構成はこれに限らない。例えば、回転体40の外周面と保持部材11の内周面を軸受にすることもできる。この場合、回転体の軸受部44a,44bや、第1側方部材50と第2側方部材の夫々に形成した軸部45a,45bを備える必要がない。さらに、保持部材をケーシング12と一体形成することで、ケーシング12の内周面と回転体40の外周面を軸受にすることもできる。   At both ends of the insertion space 43, bearing portions 44 a and 44 b that are larger in diameter than the insertion space 43 are formed. Shaft portions 45a and 45b formed on the bearing portions 44a and 44b so as to protrude toward the bearing portions 44a and 44b of the rotating body 40 on the first side member 50 and the second side member 60, respectively. The rotor 40 is inserted into each of them, and is configured to rotate while being supported by shafts 45a and 45b. In addition, the structure which supports the rotary body 40 rotatably is not restricted to this. For example, the outer peripheral surface of the rotating body 40 and the inner peripheral surface of the holding member 11 can be used as bearings. In this case, it is not necessary to provide the bearing portions 44a and 44b of the rotating body and the shaft portions 45a and 45b formed on the first side member 50 and the second side member, respectively. Furthermore, by forming the holding member integrally with the casing 12, the inner peripheral surface of the casing 12 and the outer peripheral surface of the rotating body 40 can be used as bearings.

次に、図2(b)及び図4(a),(b),(c)に基づいて、第1側方部材50について説明する。
第1側方部材50は、円盤状部材で構成されている。当該円盤状部材の正面視で外周側には、逆浸透膜装置6から排水された高圧濃縮海水Hiが供給される第1流体流入路51と、圧力を伝達し終えた低圧濃縮海水Loが排出される第1流体流出路54夫々第1側方部材50の端面50aと端面50bを貫通するように厚み方向に形成されている。さらに、当該円盤状部材の正面視で内周側には、昇圧された高圧海水Hoが排出される第2流体流出路52と、逆浸透膜装置6に供給するための低圧海水Liが供給される第2流体流入路53とが、夫々第1側方部材50の端面50aと端面50bを貫通するように厚み方向に形成されている。
Next, the 1st side member 50 is demonstrated based on FIG.2 (b) and FIG.4 (a), (b), (c).
The 1st side member 50 is comprised by the disk shaped member. The first fluid inflow channel 51 to which the high-pressure concentrated seawater Hi drained from the reverse osmosis membrane device 6 is supplied and the low-pressure concentrated seawater Lo that has finished transmitting pressure are discharged to the outer peripheral side in front view of the disk-shaped member. The first fluid outflow passages 54 are formed in the thickness direction so as to penetrate the end face 50a and the end face 50b of the first side member 50, respectively. Further, the second fluid outflow passage 52 through which the pressurized high-pressure seawater Ho is discharged and the low-pressure seawater Li to be supplied to the reverse osmosis membrane device 6 are supplied to the inner peripheral side in front view of the disk-shaped member. The second fluid inflow passages 53 are formed in the thickness direction so as to penetrate the end face 50a and the end face 50b of the first side member 50, respectively.

各流入路及び流出路は第1側方部材50の正面視で端面50a側の各開口部から端面50b側の各開口部にかけて、第1側方部材50の正面視で、その流路断面が周方向に広がるようにその流路壁が形成されている。   Each inflow passage and outflow passage are from the openings on the end face 50a side to the openings on the end face 50b side in front view of the first side member 50, and the flow path cross-section is in front view of the first side member 50. The flow path wall is formed so as to spread in the circumferential direction.

第1流体流入路51の端面50a側の開口部51a及び端面50b側の開口部51bは、夫々円周方向に沿った扇状に形成されている。第1流体流入路51は、開口部51aから開口部51bにかけて、第1側方部材50の正面視で、その流路断面が時計周り方向に広がるように流路壁51c(図5(a)参照)が形成されている。   The opening 51a on the end surface 50a side and the opening 51b on the end surface 50b side of the first fluid inflow passage 51 are each formed in a fan shape along the circumferential direction. The first fluid inflow passage 51 has a flow passage wall 51c (FIG. 5A) so that the flow passage cross section extends in the clockwise direction from the opening 51a to the opening 51b in a front view of the first side member 50. Reference) is formed.

第2流体流出路52の端面50a側の開口部52a及び端面50b側の開口部52bは、円周方向に沿った扇状に形成されている。第2流体流出路52は、開口部52aから開口部52bにかけて、第1側方部材50の正面視で、その流路断面が反時計周り方向に広がるように流路壁52c(図5(b)参照)が形成されている。   The opening 52a on the end surface 50a side and the opening 52b on the end surface 50b side of the second fluid outflow passage 52 are formed in a fan shape along the circumferential direction. The second fluid outflow path 52 has a flow path wall 52c (FIG. 5B) such that the cross section of the flow path extends in the counterclockwise direction in the front view of the first side member 50 from the opening 52a to the opening 52b. )) Is formed.

第2流体流入路53の端面50a側の開口部53a及び端面50b側の開口部53bは、円周方向に沿った扇状に形成されている。第2流体流入路53は、開口部53aから開口部53bにかけて、第1側方部材50の正面視で、その流路断面が時計周り方向に広がるように流路壁53c(図5(c)参照)が形成されている。   The opening 53a on the end surface 50a side and the opening 53b on the end surface 50b side of the second fluid inflow passage 53 are formed in a fan shape along the circumferential direction. The second fluid inflow passage 53 has a flow passage wall 53c (FIG. 5C) so that the flow passage cross section extends in the clockwise direction from the opening 53a to the opening 53b in a front view of the first side member 50. Reference) is formed.

第1流体流出路54の端面50a側の開口部54a及び端面50b側の開口部54bは、円周方向に沿った扇状に形成されている。第2流体流出路52は、開口部54aから開口部54bにかけて、第1側方部材50の正面視で、その流路断面が反時計周り方向に広がるように流路壁54c(図5(d)参照)が形成されている。   The opening 54a on the end surface 50a side and the opening 54b on the end surface 50b side of the first fluid outflow passage 54 are formed in a fan shape along the circumferential direction. The second fluid outflow path 52 has a flow path wall 54c (FIG. 5D) so that the cross section of the flow path extends counterclockwise from the opening 54a to the opening 54b when the first side member 50 is viewed from the front. )) Is formed.

端面50bの中央には、回転体40の軸受部43aに向けて突出するように軸部45aが形成されている。軸部45aの中央には、支軸13の一端を挿通する開口部55が第1側方部材50の厚み方向に形成されている。開口部55の近傍には、第1連通路56がその厚み方向に形成されている。さらに、第1側方部材50の外周部には、正面視で、軸心から周面にかけて、各流入路及び流出路が形成されていない領域の夫々180度の位置に、軸心方向に沿った第3連通路57が形成されている。   A shaft portion 45a is formed at the center of the end surface 50b so as to protrude toward the bearing portion 43a of the rotating body 40. In the center of the shaft portion 45 a, an opening 55 that passes through one end of the support shaft 13 is formed in the thickness direction of the first side member 50. In the vicinity of the opening 55, a first communication path 56 is formed in the thickness direction. Further, in the outer peripheral portion of the first side member 50, when viewed from the front, from the axial center to the peripheral surface, the respective inflow passages and outflow passages are respectively formed at positions of 180 degrees along the axial direction. A third communication passage 57 is formed.

なお、第1連通路56は、本実施形態のように別に設けず、開口部55と支軸13との間に隙間を設けて構成してもよい。さらに、第1連通路56は必ずしも第1側方部材50に形成しなくてもよい。例えば、図13(b)に示すように、支軸13に、支軸13の第1側方部材50側の端部と挿通空間43とを連通する連通路を形成して、当該連通路を第1連通路56として機能させてもよい。   The first communication path 56 may not be provided separately as in the present embodiment, but may be configured by providing a gap between the opening 55 and the support shaft 13. Further, the first communication path 56 is not necessarily formed in the first side member 50. For example, as illustrated in FIG. 13B, a communication path that connects the end of the support shaft 13 on the first side member 50 side and the insertion space 43 is formed on the support shaft 13, and the communication path is The first communication path 56 may function.

図2(b)及び図6(a),(b),(c)に基づいて、第2側方部材60について説明する。
第2側方部材60は、円盤状部材で構成されている。当該円盤状部材には、第1側方部材50の各開口部51b,52b,53b,54b(図4(c)参照)に対向する位置に、第1流路41と第2流路42とを連通する連通部61a,61b,62a,62bが、その厚み方向に貫通形成されている。つまり、軸心方向視で51b,52bと61a,61bが、また、53b,54bと62a,62bとが重なり合うように略一致している。
The 2nd side member 60 is demonstrated based on FIG.2 (b) and FIG. 6 (a), (b), (c).
The 2nd side member 60 is comprised by the disk shaped member. The disk-shaped member includes a first flow path 41 and a second flow path 42 at positions facing the openings 51b, 52b, 53b, and 54b (see FIG. 4C) of the first side member 50. Communicating portions 61a, 61b, 62a, 62b that communicate with each other are formed penetrating in the thickness direction. That is, 51b, 52b and 61a, 61b are substantially coincident with each other so that 53b, 54b and 62a, 62b overlap with each other when viewed in the axial direction.

本実施形態では、連通部61a,61bと62a,62bとが、夫々第1流路41と第2流路42を連通して第1流体と第2流体との間で圧力を交換する圧力交換部として機能する。   In the present embodiment, the communication units 61a, 61b and 62a, 62b communicate with the first flow path 41 and the second flow path 42, respectively, and exchange pressure between the first fluid and the second fluid. It functions as a part.

なお、連通部61aと連通部61bを区画する区画壁61c、及び連通部62aと連通部62bを区画する区画壁62cは、夫々の端面60a側が、端面60aからに僅かに端面60b側へ深く形成されている。   The partition wall 61c that partitions the communication portion 61a and the communication portion 61b, and the partition wall 62c that partitions the communication portion 62a and the communication portion 62b are formed so that the respective end surfaces 60a are slightly deeper from the end surface 60a toward the end surface 60b. Has been.

端面60aの中央には、回転体40の軸受部43bに向けて突出するように軸部45bが形成されている。軸部45bの中央には、支軸13の他端を挿通する開口部63が第2側方部材60の厚み方向に形成されている。端面60bの中央には、開口部63に挿通された支軸13の他端に螺合するナットを嵌入する凹部64が形成されている。開口部63の近傍には、第2連通路65がその厚み方向に形成されている。   A shaft portion 45b is formed at the center of the end surface 60a so as to protrude toward the bearing portion 43b of the rotating body 40. In the center of the shaft portion 45 b, an opening 63 that passes through the other end of the support shaft 13 is formed in the thickness direction of the second side member 60. At the center of the end surface 60 b, a recess 64 is formed in which a nut that engages with the other end of the support shaft 13 inserted through the opening 63 is fitted. In the vicinity of the opening 63, a second communication path 65 is formed in the thickness direction.

なお、第2連通路65は、本実施形態のように別に設けず、開口部63と支軸13との間に隙間を設けて構成してもよい。さらに、第2連通路65は必ずしも第2側方部材60に形成しなくてもよい。例えば、図13(b)に示すように、支軸13に、支軸13の第2側方部材60側の端部と挿通空間43とを連通する連通路を形成して、当該連通路を第2連通路65として機能させてもよい。   The second communication path 65 may not be provided separately as in the present embodiment, but may be configured by providing a gap between the opening 63 and the support shaft 13. Further, the second communication passage 65 is not necessarily formed in the second side member 60. For example, as illustrated in FIG. 13B, a communication path that connects the end of the support shaft 13 on the second side member 60 side and the insertion space 43 is formed on the support shaft 13, and the communication path is The second communication path 65 may function.

端面60aの、連通部61aと連通部62bの間には、中心から周方向に放射状に二本の溝部が形成されている。同様に、連通部61bと連通部62aの間には、中心から周方向に放射状に二本の溝部が形成されている。前記各二本の溝部は、軸部45b周りで夫々連通され、連通溝66,67を構成している。   Two groove portions are formed radially from the center to the circumferential direction between the communication portion 61a and the communication portion 62b of the end surface 60a. Similarly, two groove portions are formed radially from the center in the circumferential direction between the communication portion 61b and the communication portion 62a. Each of the two groove portions communicates with each other around the shaft portion 45 b to form communication grooves 66 and 67.

さらに、第2側方部材60の外周部には、正面視で、連通溝66と連通溝67の間の領域であって、第1側方部材50に形成された第3連通路57に対応する位置に、軸心方向に沿った第4連通路68が形成されている。   Further, the outer peripheral portion of the second side member 60 corresponds to a third communication passage 57 formed in the first side member 50 in a region between the communication groove 66 and the communication groove 67 in a front view. A fourth communication path 68 along the axial direction is formed at the position where the first and second lines are located.

図2(b)及び図7(a),(b)に基づいて、保持部材14について説明する。
保持部材14は円筒状部材で構成されている。当該円筒状部材は、その内周径が回転体40の直径より僅かに大きく設定され、その長さは回転体40の回転軸心方向長さより僅かに長く設定されている。
The holding member 14 will be described with reference to FIGS. 2B and 7A and 7B.
The holding member 14 is configured by a cylindrical member. The inner diameter of the cylindrical member is set slightly larger than the diameter of the rotating body 40, and the length thereof is set slightly longer than the length of the rotating body 40 in the rotational axis direction.

保持部材14の内周面には、両端部を除いた領域に、前記両端部より拡径された拡径領域14aが形成され、当該拡径領域14aの中央に保持部材14の内周面と外周面を連通する第5連通路14bが形成されている。   On the inner peripheral surface of the holding member 14, a diameter-extended region 14 a having a diameter larger than the both end portions is formed in a region excluding both end portions, and the inner peripheral surface of the holding member 14 is formed at the center of the diameter-expanded region 14 a. A fifth communication path 14b that communicates with the outer peripheral surface is formed.

さらに、保持部材14の両端面には、正面視で180度の位置に第6連通路14cが形成されている。   Furthermore, a sixth communication path 14 c is formed on both end surfaces of the holding member 14 at a position of 180 degrees in front view.

なお、本実施形態では、保持部材14の内周面には、両端部を除いた領域に、前記両端部より拡径された拡径領域14aが形成され、当該拡径領域14aの中央に保持部材14の内周面と外周面を連通する第5連通路14bが形成され、さらに、保持部材14の両端面には、正面視で180度の位置に第6連通路14cが形成されている構成だが、拡径領域14aや第6連通路14cは必ずしも形成される必要は無い。また、回転体40の外周面の両端部を除いた領域に、回転体40の両端部の直径より縮径した縮径領域を形成してもよい。なお、第5連通路14bは、保持部材14の中央に形成しなくてもよい。また、第5連通路14bは2個に限らず、1個でも3個以上の複数個形成されてもよい。   In the present embodiment, on the inner peripheral surface of the holding member 14, a diameter-expanded area 14a that is larger than the both end portions is formed in a region excluding both end portions, and is held at the center of the diameter-expanded region 14a. A fifth communication passage 14b that connects the inner peripheral surface and the outer peripheral surface of the member 14 is formed, and further, sixth communication passages 14c are formed on both end surfaces of the holding member 14 at a position of 180 degrees when viewed from the front. Although it is a structure, the diameter expansion area | region 14a and the 6th communicating path 14c do not necessarily need to be formed. Further, a reduced diameter region having a diameter smaller than the diameters of both end portions of the rotating body 40 may be formed in a region excluding both end portions of the outer peripheral surface of the rotating body 40. Note that the fifth communication path 14 b may not be formed at the center of the holding member 14. Further, the number of the fifth communication passages 14b is not limited to two, and may be one or more than three.

図2(b)に示すように、支軸13は、両端に雄ネジが形成された棒状部材で構成されている。一端が第1側方部材50の開口部55に挿通されナットで螺合され、他端が第2側方部材60の開口部63に挿通されナットで螺合される。   As shown in FIG. 2B, the support shaft 13 is composed of a rod-shaped member having male screws formed at both ends. One end is inserted into the opening 55 of the first side member 50 and screwed with a nut, and the other end is inserted into the opening 63 of the second side member 60 and screwed with a nut.

