JP2017027819A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2017027819A
JP2017027819A JP2015146142A JP2015146142A JP2017027819A JP 2017027819 A JP2017027819 A JP 2017027819A JP 2015146142 A JP2015146142 A JP 2015146142A JP 2015146142 A JP2015146142 A JP 2015146142A JP 2017027819 A JP2017027819 A JP 2017027819A
Authority
JP
Japan
Prior art keywords
current collector
collector plate
insulating member
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015146142A
Other languages
Japanese (ja)
Other versions
JP6403644B2 (en
Inventor
拓郎 綱木
Takuro Tsunaki
拓郎 綱木
正明 岩佐
Masaaki Iwasa
正明 岩佐
独志 西森
Hitoshi Nishimori
独志 西森
明徳 多田
Akinori Tada
明徳 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015146142A priority Critical patent/JP6403644B2/en
Publication of JP2017027819A publication Critical patent/JP2017027819A/en
Application granted granted Critical
Publication of JP6403644B2 publication Critical patent/JP6403644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of a secondary battery, by reducing the temperature gradient of an electrode body.SOLUTION: A first collector 40P is configured so that the calorific value per unit time is larger than that of a second collector 40N. A first insulation member 1 and a second insulation member 2 have different configurations so that the amount of heat transferred from the first collector 40P to a battery container 10 via the first insulation member 1 in the unit time is larger than the amount of heat transferred from the second collector 40N to the battery container 10 via the second insulation member 2 in the unit time.SELECTED DRAWING: Figure 3

Description

本発明は、二次電池に関する。   The present invention relates to a secondary battery.

近年、ハイブリッド型の電気自動車や純粋な電気自動車等の動力源として大容量(Wh)の二次電池が開発されており、その中でもエネルギー密度(Wh/kg)の高い角形のリチウムイオン二次電池が注目されている。このような二次電池の一例として、電池容器に対するリチウム等の正極活物質の析出を抑制するとともに、電池容器がそれを囲む金属製の外部ケースと短絡したときに、電池容器側から外部ケース側に流れる短絡電流を抑えることが可能な蓄電素子が開示されている(下記特許文献1を参照)。   In recent years, secondary batteries with large capacity (Wh) have been developed as power sources for hybrid electric vehicles and pure electric vehicles, and among them, prismatic lithium ion secondary batteries with high energy density (Wh / kg). Is attracting attention. As an example of such a secondary battery, when the positive electrode active material such as lithium is suppressed from being deposited on the battery container, and when the battery container is short-circuited with a metal outer case surrounding the battery container, Has been disclosed (see Patent Document 1 below).

特許文献1に記載された蓄電素子は、正極板と負極板とを含む発電要素を収容する金属製の電池容器と、この電池容器を貫通し、かつ前記正極板に対して電気的に接続される正極端子と、前記電池容器を貫通し、かつ前記負極板に対して電気的に接続される負極端子と、前記電池容器と前記正極端子との間をシールする正極側シール部材と、前記電池容器と前記負極端子との間をシールする負極側シール部材とを備えている。この蓄電素子は、前記正極側シール部材と前記負極側シール部材のうち、一方は前記電池容器よりも抵抗値の大きい導電性の材料であり、他方は絶縁性の材料であることを特徴としている。   A power storage element described in Patent Document 1 is made of a metal battery container that houses a power generation element including a positive electrode plate and a negative electrode plate, and penetrates the battery container and is electrically connected to the positive electrode plate. A positive electrode terminal, a negative electrode terminal penetrating the battery container and electrically connected to the negative electrode plate, a positive electrode side sealing member that seals between the battery container and the positive electrode terminal, and the battery A negative electrode side sealing member that seals between the container and the negative electrode terminal; This power storage element is characterized in that one of the positive electrode side sealing member and the negative electrode side sealing member is a conductive material having a resistance value larger than that of the battery container, and the other is an insulating material. .

前記蓄電素子では、電池容器に対して正極端子又は負極端子のいずれか一方を電気的に接続していることから、電池容器の電位が正極端子又は負極端子と概ね同電位となる。そのため、活物質が電池容器に析出することを抑制できる。しかも、電池容器と端子の電気的な接続にシール部材を使用しているため、部品の交換(シール部材の交換)だけで、電池容器の電位を端子と概ね同電位にすることが可能であり、部品増にならない。加えて、電池容器と端子とを接続するシール部材は、電池容器よりも抵抗値が大きいため、電池容器が、それを囲む金属製の外部ケース等と短絡しても、電池容器を介して外部ケースに流れる短絡電流を抑えることが可能となる。   In the electric storage element, since either the positive electrode terminal or the negative electrode terminal is electrically connected to the battery container, the electric potential of the battery container is approximately the same as the positive electrode terminal or the negative electrode terminal. Therefore, it can suppress that an active material precipitates in a battery container. Moreover, since the sealing member is used for the electrical connection between the battery case and the terminal, the potential of the battery case can be made substantially the same as that of the terminal only by replacing the parts (replacement of the sealing member). No increase in parts. In addition, since the sealing member that connects the battery container and the terminal has a higher resistance value than the battery container, even if the battery container is short-circuited with a metal outer case that surrounds the battery container, the sealing member is externally connected via the battery container. It is possible to suppress a short-circuit current flowing through the case.

特開2015−43282号公報JP2015-43282A

特許文献1に記載された蓄電素子は、正極端子と正極板とを電気的に接続する正極集電体が、例えばアルミニウム合金板からなり、負極端子と負極板とを電気的に接続する負極集電体が、例えば銅合金からなる。これら正極及び負極集電体と、発電要素を収容するケースの蓋体との間には、それぞれ、同一の構成のインナーシール部材が配置されている(図4及び5、符号81P及び81Nを参照)。このような蓄電素子は、相対的に電気抵抗が大きい正極集電体が、相対的に電気抵抗が小さい負極集電体よりも高温になると、正極集電体と負極集電体とに接続された発電要素の温度勾配が増大し、蓄電素子の劣化が進行する虞がある。   In the electric storage element described in Patent Document 1, the positive electrode current collector that electrically connects the positive electrode terminal and the positive electrode plate is made of, for example, an aluminum alloy plate, and the negative electrode current collector that electrically connects the negative electrode terminal and the negative electrode plate. The electric body is made of, for example, a copper alloy. Inner seal members having the same configuration are disposed between the positive and negative electrode current collectors and the lid of the case that houses the power generation element (see FIGS. 4 and 5, reference numerals 81P and 81N). ). Such a storage element is connected to the positive electrode current collector and the negative electrode current collector when the positive electrode current collector having a relatively large electric resistance becomes higher in temperature than the negative electrode current collector having a relatively small electric resistance. In addition, the temperature gradient of the power generation element may increase, and the storage element may deteriorate.

本発明は、前記課題に鑑みてなされたものであり、発電素子としての電極体の温度勾配を減少させ、二次電池の劣化を抑制することを目的とする。   This invention is made | formed in view of the said subject, and it aims at reducing the temperature gradient of the electrode body as a power generation element, and suppressing deterioration of a secondary battery.

前記目的を達成すべく、本発明の二次電池は、電極体と、該電極体を収容する電池容器と、該電池容器に設けられた外部端子と、該外部端子を前記電極体に接続する第1集電板及び第2集電板と、前記第1集電板と前記電池容器との間に配置された第1絶縁部材と、前記第2集電板と前記電池容器との間に配置された第2絶縁部材と、を備えた二次電池であって、前記第1集電板は、前記第2集電板よりも単位時間の発熱量が多い構成を有し、前記第1絶縁部材と前記第2絶縁部材とは、前記第1絶縁部材を介して前記第1集電板から前記電池容器へ移動する単位時間の熱量が前記第2絶縁部材を介して前記第2集電板から前記電池容器へ移動する単位時間の熱量よりも多い、異なる構成を有することを特徴とする。   In order to achieve the above object, the secondary battery of the present invention includes an electrode body, a battery container that accommodates the electrode body, an external terminal provided on the battery container, and the external terminal connected to the electrode body. A first current collector plate and a second current collector plate; a first insulating member disposed between the first current collector plate and the battery container; and a gap between the second current collector plate and the battery container. A secondary battery comprising: a second insulating member disposed; wherein the first current collector plate has a configuration that generates more heat per unit time than the second current collector plate; The insulating member and the second insulating member are configured such that the amount of heat per unit time moving from the first current collector plate to the battery container via the first insulating member passes through the second insulating member. It has a different configuration that is greater than the amount of heat per unit time that travels from the plate to the battery container.

本発明の二次電池によれば、単位時間の発熱量が少ない第2集電板から第2絶縁部材を介して電池容器に移動する単位時間の熱量と比較して、単位時間の発熱量が多い第1集電板から第1絶縁部材を介して電池容器に移動する単位時間の熱量が多くなる。これにより、第1集電板と第2集電板との間の温度差を減少させ、第1集電板と第2集電板との間の電極体の温度勾配が減少し、二次電池の劣化を抑制することができる。   According to the secondary battery of the present invention, the calorific value of the unit time is smaller than the calorific value of the unit time moving from the second current collector plate having a small calorific value per unit time to the battery container via the second insulating member. The amount of heat per unit time that moves from the large first current collector plate to the battery container via the first insulating member increases. As a result, the temperature difference between the first current collector plate and the second current collector plate is reduced, the temperature gradient of the electrode body between the first current collector plate and the second current collector plate is reduced, and the secondary current is reduced. Battery deterioration can be suppressed.

本発明の実施形態1に係る二次電池の外観斜視図。1 is an external perspective view of a secondary battery according to Embodiment 1 of the present invention. 図1に示す二次電池の分解斜視図。The disassembled perspective view of the secondary battery shown in FIG. 図2に示す二次電池の蓋組立体の分解斜視図。FIG. 3 is an exploded perspective view of a lid assembly for the secondary battery shown in FIG. 2. 図3のIV-IV線に沿う拡大断面図。The expanded sectional view which follows the IV-IV line of FIG. 図3に示す蓋組立体の組立手順を説明する断面図。Sectional drawing explaining the assembly procedure of the cover assembly shown in FIG. 図3に示す蓋組立体の組立手順を説明する断面図。Sectional drawing explaining the assembly procedure of the cover assembly shown in FIG. 図3に示す蓋組立体の組立手順を説明する断面図。Sectional drawing explaining the assembly procedure of the cover assembly shown in FIG. 図2に示す二次電池の電極体の分解斜視図。The disassembled perspective view of the electrode body of the secondary battery shown in FIG. 本発明の実施形態2に係る二次電池の蓋組立体の外観斜視図。The external appearance perspective view of the cover assembly of the secondary battery which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る二次電池の正極外部端子近傍の拡大断面図。The expanded sectional view of the positive electrode external terminal vicinity of the secondary battery which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る二次電池の負極外部端子近傍の拡大断面図。The expanded sectional view of the negative electrode external terminal vicinity of the secondary battery which concerns on Embodiment 3 of this invention.

以下、本発明の二次電池の実施形態について図面を参照して詳細に説明する。なお、本発明の理解を容易にするために、図面における各部の縮尺を適宜変更する場合がある。また、以下の説明における上下左右は、各部材の位置関係を説明する便宜的な方向であり、必ずしも鉛直方向や水平方向に対応するものではない。   Hereinafter, embodiments of a secondary battery of the present invention will be described in detail with reference to the drawings. In addition, in order to make an understanding of this invention easy, the reduced scale of each part in drawing may be changed suitably. In the following description, up, down, left, and right are convenient directions for explaining the positional relationship between the members, and do not necessarily correspond to the vertical direction or the horizontal direction.

[実施形態1]
図1は、本発明の実施形態1に係る二次電池100の外観斜視図である。図2は、図1に示す二次電池100の分解斜視図である。詳細は後述するが、本実施形態の二次電池100は、正極集電板40Pから電池容器10へ移動する単位時間の熱量q1が、負極集電板40Nから電池容器10へ移動する単位時間の熱量q2よりも多くなるように、各集電板40と電池容器10との間の絶縁部材1,2(図3参照)が異なる構成を有することを最大の特徴としている。
[Embodiment 1]
FIG. 1 is an external perspective view of a secondary battery 100 according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view of the secondary battery 100 shown in FIG. Although details will be described later, in the secondary battery 100 of the present embodiment, the amount of heat q1 per unit time for moving from the positive electrode current collector plate 40P to the battery container 10 is the unit time for moving from the negative electrode current collector plate 40N to the battery container 10. The greatest feature is that the insulating members 1 and 2 (see FIG. 3) between the current collector plates 40 and the battery container 10 have different configurations so as to be greater than the amount of heat q2.

