JP5657450B2 - Pressure exchange device - Google Patents

Pressure exchange device Download PDF

Info

Publication number
JP5657450B2
JP5657450B2 JP2011073730A JP2011073730A JP5657450B2 JP 5657450 B2 JP5657450 B2 JP 5657450B2 JP 2011073730 A JP2011073730 A JP 2011073730A JP 2011073730 A JP2011073730 A JP 2011073730A JP 5657450 B2 JP5657450 B2 JP 5657450B2
Authority
JP
Japan
Prior art keywords
fluid
pressure
rotating body
side member
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011073730A
Other languages
Japanese (ja)
Other versions
JP2012206019A (en
Inventor
慶文 廣澤
慶文 廣澤
憲博 寺本
憲博 寺本
晃 庄▲崎▼
晃 庄▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011073730A priority Critical patent/JP5657450B2/en
Publication of JP2012206019A publication Critical patent/JP2012206019A/en
Application granted granted Critical
Publication of JP5657450B2 publication Critical patent/JP5657450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、第1流体と第2流体との間で圧力を交換する圧力交換装置に関する。   The present invention relates to a pressure exchange device that exchanges pressure between a first fluid and a second fluid.

逆浸透膜装置を用いる海水淡水化施設では、逆浸透膜装置から排水される高圧濃縮流体である高圧濃縮海水がもつ余剰圧力を、逆浸透膜装置に給水される被濃縮流体である低圧海水の昇圧に利用する圧力交換装置が設けられている。   In seawater desalination facilities that use reverse osmosis membrane devices, the excess pressure of high-pressure concentrated seawater, which is high-pressure concentrated fluid drained from the reverse osmosis membrane device, is reduced by low-pressure seawater, which is the concentrated fluid supplied to the reverse osmosis membrane device. A pressure exchanging device used for boosting is provided.

図11に示すように、特許文献1には、管状の圧力伝達部が回転軸心周りに複数本配設されたロータ80を備えた圧力交換装置が記載されている。   As shown in FIG. 11, Patent Document 1 describes a pressure exchange device including a rotor 80 in which a plurality of tubular pressure transmission units are arranged around a rotation axis.

該圧力交換装置は、ロータ80の回転に伴って、高圧入口側ポート82へ供給される高圧濃縮海水と低圧入口側ポート81へ供給される低圧海水とを圧力伝達部で接触させて、高圧濃縮海水の圧力によって昇圧した低圧海水を、高圧出口側ポート83から高圧海水として排水し、低圧入口側ポート81へ供給される低圧海水によって前記圧力を伝達し終えた低圧濃縮海水を低圧出口側ポート84から排水するように構成されている。   As the rotor 80 rotates, the pressure exchange device causes the high-pressure concentrated seawater supplied to the high-pressure inlet-side port 82 and the low-pressure seawater supplied to the low-pressure inlet-side port 81 to come into contact with each other by the pressure transmission unit. The low-pressure seawater boosted by the pressure of the seawater is drained as high-pressure seawater from the high-pressure outlet-side port 83, and the low-pressure concentrated seawater that has been transmitted by the low-pressure seawater supplied to the low-pressure inlet-side port 81 It is configured to drain from.

図12に示すように、特許文献2には、一対の回転板91、92と当該回転板91、92を連接する軸93とで構成される回転体90を備えた圧力交換装置が記載されている。   As shown in FIG. 12, Patent Document 2 describes a pressure exchanging device including a rotating body 90 including a pair of rotating plates 91 and 92 and a shaft 93 connecting the rotating plates 91 and 92. Yes.

一方の回転板91には、低圧入口側ポート95に供給された低圧海水を圧力伝達部96に案内する流路91aと、圧力伝達部96から排水される高圧海水を高圧出口側ポート97に案内する流路91bが形成されている。   One rotating plate 91 guides the low-pressure seawater supplied to the low-pressure inlet side port 95 to the pressure transmission unit 96 and the high-pressure seawater drained from the pressure transmission unit 96 to the high-pressure outlet side port 97. A flow path 91b is formed.

他方の回転板92には、高圧入口側ポート94に供給された高圧濃縮海水を圧力伝達部96に案内する流路92bと、圧力伝達部96から排水される低圧濃縮海水を低圧出口側ポート98に案内する流路92aが形成されている。   The other rotary plate 92 has a flow path 92b for guiding the high-pressure concentrated seawater supplied to the high-pressure inlet side port 94 to the pressure transmission unit 96, and the low-pressure concentrated seawater drained from the pressure transmission unit 96 at the low-pressure outlet side port 98. A flow path 92a is formed to guide the flow.

該圧力交換装置は、回転体90の回転に伴って、高圧入口側ポート94へ供給される高圧濃縮海水と、低圧入口側ポート95へ供給される低圧海水を、管状の圧力伝達部96内で接触させて、高圧濃縮海水の圧力によって昇圧した低圧海水を高圧出口側ポート97から高圧海水として排水し、低圧入口側ポート95へ供給される低圧海水によって前記圧力を伝達し終えた低圧濃縮海水を低圧出口側ポート98から排水するように構成されている。   The pressure exchanging device converts the high-pressure concentrated seawater supplied to the high-pressure inlet-side port 94 and the low-pressure seawater supplied to the low-pressure inlet-side port 95 in the tubular pressure transmission unit 96 as the rotating body 90 rotates. The low-pressure seawater that has been brought into contact and drained as high-pressure seawater from the high-pressure outlet side port 97 is increased by the pressure of the high-pressure concentrated seawater. It is configured to drain from the low pressure outlet side port 98.

米国特許出願公開第2009180903号明細書US Patent Application Publication No. 2008090903 中国特許出願公開第200710056401号明細書Chinese Patent Application Publication No. 200710056401

特許文献1に記載された圧力交換装置では、ロータ80に配設された管状の圧力伝達部の断面積に依存して圧力伝達される処理流量が定まるので、処理流量を増やすためには、圧力伝達部の配設本数を増加させるか、圧力伝達部の一本あたりの断面積を大きくする必要があり、何れの場合であってもロータ80が大きくなり、それに伴って圧力交換装置が大型になり重量も増大する。   In the pressure exchanging device described in Patent Document 1, since the processing flow rate to which pressure is transmitted is determined depending on the cross-sectional area of the tubular pressure transmission portion disposed in the rotor 80, in order to increase the processing flow rate, It is necessary to increase the number of transmission parts or to increase the cross-sectional area per pressure transmission part. In any case, the rotor 80 becomes large, and the pressure exchange device becomes large accordingly. The weight also increases.

一般的にロータ80は、軽量化、高剛性、耐摩耗性、低摩擦係数等の条件を満足させるために、セラミックス等の高価な材料で形成されているため、圧力交換装置を大型化するとそれに伴って材料費、製造費が嵩むという問題があった。   In general, the rotor 80 is formed of an expensive material such as ceramics in order to satisfy conditions such as weight reduction, high rigidity, wear resistance, and a low friction coefficient. Along with this, there is a problem that material costs and manufacturing costs increase.

さらに、大型のロータ80を回転させるために要するトルクも増大し、小型のロータ80を回転させる場合よりも大きなエネルギーが必要になり、効率が低下するという問題もあった。このような理由によって、圧力交換装置1台あたりの処理流量を増加させるのは極めて困難であった。   Furthermore, the torque required to rotate the large rotor 80 also increases, requiring more energy than the case of rotating the small rotor 80, and there is a problem that efficiency is lowered. For these reasons, it has been extremely difficult to increase the processing flow rate per pressure exchange device.

そのため、大量の海水を淡水化処理する大型の海水淡水化施設には、多数の圧力交換装置が設置されていた。しかし、圧力交換装置の設置台数が増加すると、各圧力交換装置を接続する配管の施工及び管理が煩雑になるという問題があった。   Therefore, a large number of pressure exchange devices have been installed in a large-scale seawater desalination facility that desalinates a large amount of seawater. However, when the number of installed pressure exchange devices increases, there is a problem that the construction and management of piping connecting the pressure exchange devices becomes complicated.

特許文献2に記載された圧力交換装置では、一方の回転板91に形成された流路91bと他方の回転板92に形成された流路92bの夫々が、回転体内部で軸心方向に沿った流路に円周方向に形成された流路が連通するように構成されているため、回転板91、92に流路を形成するための厚みが必要となる。そのため、回転板91、92が大型になり材料費や加工費が嵩むという問題があった。   In the pressure exchanging device described in Patent Document 2, each of the flow path 91b formed in one rotary plate 91 and the flow path 92b formed in the other rotary plate 92 extends along the axial direction inside the rotary body. Since the flow path formed in the circumferential direction communicates with the remaining flow path, a thickness for forming the flow path on the rotating plates 91 and 92 is required. For this reason, there is a problem that the rotating plates 91 and 92 become large and material costs and processing costs increase.

さらに、回転板91、92の大型化によって重量が増すと、回転体90の回転時に軸部93に作用するねじりや曲げ応力が大きくなり、その変形や破損を防止するために軸部93を太くする必要があるばかりでなく、回転のために要するエネルギーが増加し、効率が低下するという問題もあった。   Further, when the weight increases due to an increase in the size of the rotating plates 91 and 92, torsional and bending stress acting on the shaft portion 93 when the rotating body 90 rotates increases, and the shaft portion 93 is thickened to prevent deformation and breakage. In addition to this, there is a problem in that the energy required for rotation increases and efficiency decreases.

本発明の目的は、処理流量を減らすことなくコンパクト化、低コスト化が可能な効率の良い圧力交換装置を提供する点にある。   An object of the present invention is to provide an efficient pressure exchange device that can be made compact and cost-effective without reducing the processing flow rate.

上述の目的を達成するため、本発明による圧力交換装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載したとおり、第1流体と第2流体との間で圧力を交換する圧力交換装置であって、一端側から第1流体が流入及び流出する第1流路と前記一端側から第2流体が流入及び流出する第2流路とが連通するように形成された圧力伝達部が、回転軸心周りに配設された回転体と、第1流体を前記第1流路に案内する第1流体流入路と、第1流体との間で圧力交換された第2流体を前記第2流路から案内する第2流体流出路と、第2流体を前記第2流路に案内する第2流体流入路と、第2流体との間で圧力交換された第1流体を前記第1流路から案内する第1流体流出路とが、厚み方向に形成された第1側方部材と、前記回転体を第1側方部材との間で保持部材を介して回転可能に挟持する第2側方部材と、で構成される圧力交換部を備え、第1流路及び第2流路が前記回転体を貫通するように形成され、前記第1流体又は第2流体により、圧力交換部の圧力バランスを調整する圧力バランス調整機構を備えている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the pressure exchange device according to the present invention is that pressure is applied between the first fluid and the second fluid as described in claim 1 of the claims. A pressure exchanging device for exchanging, wherein a first flow path through which a first fluid flows in and out from one end side and a second flow path from which the second fluid flows in and out from the one end side are communicated with each other. The pressure transmission unit is a second body that is pressure-exchanged between the rotating body disposed around the rotation axis, the first fluid inflow path that guides the first fluid to the first flow path, and the first fluid. The first fluid that is pressure-exchanged between the second fluid outflow path that guides the fluid from the second flow path, the second fluid inflow path that guides the second fluid to the second flow path, and the second fluid A first fluid outflow path that guides the first flow path from the first flow path, a first side member formed in a thickness direction, and the rotating body as a first flow path. And a second side member that is rotatably held between the side members via a holding member, and the first flow path and the second flow path pass through the rotating body. The pressure balance adjusting mechanism is configured to adjust the pressure balance of the pressure exchanging portion by the first fluid or the second fluid.

上述の構成によれば、第1側方部材及び第2側方部材と保持部材とで区画される空間内で回転体が回転しながら、第1流体流入路から第1流路に流入した第1流体から圧力伝達された第2流体が第2流路から第2流体流出路へ流出し、第2流体流入路から第2流路に流入した第2流体から圧力伝達された第1流体が第1流路から第1流体流出路へ流出する動作が連続的に行われるなかで、前記回転体と第1及び第2側方部材との隙間、及び、前記回転体と前記保持部材との隙間に第1流体又は第2流体が進入する。前記隙間は、狭すぎると大きな摺動抵抗が発生し、広すぎると流体の漏れ量が多くなり圧力の交換効率が低下するため、好ましくは1〜100μm程度に設定される。   According to the above configuration, the rotating body rotates in the space defined by the first side member, the second side member, and the holding member, and flows into the first flow path from the first fluid inflow path. The second fluid pressure-transmitted from one fluid flows out from the second flow path to the second fluid outflow path, and the first fluid pressure-transmitted from the second fluid flowing into the second flow path from the second fluid inflow path is While the operation of flowing out from the first flow path to the first fluid outflow path is continuously performed, the gap between the rotating body and the first and second side members, and between the rotating body and the holding member The first fluid or the second fluid enters the gap. If the gap is too narrow, a large sliding resistance is generated. If the gap is too wide, the amount of fluid leakage increases and the pressure exchanging efficiency decreases. Therefore, the gap is preferably set to about 1 to 100 μm.

回転体と第1側方部材の隙間に進入した第1流体又は第2流体は、回転体を第2側方部材に向けて押圧する。回転体と第2側方部材の隙間に進入した第1流体又は第2流体は、回転体を第1側方部材に向けて押圧する。両隙間に進入した流体により、回転体は第1側方部材又は第2側方部材と常時摺動しながら回転することがなくなる。回転体と保持部材の隙間に進入した第1流体又は第2流体により、回転体は保持部材の内周面と常時摺動しながら回転することがなくなる。   The first fluid or the second fluid that has entered the gap between the rotating body and the first side member presses the rotating body toward the second side member. The first fluid or the second fluid that has entered the gap between the rotating body and the second side member presses the rotating body toward the first side member. The fluid that has entered both gaps prevents the rotating body from rotating while always sliding with the first side member or the second side member. The first fluid or the second fluid that has entered the gap between the rotating body and the holding member prevents the rotating body from rotating while always sliding with the inner peripheral surface of the holding member.

このように、回転体は隙間に進入した第1流体又は第2流体により、周囲の第1及び第2側方部材、及び、保持部材との摺動が低減されるので円滑に回転する。また、磨耗が低減できるので、高価な耐磨耗性材料を用いなくとも耐久性を向上させることができる。さらに、処理流量を稼ぐために回転体を大径に形成し、圧力伝達部を構成する第1流路及び第2流路の断面積を大きくした場合でも、回転体を回転駆動するために要するエネルギーが低く抑えられるようになる。   As described above, the rotating body smoothly rotates because sliding with the surrounding first and second side members and the holding member is reduced by the first fluid or the second fluid entering the gap. In addition, since wear can be reduced, durability can be improved without using expensive wear-resistant materials. Furthermore, it is necessary to rotationally drive the rotating body even when the rotating body is formed to have a large diameter to increase the processing flow rate and the cross-sectional areas of the first flow path and the second flow path constituting the pressure transmission unit are increased. Energy can be kept low.

このとき、圧力バランス調整機構は、隙間に進入した第1流体又は第2流体により圧力交換部の圧力バランスを調整するので、回転体の軸方向への片寄り、第1側方部材や第2側方部材や保持部材の流体の圧力による変形を防止することができる。つまり、第1側方部材や第2側方部材や保持部材と回転体が互いに摺動することを防止するので、回転体を円滑に回転させ効率を向上することができる。   At this time, since the pressure balance adjusting mechanism adjusts the pressure balance of the pressure exchanging portion by the first fluid or the second fluid that has entered the gap, the first lateral member or the second side member is displaced in the axial direction of the rotating body. It is possible to prevent deformation of the side member and the holding member due to the fluid pressure. That is, since the first side member, the second side member, the holding member, and the rotating body are prevented from sliding with each other, the rotating body can be smoothly rotated to improve the efficiency.