支軸13を挿通空間43に挿通した回転体40を保持部材14に収容し、支軸13の一端側に第1側方部材50を配置して開口部55にその一端を挿通し、他端側に第2側方部材60を配置して開口部63にその他端を挿通した状態で、支軸48の両端をナットで螺合することで、回転体40は、第1側方部材50と、第1側方部材50と支軸13を介して連結された第2側方部材と、保持部材14で区画された空間内で支軸13周りに回転可能に挟持される。   The rotating body 40 in which the support shaft 13 is inserted into the insertion space 43 is accommodated in the holding member 14, the first side member 50 is disposed on one end side of the support shaft 13, and one end thereof is inserted into the opening 55. In a state where the second side member 60 is arranged on the side and the other end is inserted through the opening 63, both ends of the support shaft 48 are screwed together with nuts, so that the rotating body 40 is connected to the first side member 50. The second side member 50 is connected to the first side member 50 via the support shaft 13 and is rotatably held around the support shaft 13 in a space defined by the holding member 14.

本実施形態では、圧力交換装置10は、回転体40を回転させるための外部動力や、第1流体の流入と流出、第2流体の流出と流入の方向を切り替る別途の流路の切替機構等を備えず、第1流体と第2流体の流れによって回転体を回転させるとともに、流入と流出を切り替えている。ここで、回転体40に回転トルクを付与するトルク付与機構について説明する。   In the present embodiment, the pressure exchanging device 10 includes an external power for rotating the rotating body 40, a separate flow path switching mechanism for switching the inflow and outflow of the first fluid and the outflow and inflow directions of the second fluid. The rotating body is rotated by the flow of the first fluid and the second fluid, and inflow and outflow are switched. Here, a torque application mechanism that applies rotational torque to the rotating body 40 will be described.

第1流体流入路51と第2流体流入路53は、流路壁が時計回りの方向に広がるように形成されている。一方、第2流体流出路52と第1流体流出路54は、流路壁が反時計回りの方向に広がるように形成されている。   The first fluid inflow passage 51 and the second fluid inflow passage 53 are formed so that the flow passage wall extends in the clockwise direction. On the other hand, the second fluid outflow path 52 and the first fluid outflow path 54 are formed so that the flow path wall extends in the counterclockwise direction.

図5(a)から(d)に示すように、第1流体流入路51の流路壁51cと第2流体流入路53の流路壁53cは、流体の流入方向が端面50a側から見て時計周りの方向となるように傾斜している。一方、第2流体流出路52の流路壁52cと第1流体流出路54の流路壁54cは、流路壁51c及び流路壁53cとは逆方向へ傾斜している。   As shown in FIGS. 5A to 5D, the flow path wall 51c of the first fluid inflow path 51 and the flow path wall 53c of the second fluid inflow path 53 have a fluid inflow direction as viewed from the end face 50a side. It is inclined so as to be in the clockwise direction. On the other hand, the flow path wall 52c of the second fluid outflow path 52 and the flow path wall 54c of the first fluid outflow path 54 are inclined in the opposite direction to the flow path wall 51c and the flow path wall 53c.

図5(a)に示すように、第1流体流入路51は、開口部51aから開口部51bにかけて、第1側方部材50の正面視で、その流路断面が時計周り方向に広がるように流路壁51cが形成されており、開口部51bは、回転体40の周方向に沿って隣接する複数の第1流路41と連通する。   As shown in FIG. 5 (a), the first fluid inflow channel 51 has a channel cross-section that extends in the clockwise direction from the opening 51a to the opening 51b in the front view of the first side member 50. A flow path wall 51 c is formed, and the opening 51 b communicates with a plurality of first flow paths 41 that are adjacent along the circumferential direction of the rotating body 40.

第1流体流入部51から供給された高圧濃縮海水Hiは第1流体流入路51内で流路壁51cに沿って分散しながら、隣接する複数の第1流路41に流入する。このとき、第1流路41間の壁面(隔壁部)へ右方向の圧力を付与する。つまり、高圧濃縮海水Hiは正面視で、回転体40の時計周り方向の周方向成分の流れをもっているので、回転体40には時計回りの方向の力が付与される。   The high-pressure concentrated seawater Hi supplied from the first fluid inflow portion 51 flows into the adjacent first flow paths 41 while being dispersed along the flow path wall 51 c in the first fluid inflow path 51. At this time, rightward pressure is applied to the wall surface (partition wall) between the first flow paths 41. That is, since the high-pressure concentrated seawater Hi has a flow of a circumferential component in the clockwise direction of the rotating body 40 when viewed from the front, a force in the clockwise direction is applied to the rotating body 40.

図5(b)に示すように、第2流体流出路52は、開口部52aから開口部52bにかけて、第1側方部材50の正面視で、その流路断面が反時計周り方向に広がるように流路壁52cが形成されており、開口部52bは、回転体40の周方向に沿って隣接する複数の第2流路42と連通する。   As shown in FIG. 5 (b), the second fluid outflow path 52 has a channel cross-section that extends in the counterclockwise direction from the opening 52a to the opening 52b in the front view of the first side member 50. A flow path wall 52c is formed in the opening 52b, and the opening 52b communicates with a plurality of second flow paths 42 adjacent along the circumferential direction of the rotating body 40.

隣接する複数の第2流路42を流れる高圧海水Hoは、開口部52bで合流し、流路壁52cを経て流出する。このときに、高圧海水Hoは、第2流路42から第2流体流出路52に流れる水の通水断面積が広くなるように、第2流路42間の壁面(隔壁部)へ右方向の圧力を付与する。つまり、高圧海水Hoは正面視で、回転体40の時計周り方向の周方向成分の流れをもっているので、回転体40には時計回りの方向の力が付与される。   The high-pressure seawater Ho flowing through the adjacent second flow paths 42 merges at the opening 52b and flows out through the flow path wall 52c. At this time, the high-pressure seawater Ho moves rightward toward the wall surface (partition wall portion) between the second flow paths 42 so that the cross-sectional area of water flowing from the second flow path 42 to the second fluid outflow path 52 becomes larger. Apply pressure of That is, since the high-pressure seawater Ho has a flow of a circumferential component in the clockwise direction of the rotating body 40 when viewed from the front, a force in the clockwise direction is applied to the rotating body 40.

つまり、図5(a)に示すように、高圧濃縮海水Hiが第1流体流入路51から第1流路41に流入するときのエネルギーにより回転体40に付与されるトルクと、図5(b)に示すように、高圧海水Hoが第2流路42から第2流体流出路52へと流出するときのエネルギーにより回転体40に付与されるトルクは同じ向きになる。   That is, as shown in FIG. 5A, the torque applied to the rotating body 40 by the energy when the high-pressure concentrated seawater Hi flows into the first flow path 41 from the first fluid inflow path 51, and FIG. ), The torque applied to the rotating body 40 by the energy when the high-pressure seawater Ho flows out from the second flow path 42 to the second fluid outflow path 52 is in the same direction.

図5(c)に示すように、低圧海水Liが第2流体流入路53から第2流路42に流入するときのエネルギーにより回転体40に付与されるトルクと、図5(d)に示すように、低圧濃縮海水Loが第1流路41から第1流体流出路54へと流出するときのエネルギーにより回転体40に付与されるトルクも同じ向きになる。   As shown in FIG. 5C, the torque applied to the rotator 40 by the energy when the low-pressure seawater Li flows into the second flow path 42 from the second fluid inflow path 53, and as shown in FIG. As described above, the torque applied to the rotating body 40 by the energy when the low-pressure concentrated seawater Lo flows out from the first flow path 41 to the first fluid outflow path 54 is also in the same direction.

以上のように、各流入路、流出路と第1流体、第2流体が回転体40に回転するトルクを付与するトルク付与機構が構成される。トルク付与機構は、第1流路41に流入する高圧濃縮海水Hiのエネルギーと第2流路42から流出する高圧海水Hoのエネルギー、及び、第2流路42に流入する低圧海水Liのエネルギーと第1流路41から流出する低圧濃縮海水Loのエネルギーにより回転体40を回転させるトルクを発生させるので、回転体40を回転させるための外部動力が不要となる。また、回転体40の回転に伴って、第1流体の流入と流出、第2流体の流出と流入が切り替えられるので、別途の流路の切替機構が不要となる。   As described above, a torque applying mechanism is provided that applies torque for rotating each inflow path, outflow path, the first fluid, and the second fluid to the rotating body 40. The torque imparting mechanism includes energy of high-pressure concentrated seawater Hi flowing into the first flow path 41, energy of high-pressure seawater Ho flowing out of the second flow path 42, and energy of low-pressure seawater Li flowing into the second flow path 42. Since the torque for rotating the rotating body 40 is generated by the energy of the low-pressure concentrated seawater Lo flowing out from the first flow path 41, external power for rotating the rotating body 40 becomes unnecessary. Further, since the inflow and outflow of the first fluid and the outflow and inflow of the second fluid are switched with the rotation of the rotating body 40, a separate flow path switching mechanism becomes unnecessary.

なお、回転体40は、回転体40に流入する高圧濃縮海水Hi及び低圧海水Li、回転体40から流出する高圧海水Ho及び低圧濃縮海水Loのエネルギーによって回転するように構成されているため、例えば、流入する各流体のエネルギーのみで回転する場合より、大きなトルクを付与することができる。   The rotating body 40 is configured to rotate by the energy of the high-pressure concentrated seawater Hi and the low-pressure seawater Li flowing into the rotating body 40, and the high-pressure seawater Ho and the low-pressure concentrated seawater Lo flowing out of the rotating body 40. A larger torque can be applied than when rotating only with the energy of each inflowing fluid.

ところで、流路壁51c,52c,53c,54cの形状が変わると、各流入路から各流路に流入する流体、及び、各流入路から流出路に流出する流体の流れの方向が変わり、回転体40に作用するトルクが変わるので回転体40の回転数が変わる。つまり、回転体40の回転数は、流路壁51c,52c,53c,54cの形状に依存する。圧力交換装置10の処理流量は、回転体40の回転数に依存するため当該形状を変更して、回転体40の回転数を調整することで圧力交換装置10の処理流量を容易に調整できる。例えば、当該形状の異なる第1側方部材を用意しておき、交換することで、容易に処理流量を調整できる。   By the way, when the shape of the flow path walls 51c, 52c, 53c, 54c changes, the direction of the flow of the fluid flowing into each flow path from each inflow path and the flow of the fluid flowing out from each inflow path to the outflow path changes, and rotation Since the torque acting on the body 40 changes, the rotational speed of the rotating body 40 changes. That is, the rotation speed of the rotating body 40 depends on the shape of the flow path walls 51c, 52c, 53c, and 54c. Since the processing flow rate of the pressure exchange device 10 depends on the rotational speed of the rotating body 40, the processing flow rate of the pressure exchanging device 10 can be easily adjusted by changing the shape and adjusting the rotational speed of the rotating body 40. For example, the processing flow rate can be easily adjusted by preparing and replacing first side members having different shapes.

図2(b)に基づいて、ケーシング12について説明する。
ケーシング12は、円筒状部材で構成され、その内周径は第1側方部材50、第2側方部材60及び保持部材14の外径より僅かに大きく設定され、その長さは、第1側方部材50、第2側方部材60及び保持部材14を支軸で連結したものの軸心方向長さより長く設定されている。
The casing 12 will be described with reference to FIG.
The casing 12 is formed of a cylindrical member, and the inner peripheral diameter thereof is set slightly larger than the outer diameters of the first side member 50, the second side member 60, and the holding member 14, and the length thereof is the first. The side member 50, the second side member 60, and the holding member 14 are connected to each other by a support shaft, and are set longer than the axial length.

図2(a),(b)及び図8(a),(b),(c)に基づいて、第1エンドカバー20について説明する。
第1エンドカバー20は連結部材11を介して第2エンドカバー30と締結され、第1エンドカバー20と第2エンドカバー30の間でケーシング12を保持する部材である。
The first end cover 20 will be described with reference to FIGS. 2 (a), 2 (b) and FIGS. 8 (a), 8 (b), 8 (c).
The first end cover 20 is a member that is fastened to the second end cover 30 via the connecting member 11 and holds the casing 12 between the first end cover 20 and the second end cover 30.

第1エンドカバー20は、大径円盤部20aと小径円盤部20bが一体形成された形状をしている。小径円盤部20bの直径はケーシング12の一端側に挿通可能されるような大きさに設定されている。小径円盤部20bの外周には、ケーシング12内周の対向面とのシールを嵌入るシール溝20cが形成され、シール溝20cに配設されるシールによってケーシング12内の流体が外部に漏れないように構成されている。なお、大径円盤部20aと小径円盤部20bは一体形成する構成であっても、別体で形成したものを組み合わせる構成であってもよい。   The first end cover 20 has a shape in which a large diameter disk portion 20a and a small diameter disk portion 20b are integrally formed. The diameter of the small-diameter disk portion 20b is set to a size that can be inserted into one end side of the casing 12. A seal groove 20c is formed on the outer periphery of the small-diameter disk portion 20b so as to fit a seal with a facing surface of the inner periphery of the casing 12, so that the fluid in the casing 12 does not leak to the outside by the seal disposed in the seal groove 20c. It is configured. The large-diameter disk portion 20a and the small-diameter disk portion 20b may be configured to be integrally formed or may be configured to combine those formed separately.

第1エンドカバー20には大径円盤部20aと小径円盤部20bを貫通するように、第1流体流入部21、第2流体流出部22、第2流体流入部23及び第1流体流出部24がその厚み方向に形成されている。   The first end cover 20 has a first fluid inflow portion 21, a second fluid outflow portion 22, a second fluid inflow portion 23, and a first fluid outflow portion 24 so as to penetrate the large diameter disk portion 20a and the small diameter disk portion 20b. Is formed in the thickness direction.

第1流体流入部21の大径円盤部20a側には、高圧濃縮海水Hiの流入管15が接合されるように構成されている。小径円盤部20b側には、第1側方部材50の第1流体流入路51の開口部51aより大きい断面積の扇状の開口部21aが形成されている。   An inflow pipe 15 for high-pressure concentrated seawater Hi is joined to the large-diameter disk portion 20 a side of the first fluid inflow portion 21. A fan-shaped opening 21 a having a larger cross-sectional area than the opening 51 a of the first fluid inflow passage 51 of the first side member 50 is formed on the small-diameter disk portion 20 b side.

第2流体流出部22の大径円盤部20a側には、高圧海水Hoの流出管16が接合されるように構成されている。小径円盤部20b側には、第1側方部材50の第2流体流出路52の開口部52aより大きい断面積の扇状の開口部22aが形成されている。   An outflow pipe 16 for high-pressure seawater Ho is joined to the large-diameter disk portion 20 a side of the second fluid outflow portion 22. A fan-shaped opening 22a having a larger cross-sectional area than the opening 52a of the second fluid outflow passage 52 of the first side member 50 is formed on the small-diameter disk portion 20b side.

第2流体流入部23の大径円盤部20a側には、低圧海水Liの流入管17が接合されるように構成されている。小径円盤部20b側には、第1側方部材50の第2流体流入路53の開口部53aより大きい断面積の扇状の開口部23aが形成されている。   The inflow pipe 17 of the low-pressure seawater Li is configured to be joined to the large-diameter disk part 20a side of the second fluid inflow part 23. A fan-shaped opening 23a having a larger cross-sectional area than the opening 53a of the second fluid inflow passage 53 of the first side member 50 is formed on the small-diameter disk portion 20b side.

第2流体流出部24の大径円盤部20a側には、低圧濃縮海水Loの流出管18が接合されるように構成され、小径円盤部20b側には、第1側方部材50の第1流体流出路54の開口部54aより大きい断面積の扇状の開口部24aが形成されている。   An outflow pipe 18 for low-pressure concentrated seawater Lo is joined to the large-diameter disk portion 20a side of the second fluid outflow portion 24, and the first side member 50 of the first side member 50 is disposed to the small-diameter disk portion 20b side. A fan-shaped opening 24 a having a larger cross-sectional area than the opening 54 a of the fluid outflow passage 54 is formed.

第1エンドカバー20の各開口部21a,22a,23a,24aは、小径円盤部20bがケーシング12の一端に挿通された状態で、第1側方部材50の各開口部51a,52a,53a,54aを覆うように配置される。   The openings 21 a, 22 a, 23 a, 24 a of the first end cover 20 are formed in the openings 51 a, 52 a, 53 a, and the openings 51 a, 52 a, 53 a, of the first side member 50 with the small-diameter disk portion 20 b inserted into one end of the casing 12. It arrange | positions so that 54a may be covered.