電池容器10は、上部に開口部11dを有する有底角筒状の電池缶11と、電池缶11の開口部11dを閉塞する電池蓋12とを備え、電極体30を収容している。電池容器10は、例えばアルミニウム又はアルミニウム合金によって製作することができ、電池缶11は、これらの材料を、例えば深絞り加工することによって製作することができる。電池缶11は、概ね長方形平板状の底壁11bと、底壁11bの長手方向に沿う一対の矩形の広側壁11aと、底壁11bの短手方向に沿う一対の矩形の狭側壁11cとを有している。   The battery container 10 includes a bottomed rectangular tube-shaped battery can 11 having an opening 11 d at the top, and a battery lid 12 that closes the opening 11 d of the battery can 11, and accommodates an electrode body 30. The battery container 10 can be manufactured by, for example, aluminum or an aluminum alloy, and the battery can 11 can be manufactured by, for example, deep-drawing these materials. The battery can 11 includes a generally rectangular flat bottom wall 11b, a pair of rectangular wide side walls 11a along the longitudinal direction of the bottom wall 11b, and a pair of rectangular narrow side walls 11c along the short direction of the bottom wall 11b. Have.

電池蓋12は、平面形状が概ね長方形の平板状の部材であり、例えばレーザ溶接によって電池缶11の開口部11dの全周に亘って接合されることで、電池缶11の開口部11dを閉塞している。電池蓋12は、長手方向の両端部にそれぞれ外部端子20と集電板40とが組み付けられて蓋組立体50を構成している。電池蓋12は、長手方向の中間部にガス排出弁13及び注液口14が設けられている。   The battery lid 12 is a flat plate member having a substantially rectangular planar shape. For example, the battery lid 12 is joined over the entire circumference of the opening 11d of the battery can 11 by laser welding, thereby closing the opening 11d of the battery can 11. doing. The battery lid 12 constitutes a lid assembly 50 by assembling an external terminal 20 and a current collector plate 40 at both ends in the longitudinal direction. The battery lid 12 is provided with a gas discharge valve 13 and a liquid injection port 14 at an intermediate portion in the longitudinal direction.

ガス排出弁13は、例えば、電池蓋12をプレス加工して薄肉化し、又は薄膜状の部材を電池蓋12に設けた開口にレーザ溶接等によって接合することによって形成されている。ガス排出弁13は、電池容器10の内圧が所定の圧力を超えて上昇したときに開裂して電池容器10の内圧を低減する。注液口14は、電池缶11を電池蓋12によって閉塞した電池容器10内に非水電解液を注入するために設けられ、非水電解液の注入後に、例えばレーザ溶接によって注液栓15を接合することによって封止される。   The gas discharge valve 13 is formed by, for example, pressing the battery lid 12 to make it thin, or joining a thin film member to an opening provided in the battery lid 12 by laser welding or the like. The gas discharge valve 13 is cleaved when the internal pressure of the battery container 10 rises above a predetermined pressure to reduce the internal pressure of the battery container 10. The liquid injection port 14 is provided for injecting the non-aqueous electrolyte into the battery container 10 in which the battery can 11 is closed by the battery lid 12. After the non-aqueous electrolyte is injected, the injection plug 15 is inserted by, for example, laser welding. It is sealed by joining.

図3は、図2に示す蓋組立体50の分解斜視図である。図4は、図3に示す負極外部端子20Nとその周辺の部材を電池蓋12の長手方向に平行なIV-IV線に沿って切断した拡大断面図である。なお、本実施形態の二次電池100は、正極外部端子20P及び正極集電板40Pと、負極外部端子20N及び負極集電板40Nとが、概ね鏡像対称の構成を有している。したがって、以下では、図4に示す負極外部端子20Nの各構成について詳細に説明し、正極外部端子20Pの各構成についての説明を適宜省略する。   3 is an exploded perspective view of the lid assembly 50 shown in FIG. 4 is an enlarged cross-sectional view of the negative electrode external terminal 20N and its peripheral members shown in FIG. 3 cut along a line IV-IV parallel to the longitudinal direction of the battery cover 12. As shown in FIG. In the secondary battery 100 of the present embodiment, the positive electrode external terminal 20P and the positive electrode current collector plate 40P, and the negative electrode external terminal 20N and the negative electrode current collector plate 40N have a substantially mirror image configuration. Therefore, below, each structure of the negative electrode external terminal 20N shown in FIG. 4 is demonstrated in detail, and the description about each structure of the positive electrode external terminal 20P is abbreviate | omitted suitably.

蓋組立体50は、主に、一対の外部端子20と、電池蓋12と、一対の絶縁部材1,2と、一対の集電板40とによって構成されている。一対の外部端子20は、電池容器10の一部である電池蓋12に設けられ、一方は正極外部端子20Pであり、他方は負極外部端子20Nである。各外部端子20は、端子部21と、外部絶縁体22と、接続部材23と、ガスケット24とを有している。   The lid assembly 50 mainly includes a pair of external terminals 20, a battery lid 12, a pair of insulating members 1 and 2, and a pair of current collector plates 40. The pair of external terminals 20 is provided on the battery lid 12 which is a part of the battery case 10, and one is a positive external terminal 20P and the other is a negative external terminal 20N. Each external terminal 20 includes a terminal portion 21, an external insulator 22, a connection member 23, and a gasket 24.

正極外部端子20Pの端子部21及び接続部材23の材質は、例えばアルミニウム又はアルミニウム合金であり、負極外部端子20Nの端子部21及び接続部材23の材質は、例えば銅又は銅合金である。外部絶縁体22の材質は、例えばポリプロピレン(PP)等の絶縁性を有する樹脂であり、ガスケット24の材質は、例えばテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等の絶縁性を有する樹脂である。   The material of the terminal portion 21 and the connection member 23 of the positive external terminal 20P is, for example, aluminum or an aluminum alloy, and the material of the terminal portion 21 and connection member 23 of the negative external terminal 20N is, for example, copper or a copper alloy. The material of the external insulator 22 is an insulating resin such as polypropylene (PP), for example, and the material of the gasket 24 is an insulating material such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA). Resin.

端子部21は、電池蓋12の長手方向を長辺方向とする概ね長方形の板状の部材である。端子部21は、中央部に設けられた円形の貫通孔21aと、電池蓋12に対向する下面に設けられた凹部21bと、該凹部21bに隣接して設けられた一対の溝部21cとを有している。貫通孔21aは、凹部21bに係合する接続部材23の穴23dと連通する位置に設けられている。凹部21bは、端子部21に対向する接続部材23の上面の形状に対応する円形状に形成され、接続部材23のフランジ部23bの一部を係合させる。   The terminal portion 21 is a substantially rectangular plate-like member whose long side is the longitudinal direction of the battery lid 12. The terminal portion 21 has a circular through hole 21a provided in the center portion, a concave portion 21b provided on the lower surface facing the battery lid 12, and a pair of groove portions 21c provided adjacent to the concave portion 21b. doing. The through hole 21a is provided at a position communicating with the hole 23d of the connection member 23 that engages with the recess 21b. The recess 21 b is formed in a circular shape corresponding to the shape of the upper surface of the connection member 23 facing the terminal portion 21, and engages a part of the flange portion 23 b of the connection member 23.

溝部21cは、端子部21の長辺方向において凹部21bの両側に設けられ、端子部21の短辺方向に端子部21を横断するように延在している。溝部21cは、端子部21の上面に溶接接合されるバスバーB(図5C参照)の溶接部Bwと凹部21bとの間に設けられる。端子部21は、上面にバスバーBから圧力が作用した場合に、溝部21cにおいて折れ曲がることによってガスケット24に作用する圧力を緩和し、ガスケット24の変形を抑制する。   The groove portion 21 c is provided on both sides of the recess portion 21 b in the long side direction of the terminal portion 21, and extends so as to cross the terminal portion 21 in the short side direction of the terminal portion 21. The groove 21c is provided between the welded portion Bw and the recessed portion 21b of the bus bar B (see FIG. 5C) that is welded to the upper surface of the terminal portion 21. When pressure is applied from the bus bar B to the upper surface of the terminal portion 21, the terminal portion 21 is bent at the groove portion 21c to relieve the pressure acting on the gasket 24 and suppress deformation of the gasket 24.

外部絶縁体22は、端子部21と電池蓋12との間に配置されてこれらを電気的に絶縁する。外部絶縁体22は、中央部に設けられた円形の貫通孔22aと、端子部21と対向する面に設けられた凹部22bと、電池蓋12と対向する面に設けられた一対の係合凹部22cとを有している。貫通孔22aは、接続部材23を挿通させて、内側に接続部材23のフランジ部23bと、ガスケット24のフランジ部24bとを配置する。凹部22bは、内側に端子部21を係合させて保持する。係合凹部22cは、電池蓋12に設けられた円柱状の突起部12bと係合し、外部絶縁体22を電池蓋12上に位置決めする。   The external insulator 22 is disposed between the terminal portion 21 and the battery lid 12 to electrically insulate them. The external insulator 22 includes a circular through hole 22a provided at the center, a recess 22b provided on the surface facing the terminal portion 21, and a pair of engagement recesses provided on the surface facing the battery lid 12. 22c. The through hole 22 a is inserted through the connection member 23, and the flange portion 23 b of the connection member 23 and the flange portion 24 b of the gasket 24 are disposed inside. The recess 22b engages and holds the terminal portion 21 inside. The engaging recess 22 c engages with a cylindrical protrusion 12 b provided on the battery lid 12, and positions the external insulator 22 on the battery lid 12.

接続部材23は、軸部23aと、軸部23aの一端に設けられたフランジ部23bと、軸部23aの他端に設けられた円筒部23cと、フランジ部23bの中央部に設けられた穴23dと、円筒部23cに設けられた穴23eとを有する。軸部23aは円柱状に設けられ、フランジ部23bは端子部21側の端部に円盤状に設けられ、円筒部23cは軸部23aの集電板40側の端部に円筒状に設けられている。   The connecting member 23 includes a shaft portion 23a, a flange portion 23b provided at one end of the shaft portion 23a, a cylindrical portion 23c provided at the other end of the shaft portion 23a, and a hole provided in a central portion of the flange portion 23b. 23d and a hole 23e provided in the cylindrical portion 23c. The shaft portion 23a is provided in a columnar shape, the flange portion 23b is provided in a disk shape at the end portion on the terminal portion 21 side, and the cylindrical portion 23c is provided in a cylindrical shape at the end portion on the current collector plate 40 side of the shaft portion 23a. ing.

ガスケット24は、円筒状の円筒部24aと、円筒部24aの端子部21側の端部に設けられたフランジ部24bと、接続部材23を挿通させる貫通孔24cとを有する。ガスケット24は、フランジ部24bが接続部材23のフランジ部23bと電池蓋12の上面との間に配置され、円筒部24aが接続部材23の軸部23aと電池蓋12の貫通孔12aとの間に配置されて、接続部材23と電池蓋12とを電気的に絶縁する。   The gasket 24 has a cylindrical cylindrical portion 24a, a flange portion 24b provided at an end portion of the cylindrical portion 24a on the terminal portion 21 side, and a through hole 24c through which the connecting member 23 is inserted. In the gasket 24, the flange portion 24 b is disposed between the flange portion 23 b of the connection member 23 and the upper surface of the battery lid 12, and the cylindrical portion 24 a is disposed between the shaft portion 23 a of the connection member 23 and the through hole 12 a of the battery lid 12. The connection member 23 and the battery lid 12 are electrically insulated from each other.