第1流路と第2流路と両流路の連通部とで圧力伝達部を構成し、回転体の一端側から該圧力伝達部へ第1流体又は第2流体を流入させて、第1流体と第2流体との間で圧力を交換し、該一端側から第1流体又は第2流体を流出させることで、特許文献1に記載されたような直管で構成された圧力伝達部と比較して、同じ流量の圧力交換処理を行なう場合に回転体の回転軸心方向の長さを短く構成することができるので、装置のコンパクト化と低コスト化を図ることができる。また、圧力交換処理の流量を増加させる必要がある場合でも、回転体の回転軸心方向の長さを短く構成することができるので、装置の極端な大型化を回避することができる。   The first flow path, the second flow path, and the communication section of both flow paths constitute a pressure transmission section, and the first fluid or the second fluid is caused to flow into the pressure transmission section from one end side of the rotating body. A pressure transmission unit configured by a straight pipe as described in Patent Document 1 by exchanging pressure between the fluid and the second fluid and causing the first fluid or the second fluid to flow out from the one end side; In comparison, when the pressure exchange process with the same flow rate is performed, the length of the rotating body in the direction of the rotation axis can be shortened, so that the apparatus can be made compact and the cost can be reduced. Moreover, even when it is necessary to increase the flow rate of the pressure exchange process, the length of the rotating body in the direction of the rotation axis can be shortened, so that an extreme increase in size of the apparatus can be avoided.

さらに、第1流体流入路及び流出路、第2流体流入路及び流出路が第1側方部材にのみ形成されているため、各流体の流入路又は流出路と接続する配管を第1側方部材側に纏めて設置すればよく、従来の装置のように回転体の両端側に各流入路又は流出路と接続される配管を設置する場合と比較して、配管を含めた設置スペースをコンパクト化ができ、さらに、配管設置作業やメンテナンス作業等の作業性が良好になる。   Furthermore, since the first fluid inflow channel and the outflow channel, the second fluid inflow channel and the outflow channel are formed only in the first side member, piping connected to the inflow channel or the outflow channel of each fluid is connected to the first side. Compared to the case where pipes connected to each inflow or outflow path are installed on both ends of the rotating body like conventional devices, the installation space including the pipes is compact. Furthermore, workability such as piping installation work and maintenance work is improved.

同第二の特徴構成は、同請求項2に記載したとおり、上述の第一特徴構成に加えて、前記第1側方部材は、少なくとも、第1流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第1流路と連通するように形成された第1流体流入路開口部と、第2流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第2流路と連通するように形成された第2流体流入路開口部と、を備え、前記圧力バランス調整機構は、前記第1側方部材に形成された前記第1流体流入路と第2流体流出路と第2流体流入路と第1流体流出路の前記回転体との対向面側の各開口部に相対する、前記回転体の第1側方部材との対向面側の受圧面積と、前記回転体の第2側方部材との対向面側の受圧面積とを略同一とする受圧部を備えている点にある。   In the second characteristic configuration, as described in the second aspect, in addition to the first characteristic configuration described above, the first side member is at least opposed to the rotating body in the first fluid inflow path. A first fluid inflow passage opening formed on the surface side so as to communicate with the plurality of first flow paths along the circumferential direction of the rotator, and a surface of the second fluid inflow path facing the rotator. A second fluid inflow passage opening formed so as to communicate with a plurality of second flow paths along a circumferential direction of the rotating body, and the pressure balance adjusting mechanism is configured to The first fluid inflow passage, the second fluid outflow passage, the second fluid inflow passage, and the first fluid outflow passage, which are formed in the member, are opposed to the respective opening portions of the rotating body facing each other. The pressure receiving area on the side facing the first side member is substantially the same as the pressure receiving area on the side facing the second side member of the rotating body. In that it includes a pressure receiving portion.

第1流体が第1流体流入路の第1流体流入路開口部から複数の第1流路に分散して流入するときに、第1流体の圧力は回転体の隣接する第1流路の間の端面にも作用し、回転体を第2側方部材側へ押圧することとなる。同様に、第2流体が第2流体流入路の第2流体流入路開口部から複数の第2流路に分散して流入するときに、第2流体の圧力は回転体の隣接する第1流路の間の端面にも作用し、回転体を第2側方部材側へ押圧することとなる。   When the first fluid is dispersed and flows into the plurality of first flow paths from the first fluid inflow path opening of the first fluid inflow path, the pressure of the first fluid is between the adjacent first flow paths of the rotating body. This also acts on the end surface of the first and second members and presses the rotating body toward the second side member. Similarly, when the second fluid is distributed and flows into the plurality of second flow paths from the second fluid inflow path opening of the second fluid inflow path, the pressure of the second fluid is changed to the first flow adjacent to the rotating body. It also acts on the end surfaces between the paths, and presses the rotating body toward the second side member.

しかし、前記圧力バランス調整機構は、前記第1側方部材に形成された前記第1流体流入路と第2流体流出路と第2流体流入路と第1流体流出路の前記回転体との対向面側の各開口部に相対する、前記回転体の第1側方部材との対向面側の受圧面積と、前記回転体の第2側方部材との対向面側の受圧面積とを略同一とする受圧部を備えているので、回転体を第2側方部材に向けて押圧する力と、回転体を第1側方部材に向けて押圧する力が釣り合い、回転体は第1側方部材又は第2側方部材に一方的に摺動するようなことがなくなり、円滑に回転することができる。   However, the pressure balance adjusting mechanism is configured so that the first fluid inflow path, the second fluid outflow path, the second fluid inflow path, and the first fluid outflow path formed in the first side member are opposed to the rotating body. The pressure-receiving area on the surface facing the first side member of the rotating body and the pressure-receiving area on the surface facing the second side member of the rotating body are substantially the same as each opening on the surface side. Therefore, the force for pressing the rotating body toward the second side member and the force for pressing the rotating body toward the first side member are balanced, and the rotating body is in the first lateral direction. It does not slide unilaterally on the member or the second side member, and can rotate smoothly.

同第三の特徴構成は、同請求項3に記載したとおり、上述の第二特徴構成に加えて、前記第1側方部材は、少なくとも、第1流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第1流路と連通するように拡径して形成された第1傾斜部と、第2流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第2流路と連通するように拡径して形成された第2傾斜部と、を備え、第1傾斜部の傾斜方向と第2傾斜部の傾斜方向が同じになるように設定され、前記第1流路に流入する第1流体のエネルギーと、前記第2流路に流入する第2流体のエネルギーにより前記回転体にトルクを付与するトルク付与機構を備え、前記圧力バランス調整機構は、前記第1側方部材に形成された前記第1流体流入路と第2流体流出路と第2流体流入路と第1流体流出路の前記回転体との対向面側の各開口部と、前記第2側方部材の前記回転体との対向面に形成された、前記各開口部に対向する前記各開口部と輪郭と面積を同一とする凹部を備えている点にある。   In the third feature configuration, as described in claim 3, in addition to the second feature configuration described above, the first side member is at least opposed to the rotating body in the first fluid inflow path. On the surface side, the first inclined portion formed to expand in diameter so as to communicate with the plurality of first flow paths along the circumferential direction of the rotating body, and the facing of the rotating body in the second fluid inflow path And a second inclined portion formed on the surface side so as to communicate with the plurality of second flow paths along the circumferential direction of the rotating body, and the inclined direction of the first inclined portion and the second The inclination direction of the inclined portion is set to be the same, and torque is applied to the rotating body by the energy of the first fluid flowing into the first flow path and the energy of the second fluid flowing into the second flow path. And the pressure balance adjusting mechanism includes a first fluid formed on the first side member. On the facing surface of the inlet, the second fluid outflow passage, the second fluid inflow passage, and the first fluid outflow passage on the surface facing the rotating body, and the surface of the second side member facing the rotating body It is in the point provided with the recessed part which makes the said each opening part and the same outline and area which oppose each said opening part formed.

第1流体が第1流体流入路から複数の第1流路に分散して流入するときに、第1傾斜部に沿って流れる第1流体は前記回転体の周方向に沿って流れ、第1流路の壁面に作用し前記回転体を回転させるトルクを発生する。   When the first fluid is dispersed and flows into the plurality of first flow paths from the first fluid inflow path, the first fluid flowing along the first inclined portion flows along the circumferential direction of the rotating body, Torque that acts on the wall surface of the flow path to rotate the rotating body is generated.

第2流体が第2流体流入路から複数の第2流路に分散して流入するときに、第2傾斜部に沿って流れる第2流体は前記回転体の周方向に沿って流れ、第2流路の壁面を押圧し前記回転体を回転させるトルクを発生する。   When the second fluid is dispersed and flows into the plurality of second flow paths from the second fluid inflow path, the second fluid flowing along the second inclined portion flows along the circumferential direction of the rotating body, Torque is generated to press the wall surface of the flow path and rotate the rotating body.

第1傾斜部の傾斜方向と第2傾斜部の傾斜方向が同じになるように設定されているので、第1流体により発生する回転トルクと第2流体により発生する回転トルクは同じ向きとなる。   Since the inclination direction of the first inclined portion and the inclination direction of the second inclined portion are set to be the same, the rotational torque generated by the first fluid and the rotational torque generated by the second fluid are in the same direction.

少なくとも第1流路に流入する第1流体のエネルギーと第2流路に流入する第2流体のエネルギーにより回転体を回転させることができるので外部動力が不要となる。回転体の回転に伴って、圧力伝達部への第1流体の流入と流出、第2流体の流出と流入が切り替えられるので、別途の流路の切替機構が不要となる。   Since the rotating body can be rotated by at least the energy of the first fluid flowing into the first flow path and the energy of the second fluid flowing into the second flow path, no external power is required. As the rotating body rotates, the inflow and outflow of the first fluid to the pressure transmission unit and the outflow and inflow of the second fluid are switched, so that a separate channel switching mechanism is not required.

ここで、第1流体が第1流体流入路から複数の第1流路に分散して流入するときに、第1流体の圧力は回転体の隣接する第1流路の間の端面にも作用し、回転体を第2側方部材側へ押圧することとなる。同様に、第2流体が第2流体流入路から複数の第2流路に分散して流入するときに、第2流体の圧力は回転体の隣接する第1流路の間の端面にも作用し、回転体を第2側方部材側へ押圧することとなる。しかし、第2側方部材に、前記第1流体流入路と第2流体流出路と第2流体流入路と第1流体流出路の前記回転体との対向面側の各開口部に対向する前記各開口部と輪郭と面積を同一とする凹部が形成されているので、各凹部にも第1流体及び第2流体が流入し、回転体の他端面に作用して、回転体を第1側方部材に向けて押圧するので、回転体の両端面に作用する押圧力が釣り合うとともに押圧する位置も対称となり、回転体は第1側方部材又は第2側方部材に一方的に摺動するようなことや、回転体の軸が傾いて保持部と摺動するようなことがなくなり、円滑に回転することができる。 Here, when the first fluid flows dispersedly into the plurality of first flow paths from the first fluid inflow path, the pressure of the first fluid also acts on the end surface between the adjacent first flow paths of the rotating body. Then, the rotating body is pressed toward the second side member. Similarly, when the second fluid is distributed and flows into the plurality of second flow paths from the second fluid inflow path, the pressure of the second fluid also acts on the end surface between the adjacent first flow paths of the rotating body. Then, the rotating body is pressed toward the second side member. However, the second side member has the first fluid inflow path, the second fluid outflow path, the second fluid inflow path, and the first fluid outflow path facing each opening on the facing surface side of the rotating body. Since the recesses having the same contour and area as each opening are formed, the first fluid and the second fluid also flow into each recess and act on the other end surface of the rotator to place the rotator on the first side. Since the pressing is performed toward the side member, the pressing force acting on both end faces of the rotating body is balanced and the pressing position is also symmetric, and the rotating body slides unilaterally on the first side member or the second side member. and things like, prevents such that the axis is inclined holding member and the sliding of the rotating body can be smoothly rotated.

同第四の特徴構成は、同請求項4に記載したとおり、上述の第一から第三の何れかの特徴構成に加えて、前記第1側方部材の外側に配置された第1エンドカバーと、前記第2側方部材の外側に配置された第2エンドカバーを備え、前記第1エンドカバーには、少なくとも前記第1流体流入路又は第2流体流入路と夫々連通する第1流体流入口又は第2流体流入口が形成され、前記圧力バランス調整機構は、少なくとも前記第1側方部材と前記第1エンドカバーとで区画される第1閉空間と、前記第1流体又は第2流体を前記第1閉空間に導くように、前記第1エンドカバーに形成された第1連通路と、少なくとも前記第2側方部材と前記第2エンドカバーとで区画された第2閉空間と、前記第1流体又は第2流体を前記第2閉空間に導くように、前記第2側方部材に形成された第2連通路と、を備えている点にある。   In the fourth feature configuration, as described in claim 4, in addition to any of the first to third feature configurations described above, a first end cover disposed outside the first side member. And a second end cover disposed outside the second side member, wherein the first end flow is communicated with at least the first fluid inflow path or the second fluid inflow path, respectively. An inlet or a second fluid inlet is formed, and the pressure balance adjusting mechanism includes a first closed space defined by at least the first side member and the first end cover, and the first fluid or the second fluid. A first communication path formed in the first end cover, and a second closed space defined by at least the second side member and the second end cover, Directing the first fluid or the second fluid to the second closed space; , In that it includes a second communication passage formed in the second side member.

前記回転体と第1側方部材との隙間には第1流体又は第2流体が進入しているので、第1側方部材には外側方向への圧力が作用する。しかし、少なくとも前記第1側方部材と前記第1エンドカバーとで区画される第1閉空間には、前記第1エンドカバーに形成された第1連通路を介して前記第1流体又は第2流体が導かれ、第1側方部材には回転体方向への圧力が作用し、第1側方部材の両面に作用する押圧力は釣り合うので、薄肉化しても第1側方部材が流体の圧力によって回転軸心方向に歪むような事態が回避されるので、前記回転体と第1側方部材との隙間は一定に保たれ、回転体の円滑な回転が可能となり効率が向上する。   Since the first fluid or the second fluid has entered the gap between the rotating body and the first side member, the outward pressure acts on the first side member. However, at least in the first closed space defined by the first side member and the first end cover, the first fluid or the second fluid is passed through the first communication passage formed in the first end cover. Since the fluid is guided, the pressure in the direction of the rotating body acts on the first side member, and the pressing force acting on both surfaces of the first side member balances. Since a situation in which the pressure is distorted by the pressure is avoided, the gap between the rotating body and the first side member is kept constant, and the rotating body can be smoothly rotated to improve efficiency.