小径円盤部20bの中央には、支軸13の一端とナットを収容する凹部が形成されている。第1エンドカバー20の小径円盤部20bがケーシング12の一端に挿通された状態で、当該凹部が、第1側方部材50と第1エンドカバー20とで区画される第1閉空間25を構成する。第1側方部材50の開口部55の近傍に形成された第1連通路56は、第1閉空間25と回転体40に形成された支軸13の挿通空間43とを連通する。   At the center of the small-diameter disk portion 20b, a recess for accommodating one end of the support shaft 13 and a nut is formed. In a state where the small-diameter disk portion 20b of the first end cover 20 is inserted into one end of the casing 12, the recess constitutes a first closed space 25 defined by the first side member 50 and the first end cover 20. To do. A first communication path 56 formed in the vicinity of the opening 55 of the first side member 50 communicates the first closed space 25 and the insertion space 43 of the support shaft 13 formed in the rotating body 40.

第1エンドカバー20と第1側方部材50との接合部である小径円盤部20bの端面には溝部が形成され、当該溝部にガスケット26が備えられている。   A groove portion is formed on the end surface of the small-diameter disk portion 20b, which is a joint portion between the first end cover 20 and the first side member 50, and a gasket 26 is provided in the groove portion.

ガスケット26によって、第1エンドカバー20と第1側方部材50との接合部であって、第1閉空間25の周囲に、前記第1エンドカバーに形成された第1流体流入部21、第2流体流出部22、第2流体流入部23及び第1流体流出部24のそれぞれを個別に区画する閉空間21b,22b,23b,24bが区画されている。   A gasket 26 is used to join the first end cover 20 and the first side member 50, around the first closed space 25, the first fluid inflow portion 21 formed in the first end cover, Closed spaces 21b, 22b, 23b, and 24b that individually divide the two fluid outflow portion 22, the second fluid inflow portion 23, and the first fluid outflow portion 24 are defined.

なお、閉空間21b,22b,23b,24bは、完全に閉じた空間ではなく、第1流体流入部21、第2流体流出部22、第2流体流入部23及び第1流体流出部24を、夫々第1流体流入路51、第2流体流出路52、第2流体流入路53及び第1流体流出路54を連通する空間である。   The closed spaces 21b, 22b, 23b, and 24b are not completely closed spaces, but include the first fluid inflow portion 21, the second fluid outflow portion 22, the second fluid inflow portion 23, and the first fluid outflow portion 24. The spaces communicate with the first fluid inflow passage 51, the second fluid outflow passage 52, the second fluid inflow passage 53, and the first fluid outflow passage 54, respectively.

さらに、第1流体流入部21及び第1流体流出部24に対応する閉空間21b,24bの間と、第2流体流出部22及び第2流体流入部23に対応する閉空間22b,23bの間の双方に径方向に開放された第1開放空間27が区画されている。   Further, between the closed spaces 21 b and 24 b corresponding to the first fluid inflow portion 21 and the first fluid outflow portion 24, and between the closed spaces 22 b and 23 b corresponding to the second fluid outflow portion 22 and the second fluid inflow portion 23. A first open space 27 opened in the radial direction is defined on both sides.

従って、閉空間21bが回転体40と第1側方部材50との隙間に形成された、第1流体流入路51と連通する第1圧力領域と対応する第1エンドカバー側第1圧力部を構成し、閉空間24bが回転体40と第1側方部材50との隙間に形成された、第1流体流出路54と連通する第2圧力領域と対応する第1エンドカバー側第2圧力部を構成する。閉空間22bは、回転体40と第1側方部材50との隙間に形成された、第2流体流出路52と連通する第1圧力領域と対応する第1エンドカバー側第1圧力部を構成し、閉空間23bが回転体40と第1側方部材50との隙間に形成された、第2流体流入路53と連通する第1エンドカバー側第2圧力領域と対応する第2圧力部を構成する。   Therefore, the first end cover side first pressure portion corresponding to the first pressure region communicating with the first fluid inflow path 51 formed in the gap between the rotating body 40 and the first side member 50 in the closed space 21b. 1st end cover side 2nd pressure part corresponding to the 2nd pressure field which comprises and the closed space 24b was formed in the crevice between rotating body 40 and the 1st side member 50, and communicated with the 1st fluid outflow path 54 Configure. The closed space 22b constitutes a first end cover side first pressure portion corresponding to a first pressure region formed in a gap between the rotating body 40 and the first side member 50 and communicating with the second fluid outflow path 52. The second pressure portion corresponding to the first end cover side second pressure region communicating with the second fluid inflow path 53 formed in the gap between the rotating body 40 and the first side member 50 is the closed space 23b. Configure.

さらに、第1開放空間27が、第1圧力領域と第2圧力領域の間の中間圧力領域と夫々対応する、第1エンドカバー側第1圧力部と前記第1エンドカバー側第2圧力部の間に形成された第1エンドカバー側中間圧力部を構成する。   Furthermore, the first open space 27 corresponds to an intermediate pressure region between the first pressure region and the second pressure region, and the first end cover side first pressure part and the first end cover side second pressure part respectively correspond to the intermediate pressure region. A first end cover side intermediate pressure portion formed therebetween is formed.

図2(b)及び図9(a),(b),(c)に基づいて、第2エンドカバー30について説明する。
第2エンドカバー30は連結部材11を介して第1エンドカバー20と締結され、第2エンドカバー30と第1エンドカバー20の間でケーシング12を保持する部材である。
The 2nd end cover 30 is demonstrated based on FIG.2 (b) and FIG.9 (a), (b), (c).
The second end cover 30 is a member that is fastened to the first end cover 20 via the connecting member 11 and holds the casing 12 between the second end cover 30 and the first end cover 20.

第2エンドカバー30は、小径円盤部30aと大径円盤部30bとが一体形成された形状をしている。小径円盤部30aの直径はケーシング12の他端側に挿通可能されるような大きさに設定されている。小径円盤部30aの外周には、ケーシング12内周の対向面とのシールを嵌入るシール溝30cが形成され、シール溝30cに配設されるシールによってケーシング12内の流体が外部に漏れないように構成されている。   The second end cover 30 has a shape in which a small-diameter disk portion 30a and a large-diameter disk portion 30b are integrally formed. The diameter of the small-diameter disk portion 30a is set to a size that can be inserted into the other end side of the casing 12. A seal groove 30c is formed on the outer periphery of the small-diameter disk portion 30a so as to fit a seal with the opposed surface of the inner periphery of the casing 12, and the fluid in the casing 12 does not leak to the outside by the seal disposed in the seal groove 30c. It is configured.

本実施形態では、第2エンドカバー30は、透光性のある材料で形成され、圧力交換装置10の外部から回転体40を目視可能な構成となっている。なお、第2エンドカバー30の一部に透光性のある材料を用いて回転体40を目視できるように構成してもよい。また、小径円盤部30aと大径円盤部30bは、別体で形成したものを組み合わせる構成であってもよい。この場合、例えば、小径円盤部30aのみ透光性のある材料で形成し、大径円盤部30bは金属等の強度のある材料で形成するとともに大径円盤部30bに点検窓を備えて、回転体40を目視できるように構成してもよい。圧力交換装置10の試運転や運転時や点検の際に、回転体が円滑に回転しているか否かを外部から容易に確認することができる。   In the present embodiment, the second end cover 30 is formed of a light-transmitting material, and has a configuration in which the rotating body 40 can be viewed from the outside of the pressure exchange device 10. In addition, you may comprise so that the rotary body 40 can be visually observed for a part of 2nd end cover 30 using a translucent material. Further, the small-diameter disk portion 30a and the large-diameter disk portion 30b may be configured by combining those formed separately. In this case, for example, only the small-diameter disk portion 30a is formed of a light-transmitting material, the large-diameter disk portion 30b is formed of a strong material such as metal, and the large-diameter disk portion 30b is provided with an inspection window, and is rotated. You may comprise so that the body 40 can be visually observed. During trial operation, operation, or inspection of the pressure exchange device 10, it can be easily confirmed from the outside whether the rotating body is rotating smoothly.

小径円盤部30aの中央には第2側方部材60に形成された支軸13の他端とナットを収容する凹部64と対応する領域に凹部31が形成されている。さらに、凹部31の周囲には、圧力交換部を構成する連通部61(61a,61b)、及び連通部62(62a,62b)に対応する領域に凹部32,33が形成されている。なお、凹部31,32,33の深さは任意であり、また凹部31,32,33は必ずしも形成されなくてもよい。   In the center of the small-diameter disk portion 30a, a recess 31 is formed in a region corresponding to the other end of the support shaft 13 formed in the second side member 60 and the recess 64 that accommodates the nut. Further, around the recess 31, recesses 32 and 33 are formed in areas corresponding to the communication portions 61 (61a and 61b) and the communication portions 62 (62a and 62b) constituting the pressure exchanging portion. The depths of the recesses 31, 32, and 33 are arbitrary, and the recesses 31, 32, and 33 are not necessarily formed.

第2エンドカバー30の小径円盤部30aがケーシング12の他端に挿通された状態で、当該凹部31と第2側方部材60の凹部64とが、第2側方部材60と第2エンドカバー30とで区画される第2閉空間34を構成する。第2側方部材60の開口部63の近傍に形成された第2連通路65は、第2閉空間34と回転体40に形成された支軸13の挿通空間43とを連通する。   In a state where the small-diameter disk portion 30a of the second end cover 30 is inserted into the other end of the casing 12, the concave portion 31 and the concave portion 64 of the second side member 60 are connected to the second side member 60 and the second end cover. The second closed space 34 partitioned by 30 is configured. A second communication path 65 formed in the vicinity of the opening 63 of the second side member 60 communicates the second closed space 34 and the insertion space 43 of the support shaft 13 formed in the rotating body 40.

第2エンドカバー30と第2側方部材60との接合部である小径円盤部30aの端面には溝部が形成され、当該溝部にガスケット35が備えられている。なお、本実施形態では、ガスケット35を備えるための溝部を第2エンドカバー30側に形成したが、当該溝部は第2側方部材60側の端面60bに形成し、その溝部にガスケットを備えてもよい。また、溝部を設けずにガスケットを備えてもよい。   A groove portion is formed on the end surface of the small-diameter disk portion 30a, which is a joint portion between the second end cover 30 and the second side member 60, and a gasket 35 is provided in the groove portion. In this embodiment, the groove for providing the gasket 35 is formed on the second end cover 30 side. However, the groove is formed on the end surface 60b on the second side member 60 side, and the groove is provided with the gasket. Also good. Moreover, you may provide a gasket, without providing a groove part.

ガスケット35によって、第2エンドカバー30と第2側方部材60との接合部であって、凹部31の周囲に、圧力交換部を構成する連通部61a,61bに対応する領域と、圧力交換部を構成する連通部62a,62bに対応する領域をそれぞれ個別に区画する閉空間36,37が区画されている。つまり、第2エンドカバー30と第2側方部材60との接合部では、凹部32,33がガスケット35によって区画され閉空間36,37として機能する。   The gasket 35 is a joint between the second end cover 30 and the second side member 60, the area corresponding to the communication parts 61 a and 61 b constituting the pressure exchange part around the recess 31, and the pressure exchange part The closed spaces 36 and 37 that divide the regions corresponding to the communication portions 62a and 62b that constitute each of the above are individually defined. That is, at the joint between the second end cover 30 and the second side member 60, the recesses 32 and 33 are partitioned by the gasket 35 and function as closed spaces 36 and 37.

閉空間36,37は、完全に閉じた空間ではなく、圧力交換部を構成する連通部61a,61bを連通する空間と、圧力交換部を構成する連通部62a,62bを連通する空間である。   The closed spaces 36 and 37 are not completely closed spaces, but are spaces that communicate with the communicating portions 61a and 61b that constitute the pressure exchanging portion and the communicating portions 62a and 62b that constitute the pressure exchanging portion.

閉空間36,37は、ガスケット35により連通部61a,61bに対応する領域と、連通部62a,62bに対応する領域に区画される構成に限らず、連通部61a,61b,62a,62bの夫々に対応する領域に区画される構成でもよい。   The closed spaces 36 and 37 are not limited to the configuration partitioned by the gasket 35 into a region corresponding to the communication portions 61a and 61b and a region corresponding to the communication portions 62a and 62b, but the communication portions 61a, 61b, 62a and 62b, respectively. It may be configured to be divided into regions corresponding to.

さらに、ガスケット35によって、閉空間36と閉空間37の間に径方向へ開放された第2開放空間38が区画されている。   Further, a second open space 38 opened in the radial direction is defined between the closed space 36 and the closed space 37 by the gasket 35.

従って、閉空間36が、前記第1圧力領域に対応する第2エンドカバー側第1圧力部を構成する。閉空間37が、前記第2圧力領域に対応する第2エンドカバー側第2圧力部を構成する。第2開放空間38が、前記中間圧力領域に対応する第2エンドカバー側中間圧力部を構成する。   Therefore, the closed space 36 constitutes a second end cover side first pressure portion corresponding to the first pressure region. The closed space 37 constitutes a second end cover side second pressure portion corresponding to the second pressure region. The second open space 38 forms a second end cover side intermediate pressure portion corresponding to the intermediate pressure region.

以上のように構成された回転体40、第1側方部材50、第2側方部材60、保持部材14、支軸13、ケーシング12、第1エンドカバー20及び第2エンドカバー30等が組み合わされて圧力交換装置10が構成される。なお、第1側方部材50、第2側方部材60、保持部材14、ケーシング12、第1エンドカバー20及び第2エンドカバー30は、相対的な位置が移動しないように、夫々隣接する部材とピンやボルトなどで固定することが好ましい。   The rotating body 40, the first side member 50, the second side member 60, the holding member 14, the support shaft 13, the casing 12, the first end cover 20, the second end cover 30, and the like configured as described above are combined. Thus, the pressure exchange device 10 is configured. In addition, the 1st side member 50, the 2nd side member 60, the holding member 14, the casing 12, the 1st end cover 20, and the 2nd end cover 30 are each adjacent members so that a relative position may not move. It is preferable to fix with a pin or a bolt.

ここで、回転体40が支軸13を介して連結された第1側方部材50と第2側方部材60との間で円滑に回転するように、回転体40の一端面と第1側方部材50との間、回転体40の他端面と第2側方部材60との間及び回転体40と保持部材14との間には、第1流体または第2流体が進入するような適度な隙間が形成されている。   Here, the one end surface of the rotating body 40 and the first side are rotated so that the rotating body 40 smoothly rotates between the first side member 50 and the second side member 60 connected via the support shaft 13. The first fluid or the second fluid enters between the side member 50, between the other end surface of the rotating body 40 and the second side member 60, and between the rotating body 40 and the holding member 14. Gaps are formed.

回転体40の回転時には、当該隙間に進入した流体が潤滑剤の役割をし、回転体40と、第1側方部材50、第2側方部材60、保持部材14の夫々の対向面の各部材同士の摺動が回避される。   When the rotating body 40 rotates, the fluid that has entered the gap serves as a lubricant, and each of the opposing surfaces of the rotating body 40, the first side member 50, the second side member 60, and the holding member 14. Sliding between members is avoided.

従って、当該隙間が狭すぎると、回転体40と第1側方部材50や、回転体40と第2側方部材60とが摺動したり、回転体40の外周面が保持部材14の内周面と摺動したりする虞がある。逆に、当該隙間が広すぎると、第1流体や第2流体の漏れ量が多くなり、例えば、第1流体流入路51から供給された高圧濃縮海水Hiが回転体40と第1側方部材50の隙間を介して直接第2流体流出路52へと流出するなどして、圧力の交換効率が低下してしまう。例えば、回転体40と第1側方部材50や、回転体40と第2側方部材60との隙間は、好ましくは1〜100μm程度に設定されている。また、回転体40と保持部材14の隙間は1mm程度に設定されている。なお、回転体40の外周面と保持部材14の内周面を軸受とする場合は、隙間は1〜500μm程度に設定される。   Therefore, if the gap is too narrow, the rotating body 40 and the first side member 50, the rotating body 40 and the second side member 60 slide, or the outer peripheral surface of the rotating body 40 is inside the holding member 14. There is a risk of sliding with the peripheral surface. On the other hand, if the gap is too wide, the amount of leakage of the first fluid and the second fluid increases. For example, the high-pressure concentrated seawater Hi supplied from the first fluid inflow passage 51 is rotated by the rotating body 40 and the first side member. For example, the efficiency of exchanging pressure is reduced by flowing directly into the second fluid outflow path 52 through the gap 50. For example, the gap between the rotating body 40 and the first side member 50 or between the rotating body 40 and the second side member 60 is preferably set to about 1 to 100 μm. The gap between the rotating body 40 and the holding member 14 is set to about 1 mm. When the outer peripheral surface of the rotating body 40 and the inner peripheral surface of the holding member 14 are used as bearings, the gap is set to about 1 to 500 μm.