電池蓋12は、長手方向の両端部に設けられた貫通孔12aと、外部絶縁体22に対向する上面に貫通孔12aに隣接して設けられた突起部12bと、絶縁部材2に対向する下面に突起部12bに対応して設けられた係合凹部12cとを有する。貫通孔12aは、接続部材23の軸部23a及びガスケット24の円筒部24aを挿通させる円筒状に形成されている。突起部12bは、外部絶縁体22の係合凹部22cに係合する円柱状に形成されている。係合凹部12cは、絶縁部材2の突起部2bを係合させる有底円筒状に形成されている。また、電池蓋12の上面の貫通孔12aの周囲には、環状の溝部12dが形成されている。   The battery lid 12 includes through holes 12 a provided at both ends in the longitudinal direction, a protrusion 12 b provided adjacent to the through hole 12 a on the upper surface facing the external insulator 22, and a lower surface facing the insulating member 2. And an engaging recess 12c provided corresponding to the protrusion 12b. The through hole 12 a is formed in a cylindrical shape through which the shaft portion 23 a of the connection member 23 and the cylindrical portion 24 a of the gasket 24 are inserted. The protruding portion 12 b is formed in a columnar shape that engages with the engaging recess 22 c of the external insulator 22. The engagement recess 12 c is formed in a bottomed cylindrical shape that engages the protrusion 2 b of the insulating member 2. In addition, an annular groove 12 d is formed around the through hole 12 a on the upper surface of the battery lid 12.

一対の集電板40のうち、正極集電板40Pは、例えばアルミニウム又はアルミニウム合金によって製作され、負極集電板40Nは、例えば銅又は銅合金によって製作されている。各集電板40は、電池蓋12に略平行に配置される基部41と、電極体30を構成する電極に接続される一対の接続片42と、を備えている。   Of the pair of current collector plates 40, the positive electrode current collector plate 40P is made of, for example, aluminum or an aluminum alloy, and the negative electrode current collector plate 40N is made of, for example, copper or a copper alloy. Each current collecting plate 40 includes a base portion 41 disposed substantially parallel to the battery lid 12 and a pair of connection pieces 42 connected to electrodes constituting the electrode body 30.

集電板40の基部41は、電池蓋12の長手方向を長辺方向、電池蓋12の短手方向を短辺方向とする概ね長方形板状に形成され、外部端子20の接続部材23を挿通させる貫通孔41aを有している。集電板40の接続片42は、電池蓋12の長手方向端部側の基部41の長手方向端部に設けられ、基部41の短手方向の両側から下方へ曲折され、電池缶11の広側壁11aに沿って電池缶11の底壁11bへ向けて垂下する一対の板状に形成されている。各集電板40の基部41と電池蓋12との間には、それぞれ絶縁部材1,2が配置され、集電板40が電池蓋12に対して電気的に絶縁されている。   The base 41 of the current collector plate 40 is formed in a substantially rectangular plate shape with the long side direction of the battery lid 12 as the long side direction and the short side direction of the battery lid 12 as the short side direction, and is inserted through the connection member 23 of the external terminal 20. A through hole 41a is provided. The connection piece 42 of the current collector plate 40 is provided at the longitudinal end of the base 41 on the longitudinal end of the battery lid 12, and is bent downward from both sides in the short direction of the base 41, so that the battery can 11 is widened. It forms in a pair of plate shape which hangs down toward the bottom wall 11b of the battery can 11 along the side wall 11a. Insulating members 1 and 2 are disposed between the base 41 of each current collector plate 40 and the battery lid 12, respectively, and the current collector plate 40 is electrically insulated from the battery lid 12.

ここで、正極外部端子20Pを電極体30に接続する正極集電板40Pを第1集電板とし、負極外部端子20Nを電極体30に接続する負極集電板40Nを第2集電板とすると、第1集電板は、第2集電板よりも単位時間の発熱量が多い構成を有している。より具体的には、本実施形態の二次電池100において、第1集電板である正極集電板40Pの金属材料の抵抗率は、第2集電板である負極集電板40Nの金属材料の抵抗率よりも高い。   Here, the positive electrode current collector plate 40P connecting the positive electrode external terminal 20P to the electrode body 30 is a first current collector plate, and the negative electrode current collector plate 40N connecting the negative electrode external terminal 20N to the electrode body 30 is a second current collector plate. Then, the first current collector plate has a configuration that generates more heat per unit time than the second current collector plate. More specifically, in the secondary battery 100 of the present embodiment, the resistivity of the metal material of the positive electrode current collector plate 40P, which is the first current collector plate, is the metal of the negative electrode current collector plate 40N, which is the second current collector plate. Higher than material resistivity.

すなわち、第1集電板である正極集電板40Pの材質がアルミニウムである場合、その抵抗率ρpは、ρp=2.65×10−8[Ωm]である。第2集電板である負極集電板40Nの材質が銅である場合、その抵抗率ρnは、ρn=1.68×10−8[Ωm]である。各集電板40の寸法が同一である場合、電流経路の断面積S及び長さLは等しくなるため、正極集電板40Pの抵抗Rp及び負極集電板40Nの抵抗Rnは、それぞれ以下の式(1)及び(2)で表すことができる。 That is, when the material of the positive electrode current collector plate 40P as the first current collector plate is aluminum, the resistivity ρp is ρp = 2.65 × 10 −8 [Ωm]. When the material of the negative electrode current collector plate 40N as the second current collector plate is copper, the resistivity ρn is ρn = 1.68 × 10 −8 [Ωm]. When the dimensions of the current collector plates 40 are the same, the cross-sectional area S and the length L of the current path are equal. Therefore, the resistance Rp of the positive current collector 40P and the resistance Rn of the negative current collector 40N are as follows: It can represent with Formula (1) and (2).

Rp=ρp×(L/S) …(1)
Rn=ρn×(L/S) …(2)
Rp = ρp × (L / S) (1)
Rn = ρn × (L / S) (2)

したがって、各集電板40に流れる電流Iが等しいとすると、正極集電板40Pの単位時間の発熱量Qp及び負極集電板40Nの単位時間の発熱量Qnは、それぞれ以下の式(3)及び(4)で表すことができる。また、第1集電板である正極集電板40Pの単位時間の発熱量Qpと、第2集電板である負極集電板40Nの単位時間の発熱量Qnの比Qp/Qnは、以下の式(5)で表すことができる。   Therefore, assuming that the currents I flowing through the current collector plates 40 are equal, the calorific value Qp per unit time of the positive electrode current collector plate 40P and the calorific value Qn per unit time of the negative electrode current collector plate 40N are respectively expressed by the following equations (3). And (4). Further, the ratio Qp / Qn of the calorific value Qp per unit time of the positive current collector plate 40P which is the first current collector and the calorific value Qn per unit time of the negative current collector 40N which is the second current collector is as follows: (5).

Qp=I×Rp …(3)
Qn=I×Rn …(4)
Qp/Qn=ρp/ρn=1.58 …(5)
Qp = I 2 × Rp (3)
Qn = I 2 × Rn (4)
Qp / Qn = ρp / ρn = 1.58 (5)

すなわち、正極集電板40Pの材質がアルミニウムであり、負極集電板40Nの材質が銅である場合、第1集電板である正極集電板40Pは、第2集電板である負極集電板40Nの単位時間の発熱量Qnよりも、概ね1.58倍程度、単位時間の発熱量Qpが多い構成を有することになる。なお、25℃におけるアルミニウムの物理的性質は、例えば、熱伝導率が約236[W/(mK)]、比熱が約913[J/(kg・K)]、密度が約2700[kg/m]である。また、25℃における銅の物理的性質は、例えば、熱伝導率が約350[W/(m・K)]、比熱が約385[J/(kg・K)]、密度が約8900[kg/m]である。 That is, when the material of the positive electrode current collector plate 40P is aluminum and the material of the negative electrode current collector plate 40N is copper, the positive electrode current collector plate 40P that is the first current collector plate is the negative electrode current collector plate that is the second current collector plate. The heat generation amount Qn per unit time of the electric plate 40N is about 1.58 times larger and the heat generation amount Qp per unit time is larger. The physical properties of aluminum at 25 ° C. include, for example, a thermal conductivity of about 236 [W / (mK)], a specific heat of about 913 [J / (kg · K)], and a density of about 2700 [kg / m. 3 ]. The physical properties of copper at 25 ° C. include, for example, a thermal conductivity of about 350 [W / (m · K)], a specific heat of about 385 [J / (kg · K)], and a density of about 8900 [kg]. / M 3 ].

本実施形態の二次電池100は、各集電板40と電池蓋12との間にそれぞれ絶縁部材1,2を有している。絶縁部材1,2は、集電板40と電池蓋12との間に配置され、一方の面が集電板40の基部41と熱伝達可能に接し、他方の面が電池蓋12と熱伝達可能に接し、集電板40と電池蓋12とを電気的に絶縁する。本実施形態の二次電池100の二次電池では、第1集電板である正極集電板40Pと電池容器10の電池蓋12との間に配置された絶縁部材1を第1絶縁部材とし、第2集電板である負極集電板40Nと電池容器10の電池蓋12との間に配置された絶縁部材2を第2絶縁部材とする。   The secondary battery 100 of the present embodiment includes insulating members 1 and 2 between the current collector plates 40 and the battery lid 12, respectively. The insulating members 1 and 2 are disposed between the current collector plate 40 and the battery lid 12, one surface is in contact with the base 41 of the current collector plate 40 so that heat can be transferred, and the other surface is heat transferred to the battery lid 12. The current collector plate 40 and the battery lid 12 are electrically insulated from each other. In the secondary battery of the secondary battery 100 of the present embodiment, the insulating member 1 disposed between the positive current collector plate 40P, which is the first current collector plate, and the battery lid 12 of the battery container 10 is used as the first insulating member. The insulating member 2 disposed between the negative electrode current collector plate 40N, which is the second current collector plate, and the battery lid 12 of the battery container 10 is referred to as a second insulating member.

本実施形態の二次電池100は、第1絶縁部材と第2絶縁部材とが、異なる構成、すなわち、第1絶縁部材を介して第1集電板から電池容器10へ移動する単位時間の熱量が第2絶縁部材を介して第2集電板から電池容器10へ移動する単位時間の熱量よりも多い、異なる構成を有することを最大の特徴としている。換言すると、二次電池100は、正極側の絶縁部材1と負極側の絶縁部材2とが、絶縁部材1を介して正極集電板40Pから電池蓋12へ移動する単位時間の熱量q1[W]が絶縁部材2を介して負極集電板40Nから電池蓋12へ移動する単位時間の熱量q2[W]よりも多い、異なる構成を有している。   In the secondary battery 100 of this embodiment, the first insulating member and the second insulating member have different configurations, that is, the amount of heat per unit time that moves from the first current collector plate to the battery container 10 via the first insulating member. Is characterized by having a different configuration that is greater than the amount of heat per unit time that travels from the second current collector plate to the battery container 10 via the second insulating member. In other words, in the secondary battery 100, the amount of heat q1 [W] per unit time in which the positive-side insulating member 1 and the negative-side insulating member 2 move from the positive current collector plate 40P to the battery lid 12 via the insulating member 1. ] Has a different configuration than the amount of heat q2 [W] per unit time that moves from the negative electrode current collector plate 40N to the battery lid 12 via the insulating member 2.

より具体的には、本実施形態の二次電池100において、第1絶縁部材である正極側の絶縁部材1の熱抵抗率1/λpは、第2絶縁部材である負極側の絶縁部材2の熱抵抗率1/λnよりも低い。より詳細には、第1絶縁部材である絶縁部材1の材質は、例えば、熱伝導率λpが約0.5[W/(mK)]程度、熱抵抗率1/λpが約2.0[mK/W]程度のポリエチレンであり、第2絶縁部材である絶縁部材2の材質は、例えば、熱伝導率λnが約0.1[W/(mK)]程度、熱抵抗率1/λnが約10.0[mK/W]程度のポリプロピレンである。   More specifically, in the secondary battery 100 of the present embodiment, the thermal resistivity 1 / λp of the positive-side insulating member 1 that is the first insulating member is that of the negative-side insulating member 2 that is the second insulating member. Thermal resistivity is lower than 1 / λn. More specifically, the material of the insulating member 1 as the first insulating member is, for example, a thermal conductivity λp of about 0.5 [W / (mK)] and a thermal resistivity 1 / λp of about 2.0 [W / (mK)]. The material of the insulating member 2 which is polyethylene of about mK / W] and the second insulating member is, for example, a thermal conductivity λn of about 0.1 [W / (mK)], and a thermal resistivity 1 / λn. It is a polypropylene of about 10.0 [mK / W].