同様に、前記回転体と第2側方部材との隙間には第1流体又は第2流体が進入しているので、第2側方部材には外側方向への圧力が作用する。しかし、少なくとも前記第2側方部材と前記第2エンドカバーとで区画された第2閉空間には、前記第2側方部材に形成された第2連通路を介して前記第1流体又は第2流体を前記第2閉空間が導かれ、第2側方部材には回転体方向への圧力が作用し、第2側方部材の両面に作用する押圧力は釣り合うので、薄肉化しても第2側方部材が流体の圧力によって回転軸心方向に歪むような事態が回避されるので、前記回転体と第2側方部材との隙間は一定に保たれ、回転体の円滑な回転が可能となり効率が向上する。   Similarly, since the first fluid or the second fluid has entered the gap between the rotating body and the second side member, the outward pressure acts on the second side member. However, at least in the second closed space defined by the second side member and the second end cover, the first fluid or the second fluid is passed through the second communication passage formed in the second side member. Since the second fluid is guided to the second closed space, the pressure in the direction of the rotating body acts on the second side member, and the pressing force acting on both surfaces of the second side member is balanced. Since the situation in which the two side members are distorted in the direction of the rotation axis by the pressure of the fluid is avoided, the gap between the rotating body and the second side member is kept constant, and the rotating body can be rotated smoothly. The efficiency is improved.

同第五の特徴構成は、同請求項5に記載したとおり、上述の第一から第四の何れかの特徴構成に加えて、前記保持部を収容する筒状のケーシングを備え、前記圧力バランス調整機構は、前記第1及び第2側方部材と前記保持部材の外周面と前記ケーシングの内周面とで区画された外周閉空間と、前記回転体と保持部材との隙間と前記外周閉空間を連通するように、前記保持部材に形成された第3連通路とを備えている点にある。 The fifth characterizing feature of the, as described in the claim 5, in addition the first above the fourth one characteristic feature of the, comprising a cylindrical casing that houses the holding member, the pressure The balance adjusting mechanism includes an outer peripheral closed space defined by the first and second side members, an outer peripheral surface of the holding member, and an inner peripheral surface of the casing, a gap between the rotating body and the holding member, and the outer periphery. A third communication passage is formed in the holding member so as to communicate with the closed space.

上述の構成によれば、前記回転体と前記第1側方部材及び第2側方部材との隙間を介して、前記回転体の外周面と前記保持部材の内周面との隙間に進入した流体が、前記保持部材に形成された第3連通路を介して、前記保持部材の外周面とケーシングの内周面との外周閉空間に進入する。   According to the above configuration, the gap between the rotating body and the first side member and the second side member enters the gap between the outer peripheral surface of the rotating body and the inner peripheral surface of the holding member. The fluid enters the outer peripheral closed space between the outer peripheral surface of the holding member and the inner peripheral surface of the casing via the third communication passage formed in the holding member.

外周閉空間に導かれた流体の圧力は、回転体と保持部材の内周面との隙間に作用する流体の圧力と略等しく、保持部材の内周面と外周面の両面に作用する押圧力が釣り合うので、保持部材を薄肉化しても径方向に歪むような事態が回避される。そのため、運転中に回転体と保持部材との隙間は広がることなく、所定の隙間が保持されるので円滑に回転できるようになり効率が向上する。   The pressure of the fluid guided to the outer peripheral closed space is substantially equal to the pressure of the fluid acting on the gap between the rotating body and the inner peripheral surface of the holding member, and the pressing force acting on both the inner peripheral surface and the outer peripheral surface of the holding member Therefore, even if the holding member is thinned, a situation in which it is distorted in the radial direction is avoided. Therefore, the gap between the rotating body and the holding member does not widen during operation, and the predetermined gap is held, so that it can rotate smoothly and efficiency is improved.

同第六の特徴構成は、同請求項6に記載したとおり、上述の第四又は第五特徴構成に加えて、前記第1側方部材と第2側方部材に両端を支持された支軸を備え、前記回転体には回転軸心方向に沿って前記支軸を挿通する挿通空間が形成され、前記第1側方部材又は第2側方部材には、前記挿通空間に第1流体又は第2流体を導く第4連通路が形成されている点にある。   In addition to the above-described fourth or fifth feature configuration, the sixth feature configuration is a support shaft supported at both ends by the first side member and the second side member, as described in claim 6. The rotating body is formed with an insertion space through which the support shaft is inserted along the direction of the rotation axis, and the first side member or the second side member has a first fluid or a fluid in the insertion space. A fourth communication path for guiding the second fluid is formed.

上述の構成によれば、支軸は、回転体に形成された挿通空間に挿通され、第1側方部材と第2側方部材に両端を支持される。第1閉空間及び第2閉空間には、第1流体又は第2流体が導かれ、第1側方部材と第2側方部材の前記支軸の支持部にも夫々回転体方向への圧力が作用している。前記第1側方部材又は第2側方部材に形成された第4連通路を介して、前記挿通空間に第1又は第2流体を導くことで、前記第1側方部材及び第2側方部材の前記支軸の支持部を、第1側方部材及び第2側方部材の外側方向へ押圧して、第1側方部材と第2側方部材の前記支軸の支持部に回転体方向に作用する圧力と釣り合わすことで、第1側方部材と第2側方部材の前記支軸の支持部の近傍が回転軸心方向に沿って歪むような事態がなくなるので、前記支軸の軸芯方向への伸縮を防止することができる。   According to the above-described configuration, the support shaft is inserted into the insertion space formed in the rotating body, and both ends are supported by the first side member and the second side member. The first fluid or the second fluid is introduced into the first closed space and the second closed space, and the pressure in the direction of the rotating body is also applied to the support portions of the support shafts of the first side member and the second side member, respectively. Is working. By guiding the first or second fluid to the insertion space via the fourth communication passage formed in the first side member or the second side member, the first side member and the second side member are guided. The support portion of the support shaft of the member is pressed in the outer direction of the first side member and the second side member, and the support portion of the support shaft of the first side member and the second side member is rotated on the support portion. By balancing with the pressure acting in the direction, there is no situation where the vicinity of the support portion of the support shaft of the first side member and the second side member is distorted along the rotation axis direction. Can be prevented from expanding and contracting in the axial direction.

同第七の特徴構成は、同請求項7に記載したとおり、上述の第一から第六の何れかの特徴構成に加えて、前記第1流体流入路に供給される第1流体が逆浸透膜装置から排水される高圧濃縮流体であり、前記第2流体流入路に供給される第2流体が前記逆浸透膜装置に給水される被濃縮流体である点にある。   In the seventh feature configuration, as described in claim 7, in addition to any of the first to sixth feature configurations described above, the first fluid supplied to the first fluid inflow passage is reverse osmosis. A high-pressure concentrated fluid drained from the membrane device, wherein the second fluid supplied to the second fluid inflow path is a fluid to be concentrated supplied to the reverse osmosis membrane device.

上述の構成によれば、逆浸透膜装置から排水される高圧濃縮流体の圧力により逆浸透膜装置に供給される被濃縮流体を昇圧することができるので、逆浸透膜装置からの高圧濃縮流体の余剰圧力を捨てることなく有効なエネルギーとして利用することができる。   According to the above-described configuration, the fluid to be concentrated supplied to the reverse osmosis membrane device can be pressurized by the pressure of the high-pressure concentrated fluid drained from the reverse osmosis membrane device. It can be used as effective energy without throwing away excess pressure.

以上説明したとおり、本発明によれば、処理流量を減らすことなくコンパクト化、低コスト化が可能な効率の良い圧力交換装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an efficient pressure exchange device that can be made compact and cost-effective without reducing the processing flow rate.

海水淡水化施設の概略フロー図Outline flow chart of seawater desalination facility 圧力交換装置を説明する断面図Sectional drawing explaining a pressure exchange device 回転体の説明図であって、(a)は正面図、(b)は断面図、(c)は背面図It is explanatory drawing of a rotary body, Comprising: (a) is a front view, (b) is sectional drawing, (c) is a rear view. 第1側方部材の説明図であって(a)は正面図、(b)は断面概略図、(c)は背面図It is explanatory drawing of a 1st side member, (a) is a front view, (b) is a cross-sectional schematic diagram, (c) is a rear view. 第2側方部材の説明図であって、(a)は正面図、(b)は断面概略図、(c)は背面図It is explanatory drawing of a 2nd side member, Comprising: (a) is a front view, (b) is a cross-sectional schematic diagram, (c) is a rear view. (a)は図4(c)に示す第1流体流入路のA−A線断面図、(b)は図4(c)に示す第2流体流出路のB−B線断面図、(c)は図4(c)に示す第2流体流入路のC−C線断面図、(d)は図4(c)に示す第1流体流出路のD−D線断面図(A) is the sectional view on the AA line of the 1st fluid inflow passage shown in Drawing 4 (c), (b) is the BB sectional view on the 2nd fluid outflow passage shown in Drawing 4 (c), (c ) Is a cross-sectional view of the second fluid inflow passage shown in FIG. 4C, and FIG. 4D is a cross-sectional view of the first fluid outflow passage shown in FIG. 回転体に形成された各流路と第1側方部材に形成された各流入路及び各流出路の位置を示す説明図Explanatory drawing which shows the position of each inflow path and each outflow path formed in each flow path formed in the rotating body and the first side member. 別実施形態による回転体の説明図Explanatory drawing of the rotary body by another embodiment (a)は別実施形態による圧力交換装置の説明図、(b)は別実施形態による第2閉空間の説明図(A) is explanatory drawing of the pressure exchange apparatus by another embodiment, (b) is explanatory drawing of the 2nd closed space by another embodiment. (a)は別実施形態による圧力交換装置の説明図、(b)は別実施形態による第2閉空間の説明図(A) is explanatory drawing of the pressure exchange apparatus by another embodiment, (b) is explanatory drawing of the 2nd closed space by another embodiment. 従来の圧力交換装置の説明図Explanatory drawing of conventional pressure exchange device 従来の圧力交換装置の説明図Explanatory drawing of conventional pressure exchange device

以下に、本発明による圧力交換装置の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the pressure exchange device according to the present invention will be described.

図1に示すように、海水淡水化施設は、海水中の夾雑物を取り除く前処理部1と、前処理部1で前処理された海水を貯留するろ過海水槽2と、ろ過海水槽2に貯留された海水を保安フィルターに供給する供給ポンプ3と、逆浸透膜装置6の詰まりを防止するため海水中の微細な異物を除去する保安フィルター4と、保安フィルター4を通過した海水を昇圧する高圧ポンプ5と、昇圧された海水が供給される逆浸透膜装置6を備えている。逆浸透膜装置6によって海水中の各種塩類が除去され、飲料用水や工業用水等として利用できるように淡水化される。   As shown in FIG. 1, the seawater desalination facility includes a pretreatment unit 1 that removes contaminants in seawater, a filtered seawater tank 2 that stores seawater pretreated by the pretreatment unit 1, and a filtered seawater tank 2. The supply pump 3 that supplies the stored seawater to the safety filter, the safety filter 4 that removes fine foreign matter in the seawater to prevent the reverse osmosis membrane device 6 from being clogged, and the seawater that has passed through the safety filter 4 is pressurized. A high-pressure pump 5 and a reverse osmosis membrane device 6 to which pressurized seawater is supplied are provided. Various salts in the seawater are removed by the reverse osmosis membrane device 6 and desalinated so that it can be used as drinking water or industrial water.

逆浸透膜装置6は、浸透膜の一方側の海水に圧力をかけることにより、逆浸透膜の他方側に海水中の各種塩類が除去された淡水を染み出させる装置であり、ろ過するためには、海水を浸透圧以上の所定の圧力にする必要がある。   The reverse osmosis membrane device 6 is a device that exudes fresh water from which various salts in seawater have been removed to the other side of the reverse osmosis membrane by applying pressure to the seawater on one side of the osmosis membrane. Needs to make seawater a predetermined pressure higher than the osmotic pressure.

逆浸透膜装置6は、供給された海水のすべてを淡水化できるものではない。例えば、逆浸透膜装置6に供給される海水のうち40%は淡水化されて排水されるが、残りの60%は淡水化されずに非常に圧力の高い高圧濃縮海水として排水される。   The reverse osmosis membrane device 6 cannot desalinate all of the supplied seawater. For example, 40% of the seawater supplied to the reverse osmosis membrane device 6 is desalinated and drained, but the remaining 60% is not desalinated and drained as high-pressure concentrated seawater with very high pressure.

そこで、逆浸透膜装置6から排水される高圧濃縮海水のもつ余剰圧力を有効なエネルギーとして回収して利用する圧力交換装置10を備えている。   Therefore, a pressure exchange device 10 that recovers and uses surplus pressure of high-pressure concentrated seawater drained from the reverse osmosis membrane device 6 as effective energy is provided.

ろ過海水槽2から逆浸透膜装置6に供給される海水のうち、40%は高圧ポンプ5で浸透圧以上の所定の圧力、例えば、6.9MPaまで昇圧される。逆浸透膜装置6に供給される残りの60%の海水(以下、「低圧海水」と記す)は、圧力交換装置10が逆浸透膜装置6から排水される高圧濃縮海水から回収した余剰圧力(6.75MPa)と、ブースターポンプ7により6.9MPaまで昇圧される。   40% of the seawater supplied from the filtered seawater tank 2 to the reverse osmosis membrane device 6 is boosted to a predetermined pressure higher than the osmotic pressure by the high-pressure pump 5, for example, 6.9 MPa. The remaining 60% of seawater (hereinafter referred to as “low pressure seawater”) supplied to the reverse osmosis membrane device 6 is the excess pressure (from the high pressure concentrated seawater drained from the reverse osmosis membrane device 6 by the pressure exchange device 10 ( 6.75 MPa) and the pressure is increased to 6.9 MPa by the booster pump 7.

つまり、圧力交換装置10は、逆浸透膜装置6から排水される高圧濃縮海水Hiの圧力により、被濃縮流体である低圧海水Liを昇圧して、高圧海水Hoとしてブースターポンプ7を経由して逆浸透膜装置6に供給するとともに、圧力交換装置10に供給される低圧海水Liにより前記圧力が回収された後の低圧濃縮海水Loを排水する圧力交換処理を行なう。   That is, the pressure exchanging device 10 boosts the low-pressure seawater Li that is the fluid to be concentrated by the pressure of the high-pressure concentrated seawater Hi drained from the reverse osmosis membrane device 6, and reverses the pressure via the booster pump 7. While supplying to the osmosis membrane apparatus 6, the pressure exchange process which drains the low pressure concentrated seawater Lo after the said pressure was collect | recovered with the low pressure seawater Li supplied to the pressure exchange apparatus 10 is performed.

このように、圧力交換装置10は、逆浸透膜装置6から排水される高圧濃縮海水Hiの余剰圧力を捨てることなく逆浸透膜装置6に供給される低圧海水Liの昇圧に利用して、逆浸透膜装置6でのろ過に必要な圧力の一部を補うので、海水淡水化施設全体のエネルギー効率が向上する。   In this way, the pressure exchange device 10 uses the excess pressure of the high-pressure concentrated seawater Hi drained from the reverse osmosis membrane device 6 to increase the pressure of the low-pressure seawater Li supplied to the reverse osmosis membrane device 6 without throwing away the reverse pressure. Since a part of pressure required for the filtration by the osmosis membrane device 6 is compensated, the energy efficiency of the entire seawater desalination facility is improved.

図2に示すように、圧力交換装置10は、第1側方部材20と、第2側方部材30と、保持部材11で区画された空間内で、支軸43の周りに回転する回転体40とで構成される圧力交換部と、該圧力交換部を収容する内周円筒形状のケーシング13と、収容された第1側方部材20側のケーシング端面を封止する第1エンドカバー14と、収容された第2側方部材30側のケーシング端面を封止する第2エンドカバー15等を備えている。   As shown in FIG. 2, the pressure exchanging device 10 is a rotating body that rotates around a support shaft 43 in a space defined by a first side member 20, a second side member 30, and a holding member 11. 40, a casing 13 having an inner circumferential cylindrical shape that accommodates the pressure exchanging portion, and a first end cover 14 that seals the casing end surface of the accommodated first side member 20 side. The second end cover 15 and the like for sealing the casing end face on the second side member 30 side accommodated are provided.