このような隙間を調整する機構として支軸13や、連結部材11が備えられている。支軸13は、第1側方部材50と第2側方部材60を押す押圧機構として機能し、ナットの締め付けを調整することで第1側方部材50と第2側方部材60の軸心方向の距離を調整できる。これにより、回転体40と第1側方部材50の隙間と、回転体40と第2側方部材60の隙間が調整される。   As a mechanism for adjusting such a gap, a support shaft 13 and a connecting member 11 are provided. The support shaft 13 functions as a pressing mechanism that presses the first side member 50 and the second side member 60, and the axial centers of the first side member 50 and the second side member 60 are adjusted by adjusting the tightening of the nut. You can adjust the direction distance. Thereby, the clearance gap between the rotary body 40 and the 1st side member 50 and the clearance gap between the rotary body 40 and the 2nd side member 60 are adjusted.

連結部材11は、両端に雄ネジ11aが形成された棒状部材と、前記雄ネジに螺合するナット11bを含んで構成されている。連結部材11は、第1エンドカバー20と第2エンドカバー30を押す押圧機構として機能し、ナットの締め付けを調整することで第1エンドカバー20と第2エンドカバー30の間隔を調整できる。これにより第1エンドカバー20と第2エンドカバー30を介して第1側方部材50と第2側方部材60を外側から押す力を調整でき、第1側方部材50及び第2側方部材60と回転体40との間隙が調整される。   The connecting member 11 includes a rod-like member having male screws 11a formed at both ends, and a nut 11b that is screwed into the male screw. The connecting member 11 functions as a pressing mechanism that presses the first end cover 20 and the second end cover 30, and the interval between the first end cover 20 and the second end cover 30 can be adjusted by adjusting the tightening of the nut. Thereby, the force which pushes the 1st side member 50 and the 2nd side member 60 from the outside via the 1st end cover 20 and the 2nd end cover 30 can be adjusted, and the 1st side member 50 and the 2nd side member can be adjusted. The gap between 60 and the rotating body 40 is adjusted.

例えば、回転体40と第1側方部材50や、回転体40と第2側方部材60の摺動部が磨耗して当初の設定より隙間が大きくなり流体の漏れ量が増えるような場合であっても、支軸13や連結部材11で構成される押圧機構により第1側方部材50または第2側方部材60と回転体40との隙間が調整できる。圧力の交換効率の低下を防ぐことができる。回転体40などの主要部品の交換頻度を減らすことができるようになる。   For example, when the sliding part of the rotating body 40 and the first side member 50 or the sliding part of the rotating body 40 and the second side member 60 wears out, the gap becomes larger than the initial setting and the amount of fluid leakage increases. Even if it exists, the clearance gap between the 1st side member 50 or the 2nd side member 60, and the rotary body 40 can be adjusted with the press mechanism comprised by the spindle 13 or the connection member 11. FIG. A decrease in pressure exchange efficiency can be prevented. It becomes possible to reduce the replacement frequency of main parts such as the rotating body 40.

ところで、回転体40と第1側方部材50との隙間や、回転体40と第2側方部材60との隙間に進入した第1流体と第2流体の圧力によって、第1側方部材50と第2側方部材60には外側方向への力が作用する。また、回転体40と保持部材14との隙間に進入した第1流体と第2流体の圧力によって、保持部材14には外側方向への力が作用する。   By the way, the first side member 50 is caused by the pressure of the first fluid and the second fluid that have entered the gap between the rotating body 40 and the first side member 50 or the gap between the rotating body 40 and the second side member 60. The second side member 60 is subjected to an outward force. Further, a force in the outward direction acts on the holding member 14 by the pressure of the first fluid and the second fluid that have entered the gap between the rotating body 40 and the holding member 14.

このように、隙間に進入した第1流体や第2流体の圧力は、第1側方部材50、第2側方部材60及び保持部材14に作用する。第1側方部材50の第1エンドカバー20側の押圧力が回転体40側の押圧力より大きければ、回転体40と第1側方部材50の隙間が小さくなって摺動し回転抵抗が増加するという問題がある。一方、第1側方部材50の第1エンドカバー20側の押圧力が回転体40側の押圧力より小さければ、回転体40と第1側方部材50の隙間が大きくなって流体の漏れ量が増加して圧力交換の効率が低下するという問題がある。   Thus, the pressure of the first fluid or the second fluid that has entered the gap acts on the first side member 50, the second side member 60, and the holding member 14. If the pressing force on the first end cover 20 side of the first side member 50 is larger than the pressing force on the rotating body 40 side, the clearance between the rotating body 40 and the first side member 50 becomes smaller and the sliding resistance is reduced. There is a problem of increasing. On the other hand, if the pressing force on the first end cover 20 side of the first side member 50 is smaller than the pressing force on the rotating body 40 side, the gap between the rotating body 40 and the first side member 50 becomes large, and the amount of fluid leakage Increases the pressure exchange efficiency.

また、回転体40と第1側方部材50との隙間や、回転体40と第2側方部材60との隙間に進入した第1流体と第2流体の圧力によって、第1側方部材50と第2側方部材60に作用する外側方向への力によって支軸13に無駄な応力かかってしまう。   Further, the first side member 50 is caused by the pressure of the first fluid and the second fluid that have entered the gap between the rotating body 40 and the first side member 50 or the gap between the rotating body 40 and the second side member 60. As a result, useless stress is applied to the support shaft 13 by the outward force acting on the second side member 60.

第1側方部材50は全域に亘って均一な圧力で第1エンドカバー20側へ押されているわけではない。第1側方部材50の回転体40への対向面である端面50bのうち、第1流体流入路51から供給される高圧濃縮海水Hiが進入した領域や、第1流体流入路51の流路壁51cのうち回転体40と対向する面は、高圧濃縮流体Hiのもつ高圧が作用する第1圧力領域となっている。   The first side member 50 is not pushed toward the first end cover 20 side with a uniform pressure over the entire area. Of the end surface 50 b that is the surface of the first side member 50 that faces the rotating body 40, the region into which the high-pressure concentrated seawater Hi supplied from the first fluid inflow passage 51 has entered, or the flow path of the first fluid inflow passage 51. The surface of the wall 51c that faces the rotating body 40 is a first pressure region where the high pressure of the high-pressure concentrated fluid Hi acts.

第1側方部材50の回転体40への対向面である端面50bのうち、低圧海水Liとの間で圧力交換された低圧濃縮海水Loが進入した領域や、第1流体流出路54の流路壁54cのうち回転体40と対向する面は、その低圧濃縮海水Loの低圧が作用する第2圧力領域となっている。   Of the end face 50b that is the face of the first side member 50 facing the rotating body 40, the region where the low-pressure concentrated seawater Lo pressure-exchanged with the low-pressure seawater Li has entered, the flow of the first fluid outflow passage 54 The surface of the road wall 54c that faces the rotating body 40 is a second pressure region where the low pressure of the low-pressure concentrated seawater Lo acts.

また、端面50bのうち、前記第1圧力領域と前記第2圧力領域の間の領域は、第1圧力領域の高圧濃縮海水Liの圧力と、第2圧力領域の低圧濃縮海水Loの圧力の中間的な圧力が作用する中間圧力領域となっている。つまり、端面50bでは位置によって作用する圧力が異なっている。   Moreover, the area | region between the said 1st pressure area | region and the said 2nd pressure area | region among the end surfaces 50b is an intermediate | middle of the pressure of the high pressure concentrated seawater Li of a 1st pressure area | region, and the pressure of the low pressure concentrated seawater Lo of a 2nd pressure area | region. This is an intermediate pressure region where a typical pressure acts. That is, the pressure acting on the end surface 50b varies depending on the position.

同様に、第2側方部材60は全域に亘って均一な圧力で第2エンドカバー30側へ押されているわけではない。第2側方部材60の回転体40との対向面である端面60aに形成された前記第2圧力領域と回転体40を介して対向する第2圧力領域と、前記第1圧力領域と回転体40を介して対向する第1圧力領域と、前記第2圧力領域と前記第1圧力領域の間に形成される中間圧力領域では夫々その押圧力が異なっている。つまり、端面60aでは位置によって作用する圧力が異なっている。   Similarly, the second side member 60 is not pushed toward the second end cover 30 side with a uniform pressure over the entire area. The second pressure region formed on the end surface 60a that is a surface of the second side member 60 facing the rotating body 40, the second pressure region facing the rotating body 40, the first pressure region, and the rotating body. The pressing force is different between the first pressure region opposed via 40 and the intermediate pressure region formed between the second pressure region and the first pressure region. That is, the pressure acting on the end surface 60a varies depending on the position.

そこで、圧力交換装置10は、圧力バランス調整機構を備えている。
圧力バランス調整機構は、第1側方部材50に作用する圧力バランスを調整する第1圧力バランス調整機構71と、第2側方部材60に作用する圧力バランスを調整する第2圧力バランス調整機構72と、保持部材14に作用する圧力バランスを調整する第3圧力バランス調整機構73と、回転体40に作用する圧力バランスを調整する第4圧力バランス調整機構74を含んで構成されている。
Therefore, the pressure exchange device 10 includes a pressure balance adjustment mechanism.
The pressure balance adjusting mechanism includes a first pressure balance adjusting mechanism 71 that adjusts the pressure balance acting on the first side member 50 and a second pressure balance adjusting mechanism 72 that adjusts the pressure balance acting on the second side member 60. And a third pressure balance adjusting mechanism 73 that adjusts the pressure balance acting on the holding member 14 and a fourth pressure balance adjusting mechanism 74 that adjusts the pressure balance acting on the rotating body 40.

まず、第1圧力バランス調整機構71について説明する。
第1圧力バランス調整機構71は、第1側方部材50に形成された第1連通路56や第3連通路57と、保持部材14に形成された第6連通路14cと、ガスケット26と第1側方部材50と第1エンドカバー20間でガスケット20によって区画される閉空間21b,22b,23b,24b、第1閉空間25及び第1開放空間27とを含んで構成されている。
First, the first pressure balance adjustment mechanism 71 will be described.
The first pressure balance adjusting mechanism 71 includes a first communication path 56 and a third communication path 57 formed in the first side member 50, a sixth communication path 14 c formed in the holding member 14, the gasket 26, A closed space 21 b, 22 b, 23 b, 24 b, a first closed space 25, and a first open space 27 defined by the gasket 20 between the one side member 50 and the first end cover 20 are configured.

第1側方部材50は、回転体40と第1側方部材50の隙間に進入した第1流体または第2流体によって、第1エンドカバー20方向へ押されている。   The first side member 50 is pushed toward the first end cover 20 by the first fluid or the second fluid that has entered the gap between the rotating body 40 and the first side member 50.

そこで、第1閉空間25に第1連通路56を介して挿通空間43側の第1流体または第2流体を導いて、当該流体の圧力によって第1側方部材50の中央部を内側へ押す。このように、第1側方部材50の中央部を外側へと押す力と内側へ押す力を対抗させることで第1側方部材50の中央部に作用する圧力バランスが調整され、その撓みの発生が抑制される。   Therefore, the first fluid or the second fluid on the insertion space 43 side is guided to the first closed space 25 via the first communication path 56, and the central portion of the first side member 50 is pushed inward by the pressure of the fluid. . In this way, the pressure balance acting on the central portion of the first side member 50 is adjusted by optimizing the force pushing the center portion of the first side member 50 outward and the force pushing the inside portion. Occurrence is suppressed.

閉空間21b,22b,23b,24b内には、夫々高圧濃縮海水Hi、高圧海水Ho、低圧海水Li、低圧濃縮海水Loの圧力が作用しており、各閉空間に対応する領域には、第1側方部材50を内側へ押す力が作用しており、第1側方部材50を外側へと押す力とを対抗して圧力バランスが調整されている。   In the closed spaces 21b, 22b, 23b, and 24b, the pressures of the high-pressure concentrated seawater Hi, the high-pressure seawater Ho, the low-pressure seawater Li, and the low-pressure concentrated seawater Lo act, respectively. The force which pushes the 1 side member 50 to the inside acts, and the pressure balance is adjusted against the force which pushes the 1st side member 50 to the outside.

さらに、第1開放空間27に第6連通路14c、第3連通路57を介して回転体40と第1側方部材50の隙間に進入した第1流体または第2流体を導いて、当該流体の圧力によって第1側方部材50の第1開放空間27に対応した領域を内側へ押す。このように、第1側方部材50の第1開放空間27に対応した領域を外側へと押す力と、内側へ押す力を対抗させることで第1側方部材50の周部の圧力バランスが調整され、その撓みの発生が抑制される。   Further, the first fluid or the second fluid that has entered the gap between the rotating body 40 and the first side member 50 is guided to the first open space 27 via the sixth communication path 14 c and the third communication path 57. The area corresponding to the first open space 27 of the first side member 50 is pushed inward by the pressure of. Thus, the pressure balance of the peripheral part of the 1st side member 50 is countered by the force which pushes the area | region corresponding to the 1st open space 27 of the 1st side member 50 outside, and the force pushed inside. It adjusts and generation | occurrence | production of the bending is suppressed.

第1圧力バランス調整機構71により第1側方部材50に作用する圧力バランスが調整されるので、第1側方部材を薄肉化することができるので、装置のコンパクト化と低コスト化を図ることができる。   Since the pressure balance acting on the first side member 50 is adjusted by the first pressure balance adjusting mechanism 71, the first side member can be thinned, so that the apparatus can be made compact and the cost can be reduced. Can do.

なお、第1閉空間25に挿通空間43側の第1流体または第2流体を導く構成としては、第1連通路56によるものに限らない。例えば、支軸13内に挿通空間43と第1連通路25を連通する連通路を形成し、当該連通路を介して挿通空間43内の第1流体または第2流体を第1閉空間25に導くように構成してもよい。   In addition, the configuration for guiding the first fluid or the second fluid on the insertion space 43 side to the first closed space 25 is not limited to that using the first communication path 56. For example, a communication path that connects the insertion space 43 and the first communication path 25 is formed in the support shaft 13, and the first fluid or the second fluid in the insertion space 43 is transferred to the first closed space 25 via the communication path. It may be configured to guide.

また、第1開放空間27に回転体40と第1側方部材50の隙間に進入した第1流体または第2流体を導く構成としては、第3連通路57によるものに限らない。例えば、ケーシング12の内周面に、第6連通路14cと第1開放空間27を連通する連通溝を形成し、当該連通溝を介して回転体40と第1側方部材50の隙間に進入した第1流体または第2流体を第1開放区間27に導くように構成してもよい。さらに、第3連通路57は必ずしも通路として形成しなくてもよい。例えば、ケーシング12の内径に対して第1側方部材50の直径を幾らか小さく形成することで、第1側方部材50の外周面とケーシング12の内周面の間に隙間を形成し、この隙間を第3連通路57として機能させてもよい。   In addition, the configuration in which the first fluid or the second fluid that has entered the gap between the rotating body 40 and the first side member 50 is guided to the first open space 27 is not limited to the configuration using the third communication path 57. For example, a communication groove that communicates the sixth communication passage 14 c and the first open space 27 is formed on the inner peripheral surface of the casing 12, and enters the gap between the rotating body 40 and the first side member 50 via the communication groove. The first fluid or the second fluid may be guided to the first open section 27. Further, the third communication passage 57 does not necessarily have to be formed as a passage. For example, by forming the diameter of the first side member 50 somewhat smaller than the inner diameter of the casing 12, a gap is formed between the outer peripheral surface of the first side member 50 and the inner peripheral surface of the casing 12, This gap may function as the third communication path 57.

次に、第2圧力バランス調整機構72ついて説明する。
第2圧力バランス調整機構72は、第2側方部材60に形成される第2閉空間34や第2連通路65や第4連通路68と、保持部材14に形成された第6連通路14cと、第2エンドカバー20に形成された凹部31,凹部32,33や、第2開放空間38とを含んで構成されている。
Next, the second pressure balance adjusting mechanism 72 will be described.
The second pressure balance adjusting mechanism 72 includes a second closed space 34, a second communication path 65, a fourth communication path 68 formed in the second side member 60, and a sixth communication path 14 c formed in the holding member 14. And the recessed part 31, the recessed parts 32 and 33 formed in the 2nd end cover 20, and the 2nd open space 38 are comprised.