各集電板40から絶縁部材1,2を介して電池蓋12に移動する単位時間当たりの熱量q1,q2[W]は、絶縁部材1,2の伝熱面積をそれぞれAp,An[m]、絶縁部材1,2の厚さをそれぞれtp,tn[m]、各集電板40と電池蓋12との温度差をそれぞれΔKp,ΔKn[K]とすると、以下の式(6)及び(7)で表すことができる。 The amount of heat q1, q2 [W] per unit time moving from each current collecting plate 40 to the battery lid 12 via the insulating members 1, 2 is Ap, An [m 2]. ], The thicknesses of the insulating members 1 and 2 are tp and tn [m], respectively, and the temperature differences between the current collectors 40 and the battery lid 12 are ΔKp and ΔKn [K], respectively, (7).

q1=λp×(ΔKp/tp)×Ap …(6)
q2=λn×(ΔKn/tn)×An …(7)
q1 = λp × (ΔKp / tp) × Ap (6)
q2 = λn × (ΔKn / tn) × An (7)

本実施形態の二次電池100において、絶縁部材1,2は、同一の形状及び寸法に形成されている。すなわち、絶縁部材1,2は、厚さtp,tnが等しく、長手方向の寸法すなわち長さlp,lnが等しく、短手方向の寸法すなわち幅wp,wnが等しく、集電板40及び電池蓋12に接する伝熱面積Ap,Anが等しい。したがって、絶縁部材1,2を介して電池蓋12に移動する単位時間の熱量q1,q2[W]の比q1/q2は、以下の式(8)で表すことができる。   In the secondary battery 100 of the present embodiment, the insulating members 1 and 2 are formed in the same shape and dimensions. That is, the insulating members 1 and 2 have the same thicknesses tp and tn, the same dimension in the longitudinal direction, that is, the lengths lp and ln, and the same dimension in the lateral direction, that is, the widths wp and wn. Heat transfer areas Ap and An in contact with 12 are equal. Therefore, the ratio q1 / q2 of the calorie q1, q2 [W] per unit time moving to the battery lid 12 via the insulating members 1, 2 can be expressed by the following formula (8).

q1/q2=(λp/λn)×(ΔKp/ΔKn)=5.0×ΔKp/ΔKn…(8)   q1 / q2 = (λp / λn) × (ΔKp / ΔKn) = 5.0 × ΔKp / ΔKn (8)

したがって、仮に、各集電板40と電池蓋12との温度差ΔKp,ΔKnが等しいとすると、絶縁部材1を介して電池蓋12に移動する単位時間の熱量q1[W]は、絶縁部材2を介して電池蓋12に移動する単位時間の熱量q2[W]の5倍程度多くなる。また、正極集電板40Pと電池蓋12との温度差ΔKpが負極集電板40Nと電池蓋12との温度差ΔKnよりも大きい場合、絶縁部材1を介して電池蓋12に移動する単位時間の熱量q1[W]は、絶縁部材2を介して電池蓋12に移動する単位時間の熱量q2[W]の5倍よりも多くなる。   Therefore, if the temperature differences ΔKp and ΔKn between the current collector plates 40 and the battery lid 12 are equal, the amount of heat q1 [W] per unit time moving to the battery lid 12 via the insulating member 1 is equal to the insulating member 2. The amount of heat q2 [W] per unit time of movement to the battery lid 12 via the battery increases by about 5 times. Further, when the temperature difference ΔKp between the positive electrode current collector plate 40P and the battery lid 12 is larger than the temperature difference ΔKn between the negative electrode current collector plate 40N and the battery lid 12, the unit time for moving to the battery lid 12 via the insulating member 1 The amount of heat q1 [W] is greater than five times the amount of heat q2 [W] per unit time moving to the battery lid 12 via the insulating member 2.

絶縁部材2は、平面視で電池蓋12の長手方向を長辺方向、電池蓋12の短手方向を短辺方向とする概ね長方形の板状の部材である。絶縁部材2は、中央部に設けられた貫通孔2aと、電池蓋12に接する面に設けられた突起部2bと、集電板40の基部41に接する面に設けられた係合凸部2cとを有している。   The insulating member 2 is a substantially rectangular plate-like member in which the longitudinal direction of the battery lid 12 is a long side direction and the short side direction of the battery lid 12 is a short side direction in a plan view. The insulating member 2 includes a through hole 2a provided in the center, a protrusion 2b provided on a surface in contact with the battery lid 12, and an engagement convex portion 2c provided on a surface in contact with the base 41 of the current collector plate 40. And have.

貫通孔2aは、接続部材23の軸部23a及びガスケット24の円筒部24aを挿通させる円形状に設けられている。突起部2bは、電池蓋12の係合凹部12cに係合する円柱状に形成されている。係合凸部2cは、絶縁部材2を短手方向に横断するように延在し、絶縁部材2の長手方向に間隔を開けて設けられた一対の係合凸部2cの間に、集電板40の基部41を係合させるように設けられている。   The through hole 2 a is provided in a circular shape through which the shaft portion 23 a of the connection member 23 and the cylindrical portion 24 a of the gasket 24 are inserted. The protrusion 2 b is formed in a columnar shape that engages with the engagement recess 12 c of the battery lid 12. The engaging convex portion 2c extends so as to cross the insulating member 2 in the lateral direction, and a current collector is provided between a pair of engaging convex portions 2c provided at intervals in the longitudinal direction of the insulating member 2. It is provided so that the base 41 of the board 40 may be engaged.

次に、図3に示す蓋組立体50の組立手順について説明する。図5A、図5B及び図5Cは、蓋組立体50の組立手順を説明する工程図である。負極外部端子20N及び負極集電板40Nとは、鏡像対称の構成を有している。そのため、以下では、図4に示す負極外部端子20N側の各構成の組立手順について詳細に説明し、正極外部端子20P側の各構成の組立手順についての説明を適宜省略する。   Next, the assembly procedure of the lid assembly 50 shown in FIG. 3 will be described. 5A, 5B, and 5C are process diagrams for explaining an assembly procedure of the lid assembly 50. FIG. The negative electrode external terminal 20N and the negative electrode current collector plate 40N have a mirror image symmetric configuration. Therefore, in the following, the assembly procedure of each component on the negative electrode external terminal 20N side shown in FIG. 4 will be described in detail, and the description of the assembly procedure of each component on the positive electrode external terminal 20P side will be omitted as appropriate.

まず、図5Aに示すように、端子部21の下面の凹部21bに接続部材23のフランジ部23bを係合させ、凹部21bの周縁部とフランジ部23bの周縁部との間を、例えばレーザ溶接によって接合し、端子部21と接続部材23とを電気的に接続する。次に、図5Bに示すように、外部絶縁体22の凹部22bに端子部21を嵌め込んで、接続部材23のフランジ部23bを外部絶縁体22の貫通孔22aの内側に配置するとともに、接続部材23をガスケット24の貫通孔24cに挿通させる。   First, as shown in FIG. 5A, the flange portion 23b of the connecting member 23 is engaged with the concave portion 21b on the lower surface of the terminal portion 21, and laser welding is performed between the peripheral portion of the concave portion 21b and the peripheral portion of the flange portion 23b. And the terminal portion 21 and the connection member 23 are electrically connected. Next, as shown in FIG. 5B, the terminal portion 21 is fitted into the recess 22b of the external insulator 22, and the flange portion 23b of the connecting member 23 is disposed inside the through hole 22a of the external insulator 22 and connected. The member 23 is inserted through the through hole 24 c of the gasket 24.

その状態で、接続部材23を電池蓋12の貫通孔12aに挿入し、電池蓋12の突起部12bを外部絶縁体22の係合凹部22cに係合させ、外部絶縁体22を電池蓋12上に配置するとともに、外部絶縁体22の貫通孔22aの内側にガスケット24電極体30のフランジ部24bを配置する。これにより、外部絶縁体22は、端子部21と電池蓋12との間に配置されてこれらを電気的に絶縁する。また、ガスケット24は、フランジ部24bが接続部材23のフランジ部23bと電池蓋12との間に挟持され、円筒部24aが接続部材23の軸部23aの外周面と電池蓋12の貫通孔12aの内周面との間に配置され、接続部材23と電池蓋12との間を電気的に絶縁する。   In this state, the connection member 23 is inserted into the through hole 12a of the battery lid 12, the protrusion 12b of the battery lid 12 is engaged with the engagement recess 22c of the external insulator 22, and the external insulator 22 is placed on the battery lid 12. And the flange portion 24b of the gasket 24 electrode body 30 is disposed inside the through hole 22a of the external insulator 22. Thereby, the external insulator 22 is arrange | positioned between the terminal part 21 and the battery cover 12, and insulates these electrically. The gasket 24 has a flange portion 24 b sandwiched between the flange portion 23 b of the connection member 23 and the battery lid 12, and a cylindrical portion 24 a has an outer peripheral surface of the shaft portion 23 a of the connection member 23 and a through hole 12 a of the battery lid 12. Between the connecting member 23 and the battery lid 12.

次に、絶縁部材2の貫通孔2aに、電池蓋12の貫通孔12aを貫通した接続部材23の円筒部23cを挿通させ、絶縁部材2の突起部2bを電池蓋12の係合凹部12cに嵌入して係合させる。そして、集電板40の基部41の貫通孔41aに接続部材23の円筒部23cを挿通させ、集電板40の基部41を絶縁部材2の一対の係合凸部2cの間に係合させる。この状態で、金型D1及び金型D2を用いて、接続部材23の円筒部23cを塑性変形させて拡径させ、図5Cに示す円盤状のかしめ部23fを形成する。   Next, the cylindrical portion 23c of the connecting member 23 that passes through the through hole 12a of the battery lid 12 is inserted into the through hole 2a of the insulating member 2, and the protrusion 2b of the insulating member 2 is inserted into the engagement recess 12c of the battery lid 12. Insert and engage. Then, the cylindrical portion 23 c of the connection member 23 is inserted into the through hole 41 a of the base portion 41 of the current collector plate 40, and the base portion 41 of the current collector plate 40 is engaged between the pair of engaging convex portions 2 c of the insulating member 2. . In this state, using the mold D1 and the mold D2, the cylindrical portion 23c of the connecting member 23 is plastically deformed and expanded in diameter to form a disk-shaped caulking portion 23f shown in FIG. 5C.

より詳細には、図5Bに示すように、金型D1の平坦な押圧面を端子部21の上面に当接させ、金型D1の押圧面に設けられた突起D1aを端子部21の貫通孔21a及び接続部材23の穴23dに挿入する。この状態で、金型D2の円錐形の先端部を接続部材23の円筒部23cの穴23eに圧入することで、接続部材23の円筒部23cが外側に押し広げられるように塑性変形して拡径する。このとき、金型D1の突起D1aを端子部21の貫通孔21a及び接続部材23の穴23dに挿入することで、金型D2に対して接続部材23を精度よく位置決めし、円筒部23cを精度よく塑性変形させることができる。   More specifically, as shown in FIG. 5B, the flat pressing surface of the mold D1 is brought into contact with the upper surface of the terminal portion 21, and the protrusion D1a provided on the pressing surface of the mold D1 is inserted into the through hole of the terminal portion 21. 21a and the hole 23d of the connection member 23 are inserted. In this state, the conical tip portion of the mold D2 is press-fitted into the hole 23e of the cylindrical portion 23c of the connection member 23, so that the cylindrical portion 23c of the connection member 23 is plastically deformed and expanded so as to be spread outward. Diameter. At this time, by inserting the protrusion D1a of the mold D1 into the through hole 21a of the terminal portion 21 and the hole 23d of the connection member 23, the connection member 23 is accurately positioned with respect to the mold D2, and the cylindrical portion 23c is accurately positioned. It can be plastically deformed well.