ケーシング13は、樹脂材料、FRP又は、二相ステンレス鋼やスーパー二相ステンレス鋼等の金属材料のように、海水に対する耐食性があり、ある程度強度を備えた材料で形成されている。ステンレス鋼等の高強度の金属管を樹脂材料やセラミックスで被覆して耐食性を付加して構成してもよい。これにより、耐食性に劣る安価な材料を利用することができコストダウンが図れる。   The casing 13 is formed of a material having corrosion resistance to seawater and having a certain degree of strength, such as a resin material, FRP, or a metal material such as duplex stainless steel or super duplex stainless steel. A high-strength metal tube such as stainless steel may be coated with a resin material or ceramic to add corrosion resistance. Thereby, an inexpensive material with inferior corrosion resistance can be used, and the cost can be reduced.

第1側方部材20、第2側方部材30、回転体40及び保持部材11は、アルミナ等のセラミックス、FRP、又は、二相ステンレス鋼やスーパー二相ステンレス鋼等のように、海水に対する耐食性があり、十分に強度のある材料を用いることができる。また、二相ステンレス鋼やスーパー二相ステンレス鋼を用いた場合には、回転体40と第1側方部材20及び第2側方部材30との対向面を窒化処理し、或は、アルミナ等のセラミックを溶射し、肉盛溶接し、或はHIP処理して摩擦係数を低減する耐磨耗層を形成することが好ましい。   The first side member 20, the second side member 30, the rotating body 40, and the holding member 11 are corrosion resistant to seawater, such as ceramics such as alumina, FRP, or duplex stainless steel or super duplex stainless steel. Therefore, a sufficiently strong material can be used. When duplex stainless steel or super duplex stainless steel is used, the opposing surfaces of the rotating body 40 and the first side member 20 and the second side member 30 are nitrided, alumina or the like It is preferable to form a wear-resistant layer that is thermally sprayed, overlay welded, or HIP treated to reduce the coefficient of friction.

回転体40の各端面と第1側方部材20及び第2側方部材30の隙間と、回転体40の外周と保持部材11の隙間があるため、前記隙間には各流体が進入する。   Since there is a gap between each end face of the rotating body 40 and the first side member 20 and the second side member 30, and a gap between the outer periphery of the rotating body 40 and the holding member 11, each fluid enters the gap.

当該隙間は狭すぎると回転体40と第1側方部材20又は第2側方部材30、回転体40と保持部材11が摺動して回転に対する抵抗となり、広すぎると高圧の流体から低圧の流体へと漏れる量が多すぎて圧力の交換効率が低下するため、例えば、1〜100μm程度が好ましい。   If the gap is too narrow, the rotating body 40 and the first side member 20 or the second side member 30, and the rotating body 40 and the holding member 11 slide to provide resistance to rotation. For example, about 1 to 100 μm is preferable because the amount of leakage into the fluid is too large and the pressure exchange efficiency decreases.

図2及び図3(a)、(b)、(c)に示すように、回転体40には、その一端側の端面40aから高圧濃縮海水Hiが流入し、圧力が交換された後の低圧濃縮海水Loが流出する第1流路41と、同じく一端側の端面40aから低圧海水Liが流入し、圧力が交換された後の高圧海水Hoが流出する第2流路42とが、回転体40の他端側の端面40b側で連通するように形成された16組の圧力伝達部が回転軸心周りに放射状に配設されている。本実施形態では、高圧濃縮海水Hiと低圧濃縮海水Loが第1流体となり、低圧海水Liと高圧海水Hoが第2流体となる。   As shown in FIGS. 2 and 3 (a), 3 (b), and 3 (c), the low pressure after the high pressure concentrated seawater Hi flows into the rotating body 40 from the end face 40a on one end side and the pressure is exchanged. The first flow path 41 through which the concentrated seawater Lo flows out, and the second flow path 42 through which the high-pressure seawater Ho flows out after the low-pressure seawater Li flows in from the end face 40a on the one end side and the pressure is exchanged. Sixteen sets of pressure transmission parts formed so as to communicate with each other on the end face 40b side of the other end side of 40 are arranged radially around the rotation axis. In the present embodiment, the high-pressure concentrated seawater Hi and the low-pressure concentrated seawater Lo are the first fluid, and the low-pressure seawater Li and the high-pressure seawater Ho are the second fluid.

各第1流路41及び各第2流路42は回転体40の回転軸心方向に貫通形成されいる。回転体40の両端面40a、40bは略同じ形状となっている。尚、第1流路41の断面積と第2流路42の断面積は等しくなるように形成され、圧力損失が生じ難いように構成されている。   Each first flow path 41 and each second flow path 42 are formed so as to penetrate in the direction of the rotation axis of the rotating body 40. Both end surfaces 40a and 40b of the rotating body 40 have substantially the same shape. Note that the cross-sectional area of the first flow path 41 and the cross-sectional area of the second flow path 42 are formed to be equal to each other, so that pressure loss is unlikely to occur.

回転体40には回転軸心方向に沿って支軸43を挿通する挿通空間44が形成されている。挿通空間44は、支軸43の直径に対して十分大きく形成され、支軸43の外周と挿通空間44の内周との隙間は、回転体40と第1側方部材20及び第2側方部材30の隙間に比べて広い隙間となるように構成されている。   The rotating body 40 is formed with an insertion space 44 through which the support shaft 43 is inserted along the rotational axis direction. The insertion space 44 is formed sufficiently large with respect to the diameter of the support shaft 43, and the clearance between the outer periphery of the support shaft 43 and the inner periphery of the insertion space 44 is the rotating body 40, the first side member 20, and the second side. The gap is wider than the gap of the member 30.

図2に示すように、支軸43は、第1側方部材20と第2側方部材30に両端を支持されている。支軸43は、両端に雄ねじが切られ、該雄ねじ部分を第1側方部材20と第2側方部材30の夫々に形成された開口に挿通した状態でダブルナットで締め付けることで固定される。支軸43及びナットは押圧機構として機能し、ナットの締め付けを調整することで第1側方部材20と第2側方部材30の中心部分の間隔を調整可能に構成されている。   As shown in FIG. 2, both ends of the support shaft 43 are supported by the first side member 20 and the second side member 30. The support shaft 43 is fixed by being tightened with a double nut in a state in which male screws are cut at both ends and the male screw portions are inserted into openings formed in the first side member 20 and the second side member 30, respectively. . The support shaft 43 and the nut function as a pressing mechanism, and the distance between the central portions of the first side member 20 and the second side member 30 can be adjusted by adjusting the tightening of the nut.

回転体40と第1側方部材20の隙間や、回転体40と第2側方部材30の隙間は、支軸43を取り付けるナットの締め付け具合や、第2エンドカバー36をケーシング11に取り付けるナットの締め付け具合や、スペーサ35の幅を変更することで調整できる。前記隙間を適当な間隔にして、前記隙間に進入する流体の量を調整することができるので、圧力の交換効率の低下を防止することができる。尚、スペーサを弾性部材で構成し、ボルトの締め付けを変えることで厚みを調整したり、弾性部材の厚みや弾性力を変えることで、隙間の調整範囲を変えることもできる。   The clearance between the rotating body 40 and the first side member 20 and the clearance between the rotating body 40 and the second side member 30 are the tightening condition of the nut for attaching the support shaft 43 and the nut for attaching the second end cover 36 to the casing 11. It can be adjusted by changing the tightening degree of the spacer and the width of the spacer 35. Since the gap can be set at an appropriate interval and the amount of fluid entering the gap can be adjusted, it is possible to prevent a decrease in pressure exchange efficiency. In addition, the spacer can be made of an elastic member, and the thickness can be adjusted by changing the tightening of the bolt, or the adjustment range of the gap can be changed by changing the thickness and elastic force of the elastic member.

図2及び図4(a)、(b)、(c)に示すように、第1側方部材20には、高圧濃縮海水Hiを回転体40の第1流路41に案内する第1流体流入路21と、高圧濃縮海水Hiとの間で圧力交換された高圧海水Hoを第2流路42から案内する第2流体流出路22と、低圧海水Liを第2流路42に案内する第2流体流入路23と、低圧海水Liとの間で圧力交換された低圧濃縮海水Loを第1流路41から案内する第1流体流出路24とが、その厚み方向に形成されている。   As shown in FIGS. 2 and 4A, 4B, and 4C, the first side member 20 has a first fluid that guides the high-pressure concentrated seawater Hi to the first flow path 41 of the rotating body 40. The second fluid outflow passage 22 that guides the high-pressure seawater Ho pressure-exchanged between the inflow passage 21 and the high-pressure concentrated seawater Hi from the second flow path 42 and the second fluid outflow path 22 that guides the low-pressure seawater Li to the second flow path 42. A two-fluid inflow path 23 and a first fluid outflow path 24 that guides the low-pressure concentrated seawater Lo pressure-exchanged between the low-pressure seawater Li and the first flow path 41 are formed in the thickness direction.

第1流体流入路21は、第1側方部材20の開口部21aから開口部21bにかけて回転体40の周方向に沿って複数の第1流路41と連通するように拡径して形成された第1傾斜部としての流路壁21cを備えて構成されている。第2流体流出路22は、第1側方部材20の開口部22aから開口部22bにかけて回転体40の周方向に沿って複数の第2流路42と連通するように拡径して形成された第2傾斜部としての流路壁22cを備えて構成されている。第2流体流入路23は、第1側方部材20の開口部23aから開口部23bにかけて回転体40の周方向に沿って複数の第2流路42と連通するように拡径して形成された第2傾斜部としての流路壁23cを備えて構成されている。第1流体流出路24は、第1側方部材20の開口部24aから開口部24bにかけて回転体40の周方向に沿って複数の第1流路41と連通するように拡径して形成された第1傾斜部としての流路壁24cを備えて構成されている。   The first fluid inflow passage 21 is formed with an enlarged diameter so as to communicate with the plurality of first flow paths 41 along the circumferential direction of the rotating body 40 from the opening 21 a to the opening 21 b of the first side member 20. In addition, a flow path wall 21c as a first inclined portion is provided. The second fluid outflow passage 22 is formed with an enlarged diameter so as to communicate with the plurality of second flow paths 42 along the circumferential direction of the rotating body 40 from the opening 22 a to the opening 22 b of the first side member 20. In addition, a flow path wall 22c as a second inclined portion is provided. The second fluid inflow path 23 is formed with an enlarged diameter so as to communicate with the plurality of second flow paths 42 along the circumferential direction of the rotating body 40 from the opening 23 a to the opening 23 b of the first side member 20. Further, a flow path wall 23c as a second inclined portion is provided. The first fluid outflow passage 24 is formed with an enlarged diameter so as to communicate with the plurality of first flow paths 41 along the circumferential direction of the rotating body 40 from the opening 24 a to the opening 24 b of the first side member 20. In addition, a flow path wall 24c as a first inclined portion is provided.

流路壁21cの傾斜方向と流路壁23cの傾斜方向は円周方向に対して同じ向きに設定され(図6(a)、(c)参照)、流路壁21cの傾斜方向と流路壁22cの傾斜方向が円周方向に対して逆になるように設定され(図6(a)、(b)参照)、流路壁23cの傾斜方向と流路壁24cの傾斜方向が円周方向に対して逆になるように設定され(図6(c)、(d)参照)、各流入路及び流出路がトルク付与機構を構成する   The inclination direction of the flow path wall 21c and the inclination direction of the flow path wall 23c are set in the same direction with respect to the circumferential direction (see FIGS. 6A and 6C). The inclination direction of the wall 22c is set to be opposite to the circumferential direction (see FIGS. 6A and 6B), and the inclination direction of the flow path wall 23c and the inclination direction of the flow path wall 24c are circumferential. It is set so as to be opposite to the direction (see FIGS. 6C and 6D), and each inflow path and outflow path constitute a torque applying mechanism.

第1流体流入路21は、第1側方部材20の開口部20aから開口部21bにかけて回転体40の周方向に沿って複数の第1流路41と連通するように拡径して形成されているので、高圧濃縮海水Hiは流路壁21cに沿って分散し複数の第1流路41に流入することになる。   The first fluid inflow passage 21 is formed with an enlarged diameter so as to communicate with the plurality of first flow paths 41 along the circumferential direction of the rotating body 40 from the opening 20 a to the opening 21 b of the first side member 20. Therefore, the high-pressure concentrated seawater Hi is dispersed along the flow path wall 21 c and flows into the plurality of first flow paths 41.

このとき、高圧濃縮海水Hiは回転体40の周方向に沿って流れ、第1流路41の壁面へ圧力を付与する、つまり、回転体40を回転させるトルクを発生することになる。   At this time, the high-pressure concentrated seawater Hi flows along the circumferential direction of the rotator 40 and applies a pressure to the wall surface of the first flow path 41, that is, generates torque that rotates the rotator 40.

第2流体流出路22は、第1側方部材20の開口部22aから開口部22bにかけて回転体40の周方向に沿って複数の第2流路42と連通するように拡径して形成されているので、隣接する複数の第2流路42を流れる高圧海水Hoが合流して流路壁22cを経て流出することになる。   The second fluid outflow passage 22 is formed with an enlarged diameter so as to communicate with the plurality of second flow paths 42 along the circumferential direction of the rotating body 40 from the opening 22 a to the opening 22 b of the first side member 20. Therefore, the high-pressure seawater Ho flowing through the plurality of adjacent second flow paths 42 merges and flows out through the flow path wall 22c.

このときに、高圧海水Hoは、第2流路42から第2流体流出路22に流れる水の通水断面積を広くする向きに第2流路42の壁面へ圧力を付与する、つまり、回転体40を回転させるトルクを発生することになる。   At this time, the high-pressure seawater Ho applies pressure to the wall surface of the second flow path 42 in a direction that increases the cross-sectional area of the water flowing from the second flow path 42 to the second fluid outflow path 22, that is, rotates. A torque for rotating the body 40 is generated.

流路壁21cの傾斜方向と流路壁22cの傾斜方向が逆になるように設定されているので、高圧濃縮海水Hiが第1流体流入路21から第1流路41に流入するときに発生するトルクと、高圧海水Hoが第2流路42から第2流体出路22へと流出するときに発生するトルクが同じ向きになる。   Since the inclination direction of the flow path wall 21c and the inclination direction of the flow path wall 22c are set to be reversed, it occurs when the high-pressure concentrated seawater Hi flows into the first flow path 41 from the first fluid inflow path 21. And the torque generated when the high-pressure seawater Ho flows out from the second flow path 42 to the second fluid outlet path 22 are in the same direction.

つまり、回転体40に流入する高圧濃縮海水Hiと回転体40から流出する高圧海水Hoのエネルギーにより回転体40を回転させるトルクを発生させるので、何れか一方のエネルギーのみにより回転体40を回転させる場合より、大きなトルクを発生させることができる。   That is, since the torque for rotating the rotating body 40 is generated by the energy of the high-pressure concentrated seawater Hi flowing into the rotating body 40 and the high-pressure seawater Ho flowing out of the rotating body 40, the rotating body 40 is rotated only by any one of the energies. A larger torque can be generated than in the case.