第2側方部材60は、回転体40と第2側方部材60の隙間に進入した第1流体または第2流体によって、第2エンドカバー30方向へ押されている。   The second side member 60 is pushed toward the second end cover 30 by the first fluid or the second fluid that has entered the gap between the rotating body 40 and the second side member 60.

そこで、第2閉空間34に第2連通路65を介して挿通空間43側の第1流体または第2流体を導いて、当該流体の圧力によって第2側方部材60の中央部を内側へ押す。このように、第2側方部材60の中央部を外側へと押す力と内側へ押す力を対抗させることで第2側方部材60の中央部に作用する圧力バランスが調整され、その撓みの発生が抑制される。   Therefore, the first fluid or the second fluid on the insertion space 43 side is guided to the second closed space 34 via the second communication passage 65, and the central portion of the second side member 60 is pushed inward by the pressure of the fluid. . In this way, the pressure balance acting on the central portion of the second side member 60 is adjusted by optimizing the force pushing the center portion of the second side member 60 outward and the force pushing the inside portion. Occurrence is suppressed.

区画壁61c、区画壁62cの回転体40側には、第1流路と第2流路内の第1流体または第2流体によって、第2側方部材60を外側へと押す力が作用する。しかし、区画壁61c、区画壁62cの第2エンドカバー30には、凹部32,33に進入した第1流体または第2流体によって、第2側方部材60を内側へと押す力が作用する。このように、区画壁61c、区画壁62cを外側へと押す力と内側へ押す力を対抗させることで区画壁61c、区画壁62cに作用する圧力バランスが調整され、その撓みの発生が抑制される。   The force which pushes the 2nd side member 60 to the outer side by the 1st flow path and the 1st fluid in the 2nd flow path, or the 2nd fluid acts on the rotary body 40 side of the partition wall 61c and the partition wall 62c. . However, a force that pushes the second side member 60 inwardly acts on the second end cover 30 of the partition wall 61c and the partition wall 62c by the first fluid or the second fluid that has entered the recesses 32 and 33. In this way, the pressure balance acting on the partition wall 61c and the partition wall 62c is adjusted by opposing the force pushing the partition wall 61c and the partition wall 62c outward and the force pushing the wall inward, and the occurrence of the deflection is suppressed. The

さらに、第2開放空間38に、第6連通路14c、第4連通路68を介して回転体40と第2側方部材60の隙間に進入した第1流体または第2流体を導いて、当該流体の圧力によって第2側方部材60の第2開放空間38に対応した領域を内側へ押す。このように、第2側方部材60の第2開放空間38に対応した領域を外側へと押す力と、内側へ押す力を対抗させることで第1側方部材50の周部の圧力バランスが調整され、その撓みの発生が抑制される。   Further, the first fluid or the second fluid that has entered the gap between the rotating body 40 and the second side member 60 is guided to the second open space 38 via the sixth communication path 14c and the fourth communication path 68, A region corresponding to the second open space 38 of the second side member 60 is pushed inward by the pressure of the fluid. Thus, the pressure balance of the peripheral part of the 1st side member 50 is countered by the force which pushes the area | region corresponding to the 2nd open space 38 of the 2nd side member 60 outside, and the force pushed inside. It adjusts and generation | occurrence | production of the bending is suppressed.

第2圧力バランス調整機構72により第2側方部材60に作用する圧力バランスが調整されるので、第2側方部材を薄肉化することができるので、装置のコンパクト化と低コスト化を図ることができる。   Since the pressure balance acting on the second side member 60 is adjusted by the second pressure balance adjusting mechanism 72, the thickness of the second side member can be reduced, so that the apparatus can be made compact and the cost can be reduced. Can do.

また、第1圧力バランス調整機構71と、第2圧力バランス調整機構72によって、第1側方部材50と第2側方部材60の夫々の圧力バランスを調整できるので、回転体40と第1側方部材50の隙間と、回転体40と第2側方部材60との隙間に進入した流体の圧力によって第1側方部材50と第2側方部材60が外側へ離隔して、支軸13に無駄な応力かかるような虞がなくなる。   Moreover, since the pressure balance of the 1st side member 50 and the 2nd side member 60 can be adjusted with the 1st pressure balance adjustment mechanism 71 and the 2nd pressure balance adjustment mechanism 72, the rotary body 40 and the 1st side The first side member 50 and the second side member 60 are separated outward by the pressure of the fluid that has entered the gap between the side member 50 and the gap between the rotating body 40 and the second side member 60, and the support shaft 13. There is no risk of unnecessary stress.

なお、第2閉空間34に挿通空間43側の第1流体または第2流体を導く構成としては、第2連通路56によるものに限らない。例えば、支軸13内に挿通空間43と第2閉空間34を連通する連通路を形成し、当該連通路を介して挿通空間43内の第1流体または第2流体を第2閉空間34に導くように構成してもよい。   Note that the configuration for guiding the first fluid or the second fluid on the insertion space 43 side to the second closed space 34 is not limited to the configuration using the second communication path 56. For example, a communication path that connects the insertion space 43 and the second closed space 34 is formed in the support shaft 13, and the first fluid or the second fluid in the insertion space 43 is passed to the second closed space 34 via the communication path. It may be configured to guide.

また、第2開放空間38に回転体40と第2側方部材60の隙間に進入した第1流体または第2流体を導く構成としては、第4連通路68によるものに限らない。例えば、ケーシング12の内周面に、第6連通路14cと第2開放空間38を連通する連通溝を形成し、当該連通溝を介して回転体40と第2側方部材60の隙間に進入した第1流体または第2流体を第2開放空間38に導くように構成してもよい。さらに、第4連通路68は必ずしも通路として形成しなくてもよい。例えば、ケーシング12の内径に対して第2側方部材60の直径を幾らか小さく形成することで、第2側方部材60の外周面とケーシング12の内周面の間に隙間を形成する。この隙間が第4連通路68として機能する。   In addition, the configuration in which the first fluid or the second fluid that has entered the gap between the rotating body 40 and the second side member 60 is guided to the second open space 38 is not limited to the configuration using the fourth communication path 68. For example, a communication groove that communicates the sixth communication path 14 c and the second open space 38 is formed on the inner peripheral surface of the casing 12, and enters the gap between the rotating body 40 and the second side member 60 through the communication groove. The first fluid or the second fluid may be guided to the second open space 38. Further, the fourth communication passage 68 does not necessarily have to be formed as a passage. For example, the gap is formed between the outer peripheral surface of the second side member 60 and the inner peripheral surface of the casing 12 by forming the diameter of the second side member 60 somewhat smaller than the inner diameter of the casing 12. This gap functions as the fourth communication path 68.

次に、第3圧力バランス調整機構73について説明する。
第3圧力バランス調整機構73は、保持部材14の拡径領域14aと、第5連通路14bとを含んで構成されている。
Next, the third pressure balance adjustment mechanism 73 will be described.
The third pressure balance adjusting mechanism 73 is configured to include the enlarged diameter region 14a of the holding member 14 and the fifth communication passage 14b.

回転体40と第1側方部材50及び第2側方部材60との隙間を介して、回転体40の外周面と保持部材14の内周面との隙間や、拡径領域14aに進入した第1流体または第2流体は、保持部材14を外側へ押す。   Through the gap between the rotating body 40 and the first side member 50 and the second side member 60, the gap between the outer peripheral surface of the rotating body 40 and the inner peripheral surface of the holding member 14 or the diameter-enlarged region 14a is entered. The first fluid or the second fluid pushes the holding member 14 outward.

そこで、保持部材14に形成された第5連通路14bを介して、第1流体または第2流体を保持部材14の外周面とケーシングの内周面との外周閉空間に導く。   Therefore, the first fluid or the second fluid is guided to the outer peripheral closed space between the outer peripheral surface of the holding member 14 and the inner peripheral surface of the casing through the fifth communication passage 14b formed in the holding member 14.

保持部材14の外周面とケーシング12の内周面と隙間に導かれた第1流体または第2流体の圧力によって、保持部材14を外側へ押す力と内側へ押す力を対抗させることで保持部材14に作用する圧力バランスが調整され、その撓みが抑制される。運転中に回転体40と保持部材11との隙間が適正に維持されるので、回転体40は円滑に回転する。拡径領域14aにかえて、回転体40の外周面の両端部を除いた領域に、回転体40の両端部の直径より縮径した縮径領域を設けたり、回転体40の外周面と保持部材11の内周面との間に隙間を設けたりしてもよい。   The holding member 14 is configured to oppose a force pushing the holding member 14 outward and a force pushing the inside by the pressure of the first fluid or the second fluid guided to the gap between the outer peripheral surface of the holding member 14 and the inner peripheral surface of the casing 12. The pressure balance which acts on 14 is adjusted, and the bending is suppressed. Since the gap between the rotating body 40 and the holding member 11 is properly maintained during operation, the rotating body 40 rotates smoothly. In place of the enlarged diameter region 14a, a reduced diameter region that is smaller than the diameter of both end portions of the rotating body 40 is provided in the region excluding both ends of the outer periphery surface of the rotating body 40, or the outer periphery surface of the rotating body 40 is held. A gap may be provided between the inner peripheral surface of the member 11 and the like.

第3圧力バランス調整機構73により保持部材14に作用する圧力バランスが調整されるので、保持部材14を薄肉化することができるので、装置のコンパクト化と低コスト化を図ることができる。   Since the pressure balance acting on the holding member 14 is adjusted by the third pressure balance adjusting mechanism 73, the holding member 14 can be thinned, so that the apparatus can be made compact and the cost can be reduced.

次に、第4圧力バランス調整機構74について説明する。
第4圧力バランス調整機構74は、回転体40の端面40a,40bに作用する圧力バランスを調整する機構である。
Next, the fourth pressure balance adjustment mechanism 74 will be described.
The fourth pressure balance adjustment mechanism 74 is a mechanism that adjusts the pressure balance that acts on the end faces 40 a and 40 b of the rotating body 40.

高圧濃縮海水Hiが第1流体流入路51から複数の第1流路41に分散して流入するときに、高圧濃縮海水Hiの圧力は回転体40の隣接する第1流路41の間の端面40aに作用し、回転体40を第2側方部材60側へ押す。また、高圧海水Hoが複数の第2流路42から第2流体流出路52へ流出するときに、高圧海水Hoの圧力は回転体40の隣接する第2流路42の間の端面40aに作用し、回転体40を第2側方部材60側へ押す。   When the high-pressure concentrated seawater Hi flows dispersedly into the plurality of first flow paths 41 from the first fluid inflow path 51, the pressure of the high-pressure concentrated seawater Hi is the end face between the adjacent first flow paths 41 of the rotating body 40. It acts on 40a and pushes the rotating body 40 toward the second side member 60 side. Further, when the high-pressure seawater Ho flows out from the plurality of second flow paths 42 to the second fluid outflow passage 52, the pressure of the high-pressure seawater Ho acts on the end surface 40a between the adjacent second flow paths 42 of the rotating body 40. Then, the rotating body 40 is pushed toward the second side member 60 side.

同様に、低圧海水Liが第2流体流入路53から複数の第2流路42に分散して流入するときに、低圧海水Liの圧力は回転体40の隣接する第2流路42の間の端面40aに作用し、回転体を第2側方部材側へ押す。また、低圧濃縮海水Loが複数の第1流路41から第1流体流出路54へ流出するときに、高圧海水Hoの圧力は回転体40の隣接する第1流路41の間の端面40aに作用し、回転体40を第2側方部材60側へ押す。   Similarly, when the low-pressure seawater Li is dispersed and flows into the plurality of second flow paths 42 from the second fluid inflow path 53, the pressure of the low-pressure seawater Li is between the adjacent second flow paths 42 of the rotating body 40. It acts on the end surface 40a and pushes the rotating body toward the second side member. Further, when the low-pressure concentrated seawater Lo flows out from the plurality of first flow paths 41 to the first fluid outflow path 54, the pressure of the high-pressure seawater Ho is applied to the end surface 40a between the adjacent first flow paths 41 of the rotating body 40. It acts and pushes the rotating body 40 toward the second side member 60 side.

さらに、第1流体流入路51の開口部51b、第2流体流出路52の開口部52b、第2流体流入路53の開口部53b、第1流体流出路54の開口部54bと連通しない領域では、第1側方部材50と回転体40との隙間に進入した各流体の中間的圧力が端面40aに作用し、回転体40を第2側方部材60側へ押す。   Further, in the region not communicating with the opening 51b of the first fluid inflow passage 51, the opening 52b of the second fluid outflow passage 52, the opening 53b of the second fluid inflow passage 53, and the opening 54b of the first fluid outflow passage 54. The intermediate pressure of each fluid that has entered the gap between the first side member 50 and the rotating body 40 acts on the end surface 40a, and pushes the rotating body 40 toward the second side member 60.

このように、回転体40には、第1流路41及び第2流路42に流入出する流体が端面40aに作用して、第2側方部材60側へと押される。   As described above, the fluid that flows into and out of the first flow path 41 and the second flow path 42 acts on the end surface 40a of the rotating body 40 and is pushed toward the second side member 60 side.

しかし、第2側方部材に形成された連通部61a,61b,62a,62bにも第1流体及び第2流体が流入し、回転体40の端面40bに作用して、回転体40を第1側方部材50側へ押す。さらに、連通部61a,61b,62a,62bと連通しない領域では、第2側方部材60と回転体40との隙間に進入した各流体の中間的圧力が端面40bに作用し、回転体40を第1側方部材50側へ押す。これにより、両端面40a,40bに作用する押圧力が釣り合うとともに押圧力の分布も等しくなり、回転体40は第1側方部材50または第2側方部材60に一方的に摺動するようなことがなくなる。従って、回転体40は、円滑に回転することができる。   However, the first fluid and the second fluid also flow into the communication portions 61a, 61b, 62a, and 62b formed on the second side member, and act on the end surface 40b of the rotating body 40, so that the rotating body 40 is Push to the side member 50 side. Further, in a region where the communication portions 61a, 61b, 62a, and 62b are not communicated, the intermediate pressure of each fluid that has entered the gap between the second side member 60 and the rotating body 40 acts on the end face 40b, and the rotating body 40 is Push to the first side member 50 side. As a result, the pressing forces acting on the both end faces 40a and 40b are balanced and the distribution of the pressing forces becomes equal, so that the rotating body 40 slides unilaterally on the first side member 50 or the second side member 60. Nothing will happen. Therefore, the rotating body 40 can rotate smoothly.

このように、圧力交換装置10は、圧力バランス調整機構を備えることで、回転体40との隙間に進入した第1流体や第2流体の圧力によって、第1側方部材50、第2側方部材60及び保持部材14に撓みが発生する虞が低減され、回転体40は、第1側方部材50、第2側方部材60及び保持部材14で区画される空間内で円滑な回転が可能となる。   As described above, the pressure exchanging device 10 includes the pressure balance adjusting mechanism, so that the first lateral member 50 and the second lateral member are moved by the pressure of the first fluid and the second fluid that have entered the gap with the rotating body 40. The possibility of bending of the member 60 and the holding member 14 is reduced, and the rotating body 40 can smoothly rotate in a space defined by the first side member 50, the second side member 60, and the holding member 14. It becomes.

圧力交換装置10の具体的な圧力交換の動作について説明する。
図10に示すように、回転体40には、16組の第1流路41a〜41pと第2流路42a〜42pが回転軸心周りに放射状に配設されている。図10中の二点鎖線で示す領域は、第1側方部材50の第1流体流入路51の開口部51bと、第2流体流出路52の開口部52bと、第2流体流入路53の開口部53bと、第1流体流出路54の開口部54bに対応する領域を表している。
A specific pressure exchange operation of the pressure exchange device 10 will be described.
As shown in FIG. 10, 16 sets of first flow paths 41 a to 41 p and second flow paths 42 a to 42 p are radially arranged around the rotation axis in the rotating body 40. The areas indicated by the two-dot chain line in FIG. 10 are the opening 51 b of the first fluid inflow path 51, the opening 52 b of the second fluid outflow path 52, and the second fluid inflow path 53 of the first side member 50. The area | region corresponding to the opening part 53b and the opening part 54b of the 1st fluid outflow path 54 is represented.