次に、図5Cに示すように、金型D2を金型D3に交換して円盤状のかしめ部23fを形成する。金型D3は、平坦面D3aとその周囲の傾斜面D3bとを有する凹状に形成され、金型D2によって塑性変形した円筒部23cをさらに押圧して塑性変形させ、金型D3に対応する円盤状のかしめ部23fを形成する。これにより、接続部材23の軸部23aと円筒部23cとの間の段部が集電板40の基部41に当接し、ガスケット24のフランジ部24bが適度に圧縮され、電池蓋12の溝部12d内に弾性変形して電池蓋12に密着する。また、電池蓋12と集電板40の基部41との間で絶縁部材2が適度に締め付けられ、電池蓋12と集電板40の基部41に密着する。   Next, as shown in FIG. 5C, the mold D2 is replaced with the mold D3 to form a disk-shaped caulking portion 23f. The mold D3 is formed in a concave shape having a flat surface D3a and an inclined surface D3b around the flat surface D3a. The cylindrical portion 23c plastically deformed by the mold D2 is further pressed and plastically deformed to form a disk shape corresponding to the mold D3. A caulking portion 23f is formed. As a result, the step portion between the shaft portion 23 a and the cylindrical portion 23 c of the connection member 23 abuts on the base portion 41 of the current collector plate 40, the flange portion 24 b of the gasket 24 is appropriately compressed, and the groove portion 12 d of the battery lid 12. It is elastically deformed inward and is in close contact with the battery lid 12. Further, the insulating member 2 is appropriately tightened between the battery lid 12 and the base portion 41 of the current collector plate 40, and is in close contact with the battery lid 12 and the base portion 41 of the current collector plate 40.

かしめ部23fは、集電板40の基部41の下面に接するとともに、周縁部がレーザ溶接によって集電板40の基部41の下面に接合される。これにより、外部端子20の端子部21と集電板40とが、接続部材23を介して電気的に接続される。以上により、外部端子20と集電板40とが電池蓋12に対して電気的に絶縁された状態で互いに電気的に接続され、各部材が電池蓋12に対して一体的に固定されて、蓋組立体50が構成される。蓋組立体50は、図2に示すように、集電板40に電極体30を接合することで、電極体30を電池容器10内に支持する。   The caulking portion 23f is in contact with the lower surface of the base portion 41 of the current collector plate 40, and the peripheral portion is joined to the lower surface of the base portion 41 of the current collector plate 40 by laser welding. Accordingly, the terminal portion 21 of the external terminal 20 and the current collector plate 40 are electrically connected via the connection member 23. As described above, the external terminal 20 and the current collector plate 40 are electrically connected to each other in a state of being electrically insulated from the battery lid 12, and the respective members are integrally fixed to the battery lid 12, A lid assembly 50 is configured. As shown in FIG. 2, the lid assembly 50 supports the electrode body 30 in the battery container 10 by joining the electrode body 30 to the current collector plate 40.

図6は、図2に示す二次電池100の電極体30の巻き終わり側の端部を展開した状態を示す分解斜視図である。電極体30は、長尺帯状の正極電極31と負極電極32とを、長尺帯状のセパレータ33,34を介在させて捲回軸Aを中心に捲回した扁平な捲回電極群である。   FIG. 6 is an exploded perspective view showing a state in which the end portion on the winding end side of the electrode body 30 of the secondary battery 100 shown in FIG. 2 is developed. The electrode body 30 is a flat wound electrode group in which a long strip-like positive electrode 31 and a negative electrode 32 are wound around a winding axis A with long strip-shaped separators 33 and 34 interposed therebetween.

電極体30は、正極電極31及び負極電極32が平坦に積層された一対の平面部30aと、平面部30aの両側で正極電極31及び負極電極32が湾曲して積層された半円筒状の一対の湾曲部30bを有している。一対の湾曲部30bは、電極体30の捲回軸A方向及び厚さ方向に垂直な高さ方向の両側に形成されている。電極体30は、捲回軸Aが電池缶11の底壁11b及び広側壁11aと平行になるように電池缶11内に挿入され、一対の平面部30aが電池缶11の一対の広側壁11aに対向して配置され、一対の湾曲部30bが電池蓋12及び電池缶11の底壁11bに対向して配置される。   The electrode body 30 includes a pair of flat portions 30a in which a positive electrode 31 and a negative electrode 32 are flatly stacked, and a pair of semi-cylindrical shapes in which the positive electrode 31 and the negative electrode 32 are bent and stacked on both sides of the flat portion 30a. It has the curved part 30b. The pair of curved portions 30b are formed on both sides of the electrode body 30 in the height direction perpendicular to the winding axis A direction and the thickness direction. The electrode body 30 is inserted into the battery can 11 such that the winding axis A is parallel to the bottom wall 11 b and the wide side wall 11 a of the battery can 11, and the pair of flat portions 30 a are the pair of wide side walls 11 a of the battery can 11. The pair of curved portions 30 b are disposed to face the battery lid 12 and the bottom wall 11 b of the battery can 11.

セパレータ33,34は、正極電極31と負極電極32との間を絶縁すると共に、最外周に捲回された負極電極32の外側にもセパレータ34が捲回されている。セパレータ33,34は、例えば、ポリオレフィン系の樹脂材料によって製作することができ、具体的には、ポリプロピレン樹脂材料及びポリエチレン樹脂の少なくとも一方を含む多孔質の樹脂材料によって製作されている。   The separators 33 and 34 insulate the positive electrode 31 and the negative electrode 32, and the separator 34 is wound outside the negative electrode 32 wound around the outermost periphery. The separators 33 and 34 can be made of, for example, a polyolefin-based resin material. Specifically, the separators 33 and 34 are made of a porous resin material containing at least one of a polypropylene resin material and a polyethylene resin.

正極電極31は、正極集電体である正極箔31aと、正極箔31aの両面に正極活物質合剤を塗工することによって形成された正極合剤層31bとを有している。正極電極31の幅方向の一側は、正極合剤層31bが形成されない未塗工部であり、正極箔31aが露出した箔露出部31cとされている。正極電極31は、箔露出部31cが負極電極32の箔露出部32cと捲回軸A方向の反対側に配置され、捲回軸Aを中心に捲回されている。   The positive electrode 31 includes a positive electrode foil 31a that is a positive electrode current collector, and a positive electrode mixture layer 31b formed by applying a positive electrode active material mixture on both surfaces of the positive electrode foil 31a. One side in the width direction of the positive electrode 31 is an uncoated portion where the positive electrode mixture layer 31b is not formed, and is a foil exposed portion 31c where the positive foil 31a is exposed. The positive electrode 31 has a foil exposed portion 31c disposed on the opposite side of the winding axis A direction from the foil exposed portion 32c of the negative electrode 32, and is wound around the winding axis A.

正極電極31は、例えば、正極活物質に導電材、結着剤及び分散溶媒を添加して混練した正極活物質合剤を、幅方向の一側を除いて正極箔31aの両面に塗布し、乾燥、プレス、裁断することによって製作することができる。正極箔31aとしては、例えば、厚さが10μmから20μm程度のアルミニウム箔を用いることができる。正極箔31aの厚みを含まない正極合剤層31bの厚さは、例えば、約90μmである。   The positive electrode 31 is, for example, a positive electrode active material mixture kneaded by adding a conductive material, a binder and a dispersion solvent to the positive electrode active material, and applied to both surfaces of the positive electrode foil 31a except for one side in the width direction. It can be produced by drying, pressing and cutting. As the positive electrode foil 31a, for example, an aluminum foil having a thickness of about 10 μm to 20 μm can be used. The thickness of the positive electrode mixture layer 31b not including the thickness of the positive electrode foil 31a is, for example, about 90 μm.

正極活物質合剤の材料としては、例えば、正極活物質として100重量部のマンガン酸リチウム(化学式LiMn)を、導電材として10重量部の鱗片状黒鉛を、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を、分散溶媒としてN−メチルピロリドン(以下、NMPという。)を、それぞれ用いることができる。正極活物質は、前記したマンガン酸リチウムに限定されず、例えば、スピネル結晶構造を有する他のマンガン酸リチウム、一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物を用いてもよい。また、正極活物質として、層状結晶構造を有するコバルト酸リチウムやチタン酸リチウム、及びこれらの一部を金属元素で置換又はドープしたリチウム−金属複合酸化物を用いてもよい。 As a material of the positive electrode active material mixture, for example, 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) is used as the positive electrode active material, 10 parts by weight of flaky graphite as the conductive material, and 10% by weight as the binder. Part of polyvinylidene fluoride (hereinafter referred to as PVDF) and N-methylpyrrolidone (hereinafter referred to as NMP) can be used as a dispersion solvent. The positive electrode active material is not limited to the above-described lithium manganate. For example, another lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element may be used. Further, as the positive electrode active material, lithium cobaltate or lithium titanate having a layered crystal structure, and a lithium-metal composite oxide obtained by substituting or doping a part thereof with a metal element may be used.

負極電極32は、負極集電体である負極箔32aと、負極箔32aの両面に負極活物質合剤を塗工することによって形成された負極合剤層32bとを有している。負極電極32の幅方向の一側は、負極合剤層32bが形成されない未塗工部であり、負極箔32aが露出した箔露出部32cとされている。負極電極32は、箔露出部32cが正極電極31の箔露出部31cと捲回軸A方向の反対側に配置されて、捲回軸Aを中心に捲回されている。   The negative electrode 32 includes a negative electrode foil 32a that is a negative electrode current collector, and a negative electrode mixture layer 32b that is formed by applying a negative electrode active material mixture on both surfaces of the negative electrode foil 32a. One side in the width direction of the negative electrode 32 is an uncoated portion where the negative electrode mixture layer 32b is not formed, and is a foil exposed portion 32c where the negative foil 32a is exposed. The negative electrode 32 is wound around the winding axis A, with the foil exposed portion 32c being disposed on the opposite side of the foil exposed portion 31c of the positive electrode 31 in the winding axis A direction.

負極電極32は、例えば、負極活物質に結着剤及び分散溶媒を添加して混練した負極活物質合剤を、幅方向の一側を除く負極箔32aの両面に塗布し、乾燥、プレス、裁断することによって製作することができる。負極箔32aとしては、例えば、厚さが5μmから10μm程度の銅箔を用いることができる。負極箔32aの厚みを含まない負極合剤層32bの厚さは、例えば、約70μmである。   The negative electrode 32 is, for example, applied to a negative electrode active material mixture kneaded by adding a binder and a dispersion solvent to the negative electrode active material on both sides of the negative electrode foil 32a except one side in the width direction, dried, pressed, It can be produced by cutting. As the negative electrode foil 32a, for example, a copper foil having a thickness of about 5 μm to 10 μm can be used. The thickness of the negative electrode mixture layer 32b not including the thickness of the negative electrode foil 32a is, for example, about 70 μm.

負極活物質合剤の材料としては、例えば、負極活物質として100重量部の非晶質炭素粉末を、結着剤として10重量部のPVDFを、分散溶媒としてNMPをそれぞれ用いることができる。負極活物質は、前記した非晶質炭素に限定されず、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi等)、又はそれらの複合材料を用いてもよい。負極活物質の粒子形状についても特に限定されず、鱗片状、球状、繊維状又は塊状等の粒子形状を適宜選択することができる。 As a material for the negative electrode active material mixture, for example, 100 parts by weight of amorphous carbon powder as the negative electrode active material, 10 parts by weight of PVDF as the binder, and NMP as the dispersion solvent can be used. The negative electrode active material is not limited to the above-mentioned amorphous carbon, and natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, and compounds such as Si and Sn (for example, , SiO, TiSi 2 or the like), or a composite material thereof. The particle shape of the negative electrode active material is not particularly limited, and a particle shape such as a scale shape, a spherical shape, a fiber shape, or a lump shape can be appropriately selected.

なお、前記した正極合剤層31b及び負極合剤層32bに用いる結着材は、PVDFに限定されない。前記した結着材として、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体及びこれらの混合体などを用いてもよい。   The binder used for the positive electrode mixture layer 31b and the negative electrode mixture layer 32b is not limited to PVDF. Examples of the binder include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, and vinyl fluoride. Polymers such as vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof may be used.