同様に、低圧海水Liが第2流体流入路23から第2流路42に流入するときのエネルギーにより回転体40に付与されるトルクと、低圧濃縮海水Loが第1流路41から第1流体流出路24へと流出するときのエネルギーにより回転体40に付与されるトルクも同じ向きになる。   Similarly, the torque applied to the rotating body 40 by the energy when the low-pressure seawater Li flows into the second flow path 42 from the second fluid inflow path 23 and the low-pressure concentrated seawater Lo are transferred from the first flow path 41 to the first fluid. The torque applied to the rotating body 40 by the energy when flowing out to the outflow path 24 is also in the same direction.

このように、トルク付与機構が、第1流路41に流入する高圧濃縮海水Hiのエネルギーと第2流路42から流出する高圧海水Hoのエネルギー、及び、第2流路42に流入する低圧海水Liのエネルギーと第1流路41から流出する低圧濃縮海水Loのエネルギーにより回転体40を回転させるトルクを発生させる。   As described above, the torque application mechanism includes the energy of the high-pressure concentrated seawater Hi flowing into the first flow path 41, the energy of the high-pressure seawater Ho flowing out of the second flow path 42, and the low-pressure seawater flowing into the second flow path 42. Torque for rotating the rotating body 40 is generated by the energy of Li and the energy of the low-pressure concentrated seawater Lo flowing out from the first flow path 41.

従って、回転体40を回転させるための外部動力が不要となる。また、回転体40の回転に伴って、第1流体の流入と流出、第2流体の流出と流入が切り替えられるので、別途の流路の切替機構が不要となる。   Therefore, external power for rotating the rotator 40 is not required. Further, since the inflow and outflow of the first fluid and the outflow and inflow of the second fluid are switched with the rotation of the rotating body 40, a separate flow path switching mechanism becomes unnecessary.

第1側方部材20には、挿通空間44に高圧濃縮海水Hiを導く第4連通路18が形成されている。挿通空間44及び第4連通路18は、圧力バランス調整機構として機能する。尚、本実施形態では、第4連通路18は、第1連通路17を介して第1閉空間16内に流入した高圧濃縮海水Hiを挿通空間44に導くように構成されているが、これに限らず、第4連通路を第2側方部材30に形成する構成であってもよい。また、高圧濃縮海水Hiのかわりに高圧海水Hoを挿通空間44に導くように構成してもよい。   The first side member 20 is formed with a fourth communication passage 18 that guides the high-pressure concentrated seawater Hi into the insertion space 44. The insertion space 44 and the fourth communication path 18 function as a pressure balance adjustment mechanism. In the present embodiment, the fourth communication path 18 is configured to guide the high-pressure concentrated seawater Hi flowing into the first closed space 16 through the first communication path 17 to the insertion space 44. However, the configuration may be such that the fourth communication path is formed in the second side member 30. Further, the high pressure seawater Ho may be guided to the insertion space 44 instead of the high pressure concentrated seawater Hi.

支軸43は、回転体40に形成された挿通空間44に挿通され、第1側方部材20と第2側方部材30に両端を支持される。第1閉空間16及び第2閉空間38には、高圧濃縮海水Hiや高圧海水Hoが導かれ、第1側方部材20と第2側方部材30の支軸43の支持部にも夫々回転体40方向への圧力が作用している。   The support shaft 43 is inserted into an insertion space 44 formed in the rotating body 40, and both ends are supported by the first side member 20 and the second side member 30. High-pressure concentrated seawater Hi and high-pressure seawater Ho are guided to the first closed space 16 and the second closed space 38, and also rotate to the support portions of the support shafts 43 of the first side member 20 and the second side member 30, respectively. Pressure toward the body 40 is acting.

第1側方部材20に形成された第4連通路18を介して、挿通空間44に高圧濃縮海水Hiを導くことで、第1側方部材20及び第2側方部材30の支軸43の支持部を内側から第1側方部材20及び第2側方部材30の外側方向へ押圧する。この外側方向へ押圧する力と第1側方部材20と第2側方部材30の支軸43の支持部に回転体40方向に作用する圧力とを釣り合わすことで、第1側方部材20と第2側方部材30の支軸43の支持部の近傍が回転軸心方向に沿って歪むような事態がなくなるので、支軸43の軸芯方向への伸縮を防止することができる。   By guiding the high-pressure concentrated seawater Hi to the insertion space 44 via the fourth communication path 18 formed in the first side member 20, the support shaft 43 of the first side member 20 and the second side member 30 is supported. The support portion is pressed from the inside toward the outside of the first side member 20 and the second side member 30. The first side member 20 is balanced by balancing the force pressing in the outward direction with the pressure acting in the direction of the rotating body 40 on the support portion of the support shaft 43 of the first side member 20 and the second side member 30. In addition, since the situation in which the vicinity of the support portion of the support shaft 43 of the second side member 30 is distorted along the rotational axis direction is eliminated, the expansion and contraction of the support shaft 43 in the axial direction can be prevented.

図2に示すように、第1エンドカバー14には、第1流体流入路21と連通する第1流体流入口25と、第2流体流出路22と連通する第2流体流出口26と、第2流体流入路23と連通する第2流体流入口27と、第1流体流出路24と連通する第1流体流出口28が形成され、ケーシング13にボルトで螺着されている。第1エンドカバー14のケーシング13との接触面には、円周方向にシール19が配設され、ケーシング13の外部に流体が漏れるのが防止される。   As shown in FIG. 2, the first end cover 14 includes a first fluid inlet 25 that communicates with the first fluid inlet 21, a second fluid outlet 26 that communicates with the second fluid outlet 22, A second fluid inlet 27 that communicates with the two-fluid inlet 23 and a first fluid outlet 28 that communicates with the first fluid outlet 24 are formed and screwed to the casing 13 with bolts. A seal 19 is disposed in a circumferential direction on the contact surface of the first end cover 14 with the casing 13, and fluid is prevented from leaking outside the casing 13.

さらに、第1エンドカバー14の第1側方部材20との対向面側の中央部には凹部が形成され、該凹部と第1側方部材20の外側面とで第1閉空間16を構成し、第1流体流入路21と第1閉空間16とを連通する第1連通路17により、第1閉空間16には高圧濃縮海水Hiが流入するように構成されている。第1閉空間16と第1連通路17は、圧力バランス調整機構を構成し、第1連通路17から第1閉空間16に流入した高圧濃縮海水Hiの圧力は、第1側方部材20を回転体40に向けて押圧するように作用する。   Further, a concave portion is formed in the central portion of the first end cover 14 facing the first side member 20, and the first closed space 16 is constituted by the concave portion and the outer side surface of the first side member 20. The high-pressure concentrated seawater Hi flows into the first closed space 16 by the first communication passage 17 that communicates the first fluid inflow passage 21 and the first closed space 16. The first closed space 16 and the first communication path 17 constitute a pressure balance adjusting mechanism, and the pressure of the high-pressure concentrated seawater Hi flowing into the first closed space 16 from the first communication path 17 is caused by the first side member 20. It acts so as to press toward the rotating body 40.

この第1側方部材20を回転体40に向けて押圧する力は、回転体40内の第1又は第2流体が、第1側方部材20に作用する押圧力と釣り合うので、第1側方部材を薄肉化しても流体の圧力によって回転軸心方向に歪むような事態が回避され、回転体40と第1側方部材20との隙間は一定に保たれ、回転体の円滑な回転が可能となる。   The force that presses the first side member 20 toward the rotating body 40 is balanced with the pressing force that the first or second fluid in the rotating body 40 acts on the first side member 20. Even if the side member is thinned, a situation in which it is distorted in the direction of the rotational axis due to the pressure of the fluid is avoided, the gap between the rotating body 40 and the first side member 20 is kept constant, and the rotating body can be smoothly rotated. It becomes possible.

第2側方部材30は、第1側方部材20とで保持部材11及び支軸43を支持するように構成されている。   The second side member 30 is configured to support the holding member 11 and the support shaft 43 with the first side member 20.

第2側方部材30には、第1側方部材20の各開口部21b、22b、23b、24bに対向する位置に、各開口部21b、22b、23b、24bと同形状(同一輪郭と同一面積)の開口部をもつ凹部31a、32a、33a、34aが形成されている。凹部31a、32a、33a、34aは、圧力バランス調整機構を構成する。ここで、この凹部31a、32a、33a、34aに面する回転体40の端面40bが回転体40を第1側方部材20へ押圧する受圧部となる。   The second side member 30 has the same shape as the openings 21b, 22b, 23b, 24b at the positions facing the openings 21b, 22b, 23b, 24b of the first side member 20 (same as the same contour). Concave portions 31a, 32a, 33a, 34a having an opening of (area) are formed. The recesses 31a, 32a, 33a, 34a constitute a pressure balance adjusting mechanism. Here, the end surface 40b of the rotating body 40 facing the recesses 31a, 32a, 33a, 34a serves as a pressure receiving portion that presses the rotating body 40 against the first side member 20.

高圧濃縮海水Hiが第1流体流入路21から複数の第1流路41に分散して流入するときに、高圧濃縮海水Hiの圧力は回転体40の隣接する第1流路41の間の端面40aに作用し、回転体40を第2側方部材30側へ押圧し、高圧海水Hoが複数の第2流路42から第2流体流出路22へ流出するときに、高圧海水Hoの圧力は回転体40の隣接する第2流路42の間の端面40aに作用し、回転体40を第2側方部材30側へ押圧する。   When the high-pressure concentrated seawater Hi is dispersed and flows into the plurality of first flow paths 41 from the first fluid inflow path 21, the pressure of the high-pressure concentrated seawater Hi is an end surface between the adjacent first flow paths 41 of the rotating body 40. The pressure of the high-pressure seawater Ho acts on 40a, presses the rotating body 40 toward the second side member 30, and the high-pressure seawater Ho flows out from the plurality of second flow paths 42 to the second fluid outflow path 22. It acts on the end surface 40a between the adjacent 2nd flow paths 42 of the rotary body 40, and presses the rotary body 40 to the 2nd side member 30 side.

同様に、低圧海水Liが第2流体流入路23から複数の第2流路42に分散して流入するときに、低圧海水Liの圧力は回転体40の隣接する第2流路42の間の端面40aに作用し、回転体を第2側方部材に押圧し、低圧濃縮海水Loが複数の第1流路41から第1流体流出路24へ流出するときに、高圧海水Hoの圧力は回転体40の隣接する第1流路41の間の端面40aに作用し、回転体40を第2側方部材30側へ押圧する。   Similarly, when the low-pressure seawater Li is dispersed and flows from the second fluid inflow path 23 into the plurality of second flow paths 42, the pressure of the low-pressure seawater Li is between the adjacent second flow paths 42 of the rotating body 40. The pressure of the high-pressure seawater Ho rotates when acting on the end surface 40a, pressing the rotating body against the second side member, and the low-pressure concentrated seawater Lo flows out from the plurality of first flow paths 41 to the first fluid outflow path 24. It acts on the end surface 40a between the adjacent 1st flow paths 41 of the body 40, and presses the rotary body 40 to the 2nd side member 30 side.

このように、回転体40には、第1流路41及び第2流路に流入出する流体が端面40aに作用するため、第2側方部材30側へと押圧される力が働くが、第2側方部材に形成された凹部31a、32a、33a、34aにも、第1流体及び第2流体が流入し、回転体40の端面40bに作用して、回転体40を第1側方部材20側へ押圧するので、両端面40a、40bに作用する押圧力が釣り合うとともに押圧力の分布も等しくなり、回転体40は第1側方部材20又は第2側方部材30に一方的に摺動するようなことがなくなり、円滑に回転することができる。   Thus, since the fluid flowing into and out of the first flow path 41 and the second flow path acts on the end surface 40a, the force that is pressed toward the second side member 30 side acts on the rotating body 40. The first fluid and the second fluid also flow into the recesses 31a, 32a, 33a, and 34a formed in the second side member, and act on the end surface 40b of the rotator 40 so that the rotator 40 is moved to the first side. Since the pressing is performed toward the member 20 side, the pressing forces acting on the both end faces 40a and 40b are balanced and the distribution of the pressing force is also equal, and the rotating body 40 is unilaterally applied to the first side member 20 or the second side member 30. It will not slide and can rotate smoothly.

つまり、各開口部21b〜24bと凹部31a〜34aは同形状で対向する位置にあるため、流体が流入する際に回転体40の端面40aに圧力を作用させる受圧面積は、端面40bの受圧部の受圧面積と等しく、さらに圧力のかかる場所も軸方向に対向することとなり、回転体は軸方向に変位することがなくなる。   That is, since each opening part 21b-24b and recessed part 31a-34a are in the same shape and a position which opposes, when the fluid flows in, the pressure receiving area which acts on the end surface 40a of the rotary body 40 is the pressure receiving part of the end surface 40b. In addition, the place where pressure is applied is also opposed in the axial direction, and the rotating body is not displaced in the axial direction.

第2側方部材30の外側には、スペーサ35を介して封止板36が配設されている。封止板36は周囲にはシール37が備えられている。第2エンドカバー15は、封止板36を第2側方部材30側へと押圧するようにケーシング13にボルトで螺着され、第2側方部材30とケーシング13と、封止板36を押圧する第2エンドカバー15とで第2閉空間38が区画されている。   A sealing plate 36 is disposed outside the second side member 30 via a spacer 35. The sealing plate 36 is provided with a seal 37 around it. The second end cover 15 is screwed to the casing 13 with bolts so as to press the sealing plate 36 toward the second side member 30, and the second side member 30, the casing 13, and the sealing plate 36 are connected to each other. A second closed space 38 is defined by the second end cover 15 to be pressed.

スペーサ35は、第2側方部材30と封止板36の間隔を、スペーサ35の厚みで規定される距離を保持するように構成されている。   The spacer 35 is configured to maintain the distance between the second side member 30 and the sealing plate 36 at a distance defined by the thickness of the spacer 35.

尚、第2側方部材30の凹部31aには、圧力伝達部の流体を第2閉空間38へと導く第2連通路39が厚み方向に貫通形成されている。第2閉空間38と第2連通路39は、圧力バランス調整機構を構成する。   Note that a second communication passage 39 that guides the fluid in the pressure transmission portion to the second closed space 38 is formed in the recess 31 a of the second side member 30 in the thickness direction. The second closed space 38 and the second communication passage 39 constitute a pressure balance adjustment mechanism.

第2閉空間38には、圧力伝達部内の流体が第2連通路39を介して流入し、圧力伝達部の圧力が第2連通路39を介して第2閉空間38に伝達され、第2側方部材30を回転体40に向けて押圧するように作用する。   The fluid in the pressure transmission part flows into the second closed space 38 via the second communication path 39, and the pressure in the pressure transmission part is transmitted to the second closed space 38 via the second communication path 39, It acts to press the side member 30 toward the rotating body 40.

回転体40内の高圧濃縮海水Hiと高圧海水Hoが、第2側方部材30に作用する押圧力と釣り合うので、第2側方部材を薄肉化しても流体の圧力によって回転軸心方向に歪むような事態が回避され、回転体40と第2側方部材30との隙間は一定に保たれ、回転体の円滑な回転が可能となる。   Since the high-pressure concentrated seawater Hi and the high-pressure seawater Ho in the rotating body 40 balance with the pressing force acting on the second side member 30, the second side member is distorted in the direction of the rotation axis by the fluid pressure even if the second side member is thinned. Such a situation is avoided, the gap between the rotating body 40 and the second side member 30 is kept constant, and the rotating body can be smoothly rotated.