回転体40が回転するある瞬間において、第1流体流入路51には、隣接する第1流路41a,41b,41c,41d,41eの5本が同時に連通する。   At a certain moment when the rotating body 40 rotates, five adjacent first flow paths 41a, 41b, 41c, 41d, and 41e communicate with the first fluid inflow path 51 at the same time.

第2流体流出路52には、第1流路41a,41b,41c,41d,41eと第2側方部材60内で連通した第2流路42a,42b,42c,42d,42eの5本が同時に連通する。   In the second fluid outflow passage 52, there are five first passages 42a, 42b, 42c, 42d, 42e communicating with the first passages 41a, 41b, 41c, 41d, 41e in the second side member 60. Communicate at the same time.

第2流体流入路53には、隣接する第2流路42i,42j,42k,42l,42mの5本が同時に連通する。第1流体流出路54には、第2流路42i,42j,42k,42l,42mと第2側方部材60内で連通した第1流路41i,41j,41k,41l,41mの5本が連通する。   The second fluid inflow passage 53 is in communication with five adjacent second passages 42i, 42j, 42k, 42l, and 42m at the same time. In the first fluid outflow passage 54, there are five first flow paths 41i, 41j, 41k, 41l, 41m communicating with the second flow paths 42i, 42j, 42k, 42l, 42m in the second side member 60. Communicate.

第1流体流入路51に流入した高圧濃縮海水Hiは流路壁51cに沿って分散して、第1流路41a,41b,41c,41d,41eの夫々に流入する。このとき、回転体40には、図10中一点鎖線矢印が示すように時計回りのトルクが付与される。   The high-pressure concentrated seawater Hi that has flowed into the first fluid inflow path 51 is dispersed along the flow path wall 51c and flows into the first flow paths 41a, 41b, 41c, 41d, and 41e. At this time, a clockwise torque is applied to the rotator 40 as indicated by a one-dot chain line arrow in FIG.

第1流路41a,41b,41c,41d,41eに流入した高圧濃縮海水Hiの圧力によって、夫々第2側方部材60内で連通した第2流路42a,42b,42c,42d,42eの低圧海水を昇圧され、高圧海水Hoは、第2流路42a,42b,42c,42d,42eから第2流体流出路52の流路壁52cに沿って流出する。このとき、回転体40には、図10中一点鎖線矢印が示すように時計回りのトルクが付与される。   The low pressures of the second flow paths 42a, 42b, 42c, 42d, and 42e communicated in the second side member 60 by the pressure of the high-pressure concentrated seawater Hi flowing into the first flow paths 41a, 41b, 41c, 41d, and 41e, respectively. The seawater is pressurized, and the high-pressure seawater Ho flows out along the flow path wall 52c of the second fluid outflow path 52 from the second flow paths 42a, 42b, 42c, 42d, and 42e. At this time, a clockwise torque is applied to the rotator 40 as indicated by a one-dot chain line arrow in FIG.

第2流体流入路53に流入した低圧海水Liは流路壁53cに沿って分散して、第2流路42i,42j,42k,42l,42mの夫々に流入する。このとき、回転体40には、図10中一点鎖線矢印が示すように時計回りのトルクが付与される。   The low-pressure seawater Li that has flowed into the second fluid inflow path 53 is dispersed along the flow path wall 53c and flows into the second flow paths 42i, 42j, 42k, 42l, and 42m. At this time, a clockwise torque is applied to the rotator 40 as indicated by a one-dot chain line arrow in FIG.

第2流路42i,42j,42k,42l,42mに流入した低圧海水Liの圧力によって、夫々第2側方部材60内で連通した第1流路41i,41j,41k,41l,41mの低圧濃縮海水Loが第1流体流出路54の流路壁54cに沿って流出する。このとき、回転体40には、図10中一点鎖線矢印が示すように時計回りのトルクが付与される。   The low-pressure concentration of the first flow paths 41i, 41j, 41k, 41l, 41m communicated in the second side member 60 by the pressure of the low-pressure seawater Li flowing into the second flow paths 42i, 42j, 42k, 42l, 42m, respectively. Seawater Lo flows out along the flow path wall 54 c of the first fluid outflow path 54. At this time, a clockwise torque is applied to the rotator 40 as indicated by a one-dot chain line arrow in FIG.

以上のように、第1流体流入路51から第1流路41に流入する高圧濃縮海水Hiが回転体40に与えるトルクと、第2流路42から第2流体流出路52へ流出する低圧海水Loが回転体40に与えるトルクと、第2流体流入路53から第2流路42に流入する低圧海水Liが回転体40に与えるトルクと、第1流路41から第1流体流出路54へ流出する低圧濃縮海水Loが回転体40に与えるトルクが、同一方向となり、本実施形態では、回転体40は時計周りに回転することになる。   As described above, the torque applied to the rotating body 40 by the high-pressure concentrated seawater Hi that flows into the first flow path 41 from the first fluid inflow path 51 and the low-pressure seawater that flows out from the second flow path 42 to the second fluid outflow path 52. The torque that Lo gives to the rotating body 40, the torque that the low-pressure seawater Li flowing into the second flow path 42 from the second fluid inflow path 53 gives to the rotating body 40, and the first flow path 41 to the first fluid outflow path 54 The torque applied to the rotating body 40 by the low-pressure concentrated seawater Lo flowing out is in the same direction, and in this embodiment, the rotating body 40 rotates clockwise.

このように圧力交換がされているとき、第1流路41a,41b,41c,41d,41eは、第2側方部材60の連通部61a,61bを介して第2流路42a,42b,42c,42d,42eと連通している。第2流路42i,42j,42k,42l,42mは、第2側方部材60の連通路62a,62bを介して、第1流路41i,41j,41k,41l,41mと連通している。   When the pressure is exchanged in this way, the first flow paths 41a, 41b, 41c, 41d, and 41e are connected to the second flow paths 42a, 42b, and 42c via the communication portions 61a and 61b of the second side member 60. , 42d, 42e. The second flow paths 42 i, 42 j, 42 k, 42 l and 42 m communicate with the first flow paths 41 i, 41 j, 41 k, 41 l and 41 m via the communication paths 62 a and 62 b of the second side member 60.

各第1流路41及び各第2流路42の圧損が周方向で異なるため、第1流路41から連通部61aに流入した流体が連通部61bを経由して圧損の低い第2流路42に流出すると、トルク付与機構は適正に機能せず、回転力が低下する虞がある。連通部62a,62bでも同様の問題が発生する虞がある、   Since the pressure loss of each first flow path 41 and each second flow path 42 is different in the circumferential direction, the fluid that has flowed from the first flow path 41 into the communication portion 61a passes through the communication portion 61b and has a low pressure loss. If it flows out to 42, the torque application mechanism does not function properly, and the rotational force may be reduced. A similar problem may occur in the communication portions 62a and 62b.

なお、圧損の低い流路とは、流入路から流路へと直線的に連通している流路であって、例えば、図10の第1流路41aから第2流路42eへの流路や、第2流路42iから第1流路41への流路のことである。   Note that the low pressure loss flow path is a flow path linearly communicating from the inflow path to the flow path, for example, the flow path from the first flow path 41a to the second flow path 42e in FIG. Or, the flow path from the second flow path 42 i to the first flow path 41.

連通部61aと連通路61b及び連通部62b,62bを夫々区画壁61c,62cで区画しておくことで、圧損の低い流路への流れ(例えば、図10の第1流路41aから第2流路42eへの流路や、第2流路42iから第1流路41への直接的な流れ)を阻害し、径方向に隣接する第1流路41から第2流路42への流れ、または第2流路42から第1流路への流れ(例えば、第1流路41aから第2流路41aへの流れや、第2流路42iから第1流路41iへの流れ)を生じさせ、トルク付与機構を適正に機能させることができる。   The communication portion 61a, the communication passage 61b, and the communication portions 62b and 62b are partitioned by the partition walls 61c and 62c, respectively, so that the flow to the flow path with low pressure loss (for example, from the first flow path 41a to the second flow path in FIG. 10). The flow from the first flow path 41 to the second flow path 42 that is radially adjacent to the flow path 42e and the flow from the second flow path 42i to the first flow path 41). Or a flow from the second flow path 42 to the first flow path (for example, a flow from the first flow path 41a to the second flow path 41a or a flow from the second flow path 42i to the first flow path 41i). It is possible to cause the torque application mechanism to function properly.

第1流体流入路51、第2流体流出路52、第2流体流入路53、第1流体流出路54の何れにも連通しない第1流路41f,41g,41h,41m,41o,41p、及び第2流路42f,42g,42h,42m,42o,42pでは、圧力の交換は行われない。   First flow paths 41f, 41g, 41h, 41m, 41o, 41p not communicating with any of the first fluid inflow path 51, the second fluid outflow path 52, the second fluid inflow path 53, and the first fluid outflow path 54, and Pressure exchange is not performed in the second flow paths 42f, 42g, 42h, 42m, 42o, and 42p.

第2側方部材60には連通部61aと連通部62bの間、及び連通部61bと連通部62aの間に連通溝66,67が形成されている。連通溝66,67は、例えば数ミリ程度の溝で形成され、連通部61aと連通部62bの間、及び連通部61bと連通部62aの間に配置されることで、回転体40と第2側方部材60との隙間を通って高圧流体が低圧流体の連通路へと進入する際の大きな圧力変動、低圧流体が高圧流体の連通路へと進入する際の大きな圧力変動を緩和する。これにより、高圧流体が低圧流体の連通路へと進入したときの圧力の急変によるキャビテーションを防止することができる。   In the second side member 60, communication grooves 66 and 67 are formed between the communication portion 61a and the communication portion 62b, and between the communication portion 61b and the communication portion 62a. The communication grooves 66 and 67 are formed, for example, as grooves of several millimeters, and are arranged between the communication part 61a and the communication part 62b and between the communication part 61b and the communication part 62a, so that the rotating body 40 and the second The large pressure fluctuation when the high pressure fluid enters the low pressure fluid communication path through the gap with the side member 60 and the large pressure fluctuation when the low pressure fluid enters the high pressure fluid communication path are alleviated. Thereby, it is possible to prevent cavitation due to a sudden change in pressure when the high pressure fluid enters the communication path of the low pressure fluid.

なお、本実施形態では、連通溝66,67を第2側方部材60の端面60aのみに形成したが、第1側方部材50の端面50bにも同様の連通溝を形成してもよい。また、第2側方部材60に連通溝66,67を形成せずに、第1側方部材50のみにこのような連通溝を形成する構成であってもよい。   In the present embodiment, the communication grooves 66 and 67 are formed only on the end surface 60 a of the second side member 60, but similar communication grooves may be formed on the end surface 50 b of the first side member 50. Moreover, the structure which forms such a communicating groove only in the 1st side member 50, without forming the communicating grooves 66 and 67 in the 2nd side member 60 may be sufficient.

以上のように、回転体40の回転によっての第1流体流入路51、第2流体流出路52、第2流体流入路53及び第1流体流出路54と連通する第1流路41、第2流路は順にずれていき、高圧濃縮海水Hiから高圧海水Hoへの圧力の伝達、及び、低圧海水Liから低圧濃縮海水Loへの圧力の伝達が連続的に行われる。つまり、第1流体と第2流体の圧力交換が連続的に行われる。   As described above, the first flow path 41 and the second fluid communication path communicated with the first fluid inflow path 51, the second fluid outflow path 52, the second fluid inflow path 53, and the first fluid outflow path 54 by the rotation of the rotating body 40. The flow paths are sequentially shifted, and the transmission of pressure from the high-pressure concentrated seawater Hi to the high-pressure seawater Ho and the transmission of pressure from the low-pressure seawater Li to the low-pressure concentrated seawater Lo are continuously performed. That is, the pressure exchange between the first fluid and the second fluid is continuously performed.

なお、第1流路41及び第2流路42内では、濃縮海水と海水が混在することになるが、各々の流体は塩分濃度差があるため境界部分は拡散によりある一定量が常に混ざった領域となるだけで、当該領域は、ピストンのような役目をしながら第1流路41、連通部61a,61b,62a,62b、第2流路42の内部で往復動することになる。   In addition, in the 1st flow path 41 and the 2nd flow path 42, although concentrated seawater and seawater will coexist, since each fluid has a salt concentration difference, a fixed amount always mixed by the boundary part by diffusion. The region only reciprocates within the first flow path 41, the communication portions 61a, 61b, 62a, 62b, and the second flow path 42 while acting like a piston.

なお、上述の説明では、回転体40が回転するある瞬間において、第1流体流入路51、第2流体流出路52、第2流体流入路53、第1流体流出路54には第1流路41及び第2流路42が同時に5本連通する場合について説明したが、同時に連通する本数はこれに限らない。なお、同時に連通する本数が少なく、何れにも連通しない本数が多いと、装置から排水される水の脈動が大きくなる。また、流体流入路及び流体流出路の何れにも連通しない本数が少ないと、高圧の流体から低圧の流体への漏れ量が増加する。   In the above description, at a certain moment when the rotating body 40 rotates, the first fluid inflow path 51, the second fluid outflow path 52, the second fluid inflow path 53, and the first fluid outflow path 54 have the first flow path. Although the case where 41 and the 2nd flow path 42 are connected simultaneously 5 was demonstrated, the number connected simultaneously is not restricted to this. Note that if the number of lines communicating at the same time is small and the number of lines not communicating with any of them is large, the pulsation of water drained from the apparatus increases. Further, if the number of fluids that do not communicate with either the fluid inflow path or the fluid outflow path is small, the amount of leakage from the high pressure fluid to the low pressure fluid increases.

圧力交換装置10を構成する第1側方部材50、第2側方部材60、回転体40及び保持部材14は、アルミナ等のセラミックス、FRP、または、二相ステンレス鋼やスーパー二相ステンレス鋼等のように、海水に対する耐食性があり、十分に強度のある材料で構成することが好ましい。回転体40と保持部材14は、温度変化による熱膨張を考慮すると、熱膨張率が同等の素材を選択して構成することが好ましい。回転体40と保持部材14が、例えば外気温や水温の変化によって膨張、または収縮することがあっても、その隙間を一定に維持することができる。   The first side member 50, the second side member 60, the rotating body 40, and the holding member 14 constituting the pressure exchange device 10 are ceramics such as alumina, FRP, or duplex stainless steel or super duplex stainless steel. As described above, it is preferable to use a material having corrosion resistance to seawater and sufficiently strong. The rotating body 40 and the holding member 14 are preferably configured by selecting materials having the same thermal expansion coefficient in consideration of thermal expansion due to temperature change. Even if the rotator 40 and the holding member 14 expand or contract due to, for example, changes in the outside air temperature or water temperature, the gap can be maintained constant.

二相ステンレス鋼やスーパー二相ステンレス鋼を用いることも可能である。ただし、この場合は回転体40と第1側方部材50及び第2側方部材60との対向面、及び保持部材14の内周面を窒化処理し、或は、アルミナ等のセラミックを溶射し、肉盛溶接し、或はHIP処理して摩擦係数を低減する耐磨耗層を形成することが好ましい。   It is also possible to use a duplex stainless steel or a super duplex stainless steel. However, in this case, the facing surfaces of the rotating body 40 and the first side member 50 and the second side member 60 and the inner peripheral surface of the holding member 14 are nitrided, or ceramic such as alumina is sprayed. It is preferable to form a wear-resistant layer that reduces the friction coefficient by overlay welding or HIP treatment.

ケーシング12は、樹脂材料、FRPまたは、二相ステンレス鋼やスーパー二相ステンレス鋼等の金属材料のように、海水に対する耐食性があり、ある程度強度を備えた材料で形成されている。樹脂材料やセラミックスで被覆することで耐食性を付加したステンレス鋼等の高強度の金属材料で構成してもよい。これにより、耐食性に劣る安価な材料でも採用することができ、コストダウンが図れる。   The casing 12 is formed of a resin material, FRP, or a metal material such as a duplex stainless steel or a super duplex stainless steel that has corrosion resistance to seawater and has a certain degree of strength. You may comprise with high intensity | strength metal materials, such as stainless steel which added corrosion resistance by coat | covering with a resin material or ceramics. As a result, an inexpensive material that is inferior in corrosion resistance can be used, and the cost can be reduced.