電極体30の捲回軸A方向において、負極電極32の負極合剤層32bの幅は、正極電極31の正極合剤層31bの幅よりも広くなっている。また、電極体30の最内周と最外周には負極電極32が捲回されている。これにより、正極合剤層31bは、電極体30の最内周から最外周まで負極合剤層32bの間に挟まれている。   In the direction of the winding axis A of the electrode body 30, the width of the negative electrode mixture layer 32 b of the negative electrode 32 is wider than the width of the positive electrode mixture layer 31 b of the positive electrode 31. A negative electrode 32 is wound around the innermost and outermost periphery of the electrode body 30. Accordingly, the positive electrode mixture layer 31b is sandwiched between the negative electrode mixture layer 32b from the innermost periphery to the outermost periphery of the electrode body 30.

電極体30は、捲回軸A方向の両端部に、集電板40を接合するための電極の箔積層部31d,32dが設けられている。より詳細には、電極体30の捲回軸方向Xの一方の端部に、正極電極31の箔露出部31cが捲回されて積層された正極電極31の箔積層部31dが設けられ、捲回軸方向Xの他方の端部に負極電極32の箔露出部32cが捲回されて積層された負極電極32の箔積層部32dが設けられている。箔積層部31d,32dは、電極体30の厚さ方向において捲回軸Aの一側と他側に二つに分けて束ねられ、例えば、超音波圧接又は抵抗溶接等によって、それぞれ集電板40の一対の接続片42の一方と他方に接合される。   The electrode body 30 is provided with electrode foil laminated portions 31d and 32d for joining the current collector plate 40 to both ends in the winding axis A direction. More specifically, a foil laminated portion 31d of the positive electrode 31 in which the foil exposed portion 31c of the positive electrode 31 is wound and laminated is provided at one end portion in the winding axis direction X of the electrode body 30. A foil laminated portion 32d of the negative electrode 32 is provided at the other end portion in the rotational axis direction X. The foil exposed portion 32c of the negative electrode 32 is wound and laminated. The foil laminated portions 31d and 32d are bundled in two on one side and the other side of the winding axis A in the thickness direction of the electrode body 30, and are each collected by, for example, ultrasonic pressure welding or resistance welding. The pair of 40 connection pieces 42 are joined to one and the other.

ここで、図6に示すように、電極体30の捲回軸A方向において、セパレータ33,34の幅は負極合剤層32bの幅よりも広いが、正極電極31及び負極電極32の箔露出部31c,32cは、それぞれセパレータ33,34の幅方向端部よりも幅方向外側に突出している。したがって、セパレータ33,34は、正極電極31及び負極電極32の箔積層部31d,32dを束ねて集電板40に接合する際の支障にはならない。   Here, as shown in FIG. 6, in the winding axis A direction of the electrode body 30, the widths of the separators 33 and 34 are wider than the width of the negative electrode mixture layer 32 b, but the foils of the positive electrode 31 and the negative electrode 32 are exposed. The portions 31c and 32c protrude outward in the width direction from the end portions in the width direction of the separators 33 and 34, respectively. Therefore, the separators 33 and 34 do not hinder when the foil laminated portions 31 d and 32 d of the positive electrode 31 and the negative electrode 32 are bundled and joined to the current collector plate 40.

以上により、電極体30は、箔積層部31d,32dに接合された集電板40を介して外部端子20に電気的に接続される。より具体的には、電極体30は、正極電極31が正極集電板40Pを介して正極外部端子20Pに電気的に接続され、負極電極32が負極集電板40Nを介して負極外部端子20Nに電気的に接続される。また、電極体30は、集電板40を介して蓋組立体50に固定され、蓋組立体50によって支持される。   As described above, the electrode body 30 is electrically connected to the external terminal 20 via the current collector plate 40 joined to the foil laminate portions 31d and 32d. More specifically, in the electrode body 30, the positive electrode 31 is electrically connected to the positive external terminal 20P via the positive current collector 40P, and the negative electrode 32 is connected to the negative external terminal 20N via the negative current collector 40N. Is electrically connected. The electrode body 30 is fixed to the lid assembly 50 via the current collector plate 40 and supported by the lid assembly 50.

蓋組立体50によって支持された電極体30は、図2に示すように、集電板40とともに、絶縁ケース60によって覆われて電池缶11に対して絶縁された状態で、開口部11dから電池缶11の内部に挿入される。絶縁ケース60の材質は、例えば、ポリプロピレン等の絶縁性を有する樹脂材料である。蓋組立体50は、電池蓋12によって電池缶11の開口部11dを閉塞した状態で、例えばレーザ溶接によって電池蓋12を電池缶11の開口部11dの全周に亘って接合することで、電池容器10内に電極体30を封入する。   As shown in FIG. 2, the electrode body 30 supported by the lid assembly 50 is covered with the current collector plate 40 and covered with the insulating case 60 so as to be insulated from the battery can 11. It is inserted inside the can 11. The material of the insulating case 60 is an insulating resin material such as polypropylene, for example. The lid assembly 50 is formed by joining the battery lid 12 over the entire circumference of the opening 11d of the battery can 11 by, for example, laser welding in a state where the opening 11d of the battery can 11 is closed by the battery lid 12. The electrode body 30 is sealed in the container 10.

その後、電池蓋12の注液口14を介して電池容器10内に非水電解液を注入し、例えばレーザ溶接によって注液口14に注液栓15を接合して電池容器10を密閉する。電池容器10に注入する非水電解液としては、例えば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。 Thereafter, a non-aqueous electrolyte is injected into the battery container 10 through the liquid injection port 14 of the battery lid 12, and the liquid injection plug 15 is joined to the liquid injection port 14 by, for example, laser welding to seal the battery container 10. As the nonaqueous electrolytic solution to be injected into the battery container 10, for example, a nonaqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate organic solvent such as ethylene carbonate is used. be able to.

二次電池100は、図5Cに示すように、外部端子20の端子部21にバスバーBが接合されることで、他の複数の二次電池100と例えば直列に接続される。二次電池100は、外部端子20及び集電板40に供給された外部発電電力を電極体30に蓄積して充電され、電極体30に蓄積された電力を外部端子20から外部機器に供給する。   As illustrated in FIG. 5C, the secondary battery 100 is connected to, for example, a plurality of other secondary batteries 100 in series by joining the bus bar B to the terminal portion 21 of the external terminal 20. The secondary battery 100 is charged by storing the externally generated power supplied to the external terminal 20 and the current collector plate 40 in the electrode body 30, and supplies the power stored in the electrode body 30 to the external device from the external terminal 20. .

ここで、本実施形態の二次電池100は、前述のように、正極集電板40Pの単位時間の発熱量Qpが、負極集電板40Nの単位時間の発熱量Qnよりも多い構成を有している。そのため、二次電池100の充放電時に、正極集電板40Pの温度は、負極集電板40Nの温度よりも上昇しやすい。正極集電板40Pと負極集電板40Nとの間の温度差が拡大すると、これらに接続された電極体30の温度勾配が増大し、電極体30を構成する正極電極31及び負極電極32が劣化する虞がある。   Here, as described above, the secondary battery 100 of the present embodiment has a configuration in which the heat generation amount Qp of the positive electrode current collector plate 40P per unit time is larger than the heat generation amount Qn of the negative electrode current collector plate 40N per unit time. doing. Therefore, at the time of charging / discharging of the secondary battery 100, the temperature of the positive electrode current collector plate 40P tends to rise more than the temperature of the negative electrode current collector plate 40N. When the temperature difference between the positive electrode current collector plate 40P and the negative electrode current collector plate 40N increases, the temperature gradient of the electrode body 30 connected thereto increases, and the positive electrode 31 and the negative electrode 32 constituting the electrode body 30 There is a risk of deterioration.

そこで、本実施形態の二次電池100は、絶縁部材1と絶縁部材2とが、絶縁部材1を介して正極集電板40Pから電池容器10へ移動する単位時間の熱量q1が、絶縁部材2を介して負極集電板40Nから電池容器10へ移動する単位時間の熱量q2よりも多い、異なる構成を有している。これにより、発熱量Qpが多い正極集電板40Pの温度上昇を抑制し、正極集電板40Pと負極集電板40Nとの間の温度差を減少させ、二次電池100の劣化を抑制することができる。   Therefore, in the secondary battery 100 of the present embodiment, the amount of heat q1 per unit time that the insulating member 1 and the insulating member 2 move from the positive electrode current collector plate 40P to the battery container 10 via the insulating member 1 is the insulating member 2. And having a different configuration that is greater than the amount of heat q2 per unit time that moves from the negative electrode current collector plate 40N to the battery case 10. Thereby, the temperature rise of the positive electrode current collector plate 40P having a large calorific value Qp is suppressed, the temperature difference between the positive electrode current collector plate 40P and the negative electrode current collector plate 40N is reduced, and the deterioration of the secondary battery 100 is suppressed. be able to.

また、本実施形態の二次電池100は、絶縁部材1,2を前記のような異なる構成とするために、第1絶縁部材である絶縁部材1の熱抵抗率1/λpが、第2絶縁部材である絶縁部材2の熱抵抗率1/λnよりも低くなるようにしている。このように、絶縁部材1,2を、絶縁部材1を介して放熱する熱量q1が絶縁部材2を介して放熱する熱量q2よりも多い、異なる構成とするために、絶縁部材1,2の材質を異ならせることで、同一の寸法及び形状の絶縁部材1,2を用いることができる。   Further, in the secondary battery 100 of the present embodiment, since the insulating members 1 and 2 have different configurations as described above, the thermal resistivity 1 / λp of the insulating member 1 that is the first insulating member is the second insulating material. It is made to become lower than the thermal resistivity 1 / λn of the insulating member 2 which is a member. Thus, in order to make the insulating members 1 and 2 have different configurations in which the amount of heat q1 radiated through the insulating member 1 is larger than the amount of heat q2 radiated through the insulating member 2, the material of the insulating members 1 and 2 is different. It is possible to use the insulating members 1 and 2 having the same size and shape by making different.

また、本実施形態の二次電池100は、第1絶縁部材である絶縁部材1の熱抵抗率1/λpを、第2絶縁部材である絶縁部材2の熱抵抗率1/λnよりも低くするために、絶縁部材1の材質をポリエチレンとし、絶縁部材2の材質をポリプロピレンとしている。これにより、絶縁部材1,2として通常用いることができる材料によって、発熱量Qpが多い正極集電板40Pの温度上昇を抑制し、正極集電板40Pと負極集電板40Nとの間の温度差を減少させ、二次電池100の劣化を抑制することができる。   Further, in the secondary battery 100 of the present embodiment, the thermal resistivity 1 / λp of the insulating member 1 that is the first insulating member is made lower than the thermal resistivity 1 / λn of the insulating member 2 that is the second insulating member. Therefore, the material of the insulating member 1 is polyethylene, and the material of the insulating member 2 is polypropylene. Thereby, the temperature rise of the positive electrode current collector plate 40P having a large calorific value Qp is suppressed by a material that can be normally used as the insulating members 1 and 2, and the temperature between the positive electrode current collector plate 40P and the negative electrode current collector plate 40N is suppressed. The difference can be reduced and deterioration of the secondary battery 100 can be suppressed.

また、本実施形態の二次電池100は、第1集電板が正極集電板40Pであり、第2集電板が負極集電板40Nであり、正極集電板Pの金属材料の抵抗率ρpは、負極集電板40Nの金属材料の抵抗率ρnよりも高い構成を採用している。そのため、正極集電板Pの材質を通常用いられるアルミニウム又はアルミニウム合金とし、負極集電板40Nの材質を通常用いられる銅又は銅合金とすることができる。   In the secondary battery 100 of the present embodiment, the first current collector plate is the positive electrode current collector plate 40P, the second current collector plate is the negative electrode current collector plate 40N, and the resistance of the metal material of the positive electrode current collector plate P The rate ρp is higher than the resistivity ρn of the metal material of the negative electrode current collector plate 40N. Therefore, the material of the positive electrode current collector plate P can be commonly used aluminum or aluminum alloy, and the material of the negative electrode current collector plate 40N can be generally used copper or copper alloy.