以上のように、第1側方部材20と第2側方部材30には、回転体40内の流体によって軸心方向外側への圧力がかかるが、上述のように、第1側方部材20の外側の第1閉空間16に第1連通路17を介して第1流体流入路21に供給される高圧濃縮海水Hiが導かれ、第2側方部材30の外側に、第2連通路39から、第1流路41、第2流路42内の流体が導かれる第2閉空間38が形成されている。   As described above, the first lateral member 20 and the second lateral member 30 are pressurized outward in the axial direction by the fluid in the rotating body 40, but as described above, the first lateral member 20 The high-pressure concentrated seawater Hi supplied to the first fluid inflow passage 21 through the first communication passage 17 is guided to the first closed space 16 on the outer side of the second side member 30, and the second communication passage 39 is provided outside the second side member 30. Thus, a second closed space 38 to which the fluid in the first channel 41 and the second channel 42 is guided is formed.

つまり、第1閉空間16及び第2閉空間38には同じ圧力の流体から圧力が伝達されることとなる。第1側方部材20及び第2側方部材30の夫々の両面に作用する力が釣り合うので、第1側方部材20及び第2側方部材30は、夫々回転体40の回転軸心方向に歪むことを防ぐことができ、支軸43に無駄な応力がかかることがない。   That is, pressure is transmitted from the fluid having the same pressure to the first closed space 16 and the second closed space 38. Since the forces acting on both surfaces of the first side member 20 and the second side member 30 are balanced, the first side member 20 and the second side member 30 are respectively in the direction of the rotation axis of the rotating body 40. Distortion can be prevented, and useless stress is not applied to the support shaft 43.

尚、スペーサ35の厚みは、ケーシング13の端面から封止板36が僅かに突出する程度に構成されている。スペーサ35の厚みを変えることで、第2側方部材30の回転体40方向への押圧力が変わるため、回転体40の両端面40a、40bと各側方部材20、30の間に形成される隙間を調整することができる。   The spacer 35 has a thickness such that the sealing plate 36 slightly protrudes from the end surface of the casing 13. By changing the thickness of the spacer 35, the pressing force of the second side member 30 in the direction of the rotating body 40 is changed, so that it is formed between the both end faces 40a, 40b of the rotating body 40 and the side members 20, 30. The gap can be adjusted.

尚、スペーサ35の内周面と外周面を連通する開口部をスペーサ35に形成し、第2閉空間38の流体がスペーサ35の外周側に導かれるように構成していれば、スペーサ35が流体の圧力により径方向に歪むようなことがない。   In addition, if the opening part which connects the inner peripheral surface and outer peripheral surface of the spacer 35 is formed in the spacer 35, and it is comprised so that the fluid of the 2nd closed space 38 may be guide | induced to the outer peripheral side of the spacer 35, the spacer 35 will be There is no distortion in the radial direction due to the pressure of the fluid.

また、第2側方部材30側のみではなく、第1側方部材20側にも同様のスペーサ及び封止板を備え、該スペーサの回転軸心方向の幅を変えることで、又は、両スペーサの回転軸心方向の幅を変えることで、回転体40の両端面40a、40bと各側方部材20、30の間に形成される隙間を調整可能に構成してもよい。   Further, not only on the second side member 30 side but also on the first side member 20 side, the same spacer and sealing plate are provided, and by changing the width of the spacer in the rotation axis direction, or both spacers By changing the width in the direction of the rotational axis, the gaps formed between the both end faces 40a, 40b of the rotating body 40 and the side members 20, 30 may be adjustable.

保持部材11は、回転体40の直径より僅かに大きい内周径をもち、回転体40の回転軸心方向長さより僅かに長い円筒状部材で構成されている。保持部材11の周面には、第3連通路45が貫通形成され、回転体40と保持部材11の隙間に進入した高圧濃縮海水Hi又は高圧海水Loが第3連通路45を介して、保持部材11の外周面とケーシング13の内周面とで区画される外周閉空間46に流入するように構成されている。第3連通路45と外周閉空間46は、圧力バランス調整機構を構成する。   The holding member 11 is configured by a cylindrical member having an inner peripheral diameter slightly larger than the diameter of the rotating body 40 and slightly longer than the length of the rotating body 40 in the rotation axis direction. A third communication passage 45 is formed through the peripheral surface of the holding member 11, and the high-pressure concentrated seawater Hi or the high-pressure seawater Lo that has entered the gap between the rotating body 40 and the holding member 11 is held via the third communication passage 45. It is configured to flow into the outer peripheral closed space 46 defined by the outer peripheral surface of the member 11 and the inner peripheral surface of the casing 13. The third communication passage 45 and the outer peripheral closed space 46 constitute a pressure balance adjustment mechanism.

尚、保持部材11は、軸方向や周方向に分割された複数の保持部材で構成することも可能で、分割部に隙間を設けて、該隙間を第3連通路45とすることも可能である。   Note that the holding member 11 can be configured by a plurality of holding members divided in the axial direction or the circumferential direction, and a gap is provided in the divided portion, and the gap can be used as the third communication path 45. is there.

回転体40と第1側方部材20及び第2側方部材30との隙間を介して、回転体40の外周面と保持部材11の内周面との隙間に進入した流体が、保持部材11に形成された第3連通路45を介して、保持部材11の外周面とケーシング13の内周面との外周閉空間46に進入する。   The fluid that has entered the gap between the outer circumferential surface of the rotating body 40 and the inner circumferential surface of the holding member 11 through the gap between the rotating body 40 and the first side member 20 and the second side member 30 is held by the holding member 11. The outer peripheral closed space 46 between the outer peripheral surface of the holding member 11 and the inner peripheral surface of the casing 13 enters through the third communication passage 45 formed in the above.

外周閉空間46に導かれた流体の圧力は、回転体40と保持部材11の内周面との隙間に作用する流体の圧力と略等しく、保持部材11の内周面と外周面の両面に作用する押圧力が釣り合うので、保持部材11を薄肉化しても径方向に歪むような事態が回避される。そのため、運転中に回転体40と保持部材11との隙間は広がることなく、所定の隙間が保持されるので円滑に回転できるようになる   The pressure of the fluid guided to the outer peripheral closed space 46 is substantially equal to the pressure of the fluid acting on the gap between the rotating body 40 and the inner peripheral surface of the holding member 11, and is applied to both the inner peripheral surface and the outer peripheral surface of the holding member 11. Since the applied pressing force is balanced, a situation in which the holding member 11 is distorted in the radial direction even when the holding member 11 is thinned is avoided. Therefore, the gap between the rotating body 40 and the holding member 11 does not widen during operation, and the predetermined gap is held, so that it can rotate smoothly.

以上のように構成された圧力交換装置10の具体的な圧力交換処理の動作について説明する。   The specific pressure exchange processing operation of the pressure exchange device 10 configured as described above will be described.

図7に示すように、回転体40には、16組の圧力伝達部44、つまり、第1流路41a〜41pと第2流路42a〜42pが回転軸心周りに放射状に配設されている。図7中の二点鎖線で示す領域は、第1側方部材20の第1流体流入路21の開口部21bと、第2流体流出路22の開口部22bと、第2流体流入路23の開口部23bと、第1流体流出路24の開口部24bに対応する領域を表している。   As shown in FIG. 7, the rotating body 40 has 16 sets of pressure transmission portions 44, that is, first flow paths 41a to 41p and second flow paths 42a to 42p arranged radially around the rotation axis. Yes. The areas indicated by the two-dot chain line in FIG. 7 are the opening 21 b of the first fluid inflow path 21, the opening 22 b of the second fluid outflow path 22, and the second fluid inflow path 23 of the first side member 20. The area | region corresponding to the opening part 23b and the opening part 24b of the 1st fluid outflow path 24 is represented.

第1流体流入路21には、隣接する第1流路41c、41b、41a、41p、41o、41nの6本が同時に連通し、第2流体流出路22には、第1流路41c、41b、41a、41p、41o、41nと回転体40内で連通した第2流路42c、42b、42a、42p、42o、42nが同時に連通する。第2流体流入路23には、隣接する第2流路42f、42g、42h、42i、42j、42kの6本が同時に連通し、第1流体流出路24には、第2流路42f、42g、42h、42i、42j、42kと回転体40内で連通した第1流路41f、41g、41h、41i、41j、41kが連通する。   Six adjacent first flow paths 41c, 41b, 41a, 41p, 41o, 41n communicate with the first fluid inflow path 21 at the same time, and the first flow paths 41c, 41b communicate with the second fluid outflow path 22. , 41a, 41p, 41o, 41n and the second flow paths 42c, 42b, 42a, 42p, 42o, 42n communicating with each other in the rotating body 40 are simultaneously communicated. Six adjacent second flow paths 42f, 42g, 42h, 42i, 42j, and 42k are simultaneously communicated with the second fluid inflow path 23, and the second flow paths 42f, 42g are connected to the first fluid outflow path 24. , 42h, 42i, 42j, and 42k communicate with the first flow paths 41f, 41g, 41h, 41i, 41j, and 41k that communicate with each other in the rotating body 40.

第1流体流入路21に流入した高圧濃縮海水Hiが、第1流路41c、41b、41a、41p、41o、41nの夫々に分散して流入するときに、高圧濃縮海水Hiは、流路壁21cに沿って流れ、回転体40には、図7中一点鎖線矢印が示すように時計回りのトルクが付与される。   When the high-pressure concentrated seawater Hi that has flowed into the first fluid inflow path 21 is dispersed and flows into each of the first flow paths 41c, 41b, 41a, 41p, 41o, and 41n, the high-pressure concentrated seawater Hi The rotating torque is applied to the rotating body 40 as indicated by the one-dot chain line arrow in FIG.

第1流路41c、41b、41a、41p、41o、41nに流入した高圧濃縮海水Hiの圧力は、夫々回転体40内で連通した第2流路42c、42b、42a、42p、42o、42nの海水に伝達され、高圧海水Hoが第2流路42c、42b、42a、42p、42o、42nから第2流体流出路22へと流出する。   The pressure of the high-pressure concentrated seawater Hi that has flowed into the first flow paths 41c, 41b, 41a, 41p, 41o, and 41n is that of the second flow paths 42c, 42b, 42a, 42p, 42o, and 42n that communicate with each other in the rotating body 40. The high pressure seawater Ho is transmitted to the seawater, and flows out from the second flow paths 42c, 42b, 42a, 42p, 42o, 42n to the second fluid outflow path 22.

高圧海水Hoが第2流路42c、42b、42a、42p、42o、42nから第2流体流出路22へと流出する際に、流れを広くするように流路壁22cに沿って流れ、回転体40には、図7中一点鎖線矢印が示すように時計回りのトルクが付与される。   When the high-pressure seawater Ho flows out from the second flow paths 42c, 42b, 42a, 42p, 42o, 42n to the second fluid outflow path 22, it flows along the flow path wall 22c so as to widen the flow. A clockwise torque is applied to 40 as indicated by a dashed line arrow in FIG.

第2流体流入路23に流入した低圧海水Liが、第2流路42f、42g、42h、42i、42j、42kの夫々に分散して流入するときに、低圧海水Liは、流路壁23cに沿って流れ、回転体40には、図7中一点鎖線矢印が示すように時計回りのトルクが付与される。   When the low-pressure seawater Li that has flowed into the second fluid inflow path 23 is dispersed and flows into each of the second flow paths 42f, 42g, 42h, 42i, 42j, and 42k, the low-pressure seawater Li enters the flow path wall 23c. A clockwise torque is applied to the rotator 40 as indicated by a dashed line arrow in FIG.

第2流路42f、42g、42h、42i、42j、42kに流入した低圧海水Liの圧力は、夫々回転体40内で連通した第1流路41f、41g、41h、41i、41j、41kの濃縮海水に伝達され、低圧濃縮海水Loが第1流路41f、41g、41h、41i、41j、41kから第1流体流出路24へと流出する。   The pressure of the low-pressure seawater Li that has flowed into the second flow paths 42f, 42g, 42h, 42i, 42j, and 42k is concentrated in the first flow paths 41f, 41g, 41h, 41i, 41j, and 41k that communicate with each other in the rotating body 40. The low-pressure concentrated seawater Lo is transmitted to the seawater, and flows out from the first flow paths 41f, 41g, 41h, 41i, 41j, 41k to the first fluid outflow path 24.

低圧濃縮海水Loが第1流路41f、41g、41h、41i、41j、41kから第1流体流出路24へと流出する際に、流れを広くするように流路壁24cに沿って流れ、回転体40には、図7中一点鎖線矢印が示すように時計回りのトルクが付与される。   When the low-pressure concentrated seawater Lo flows out from the first flow paths 41f, 41g, 41h, 41i, 41j, 41k to the first fluid outflow path 24, it flows along the flow path wall 24c so as to widen the flow and rotates. A clockwise torque is applied to the body 40 as indicated by a dashed line arrow in FIG.

以上のように、第1流体流入路21から第1流路41に流入する高圧濃縮海水Hiが回転体40に与えるトルクと、第2流路42から第2流体流出路22へ流出する低圧海水Loが回転体40に与えるトルクと、第2流体流入路23から第2流路42に流入する低圧海水Liが回転体40に与えるトルクと、第1流路41から第1流体流出路24へ流出する低圧濃縮海水Loが回転体40に与えるトルクが、同一方向となり、本実施形態では、回転体40は時計周りに回転することになる。   As described above, the torque applied to the rotating body 40 by the high-pressure concentrated seawater Hi flowing into the first flow path 41 from the first fluid inflow path 21, and the low-pressure seawater flowing out from the second flow path 42 to the second fluid outflow path 22. The torque that Lo gives to the rotating body 40, the torque that the low-pressure seawater Li flowing into the second flow path 42 from the second fluid inflow path 23 gives to the rotating body 40, and the first flow path 41 to the first fluid outflow path 24 The torque applied to the rotating body 40 by the low-pressure concentrated seawater Lo flowing out is in the same direction, and in this embodiment, the rotating body 40 rotates clockwise.

このように、回転体40の回転によって、ある圧力伝達部を構成する第1流路41と第2流路42の組と、夫々連通する第1流体流入路21と第2流体流出路22、第2流体流入路23と第1流体流出路24とが切り替わり、高圧濃縮海水Hiから高圧海水Hoへの圧力の伝達、及び、低圧海水Liから低圧濃縮海水Loへの圧力の伝達が連続的に行われ、つまり、第1流体と第2流体の圧力交換処理が連続的に行われる。   Thus, by the rotation of the rotating body 40, the first fluid inflow path 21 and the second fluid outflow path 22, which communicate with the set of the first flow path 41 and the second flow path 42 constituting a certain pressure transmission unit, The second fluid inflow path 23 and the first fluid outflow path 24 are switched, and the transmission of pressure from the high-pressure concentrated seawater Hi to the high-pressure seawater Ho and the transmission of pressure from the low-pressure seawater Li to the low-pressure concentrated seawater Lo are continuously performed. In other words, the pressure exchange process between the first fluid and the second fluid is continuously performed.