本発明の一例である、一端側のみに流体の流入路や流出路が備えられた圧力交換装置10によると、従来の圧力交換装置のような、直管で構成された圧力伝達部と比較して、同じ流量の圧力交換を行なう場合に回転体40の回転軸心方向の長さを短く構成することができるので、装置のコンパクト化と低コスト化を図ることができる。また、圧力交換装置10の処理流量を増加させる場合でも、極端な大型化を回避することができる。   According to the pressure exchange device 10 that is an example of the present invention and is provided with a fluid inflow path and an outflow path only on one end side, it is compared with a pressure transmission section configured by a straight pipe, such as a conventional pressure exchange apparatus. Thus, when pressure exchange at the same flow rate is performed, the length of the rotating body 40 in the direction of the rotation axis can be shortened, so that the apparatus can be made compact and the cost can be reduced. Even when the processing flow rate of the pressure exchange device 10 is increased, an extreme increase in size can be avoided.

圧力交換装置10は、第1流体流入路51、第2流体流出路52、第2流体流入路53及び第1流体流出路54は、第1側方部材50に形成されているため、各流体流入路と流出路と接続する各配管15、16,17,18は、圧力交換装置10の一方に纏めて設置することができる。従って、従来の装置のように回転体の両端側に夫々流体の流入路または流出路と接続する配管を設置する場合と比較して、配管を含めた設置スペースをコンパクト化ができる。また、配管が設置されていない第2側方部材60側からメンテナンス作業が可能となる。   In the pressure exchange device 10, the first fluid inflow path 51, the second fluid outflow path 52, the second fluid inflow path 53, and the first fluid outflow path 54 are formed in the first side member 50. The pipes 15, 16, 17, and 18 connected to the inflow path and the outflow path can be collectively installed on one side of the pressure exchange device 10. Therefore, the installation space including the pipes can be made compact as compared with the case where the pipes connected to the fluid inflow path or the outflow path are installed on both ends of the rotating body as in the conventional apparatus. Further, maintenance work can be performed from the second side member 60 side where no piping is installed.

本発明による圧力交換装置の別実施形態について説明する。
図11には、別実施形態による圧力交換装置100が示されている。
Another embodiment of the pressure exchange device according to the present invention will be described.
FIG. 11 shows a pressure exchange device 100 according to another embodiment.

圧力交換装置100の回転体40は、円柱の中央に支軸13が挿通可能な挿通空間43が形成されるとともに、挿通空間43の周囲に夫々16本の第1流路41と第2流路42が回転軸心周りに放射状に配置されて構成されている。第1流路41と第2流路42は、回転体40の端面40aと端面40b間をその回転軸心方向に貫通するように形成されるとともに、端面40b側で連通するように形成れている。第1流路41と第2流路42は、夫々流路断面積が略等しくなるように形成されている。   In the rotating body 40 of the pressure exchange device 100, an insertion space 43 into which the support shaft 13 can be inserted is formed at the center of a cylinder, and 16 first flow paths 41 and second flow paths around the insertion space 43, respectively. 42 is arranged radially around the rotation axis. The first flow path 41 and the second flow path 42 are formed so as to penetrate between the end face 40a and the end face 40b of the rotating body 40 in the direction of the rotation axis, and are formed to communicate with each other on the end face 40b side. Yes. The first flow path 41 and the second flow path 42 are formed so that the cross-sectional areas of the flow paths are substantially equal.

なお、圧力交換装置100のその他の部分の構成は、上述の図2(a),(b)に示す圧力交換装置10と同様のため説明を省略する。   In addition, since the structure of the other part of the pressure exchange apparatus 100 is the same as that of the pressure exchange apparatus 10 shown to above-mentioned FIG. 2 (a), (b), description is abbreviate | omitted.

本実施形態では、第1流路41と第2流路42の連通部40cが、第1流体と第2流体との間で圧力を交換する圧力交換部として機能する。第1流路41の第1流体と第2流路42の第2流体とは、回転する回転体40の内部に形成された圧力交換部でその圧力が伝達される。   In this embodiment, the communication part 40c of the 1st flow path 41 and the 2nd flow path 42 functions as a pressure exchange part which exchanges a pressure between a 1st fluid and a 2nd fluid. The pressure of the first fluid in the first flow path 41 and the second fluid in the second flow path 42 is transmitted by a pressure exchanging portion formed inside the rotating body 40 that rotates.

高圧濃縮海水Hiが端面40aから第1流路41に供給されると、回転体40に形成された第1流路41と第2流路42の連通部を介して、第2流路42の高圧海水Hoが端面40aから流出する。低圧海水Liが端面40aから第2流路42に供給されると、回転体40に形成された第2流路42と第1流路41の連通部を介して、第1流路41の低圧濃縮海水Loが端面40aから流出する。   When the high-pressure concentrated seawater Hi is supplied from the end face 40 a to the first flow path 41, the second flow path 42 is connected to the first flow path 41 and the second flow path 42 formed in the rotating body 40. High-pressure seawater Ho flows out from the end face 40a. When the low-pressure seawater Li is supplied from the end face 40 a to the second flow path 42, the low pressure of the first flow path 41 is established via the communication portion between the second flow path 42 and the first flow path 41 formed in the rotating body 40. The concentrated seawater Lo flows out from the end face 40a.

また、第1流路41と第2流路42は、回転体40の端面40b側で連通する構成に限らず連通部は、端面40aと端面40bの間の任意の位置であってよい。例えば、図12(a)に示すように、端面40bから端面40a側に所定距離離隔した位置で連通された構成であってもよい。   Moreover, the 1st flow path 41 and the 2nd flow path 42 are not restricted to the structure connected by the end surface 40b side of the rotary body 40, A communication part may be the arbitrary positions between the end surface 40a and the end surface 40b. For example, as shown to Fig.12 (a), the structure communicated in the position spaced apart from the end surface 40b to the end surface 40a side by the predetermined distance may be sufficient.

さらには、図12(b)に示すように、第1流路41と第2流路42の端面40b側を、開口40dや開口40eを除いて閉塞するように構成してもよい。   Furthermore, as shown in FIG. 12B, the end face 40b side of the first flow path 41 and the second flow path 42 may be closed except for the opening 40d and the opening 40e.

図13(a),(b),(c)には、別実施形態による圧力交換装置200が示されている。   13A, 13B, and 13C show a pressure exchange device 200 according to another embodiment.

圧力交換装置200の回転体46は、一端から第1流体が流入及び流出し、他端から第2流体が流入及び流出する流路47が回転軸心方向に貫通するように回転軸心周りに配設されるとともに、回転体46の外周面の両端部を除いた領域に、回転体46の両端部の直径より縮径した縮径領域48が形成されている。回転体46は、支軸13を介して第1側方部材50と第2側方部材60に回転可能に支持されている。   The rotating body 46 of the pressure exchanging device 200 is arranged around the rotation axis so that the flow path 47 through which the first fluid flows in and out from one end and the second fluid flows in and out from the other end penetrates in the rotation axis direction. A reduced diameter region 48 is formed in a region excluding both ends of the outer peripheral surface of the rotator 46 and having a diameter reduced from the diameter of both ends of the rotator 46. The rotating body 46 is rotatably supported by the first side member 50 and the second side member 60 via the support shaft 13.

第1側方部材50には、高圧濃縮海水Hiを流路47に案内する第1流体流入路51と、低圧海水Liとの間で圧力交換された低圧濃縮海水Loを流路47から案内する第1流体流出路と54が、厚み方向に形成されている。   The first side member 50 guides the low-pressure concentrated seawater Lo pressure-exchanged between the first fluid inflow path 51 for guiding the high-pressure concentrated seawater Hi to the flow path 47 and the low-pressure seawater Li from the flow path 47. The first fluid outflow path and 54 are formed in the thickness direction.

第1エンドカバー20には、第1側方部材50の外側に配置され第1流体流入路51と連通する第1流体流入部と、第1流体流出路54と連通する第1流体流出部が形成され、第1流体流入部には流入管15が接続され、第1流体流出部には流出管18が接続されている。   The first end cover 20 includes a first fluid inflow portion that is disposed outside the first side member 50 and communicates with the first fluid inflow passage 51, and a first fluid outflow portion that communicates with the first fluid outflow passage 54. An inflow pipe 15 is connected to the first fluid inflow section, and an outflow pipe 18 is connected to the first fluid outflow section.

第2側方部材には、低圧海水Liを流路47に案内する第2流体流入路53と、高圧濃縮海水Hiとの間で圧力交換された高圧海水Hoを流路47から案内する第2流体流出路と52が、厚み方向に形成されている。   In the second side member, the second fluid inflow path 53 that guides the low-pressure seawater Li to the flow path 47 and the high-pressure seawater Ho that is pressure-exchanged between the high-pressure concentrated seawater Hi are guided from the flow path 47 to the second side member. The fluid outflow path and 52 are formed in the thickness direction.

第2エンドカバー30には、第2側方部材60の外側に配置され第2流体流入路53と連通する第2流体流入部と、第2流体流出路52と連通する第2流体流出部が形成され、第2流体流入部には流入管17が接続され、第2流体流出部には流出管16が接続されている。   The second end cover 30 includes a second fluid inflow portion that is disposed outside the second side member 60 and communicates with the second fluid inflow passage 53, and a second fluid outflow portion that communicates with the second fluid outflow passage 52. An inflow pipe 17 is connected to the second fluid inflow section, and an outflow pipe 16 is connected to the second fluid outflow section.

支軸13には、支軸13の第1側方部材50側の端部と挿通空間を連通する第1連通路56と、支軸13の第2側方部材60側の端部と挿通空間43とを連通する第2連通路65が形成されている。   The support shaft 13 has a first communication passage 56 communicating with the end portion of the support shaft 13 on the first side member 50 side and the insertion space, and an end portion of the support shaft 13 on the second side member 60 side and the insertion space. A second communication path 65 that communicates with 43 is formed.

なお、圧力交換装置200のその他の部分の構成は、上述の図2(a),(b)に示す圧力交換装置10と同様のため説明を省略する。   In addition, since the structure of the other part of the pressure exchange apparatus 200 is the same as that of the pressure exchange apparatus 10 shown to above-mentioned FIG. 2 (a), (b), description is abbreviate | omitted.

上述の何れの実施形態でも、第1流路41の断面積と第2流路42の断面積は等しくなるように形成することで、流路断面積の変化による余分な圧力損失が低減できるように構成しているが、第1流路41と第2流路42の断面積は完全に等しい必要はない。また、第1流路41及び第2流路42の断面形状は、真円や楕円等の円形状、三角、四角等の多角形状であってもよく、第1流路41及び第2流路42の本数や断面形状を変更することで、圧力交換装置10の処理流量を変更することができる。なお、図3(a)に示した第1流路41及び第2流路42の断面形状は、回転体の断面に対し開口率を大きく取れる点で好ましい。   In any of the embodiments described above, by forming the cross-sectional area of the first flow path 41 and the cross-sectional area of the second flow path 42 to be equal, it is possible to reduce excess pressure loss due to a change in the cross-sectional area of the flow path. However, the cross-sectional areas of the first flow path 41 and the second flow path 42 need not be completely equal. The cross-sectional shapes of the first channel 41 and the second channel 42 may be a circular shape such as a perfect circle or an ellipse, or a polygonal shape such as a triangle or a square. The first channel 41 and the second channel The processing flow rate of the pressure exchange device 10 can be changed by changing the number of 42 and the cross-sectional shape. In addition, the cross-sectional shape of the 1st flow path 41 and the 2nd flow path 42 shown to Fig.3 (a) is preferable at the point which can take a large aperture ratio with respect to the cross section of a rotary body.

上述の何れの実施形態でも、保持部材14とケーシング12を別体で構成したが、ケーシング12を備えずに、保持部材14をケーシングとしても機能させてもよい。また、保持部材14と第2側方部材60を別体で構成したが、保持部材14と第2側方部材60をカップ状に一体形成し、第1側方部材50で閉じられる空間内に回転体40が配置されるように構成してもよい。   In any of the above-described embodiments, the holding member 14 and the casing 12 are configured separately, but the holding member 14 may function as a casing without including the casing 12. Further, although the holding member 14 and the second side member 60 are configured separately, the holding member 14 and the second side member 60 are integrally formed in a cup shape, and the space is closed by the first side member 50. You may comprise so that the rotary body 40 may be arrange | positioned.

上述の何れの実施形態でも、第1流体流入路51、第2流体流出路52、第2流体流入路53、第1流体流出路54のように、流入路と流出路が一対ずつ、合計4つ備えられる構成であるが、各流入路と流出路は夫々2つ以上の複数であってもよい。複数備える場合は、回転体40に流入及び回転体40から流出する各流体の圧力バランスの観点から各流入路及び流出路は回転軸心周りに点対称に配置されることが好ましい。   In any of the above-described embodiments, a total of four inflow paths and outflow paths are paired, such as the first fluid inflow path 51, the second fluid outflow path 52, the second fluid inflow path 53, and the first fluid outflow path 54. However, each inflow path and outflow path may be two or more. In the case where a plurality of fluids are provided, the inflow passages and the outflow passages are preferably arranged symmetrically around the rotation axis from the viewpoint of the pressure balance between the fluids flowing into and out of the rotation body 40.

上述の何れの実施形態でも、トルク付与機構は、第1流路41に流入するまたは第1流路41から流出する濃縮海水のエネルギー及び第2流路42に流入するまたは第2流路42から流出する海水のエネルギーにより回転体40にトルクを付与する構成であるが、前記トルク付与機構は、少なくとも第1流路41に流入する若しくは第1流路41から流出する濃縮海水のエネルギーまたは第2流路42に流入する若しくは第2流路42から流出する海水のエネルギーにより回転体40にトルクを付与するように構成すればよい。   In any of the above-described embodiments, the torque applying mechanism is configured such that the energy of the concentrated seawater that flows into or out of the first flow path 41 and the energy of the concentrated seawater that flows into the second flow path 42 or from the second flow path 42. The torque is applied to the rotating body 40 by the energy of the flowing seawater. The torque applying mechanism includes at least the energy of the concentrated seawater that flows into or out of the first flow path 41 or the second flow. What is necessary is just to comprise so that a torque may be provided to the rotary body 40 with the energy of the seawater which flows in into the flow path 42 or flows out of the 2nd flow path 42.

何れかのエネルギーのみを利用する場合、第2流路42より第1流路41のほうが、回転体40の半径方向外側に配置されているため、第1流路41に流入する高圧濃縮海水Hiのエネルギーを利用して回転体40にトルクを付与するように構成するとエネルギー効率がよい。   When only one of the energies is used, the first flow path 41 is arranged on the outer side in the radial direction of the rotating body 40 than the second flow path 42, so the high-pressure concentrated seawater Hi that flows into the first flow path 41 is used. Energy efficiency is good when it is configured to apply torque to the rotating body 40 using the energy of the above.

上述の何れの実施形態でも、回転体40は第1流体及び第2流体のエネルギーにより回転する構成について説明したが、回転体40に駆動軸を連結し、駆動機等の外部動力で回転するように構成してもよい。外部動力で回転体40を回転駆動できるため、安定した回転を得ることができるので装置の信頼性が向上する。   In any of the above-described embodiments, the configuration in which the rotating body 40 is rotated by the energy of the first fluid and the second fluid has been described. However, the driving shaft is connected to the rotating body 40 and is rotated by external power such as a driving machine. You may comprise. Since the rotating body 40 can be rotationally driven by external power, stable rotation can be obtained, and the reliability of the apparatus is improved.

上述の何れの実施形態でも、第1流体流入路に高圧濃縮海水を流入させ、第2流体流入路に被濃縮流体である低圧海水を流入させる構成について説明したが、第1流体流入路に被濃縮流体である低圧海水を流入させ、第2流体流入路に高圧濃縮海水を流入させてもよい。   In any of the embodiments described above, the configuration in which the high-pressure concentrated seawater is introduced into the first fluid inflow passage and the low-pressure seawater that is the concentrated fluid is introduced into the second fluid inflow passage has been described. Low-pressure seawater that is a concentrated fluid may be flowed in, and high-pressure concentrated seawater may be flowed into the second fluid inflow path.

以上説明した圧力交換装置の具体的構成は実施形態の記載に限定されるものではなく、本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。   The specific configuration of the pressure exchanging device described above is not limited to the description of the embodiment, and it is needless to say that the design can be appropriately changed within the scope of the effects of the present invention.