また、前述の特許文献1に記載された蓄電素子は、電池容器に対して正極端子又は負極端子のいずれか一方を電気的に接続していることから、電池容器の電位と外部環境との間の電位差が比較的に大きくなりやすい。そのため、正極端子及び負極端子を電池容器に対して電気的に絶縁する場合と比較して電池容器が腐食しやすくなるという課題がある。これに対し、本実施形態の二次電池100は、電池容器10に対して正極外部端子20P及び負極外部端子20Nの双方を外部絶縁体22及びガスケット24によって絶縁している。したがって、本実施形態の二次電池100によれば、特許文献1の蓄電素子と比較して、電池容器10の腐食を抑制することができる。   Moreover, since the electrical storage element described in the above-mentioned patent document 1 electrically connects either the positive electrode terminal or the negative electrode terminal to the battery container, the potential between the battery container and the external environment is The potential difference is relatively large. Therefore, there exists a subject that a battery container becomes easy to corrode compared with the case where a positive electrode terminal and a negative electrode terminal are electrically insulated with respect to a battery container. On the other hand, in the secondary battery 100 of this embodiment, both the positive external terminal 20P and the negative external terminal 20N are insulated from the battery container 10 by the external insulator 22 and the gasket 24. Therefore, according to the secondary battery 100 of the present embodiment, the corrosion of the battery container 10 can be suppressed as compared with the power storage element of Patent Document 1.

以上説明したように、本実施形態の二次電池100によれば、電極体30の温度勾配を減少させ、正極電極31及び負極電極32の劣化を抑制することができる。   As described above, according to the secondary battery 100 of the present embodiment, the temperature gradient of the electrode body 30 can be reduced and deterioration of the positive electrode 31 and the negative electrode 32 can be suppressed.

[実施形態2]
以下、本発明の実施形態2に係る二次電池について、図1から図6までを援用し、図7を用いて説明する。図7は、本実施形態の蓋組立体50Aを示す斜視図である。
[Embodiment 2]
Hereinafter, the secondary battery according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 7 is a perspective view showing the lid assembly 50A of the present embodiment.

本実施形態の二次電池は、正極集電板40Pの厚さTpが、負極集電板40Nの厚さTnよりも厚く、絶縁部材1と絶縁部材2の配置を逆にしている点で、前述の実施形態1で説明した二次電池100と異なっている。本実施形態の二次電池のその他の点は、前述の実施形態1で説明した二次電池100と同一であるので、同一の部分には同一の符号を付して説明を省略する。   In the secondary battery of this embodiment, the thickness Tp of the positive electrode current collector plate 40P is thicker than the thickness Tn of the negative electrode current collector plate 40N, and the arrangement of the insulating member 1 and the insulating member 2 is reversed. This is different from the secondary battery 100 described in the first embodiment. Since the other points of the secondary battery of the present embodiment are the same as those of the secondary battery 100 described in the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の二次電池において、負極集電板40Nの厚さTnは、正極集電板40Pの厚さTpよりも薄くされ、正極集電板40Pの厚さTpは、負極集電板40Nの厚さTnの1.58倍よりも厚くされている。例えば、正極集電板40Pの厚さTpが、負極集電板40Nの厚さTnの2倍であるとすると、正極集電板40Pにおける電流経路の断面積Sは、負極集電板40Nにおける電流経路の断面積Sの2倍となる。したがって、上記式(1)から(4)に基づいて、負極集電板40Nの単位時間の発熱量Qnと、正極集電板40Pの単位時間の発熱量Qpとの比Qn/Qpは、以下の式(9)で表すことができる。   In the secondary battery of the present embodiment, the thickness Tn of the negative electrode current collector plate 40N is made thinner than the thickness Tp of the positive electrode current collector plate 40P, and the thickness Tp of the positive electrode current collector plate 40P is equal to the negative electrode current collector plate 40N. It is thicker than 1.58 times the thickness Tn. For example, if the thickness Tp of the positive electrode current collector plate 40P is twice the thickness Tn of the negative electrode current collector plate 40N, the cross-sectional area S of the current path in the positive electrode current collector plate 40P is This is twice the cross-sectional area S of the current path. Therefore, based on the above formulas (1) to (4), the ratio Qn / Qp between the calorific value Qn per unit time of the negative electrode current collector plate 40N and the calorific value Qp per unit time of the positive electrode current collector plate 40P is as follows: (9)

Qn/Qp=(ρn/ρp)×2=1.27 …(9)                   Qn / Qp = (ρn / ρp) × 2 = 1.27 (9)

すなわち、正極集電板40Pの材質がアルミニウムであり、負極集電板40Nの材質が銅である場合、負極集電板40Nは、正極集電板40Pの単位時間の発熱量Qpよりも概ね1.27倍程度、単位時間の発熱量Qnが多い構成を有することになる。   That is, when the material of the positive electrode current collector plate 40P is aluminum and the material of the negative electrode current collector plate 40N is copper, the negative electrode current collector plate 40N is approximately 1 than the calorific value Qp per unit time of the positive electrode current collector plate 40P. It has a structure with a large calorific value Qn per unit time of about 27 times.

したがって、本実施形態の二次電池では、前述の実施形態1の二次電池100とは逆に、負極集電板40Nを第1集電板とし、正極集電板40Pを第2集電板とする。すなわち、本実施形態の二次電池において、第1集電板である負極集電板40Nは、第2集電板である正極集電板40Pよりも単位時間の発熱量が多い構成を有している。   Therefore, in the secondary battery of the present embodiment, contrary to the secondary battery 100 of the first embodiment, the negative electrode current collector plate 40N is the first current collector plate, and the positive electrode current collector plate 40P is the second current collector plate. And That is, in the secondary battery of the present embodiment, the negative electrode current collector plate 40N that is the first current collector plate has a configuration that generates more heat per unit time than the positive electrode current collector plate 40P that is the second current collector plate. ing.

また、本実施形態の二次電池では、絶縁部材1と絶縁部材2の配置を置換し、熱抵抗率1/λpが相対的に低い第1絶縁部材としての絶縁部材1を負極集電板40Nと電池蓋12との間に配置し、熱抵抗率1/λnが相対的に高い第2絶縁部材としての絶縁部材2を正極集電板40Pと電池蓋12との間に配置している。   Further, in the secondary battery of this embodiment, the arrangement of the insulating member 1 and the insulating member 2 is replaced, and the insulating member 1 as the first insulating member having a relatively low thermal resistivity 1 / λp is replaced with the negative electrode current collector plate 40N. Between the positive electrode current collector plate 40P and the battery cover 12, the second insulating member having a relatively high thermal resistivity 1 / λn.

すなわち、第1絶縁部材である絶縁部材1と第2絶縁部材である絶縁部材2とは、絶縁部材1を介して第1集電板である負極集電板40Nから電池容器10へ移動する単位時間の熱量q1が、絶縁部材2を介して第2集電板である正極集電板40Pから電池容器10へ移動する単位時間の熱量q2よりも多い、異なる構成を有することになる。   That is, the insulating member 1 that is the first insulating member and the insulating member 2 that is the second insulating member are units that move from the negative current collector plate 40N that is the first current collector plate to the battery case 10 via the insulating member 1. The amount of heat q1 per hour is different from the amount of heat q2 per unit time moving from the positive current collector plate 40P, which is the second current collector plate, to the battery container 10 via the insulating member 2.

したがって、本実施形態の二次電池によれば、実施形態1の二次電池100と同様に、充放電時により高温になりやすい負極集電板40Nから電池容器10へ放熱する熱量q1を、正極集電板40Pから電池容器10へ放熱する熱量q2よりも増加させ、発熱量Qnが多い負極集電板40Nの温度上昇を抑制し、正極集電板40Pと負極集電板40Nとの間の温度差を減少させ、二次電池100の劣化を抑制することができる。   Therefore, according to the secondary battery of the present embodiment, similarly to the secondary battery 100 of the first embodiment, the amount of heat q1 radiated from the negative electrode current collector plate 40N, which is likely to become higher temperature during charging / discharging, to the battery container 10 is changed to the positive electrode. The amount of heat radiated from the current collector plate 40P to the battery case 10 is increased to suppress the temperature rise of the negative electrode current collector plate 40N having a large calorific value Qn, and between the positive electrode current collector plate 40P and the negative electrode current collector plate 40N. A temperature difference can be reduced and deterioration of the secondary battery 100 can be suppressed.

[実施形態3]
以下、本発明の実施形態3に係る二次電池について、図1から図6までを援用し、図8A及び図8Bを用いて説明する。図8Aは、本実施形態の二次電池の正極外部端子20P近傍の拡大断面図であり、図8Bは、本実施形態の二次電池の負極外部端子20N近傍の拡大断面図である。
[Embodiment 3]
Hereinafter, the secondary battery according to Embodiment 3 of the present invention will be described with reference to FIGS. 8A and 8B with reference to FIGS. FIG. 8A is an enlarged cross-sectional view in the vicinity of the positive electrode external terminal 20P of the secondary battery of the present embodiment, and FIG. 8B is an enlarged cross-sectional view in the vicinity of the negative electrode external terminal 20N of the secondary battery of the present embodiment.

本実施形態の二次電池は、第1絶縁部材である絶縁部材1の厚さtpが、第2絶縁部材である絶縁部材2の厚さtnよりも薄く、絶縁部材1と絶縁部材2の材質が同一である点で、前述の実施形態1で説明した二次電池100と異なっている。その他の点は、前述の実施形態1で説明した二次電池100と同一であるので、同一の部分には同一の符号を付して説明を省略する。   In the secondary battery of this embodiment, the thickness tp of the insulating member 1 as the first insulating member is thinner than the thickness tn of the insulating member 2 as the second insulating member, and the material of the insulating member 1 and the insulating member 2 is the same. Is the same as the secondary battery 100 described in the first embodiment. Since the other points are the same as those of the secondary battery 100 described in the first embodiment, the same portions are denoted by the same reference numerals and the description thereof is omitted.

本実施形態の二次電池は、絶縁部材1の材質と絶縁部材2の材質がともにポリプロピレンであり、絶縁部材1,2の熱伝導率λp,λnは等しくなる。したがって、絶縁部材1,2が集電板40及び電池蓋12に接する伝熱面積Ap,Anが等しいとすると、各集電板40から絶縁部材1,2を介して電池蓋12に移動する単位時間当たりの熱量q1,q2[W]の比は、前記式(6)及び(7)に基づいて、以下の式(10)で表すことができる。   In the secondary battery of this embodiment, the material of the insulating member 1 and the material of the insulating member 2 are both polypropylene, and the thermal conductivities λp and λn of the insulating members 1 and 2 are equal. Accordingly, assuming that the heat transfer areas Ap and An in contact with the current collector plate 40 and the battery lid 12 are equal, the unit that moves from each current collector plate 40 to the battery lid 12 via the insulating members 1 and 2. The ratio of the amount of heat q1 / q2 [W] per hour can be expressed by the following equation (10) based on the equations (6) and (7).

q1/q2=(ΔKp/ΔKn)×(tn/tp) …(10)             q1 / q2 = (ΔKp / ΔKn) × (tn / tp) (10)

したがって、例えば、正極集電板40Pと電池蓋12との間の温度差ΔKpが負極集電板40Nと電池蓋12との間の温度差ΔKnの1.2倍であった場合、第2絶縁部材である絶縁部材2の厚さtnを第1絶縁部材である絶縁部材1の厚さtpの1.2倍よりも厚くすることができる。これにより、絶縁部材1と絶縁部材2とは、絶縁部材1を介して正極集電板40Pから電池容器10へ移動する単位時間の熱量q1が、絶縁部材2を介して負極集電板40Nから電池容器10へ移動する単位時間の熱量q2よりも多い、異なる構成を有することになる。   Therefore, for example, when the temperature difference ΔKp between the positive electrode current collector plate 40P and the battery lid 12 is 1.2 times the temperature difference ΔKn between the negative electrode current collector plate 40N and the battery lid 12, the second insulation The thickness tn of the insulating member 2 that is a member can be made thicker than 1.2 times the thickness tp of the insulating member 1 that is the first insulating member. As a result, the insulating member 1 and the insulating member 2 have the amount of heat q1 per unit time moving from the positive current collector plate 40P to the battery container 10 via the insulating member 1 from the negative current collector plate 40N via the insulating member 2. It has a different configuration that is greater than the amount of heat q2 per unit time of movement to the battery container 10.