尚、第1流路41及び第2流路42内では、濃縮海水と海水が混在することになるが、各々の流体は塩分濃度差があるため境界部分は拡散によりある一定量が常に混ざった領域となるだけで、当該領域は、ピストンのような役目をしながら第1流路41及び第2流路42の内部で揺動することになる。   In the first flow path 41 and the second flow path 42, concentrated seawater and seawater are mixed. However, since each fluid has a difference in salt concentration, a certain amount of the boundary portion is always mixed by diffusion. The region only swings within the first flow path 41 and the second flow path 42 while acting like a piston.

図7に示すように、第1流体流入路21、第2流体流出路22、第2流体流入路23、第1流体流出路24の何れにも連通しない第1流路41d、41e、41l、41m及び、第2流路42d、42e、42l、42mでは、圧力の交換は行われない。   As shown in FIG. 7, first flow paths 41d, 41e, 41l that do not communicate with any of the first fluid inflow path 21, the second fluid outflow path 22, the second fluid inflow path 23, and the first fluid outflow path 24, 41m and the second flow paths 42d, 42e, 42l, and 42m do not exchange pressure.

本実施形態では、第1流体流入路21、第2流体流出路22、第2流体流入路23、第1流体流出路24に、回転体の回転に伴って第1流路及び第2流路が同時に5本又は6本ずつ連通する場合について説明したが、同時に連通する本数は、これに限らない。尚、同時に連通する本数が少なく、何れにも連通しない本数が多いと、装置から排水される水の脈動が大きくなる。また、流体流入路及び流体流出路の何れにも連通しない本数が少ないと、高圧の流体から低圧の流体への漏れ量が増加する。   In the present embodiment, the first fluid inflow passage 21, the second fluid outflow passage 22, the second fluid inflow passage 23, and the first fluid outflow passage 24 are provided with the first flow path and the second flow path as the rotating body rotates. However, the number of communication at the same time is not limited to this. Note that if the number of lines communicating at the same time is small and the number of lines not communicating with any of them is large, the pulsation of water drained from the apparatus increases. Further, if the number of fluids that do not communicate with either the fluid inflow path or the fluid outflow path is small, the amount of leakage from the high pressure fluid to the low pressure fluid increases.

回転体40は、回転体40に流入する高圧濃縮海水Hi及び低圧海水Li、回転体40から流出する高圧海水Ho及び低圧濃縮海水Loのエネルギーによって回転するように構成されているため、例えば、流入する各流体のエネルギーのみで回転する場合より、大きなトルクを付与することができる。   The rotating body 40 is configured to rotate by the energy of the high-pressure concentrated seawater Hi and the low-pressure seawater Li flowing into the rotating body 40, and the high-pressure seawater Ho and the low-pressure concentrated seawater Lo flowing out of the rotating body 40. A larger torque can be applied than when rotating only with the energy of each fluid.

流路壁21c、22c、23c、24cの形状が変わると、流入路から各流路に流入する流体、及び、各流路から流出路に流出する流体の流れの方向が変わり、回転体に加わるトルクが変わるので回転体の回転数が変わる。つまり、回転体40の回転数は、流路壁21c、22c、23c、24cの形状に依存する。圧力交換装置の処理流量は、回転体40の回転数に依存するため、当該形状を変更して、回転体40の回転数を調整することで圧力交換装置の処理流量を容易に調整できる。例えば、当該形状の異なる第1側方部材を用意しておき、交換することで、容易に処理流量を調整できる。   When the shape of the flow path walls 21c, 22c, 23c, 24c changes, the direction of the flow of the fluid flowing into each flow path from the inflow path and the flow of the fluid flowing out from each flow path to the outflow path changes, and is added to the rotating body. Since the torque changes, the rotational speed of the rotating body changes. That is, the rotation speed of the rotating body 40 depends on the shape of the flow path walls 21c, 22c, 23c, and 24c. Since the processing flow rate of the pressure exchange device depends on the number of rotations of the rotator 40, the processing flow rate of the pressure exchange device can be easily adjusted by changing the shape and adjusting the number of rotations of the rotator 40. For example, the processing flow rate can be easily adjusted by preparing and replacing first side members having different shapes.

上述のように、第1側方部材20に、第1流体流入路21、第1流体流出路24、第2流体流入路23、第2流体流出路22が形成され、回転体40の一端側から圧力伝達部へ第1流体又は第2流体を流入させて、回転体40内で第1流体と第2流体との圧力を交換し、前記一端側から第2流体又は第1流体を流出させる構成であるので、同じ流量の圧力交換処理を行なう場合に、従来の圧力交換装置のように直管で構成された圧力伝達部と比較して、同じ流量の圧力交換処理を行なう場合に回転体の回転軸心方向の長さが短くなり、装置のコンパクト化と低コスト化を図ることができ、また、圧力交換処理の流量を増加させる必要がある場合でも、回転体の回転軸心方向の長さが短くなることで装置の極端な大型化を回避することができる。   As described above, the first side member 20 is formed with the first fluid inflow path 21, the first fluid outflow path 24, the second fluid inflow path 23, and the second fluid outflow path 22, and one end side of the rotating body 40. The first fluid or the second fluid is caused to flow into the pressure transmission unit from the pressure, the pressures of the first fluid and the second fluid are exchanged in the rotating body 40, and the second fluid or the first fluid is caused to flow out from the one end side. Because of the configuration, when performing pressure exchange processing at the same flow rate, the rotating body is used when performing pressure exchange processing at the same flow rate as compared to a pressure transmission unit configured with a straight pipe as in a conventional pressure exchange device. The length in the direction of the rotation axis of the rotating body can be shortened, making it possible to reduce the size and cost of the device, and even when the flow rate of the pressure exchange process needs to be increased, Extremely large equipment can be avoided by shortening the length.

さらに、第1流体流入路及び流出路、第2流体流入路及び流出路が第1側方部材20にのみ形成されているため、各流体の流入路又は流出路と接続する配管を第1側方部材20側に纏めて設置すればよく、従来の装置のように回転体の両端側に夫々流体の流入路又は流出路と接続する配管を設置する場合と比較して、配管設置作業やメンテナンス作業等の作業性が良好になる。つまり、配管が第1側方部材20側にまとまることで、配管を含めた設置スペースが小さくなる。さらに、配管を外すことなく、配管のない第2側方部材30側からメンテナンス可能となり、メンテナンス性が向上する。   Furthermore, since the first fluid inflow channel and the outflow channel, the second fluid inflow channel and the outflow channel are formed only in the first side member 20, piping connected to the inflow channel or the outflow channel of each fluid is connected to the first side. The pipe installation work and maintenance may be performed as compared with the case where pipes connected to the fluid inflow path or the outflow path are respectively installed at both ends of the rotating body as in the conventional apparatus. Workability such as work is improved. That is, the installation space including the piping is reduced because the piping is gathered on the first side member 20 side. Further, maintenance can be performed from the second side member 30 side without piping without removing the piping, thereby improving maintainability.

上述の実施形態では、第1流路41の断面積と第2流路42の断面積は等しくなるように形成することで、流路断面積の変化による余分な圧力損失が低減できるように構成したが、第1流路41と第2流路42の断面積は完全に等しい必要はない。   In the above-described embodiment, the first flow channel 41 and the second flow channel 42 are formed so that the cross-sectional area thereof is equal, so that excessive pressure loss due to the change of the flow channel cross-sectional area can be reduced. However, the cross-sectional areas of the first flow path 41 and the second flow path 42 need not be completely equal.

上述の実施形態では、第1流路41と第2流路42は回転体40の他端側の端面40b側で連通した構成であるが、図8(a)に示すように、端面40bから端面40a側に所定距離離隔した位置で連通する構成であってもよい。つまり、連通部は端面40aと端面40bの間の任意の位置であってもよい。回転体40の端面40aと端面40bが全く同形状となり同面積となるので、回転体40の軸心方向の圧力バランスがよい。   In the above-described embodiment, the first flow path 41 and the second flow path 42 are configured to communicate with each other on the end face 40b side on the other end side of the rotating body 40, but as shown in FIG. It may be configured to communicate with the end face 40a side at a position separated by a predetermined distance. That is, the communicating portion may be an arbitrary position between the end surface 40a and the end surface 40b. Since the end surface 40a and the end surface 40b of the rotating body 40 have the same shape and the same area, the pressure balance in the axial direction of the rotating body 40 is good.

さらには、図8(b)に示すように、第1流路41及び第2流路42の回転体40の端面40b側を一部の開口部40cや40dを除いて閉塞するように構成してもよい。   Further, as shown in FIG. 8 (b), the end face 40b side of the rotating body 40 of the first flow path 41 and the second flow path 42 is configured to be closed except for some openings 40c and 40d. May be.

第1流路41及び第2流路42の断面形状は、真円や楕円等の円形状、三角、四角等の多角形状であってもよく、第1流路41及び第2流路42の本数や断面形状を変更することで、圧力伝達部44の総容量を変更して、圧力交換装置10の処理流量を変更することができる。尚、図3(a)に示した第1流路41及び第2流路42の断面形状は、回転体の断面に対し開口率を大きく取れる点で好ましい。   The cross-sectional shape of the first flow path 41 and the second flow path 42 may be a circular shape such as a perfect circle or an ellipse, or a polygonal shape such as a triangle or a square. By changing the number and the cross-sectional shape, the total capacity of the pressure transmission unit 44 can be changed and the processing flow rate of the pressure exchange device 10 can be changed. In addition, the cross-sectional shape of the 1st flow path 41 and the 2nd flow path 42 shown to Fig.3 (a) is preferable at the point which can take a large aperture ratio with respect to the cross section of a rotary body.

上述の実施形態では、保持部材11と第2側方部材30を別体で構成したが、保持部材11と第2側方部材30をカップ状に一体形成し、第1側方部材20で閉じられる空間内に回転体40が配置されるように構成してもよい。   In the above-described embodiment, the holding member 11 and the second side member 30 are configured separately. However, the holding member 11 and the second side member 30 are integrally formed in a cup shape and closed by the first side member 20. You may comprise so that the rotary body 40 may be arrange | positioned in the space formed.

上述の実施形態では、第1流体流入路21、第2流体流出路22、第2流体流入路23、第1流体流出路24のように、各流入路と流出路が一対ずつ、つまり、夫々1つずつ、合計すると4つ備えられる構成であるが、各流入路と流出路は夫々2つ以上の複数であってもよい。複数備える場合は、回転体40に流入及び回転体40から流出する各流体の圧力バランスの観点から各流入路及び流出路は回転軸心周りに点対称に配置されることが好ましい。   In the above-described embodiment, a pair of each inflow path and outflow path, such as the first fluid inflow path 21, the second fluid outflow path 22, the second fluid inflow path 23, and the first fluid outflow path 24, that is, respectively. Although one structure is provided in total, four inflow paths and two outflow paths may be provided. In the case where a plurality of fluids are provided, the inflow passages and the outflow passages are preferably arranged symmetrically around the rotation axis from the viewpoint of the pressure balance between the fluids flowing into and out of the rotation body 40.

上述の実施形態では、トルク付与機構は、第1流路41に流入する、又は、第1流路41から流出する濃縮海水のエネルギー、及び、第2流路42に流入する、又は、第2流路42から流出する海水のエネルギーにより回転体40にトルクを付与する構成であるが、前記トルク付与機構は、少なくとも第1流路41に流入する、第1流路41から流出する濃縮海水のエネルギー、又は、第2流路42に流入する、第2流路42から流出する海水のエネルギーにより回転体40にトルクを付与するように構成すればよい。   In the above-described embodiment, the torque applying mechanism flows into the first flow path 41 or the energy of the concentrated seawater that flows out from the first flow path 41 and the second flow path 42, or the second The torque is applied to the rotator 40 by the energy of the seawater flowing out from the flow path 42, but the torque applying mechanism flows into the first flow path 41 at least from the concentrated seawater flowing out from the first flow path 41. What is necessary is just to comprise so that a torque may be provided to the rotary body 40 with energy or the energy of the seawater which flows in into the 2nd flow path 42, and flows out of the 2nd flow path 42. FIG.

何れかのエネルギーのみを利用する場合、第2流路42より第1流路41のほうが、回転体40の半径方向外側に配置されているため、第1流路41に流入する高圧濃縮海水Hiのエネルギーを利用して回転体40にトルクを付与するように構成するとエネルギー効率がよい。   When only one of the energies is used, the first flow path 41 is arranged on the outer side in the radial direction of the rotating body 40 than the second flow path 42, so the high-pressure concentrated seawater Hi that flows into the first flow path 41 is used. Energy efficiency is good when it is configured to apply torque to the rotating body 40 using the energy of the above.

上述の実施形態では、回転体40は第1流体及び第2流体のエネルギーにより回転する構成について説明したが、回転体40に駆動軸を連結し、駆動機等の外部動力で回転するように構成してもよい。外部動力で回転体40を回転駆動できるため、安定した回転を得ることができるので装置の信頼性が向上する。   In the above-described embodiment, the configuration in which the rotating body 40 rotates by the energy of the first fluid and the second fluid has been described. However, the driving shaft is connected to the rotating body 40 and is rotated by external power such as a driving machine. May be. Since the rotating body 40 can be rotationally driven by external power, stable rotation can be obtained, and the reliability of the apparatus is improved.

上述の実施形態では、第2エンドカバーと保持部材を別体で説明したが、第2エンドカバーと保持部材を一体で構成してもよい。   In the above-described embodiment, the second end cover and the holding member have been described separately, but the second end cover and the holding member may be configured integrally.

上述の実施形態では、保持部材とケーシングを別体で説明したが、ケーシングを備えずに、保持部材をケーシングとしても機能させてもよい。ただし、この場合は保持部材の内周と外周の圧力バランス調整機構を有しない構成となる。   In the above-described embodiment, the holding member and the casing have been described separately. However, the holding member may function as a casing without including the casing. However, in this case, the pressure balance adjusting mechanism for the inner periphery and the outer periphery of the holding member is not provided.

上述の実施形態では、第2閉空間を1つの空間として説明したが、スペーサ35に第2閉空間38を区画する区画壁38cを備えて、例えば、図9(a)、(b)に示すように、高圧の流体が流入する空間38aと、低圧の流体が流入する空間38bの2つの空間に区画し、空間38aには連通路39aから高圧流体が流入し、空間38bには連通路39bから低圧流体が流入するように構成してもよい。   In the above-described embodiment, the second closed space has been described as one space. However, the spacer 35 includes a partition wall 38c that partitions the second closed space 38. For example, as illustrated in FIGS. 9A and 9B. As described above, the space 38a into which the high-pressure fluid flows and the space 38b into which the low-pressure fluid flows are divided into two spaces. The high pressure fluid flows into the space 38a from the communication passage 39a, and the communication passage 39b into the space 38b. The low-pressure fluid may be configured to flow in.