6:逆浸透膜装置
10:圧力交換装置
11:連結部材
12:ケーシング
13:支軸
14:保持部材
14b:第5連通路
14c:第6連通路
15:流入管
16:流出管
17:流入管
18:流出管
20:第1エンドカバー
21:第1流体流入部
21b:閉空間
22:第2流体流出部
22b:閉空間
23:第2流体流入部
23b:閉空間
24:第1流体流出部
24b:閉空間
25:第1閉空間
26:ガスケット
27:第1開放空間
30:第2エンドカバー
31:凹部
32:凹部
33:凹部
34:第2閉空間
35:ガスケット
38:第2開放空間
40:回転体
41:第1流路
42:第2流路
43:挿通空間
50:第1側方部材
51:第1流体流入路
52:第2流体流出路
53:第2流体流入路
54:第1流体流出路
56:第1連通路
57:第3連通路
60:第2側方部材
61a,61b:連通部
62a,62b:連通部
64:凹部
65:第2連通路
66:連通溝
67:連通溝
68:第4連通路
71:第1圧力バランス調整機構
72:第2圧力バランス調整機構
73:第3圧力バランス調整機構
79:第4圧力バランス調整機構
Hi:高圧濃縮海水
Ho:高圧海水
Li:低圧海水
Lo:低圧濃縮海水
6: Reverse osmosis membrane device 10: Pressure exchange device 11: Connection member 12: Casing 13: Support shaft 14: Holding member 14b: Fifth communication passage 14c: Sixth communication passage 15: Inflow pipe 16: Outflow pipe 17: Inflow pipe 18: Outflow pipe 20: 1st end cover 21: 1st fluid inflow part 21b: Closed space 22: 2nd fluid outflow part 22b: Closed space 23: 2nd fluid inflow part 23b: Closed space 24: 1st fluid outflow part 24b: closed space 25: first closed space 26: gasket 27: first open space 30: second end cover 31: recessed portion 32: recessed portion 33: recessed portion 34: second closed space 35: gasket 38: second open space 40 : Rotating body 41: first flow path 42: second flow path 43: insertion space 50: first side member 51: first fluid inflow path 52: second fluid outflow path 53: second fluid inflow path 54: second 1 fluid outflow passage 56: first communication passage 57: third communication passage 0: 2nd side member 61a, 61b: Communication part 62a, 62b: Communication part 64: Recessed part 65: 2nd communication path 66: Communication groove 67: Communication groove 68: 4th communication path 71: 1st pressure balance adjustment mechanism 72: Second pressure balance adjusting mechanism 73: Third pressure balance adjusting mechanism 79: Fourth pressure balance adjusting mechanism Hi: High pressure concentrated seawater Ho: High pressure seawater Li: Low pressure seawater Lo: Low pressure concentrated seawater

Claims (13)

第1流体と第2流体との間で圧力を交換する圧力交換装置であって、
第1流体が流入及び流出する第1流路と、第2流体が流入及び流出する第2流路とが回転軸心方向に貫通するように前記回転軸心周りに配設された回転体と、
第1流体を前記第1流路に案内する第1流体流入路と、第2流体との間で圧力交換された第1流体を前記第1流路から案内する第1流体流出路とが、厚み方向に形成された第1側方部材と、
前記第1側方部材との間で前記回転体を回転可能に挟持する第2側方部材と、
前記第1側方部材の外側に配置され前記第1流体流入路と連通する第1流体流入部と、前記第1流体流出路と連通する第1流体流出部が形成された第1エンドカバーと、
前記第2側方部材の外側に配置された第2エンドカバーとを備え、
前記第1側方部材の前記回転体への対向面に形成された、第1流体流入路から供給された第1流体の圧力を受ける第1圧力領域と、第2流体との間で圧力交換された第1流体の圧力を受ける第2圧力領域と、前記第1圧力領域と前記第2圧力領域の間の中間圧力領域と夫々対応するように、
前記第1エンドカバーと前記第1側方部材との接合部に、前記第1流体流入部と連通する第1エンドカバー側第1圧力部と、前記第1流体流出部と連通する第1エンドカバー側第2圧力部と、前記第1エンドカバー側第1圧力部と前記第1エンドカバー側第2圧力部の間に第1エンドカバー側中間圧力部が形成されている圧力交換装置。
A pressure exchange device for exchanging pressure between a first fluid and a second fluid,
A rotating body disposed around the rotation axis so that a first flow path through which the first fluid flows in and out and a second flow path through which the second fluid flows in and out pass in the direction of the rotation axis; ,
A first fluid inflow path for guiding the first fluid to the first flow path, and a first fluid outflow path for guiding the first fluid pressure-exchanged with the second fluid from the first flow path, A first side member formed in the thickness direction;
A second side member for rotatably holding the rotating body with the first side member;
A first fluid inflow portion that is disposed outside the first side member and communicates with the first fluid inflow passage; and a first end cover having a first fluid outflow portion that communicates with the first fluid outflow passage. ,
A second end cover disposed outside the second side member,
Pressure exchange between the second fluid and the first pressure region formed on the surface of the first side member facing the rotating body and receiving the pressure of the first fluid supplied from the first fluid inflow path Corresponding to a second pressure region that receives the pressure of the first fluid and an intermediate pressure region between the first pressure region and the second pressure region, respectively.
A first end cover side first pressure portion communicating with the first fluid inflow portion and a first end communicating with the first fluid outflow portion at a joint portion between the first end cover and the first side member. A pressure exchange device in which a first end cover side intermediate pressure part is formed between a cover side second pressure part, and the first end cover side first pressure part and the first end cover side second pressure part.
前記第1側方部材に、第2流体を前記第2流路に案内する第2流体流入路と、第1流体との間で圧力交換された第2流体を前記第2流路から案内する第2流体流出路とが厚み方向に形成され、
第1エンドカバーに前記第2流体流入路と連通する第2流体流入部と、前記第2流体流出路と連通する第2流体流出部が形成され、
前記第1側方部材の前記回転体への対向面に形成された、第2流体流入路から供給された第2流体の圧力を受ける第2圧力領域と、第1流体との間で圧力交換された第2流体の圧力を受ける第1圧力領域と、前記第2圧力領域と前記第1圧力領域の間の中間圧力領域と夫々対応するように、
前記第1エンドカバーと前記第1側方部材との接合部に、前記第2流体流入部と連通する第1エンドカバー側第2圧力部と、前記第2流体流出部と連通する第1エンドカバー側第1圧力部と、前記第1エンドカバー側第2圧力部と前記第1エンドカバー側第1圧力部の間に第1エンドカバー側中間圧力部が形成されている請求項1記載の圧力交換装置。
The second fluid that is pressure-exchanged between the first fluid and the second fluid inflow passage that guides the second fluid to the second passage is guided from the second passage to the first side member. A second fluid outflow passage is formed in the thickness direction;
A second fluid inflow portion communicating with the second fluid inflow passage and a second fluid outflow portion communicating with the second fluid outflow passage are formed in the first end cover;
Pressure exchange between the first fluid and a second pressure region formed on a surface of the first side member facing the rotating body and receiving the pressure of the second fluid supplied from the second fluid inflow path Corresponding to a first pressure region that receives the pressure of the second fluid, and an intermediate pressure region between the second pressure region and the first pressure region, respectively.
A first end end communicating with the second fluid outflow portion and a first end cover side second pressure portion communicating with the second fluid inflow portion at a joint portion between the first end cover and the first side member. The first end cover side intermediate pressure part is formed between the cover side first pressure part, the first end cover side second pressure part, and the first end cover side first pressure part. Pressure exchange device.
前記中間圧力領域の流体を前記第1エンドカバー側中間圧力部へと導く連通部を備えている請求項1または2記載の圧力交換装置。   The pressure exchange device according to claim 1, further comprising a communication portion that guides the fluid in the intermediate pressure region to the intermediate pressure portion on the first end cover side. 前記第1エンドカバーと前記第2エンドカバーとの間に、前記回転体と前記第1側方部材と前記第2側方部材とを収容する筒状ケーシングが配置され、
前記連通部は前記第1側方部材と前記円筒ケーシングとの間に形成されている請求項3記載の圧力交換装置。
Between the first end cover and the second end cover, a cylindrical casing that houses the rotating body, the first side member, and the second side member is disposed,
The pressure exchange device according to claim 3, wherein the communication portion is formed between the first side member and the cylindrical casing.
前記回転体と前記筒状ケーシングの間に、前記第1側方部材と前記第2側方部材で挟持された保持部材を備え、
前記保持部材には、保持部材の内周面と外周面を連通する連通路が形成されている請求項4記載の圧力交換装置。
A holding member sandwiched between the first side member and the second side member between the rotating body and the cylindrical casing;
The pressure exchange device according to claim 4, wherein the holding member is formed with a communication passage that communicates the inner peripheral surface and the outer peripheral surface of the holding member.
前記第2側方部材の前記回転体への対向面のうち、前記第1圧力領域と前記回転体を介して対向する領域に第1圧力領域が、前記第2圧力領域と前記回転体を介して対向する領域に第2圧力領域が、前記中間圧力領域と前記回転体を介して対向する領域に中間圧力領域が形成され、
前記第2エンドカバーと前記第2側方部材との接合部には、前記第1圧力領域に対応する第2エンドカバー側第1圧力部が、前記第2圧力領域に対応する第2エンドカバー側第2圧力部が、前記中間圧力領域に対応する第2エンドカバー側中間圧力部が形成されている請求項1から5の何れかに記載の圧力交換装置。
Of the surface of the second side member facing the rotating body, a first pressure area is located in an area facing the first pressure area via the rotating body, and the second pressure area and the rotating body are interposed therebetween. A second pressure region is formed in a region opposed to the intermediate pressure region, and an intermediate pressure region is formed in a region opposed to the intermediate pressure region via the rotating body,
A second end cover side first pressure portion corresponding to the first pressure region is provided at a joint portion between the second end cover and the second side member, and a second end cover corresponding to the second pressure region. The pressure exchange device according to any one of claims 1 to 5, wherein a second end cover side intermediate pressure portion corresponding to the intermediate pressure region is formed on the side second pressure portion.
前記中間圧力領域の流体を前記第2エンドカバー側中間圧力部へと導く連通部を備えている請求項6記載の圧力交換装置。   The pressure exchange device according to claim 6, further comprising a communication portion that guides the fluid in the intermediate pressure region to the intermediate pressure portion on the second end cover side. 前記第1エンドカバーと前記第2エンドカバーとの間に、前記回転体と前記第1側方部材と前記第2側方部材とを収容する筒状ケーシングが配置され、
前記連通部は前記第2側方部材と前記円筒ケーシングとの間に形成されている請求項7記載の圧力交換装置。
Between the first end cover and the second end cover, a cylindrical casing that houses the rotating body, the first side member, and the second side member is disposed,
The pressure exchange device according to claim 7, wherein the communication portion is formed between the second side member and the cylindrical casing.
前記第1側方部材と前記回転体と前記第2側方部材とを貫通する支軸と、
前記第1側方部材と前記第1エンドカバーとの間に形成された前記支軸の一端を含む第1閉空間と、
前記第2側方部材と前記第2エンドカバーとの間に形成された前記支軸の他端を含む第2閉空間と、
前記回転体に形成された前記支軸の挿通空間と、
前記第1閉空間と前記挿通空間とを連通する第1連通路と、
前記第2閉空間と前記挿通空間とを連通する第2連通路とを備えている請求項1から8の何れかに記載の圧力交換装置
A support shaft that passes through the first side member, the rotating body, and the second side member;
A first closed space including one end of the support shaft formed between the first side member and the first end cover;
A second closed space including the other end of the support shaft formed between the second side member and the second end cover;
An insertion space for the spindle formed in the rotating body;
A first communication path communicating the first closed space and the insertion space;
The pressure exchange device according to any one of claims 1 to 8, further comprising a second communication path that communicates the second closed space and the insertion space.
前記第1流路と前記第2流路との流路連通部が前記第2側方部材に形成されている請求項2から9の何れかに記載の圧力交換装置。   The pressure exchange device according to any one of claims 2 to 9, wherein a channel communication portion between the first channel and the second channel is formed in the second side member. 前記流路連通部が前記第2側方部材に貫通形成されている請求項10記載の圧力交換装置。   The pressure exchange device according to claim 10, wherein the flow passage communicating portion is formed to penetrate the second side member. 前記第2エンドカバーの一部から前記回転体が目視可能に構成されている請求項10または11記載の圧力交換装置。   The pressure exchange device according to claim 10 or 11, wherein the rotating body is configured to be visible from a part of the second end cover. 前記第1流路と前記第2流路との流路連通部が前記回転体に形成されている請求項1から9の何れかに記載の圧力交換装置。   The pressure exchanging device according to any one of claims 1 to 9, wherein a flow passage communicating portion between the first flow passage and the second flow passage is formed in the rotating body.
JP2012072210A 2011-09-30 2012-03-27 Pressure exchange device Active JP5996902B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012072210A JP5996902B2 (en) 2012-03-27 2012-03-27 Pressure exchange device
EP12835947.8A EP2762730B1 (en) 2011-09-30 2012-09-25 Pressure exchange device
CN201280045496.3A CN103814223B (en) 2011-09-30 2012-09-25 Pressure exchanger
US14/346,566 US9546671B2 (en) 2011-09-30 2012-09-25 Pressure exchange device
DK12835947.8T DK2762730T3 (en) 2011-09-30 2012-09-25 PRESSURE EXCHANGE DEVICES
PCT/JP2012/074495 WO2013047487A1 (en) 2011-09-30 2012-09-25 Pressure exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072210A JP5996902B2 (en) 2012-03-27 2012-03-27 Pressure exchange device

Publications (2)

Publication Number Publication Date
JP2013204461A true JP2013204461A (en) 2013-10-07
JP5996902B2 JP5996902B2 (en) 2016-09-21

Family

ID=49523830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072210A Active JP5996902B2 (en) 2011-09-30 2012-03-27 Pressure exchange device

Country Status (1)

Country Link
JP (1) JP5996902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187425A (en) * 2014-03-27 2015-10-29 株式会社クボタ pressure exchange device
JP2016532799A (en) * 2013-10-03 2016-10-20 エナジー リカバリー,インコーポレイティド Crushing system with hydraulic energy transfer system
JP2017029881A (en) * 2015-07-29 2017-02-09 株式会社クボタ Salt water desalination plant and method of remodeling the salt water desalination plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975677B2 (en) * 2016-11-04 2021-04-13 Schlumberger Technology Corporation Pressure exchanger low pressure flow control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515101A (en) * 1923-03-09 1924-11-11 Otis L Fowler Air compressor
US2759660A (en) * 1949-09-20 1956-08-21 Jendrassik Developments Ltd Pressure exchangers
GB872211A (en) * 1958-06-27 1961-07-05 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchangers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515101A (en) * 1923-03-09 1924-11-11 Otis L Fowler Air compressor
US2759660A (en) * 1949-09-20 1956-08-21 Jendrassik Developments Ltd Pressure exchangers
GB872211A (en) * 1958-06-27 1961-07-05 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchangers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532799A (en) * 2013-10-03 2016-10-20 エナジー リカバリー,インコーポレイティド Crushing system with hydraulic energy transfer system
JP2015187425A (en) * 2014-03-27 2015-10-29 株式会社クボタ pressure exchange device
JP2017029881A (en) * 2015-07-29 2017-02-09 株式会社クボタ Salt water desalination plant and method of remodeling the salt water desalination plant

Also Published As

Publication number Publication date
JP5996902B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2013047487A1 (en) Pressure exchange device
US9328743B2 (en) Pressure exchanger and performance adjustment method of pressure exchanger
US10309426B2 (en) Fluid exchanger devices, pressure exchangers, and related methods
JP5996902B2 (en) Pressure exchange device
US10125796B2 (en) Rotor positioning system in a pressure exchange vessel
US20090180903A1 (en) Rotary pressure transfer device
DK181325B1 (en) LIQUID-TO-LIQUID PRESSURE TRANSMITTER AND METHOD OF OPERATING THE SAME
US7997853B2 (en) Rotary pressure transfer device with improved flow
JP5657450B2 (en) Pressure exchange device
CN115210476A (en) Pressure exchanger with flow divider in rotor line
Wu et al. Theoretical analysis and auxiliary experiment of the optimization of energy recovery efficiency of a rotary energy recovery device
JP6066045B2 (en) Pressure exchange device
CN107398177B (en) External rotor type pressure exchanger
JP5571025B2 (en) Pressure exchange device and performance adjustment method of pressure exchange device
JP6297878B2 (en) Pressure exchange device
CN107461394A (en) The spindle assemblies that can control temperature of flexible pipe are imported with fluid
EP4332385A1 (en) Rotary pressure exchanger
JP2011069275A (en) Magnet pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5996902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150