さらに、例えば、図10(b)に示すように、第1側方部材20に形成された第1流体流入路21と第2流体流出路22と第2流体流入路23と第1流体流出路24と対応する位置の4つの空間(高圧の流体が流入する2つの空間38a、低圧の流体が流入する2つの空間38b)に区画して、夫々の空間に夫々対応する流体が流入するように構成してもよい。このように、第2閉空間を複数の空間に区画することで、第2側方部材の両面に作用する押圧力を均等にすることができるので、第2側方部材の変形がさらに抑制される。   Furthermore, for example, as shown in FIG. 10B, the first fluid inflow path 21, the second fluid outflow path 22, the second fluid inflow path 23, and the first fluid outflow path formed in the first side member 20. 24 are divided into four spaces (two spaces 38a into which high-pressure fluid flows in and two spaces 38b into which low-pressure fluid flows in) at positions corresponding to 24, so that the corresponding fluid flows into the respective spaces. It may be configured. Thus, by dividing the second closed space into a plurality of spaces, the pressing force acting on both surfaces of the second side member can be equalized, so that the deformation of the second side member is further suppressed. The

上述の実施形態では、スペーサ35と第2エンドカバー36を別体で説明したが、図10(a)に示すように、スペーサ35と第2エンドカバー36を一体で構成し、第2側方部材30との間で、第2閉空間を構成することもできる。   In the above-described embodiment, the spacer 35 and the second end cover 36 have been described separately. However, as shown in FIG. 10A, the spacer 35 and the second end cover 36 are integrally configured to form the second side. A second closed space may be formed between the member 30 and the member 30.

上述の何れの実施形態でも、第1流体流入路に高圧濃縮海水を流入させ、第2流体流入路に被濃縮流体である低圧海水を流入させる構成について説明したが、第1流体流入路に被濃縮流体である低圧海水を流入させ、第2流体流入路に高圧濃縮海水を流入させてもよい。   In any of the embodiments described above, the configuration in which the high-pressure concentrated seawater is introduced into the first fluid inflow passage and the low-pressure seawater that is the concentrated fluid is introduced into the second fluid inflow passage has been described. Low-pressure seawater that is a concentrated fluid may be flowed in, and high-pressure concentrated seawater may be flowed into the second fluid inflow path.

以上説明した圧力交換装置の具体的構成は実施形態の記載に限定されるものではなく、本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。   The specific configuration of the pressure exchanging device described above is not limited to the description of the embodiment, and it is needless to say that the design can be appropriately changed within the scope of the effects of the present invention.

6:逆浸透膜装置
10:圧力交換装置
11:保持部材
13:ケーシング
14:第1エンドカバー
15:第2エンドカバー
16:第1閉空間
17:第1連通路
18:第4連通路
20:第1側方部材
21:第1流体流入路
21a:開口部
21b:開口部
21c:流路壁
22:第2流体流出路
22a:開口部
22b:開口部
22c:流路壁
23:第2流体流入路
23a:開口部
23b:開口部
23c:流路壁
24:第1流体流出路
24a:開口部
24b:開口部
24c:流路壁
30:第2側方部材
31a、32a、33a、34a:凹部
35:スペーサ
36:封止板
37:シール
38:第2閉空間
39:第2連通路
40:回転体
41:第1流路
42:第2流路
43:支軸
44:挿通空間
45:第3連通路
46:外周閉空間
Hi:高圧濃縮海水(濃縮流体)
Li:低圧海水(被濃縮流体)
Ho:高圧海水(被濃縮流体)
Lo:低圧濃縮海水(濃縮流体)

6: Reverse osmosis membrane device 10: Pressure exchange device 11: Holding member 13: Casing 14: First end cover 15: Second end cover 16: First closed space 17: First communication passage 18: Fourth communication passage 20: First side member 21: first fluid inflow path 21a: opening 21b: opening 21c: flow path wall 22: second fluid outflow path 22a: opening 22b: opening 22c: flow path wall 23: second fluid Inflow path 23a: Opening 23b: Opening 23c: Channel wall 24: First fluid outflow path 24a: Opening 24b: Opening 24c: Channel wall 30: Second side members 31a, 32a, 33a, 34a: Recess 35: Spacer 36: Sealing plate 37: Seal 38: Second closed space 39: Second communication path 40: Rotating body 41: First flow path 42: Second flow path 43: Support shaft 44: Insertion space 45: Third communication path 46: outer peripheral closed space Hi: high-pressure concentrated seawater (concentration Body)
Li: Low-pressure seawater (concentrated fluid)
Ho: High-pressure seawater (concentrated fluid)
Lo: Low-pressure concentrated seawater (concentrated fluid)

Claims (7)

第1流体と第2流体との間で圧力を交換する圧力交換装置であって、
一端側から第1流体が流入及び流出する第1流路と前記一端側から第2流体が流入及び流出する第2流路とが連通するように形成された圧力伝達部が、回転軸心周りに配設された回転体と、
第1流体を前記第1流路に案内する第1流体流入路と、第1流体との間で圧力交換された第2流体を前記第2流路から案内する第2流体流出路と、第2流体を前記第2流路に案内する第2流体流入路と、第2流体との間で圧力交換された第1流体を前記第1流路から案内する第1流体流出路とが、厚み方向に形成された第1側方部材と、
前記回転体を第1側方部材との間で保持部材を介して回転可能に挟持する第2側方部材と、で構成される圧力交換部を備え、
第1流路及び第2流路が前記回転体を貫通するように形成され、
前記第1流体又は第2流体により、圧力交換部の圧力バランスを調整する圧力バランス調整機構を備えている圧力交換装置。
A pressure exchange device for exchanging pressure between a first fluid and a second fluid,
A pressure transmission part formed so that the first flow path through which the first fluid flows in and out from one end side and the second flow path through which the second fluid flows in and out from the one end side communicates with each other around the rotation axis A rotating body arranged in
A first fluid inflow path for guiding the first fluid to the first flow path; a second fluid outflow path for guiding the second fluid pressure-exchanged with the first fluid from the second flow path; A second fluid inflow path for guiding two fluids to the second flow path, and a first fluid outflow path for guiding the first fluid pressure-exchanged with the second fluid from the first flow path have a thickness. A first lateral member formed in a direction;
A pressure exchanging portion configured by a second side member that rotatably holds the rotating body with a first side member via a holding member;
The first channel and the second channel are formed so as to penetrate the rotating body,
A pressure exchanging device comprising a pressure balance adjusting mechanism for adjusting the pressure balance of the pressure exchanging section by the first fluid or the second fluid.
前記第1側方部材は、少なくとも、第1流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第1流路と連通するように形成された第1流体流入路開口部と、第2流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第2流路と連通するように形成された第2流体流入路開口部と、を備え、
前記圧力バランス調整機構は、前記第1側方部材に形成された前記第1流体流入路と第2流体流出路と第2流体流入路と第1流体流出路の前記回転体との対向面側の各開口部に相対する、前記回転体の第1側方部材との対向面側の受圧面積と、前記回転体の第2側方部材との対向面側の受圧面積とを略同一とする受圧部を備えている請求項1記載の圧力交換装置。
The first side member is formed at least on the surface facing the rotating body in the first fluid inflow path so as to communicate with the plurality of first flow paths along the circumferential direction of the rotating body. A first fluid inflow passage opening and a second fluid inflow passage formed on the opposite surface side of the rotary body so as to communicate with a plurality of second flow paths along the circumferential direction of the rotary body. Two fluid inlet passage openings,
The pressure balance adjusting mechanism is configured such that the first fluid inflow path, the second fluid outflow path, the second fluid inflow path, and the first fluid outflow path, which are formed in the first side member, face the rotating body. The pressure receiving area of the rotating body facing the first side member of the rotating body and the pressure receiving area of the rotating body facing the second side member of the rotating body are substantially the same. The pressure exchange device according to claim 1, further comprising a pressure receiving portion.
前記第1側方部材は、少なくとも、第1流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第1流路と連通するように拡径して形成された第1傾斜部と、第2流体流入路のうち前記回転体との対向面側に、前記回転体の周方向に沿って複数の第2流路と連通するように拡径して形成された第2傾斜部と、を備え、
第1傾斜部の傾斜方向と第2傾斜部の傾斜方向が同じになるように設定され、
前記第1流路に流入する第1流体のエネルギーと、前記第2流路に流入する第2流体のエネルギーにより前記回転体にトルクを付与するトルク付与機構を備え、
前記圧力バランス調整機構は、
前記第1側方部材に形成された前記第1流体流入路と第2流体流出路と第2流体流入路と第1流体流出路の前記回転体との対向面側の各開口部と、
前記第2側方部材の前記回転体との対向面に形成された、前記各開口部に対向する前記各開口部と輪郭と面積を同一とする凹部を備えている請求項2記載の圧力交換装置。
The first side member is expanded in diameter so as to communicate with a plurality of first flow paths along a circumferential direction of the rotating body at least on a surface facing the rotating body in the first fluid inflow passage. The diameter of the first inclined part formed on the opposite side of the second fluid inflow path to the rotating body is increased so as to communicate with the plurality of second flow paths along the circumferential direction of the rotating body. A second inclined portion formed by
The inclination direction of the first inclined part and the inclination direction of the second inclined part are set to be the same,
A torque applying mechanism that applies torque to the rotating body by energy of the first fluid flowing into the first flow path and energy of the second fluid flowing into the second flow path;
The pressure balance adjusting mechanism is
Each opening of the first fluid inflow path, the second fluid outflow path, the second fluid inflow path, and the first fluid outflow path facing the rotating body formed in the first side member;
3. The pressure exchange according to claim 2, further comprising: a concave portion formed on a surface of the second side member facing the rotating body and having the same contour and area as each of the openings facing each of the openings. apparatus.
前記第1側方部材の外側に配置された第1エンドカバーと、前記第2側方部材の外側に配置された第2エンドカバーを備え、
前記第1エンドカバーには、少なくとも前記第1流体流入路又は第2流体流入路と夫々連通する第1流体流入口又は第2流体流入口が形成され、
前記圧力バランス調整機構は、
少なくとも前記第1側方部材と前記第1エンドカバーとで区画される第1閉空間と、
前記第1流体又は第2流体を前記第1閉空間に導くように、前記第1エンドカバーに形成された第1連通路と、
少なくとも前記第2側方部材と前記第2エンドカバーとで区画された第2閉空間と、
前記第1流体又は第2流体を前記第2閉空間に導くように、前記第2側方部材に形成された第2連通路と、
を備えている請求項1から3の何れかに記載の圧力交換装置。
A first end cover disposed outside the first side member; and a second end cover disposed outside the second side member;
The first end cover is formed with a first fluid inlet or a second fluid inlet that communicates with at least the first fluid inlet or the second fluid inlet, respectively.
The pressure balance adjusting mechanism is
A first closed space defined by at least the first side member and the first end cover;
A first communication path formed in the first end cover so as to guide the first fluid or the second fluid to the first closed space;
A second closed space defined by at least the second side member and the second end cover;
A second communication path formed in the second side member so as to guide the first fluid or the second fluid to the second closed space;
The pressure exchange device according to any one of claims 1 to 3, further comprising:
前記保持部を収容する筒状のケーシングを備え、
前記圧力バランス調整機構は、
前記第1及び第2側方部材と前記保持部材の外周面と前記ケーシングの内周面とで区画された外周閉空間と、
前記回転体と保持部材との隙間と前記外周閉空間を連通するように、前記保持部材に形成された第3連通路とを備えている請求項1から4の何れかに記載の圧力交換装置。
Comprising a cylindrical casing that houses the holding member,
The pressure balance adjusting mechanism is
An outer peripheral closed space defined by the first and second side members, the outer peripheral surface of the holding member, and the inner peripheral surface of the casing;
5. The pressure exchanging apparatus according to claim 1, further comprising a third communication passage formed in the holding member so as to communicate the clearance between the rotating body and the holding member and the outer peripheral closed space. .
前記第1側方部材と第2側方部材に両端を支持された支軸を備え、
前記回転体には回転軸心方向に沿って前記支軸を挿通する挿通空間が形成され、
前記第1側方部材又は第2側方部材には、前記挿通空間に第1流体又は第2流体を導く第4連通路が形成されている請求項4又は5記載の圧力交換装置。
A support shaft supported at both ends by the first side member and the second side member;
The rotating body is formed with an insertion space through which the support shaft is inserted along the rotation axis direction.
The pressure exchange device according to claim 4 or 5, wherein a fourth communication passage for guiding the first fluid or the second fluid to the insertion space is formed in the first side member or the second side member.
前記第1流体流入路に供給される第1流体が逆浸透膜装置から排水される高圧濃縮流体であり、前記第2流体流入路に供給される第2流体が前記逆浸透膜装置に給水される被濃縮流体である請求項1から6の何れかに記載の圧力交換装置。   The first fluid supplied to the first fluid inflow passage is a high-pressure concentrated fluid drained from the reverse osmosis membrane device, and the second fluid supplied to the second fluid inflow passage is supplied to the reverse osmosis membrane device. The pressure exchange device according to claim 1, wherein the fluid is a fluid to be concentrated.
JP2011073730A 2011-03-29 2011-03-29 Pressure exchange device Active JP5657450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073730A JP5657450B2 (en) 2011-03-29 2011-03-29 Pressure exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073730A JP5657450B2 (en) 2011-03-29 2011-03-29 Pressure exchange device

Publications (2)

Publication Number Publication Date
JP2012206019A JP2012206019A (en) 2012-10-25
JP5657450B2 true JP5657450B2 (en) 2015-01-21

Family

ID=47186296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073730A Active JP5657450B2 (en) 2011-03-29 2011-03-29 Pressure exchange device

Country Status (1)

Country Link
JP (1) JP5657450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073231B (en) * 2013-04-03 2017-03-15 株式会社荏原制作所 Seawater desalination system and energy recycle device
US10065152B2 (en) 2013-04-05 2018-09-04 Ebara Corporation Seawater desalination system and energy recovery apparatus
CN107152422B (en) * 2017-06-01 2019-10-11 西安交通大学 A kind of residual pressure recovering equipment with Integral rotary valve plate
US11555509B2 (en) * 2021-03-02 2023-01-17 Energy Recovery, Inc. Motorized pressure exchanger with a low-pressure centerbore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10019A (en) * 1853-09-13 Improvement in the manufacture of plain and figured fabrics
US6537035B2 (en) * 2001-04-10 2003-03-25 Scott Shumway Pressure exchange apparatus
DE102004038439A1 (en) * 2004-08-07 2006-03-16 Ksb Aktiengesellschaft Channel shape for rotating pressure exchanger

Also Published As

Publication number Publication date
JP2012206019A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5571005B2 (en) Pressure exchange device and performance adjustment method of pressure exchange device
EP2762730B1 (en) Pressure exchange device
US10309426B2 (en) Fluid exchanger devices, pressure exchangers, and related methods
US10125796B2 (en) Rotor positioning system in a pressure exchange vessel
JP5778209B2 (en) Seawater desalination system and energy exchange chamber
EP1508361B1 (en) A reverse osmosis system with a pressure exchanger
JP5657450B2 (en) Pressure exchange device
DK181325B1 (en) LIQUID-TO-LIQUID PRESSURE TRANSMITTER AND METHOD OF OPERATING THE SAME
US9725339B2 (en) Reverse osmosis treatment apparatus
US20090180903A1 (en) Rotary pressure transfer device
JP5996902B2 (en) Pressure exchange device
CN115210476A (en) Pressure exchanger with flow divider in rotor line
CN107398177B (en) External rotor type pressure exchanger
JP2011231634A (en) Pressure converter and method for adjusting performance of pressure converter
JP5571025B2 (en) Pressure exchange device and performance adjustment method of pressure exchange device
JP5809911B2 (en) Pressure exchange device, pressure exchange unit, and pressure exchange device inspection method
JP6066045B2 (en) Pressure exchange device
CN107542705A (en) A kind of more inlet and multi-exit pressure exchangers
JP6297878B2 (en) Pressure exchange device
Al-Hawaj The design aspects of rotary work exchanger for SWRO
WO2016083958A1 (en) Pressure exchanger system with a vessel elongation absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150