したがって、本実施形態の二次電池によれば、実施形態1の二次電池100と同様に、充放電時により高温になりやすい正極集電板40Pから電池容器10への放熱する熱量q1を、負極集電板40Nから電池容器10へ放熱する熱量q2よりも増加させ、発熱量Qpが多い正極集電板40Pの温度上昇を抑制し、正極集電板40Pと負極集電板40Nとの間の温度差を減少させ、二次電池100の劣化を抑制することができる。   Therefore, according to the secondary battery of the present embodiment, similarly to the secondary battery 100 of the first embodiment, the amount of heat q1 to be radiated from the positive electrode current collector plate 40P, which is likely to become a higher temperature during charging / discharging, to the battery container 10, The amount of heat radiated from the negative electrode current collector plate 40N to the battery case 10 is increased to suppress the temperature rise of the positive electrode current collector plate 40P having a large calorific value Qp, and between the positive electrode current collector plate 40P and the negative electrode current collector plate 40N. The temperature difference can be reduced, and deterioration of the secondary battery 100 can be suppressed.

なお、本実施形態の二次電池では、第1絶縁部材である絶縁部材1の厚さtpを、第2絶縁部材である絶縁部材2の厚さtnよりも薄くすることで、絶縁部材1を介して放熱する熱量q1が絶縁部材2を介して放熱する熱量q2よりも多い構成について説明した。しかし、絶縁部材1を介して放熱する熱量q1が絶縁部材2を介して放熱する熱量q2よりも多い構成は、第1絶縁部材である絶縁部材1の厚さtpが、第2絶縁部材である絶縁部材2の厚さtnよりも薄い構成に限定されない。例えば、第1絶縁部材である絶縁部材1の伝熱面積Apを、第2絶縁部材である絶縁部材2の伝熱面積Anよりも大きくすることで、同様の効果を得ることができる。   In the secondary battery of this embodiment, the insulating member 1 is made thinner by making the thickness tp of the insulating member 1 as the first insulating member thinner than the thickness tn of the insulating member 2 as the second insulating member. The configuration in which the amount of heat q1 radiated through the insulating member 2 is greater than the amount of heat q2 radiated through the insulating member 2 has been described. However, in the configuration in which the amount of heat q1 radiated through the insulating member 1 is greater than the amount of heat q2 radiated through the insulating member 2, the thickness tp of the insulating member 1 as the first insulating member is the second insulating member. The configuration is not limited to be thinner than the thickness tn of the insulating member 2. For example, the same effect can be obtained by making the heat transfer area Ap of the insulating member 1 as the first insulating member larger than the heat transfer area An of the insulating member 2 as the second insulating member.

すなわち、絶縁部材1の材質と絶縁部材2の材質がともにポリプロピレンであり、第1絶縁部材である絶縁部材1の厚さtpと、第2絶縁部材である絶縁部材2の厚さtnが等しいとすると、各集電板40から絶縁部材1,2を介して電池蓋12に移動する単位時間当たりの熱量q1,q2[W]の比は、前記式(6)及び(7)に基づいて、以下の式(11)で表すことができる。   That is, when the material of the insulating member 1 and the material of the insulating member 2 are both polypropylene, the thickness tp of the insulating member 1 as the first insulating member is equal to the thickness tn of the insulating member 2 as the second insulating member. Then, the ratio of the amount of heat q1, q2 [W] per unit time moving from each current collector plate 40 to the battery lid 12 via the insulating members 1, 2 is based on the above formulas (6) and (7). It can be represented by the following formula (11).

q1/q2=(ΔKp/ΔKn)×(Ap/An) …(11)             q1 / q2 = (ΔKp / ΔKn) × (Ap / An) (11)

したがって、例えば、正極集電板40Pと電池蓋12との間の温度差ΔKpが負極集電板40Nと電池蓋12との間の温度差ΔKnの1.2倍であった場合、第1絶縁部材である絶縁部材1の伝熱面積Apを第2絶縁部材である絶縁部材2の伝熱面積の1.2倍よりも大きくすることができる。伝熱面積Ap,Anは、絶縁部材1,2の長さlp,lnと幅wp,wnの少なくとも一方を異ならせることによって調整することができる。これにより、絶縁部材1と絶縁部材2とは、絶縁部材1を介して正極集電板40Pから電池容器10へ移動する単位時間の熱量q1が、絶縁部材2を介して負極集電板40Nから電池容器10へ移動する単位時間の熱量q2よりも多い、異なる構成を有することになり、本実施形態の二次電池と同様の効果を得ることができる。   Therefore, for example, when the temperature difference ΔKp between the positive electrode current collector plate 40P and the battery lid 12 is 1.2 times the temperature difference ΔKn between the negative electrode current collector plate 40N and the battery lid 12, the first insulation The heat transfer area Ap of the insulating member 1 which is a member can be made larger than 1.2 times the heat transfer area of the insulating member 2 which is the second insulating member. The heat transfer areas Ap and An can be adjusted by making at least one of the lengths lp and ln and the widths wp and wn of the insulating members 1 and 2 different. As a result, the insulating member 1 and the insulating member 2 have the amount of heat q1 per unit time moving from the positive current collector plate 40P to the battery container 10 via the insulating member 1 from the negative current collector plate 40N via the insulating member 2. It has a different configuration that is greater than the amount of heat q2 per unit time of movement to the battery container 10, and the same effect as the secondary battery of this embodiment can be obtained.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1 絶縁部材(第1絶縁部材)、2 絶縁部材(第2絶縁部材)、2a 貫通孔、2b 突起部、2c 係合凸部、10 電池容器、11 電池缶、11a 広側壁、11b 底壁、11c 狭側壁、11d 開口部、12 電池蓋、12a 貫通孔、12b 突起部、12c 凹部、13 ガス排出弁、14 注液口、15 注液栓、20 外部端子、20N 負極外部端子、20P 正極外部端子、21 端子部、21a 貫通孔、21b 凹部、21c 溝部、22 外部絶縁体、22a 貫通孔、22b 凹部、22c 凹部、23 接続部材、23a 軸部、23b フランジ部、23c 円筒部、23d 穴、23e 穴、23f かしめ部、24 ガスケット、24a 円筒部、24b フランジ部、24c 貫通孔、30 電極体、30a 平面部、30b 湾曲部、31 正極電極、31a 正極箔、31b 正極合剤層、31c 箔露出部、32 負極電極、32a 負極箔、32b 負極合剤層、32c 箔露出部、33 セパレータ、34 セパレータ、40 集電板、40P 正極集電板(第1集電板/第2集電板)、40N 負極集電板(第2集電板/第1集電板)、41 基部、41a 貫通孔、42 接続片、50 蓋組立体、60 絶縁ケース、100 二次電池、Qp 単位時間の発熱量、Qn 単位時間の発熱量、q1 単位時間の熱量、q2 単位時間の熱量、1/λp 第1絶縁部材の熱抵抗率、1/λn 第2絶縁部材の熱抵抗率、tp 第1絶縁部材の厚さ、tn 第2絶縁部材の厚さ、Ap 第1絶縁部材の伝熱面積、An 第2絶縁部材の伝熱面積、溶接部Bw、D1 金型、D1a 突起、D2 金型、Tp 正極集電板の厚さ、Tn 負極集電板の厚さ DESCRIPTION OF SYMBOLS 1 Insulation member (1st insulation member), 2 Insulation member (2nd insulation member), 2a Through-hole, 2b Protrusion part, 2c Engagement convex part, 10 Battery container, 11 Battery can, 11a Wide side wall, 11b Bottom wall, 11c narrow side wall, 11d opening, 12 battery cover, 12a through hole, 12b protrusion, 12c recess, 13 gas discharge valve, 14 injection port, 15 injection plug, 20 external terminal, 20N negative external terminal, 20P positive external Terminal, 21 Terminal portion, 21a Through hole, 21b Recess, 21c Groove, 22 External insulator, 22a Through hole, 22b Recess, 22c Recess, 23 Connection member, 23a Shaft, 23b Flange, 23c Cylindrical, 23d Hole, 23e hole, 23f caulking part, 24 gasket, 24a cylindrical part, 24b flange part, 24c through-hole, 30 electrode body, 30a flat part, 30 Curved portion, 31 positive electrode, 31a positive foil, 31b positive electrode mixture layer, 31c foil exposed portion, 32 negative electrode, 32a negative electrode foil, 32b negative electrode mixture layer, 32c foil exposed portion, 33 separator, 34 separator, 40 current collector Plate, 40P positive current collector plate (first current collector plate / second current collector plate), 40N negative current collector plate (second current collector plate / first current collector plate), 41 base, 41a through hole, 42 connection piece , 50 Lid assembly, 60 Insulation case, 100 Secondary battery, Qp Unit time of heat generation, Qn Unit time of heat generation, q1 Unit time of heat, q2 Unit time of heat, 1 / λp Heat of first insulating member Resistivity, 1 / λn thermal resistivity of the second insulating member, tp thickness of the first insulating member, tn thickness of the second insulating member, Ap heat transfer area of the first insulating member, transfer of the An second insulating member Thermal area, weld Bw, D1 mold, D1 Projections, D2 mold, Tp positive collector plate thickness, the thickness of the Tn negative collector plate

Claims (8)

電極体と、該電極体を収容する電池容器と、該電池容器に設けられた外部端子と、該外部端子を前記電極体に接続する第1集電板及び第2集電板と、前記第1集電板と前記電池容器との間に配置された第1絶縁部材と、前記第2集電板と前記電池容器との間に配置された第2絶縁部材と、を備えた二次電池であって、
前記第1集電板は、前記第2集電板よりも単位時間の発熱量が多い構成を有し、
前記第1絶縁部材と前記第2絶縁部材とは、前記第1絶縁部材を介して前記第1集電板から前記電池容器へ移動する単位時間の熱量が前記第2絶縁部材を介して前記第2集電板から前記電池容器へ移動する単位時間の熱量よりも多い、異なる構成を有することを特徴とする二次電池。
An electrode body; a battery container that houses the electrode body; an external terminal provided in the battery container; a first current collector plate and a second current collector plate that connect the external terminal to the electrode body; A secondary battery comprising: a first insulating member disposed between one current collecting plate and the battery container; and a second insulating member disposed between the second current collecting plate and the battery container. Because
The first current collector plate has a configuration that generates more heat per unit time than the second current collector plate,
The first insulating member and the second insulating member are configured such that the amount of heat per unit time that moves from the first current collector plate to the battery container via the first insulating member passes through the second insulating member. 2. A secondary battery having a different configuration than the amount of heat per unit time of movement from the current collector plate to the battery container.
前記第1絶縁部材の熱抵抗率は、前記第2絶縁部材の熱抵抗率よりも低いことを特徴とする請求項1に記載の二次電池。   2. The secondary battery according to claim 1, wherein a thermal resistivity of the first insulating member is lower than a thermal resistivity of the second insulating member. 前記第1絶縁部材の厚さは、前記第2絶縁部材の厚さよりも薄いことを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein a thickness of the first insulating member is thinner than a thickness of the second insulating member. 前記第1絶縁部材の伝熱面積は、前記第2絶縁部材の伝熱面積よりも大きいことを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein a heat transfer area of the first insulating member is larger than a heat transfer area of the second insulating member. 前記第1絶縁部材の材質は、ポリエチレンであり、前記第2絶縁部材の材質は、ポリプロピレンであることを特徴とする請求項2に記載の二次電池。   The secondary battery according to claim 2, wherein the material of the first insulating member is polyethylene, and the material of the second insulating member is polypropylene. 前記第1集電板は、正極集電板であり、前記第2集電板は、負極集電板であり、
前記正極集電板の金属材料の抵抗率は、前記負極集電板の金属材料の抵抗率よりも高いことを特徴とする請求項1に記載の二次電池。
The first current collector plate is a positive electrode current collector plate, the second current collector plate is a negative electrode current collector plate,
The secondary battery according to claim 1, wherein a resistivity of the metal material of the positive electrode current collector plate is higher than a resistivity of the metal material of the negative electrode current collector plate.
前記第1集電板は、負極集電板であり、前記第2集電板は、正極集電板であり、
前記正極集電板の厚さは、前記負極集電板の厚さよりも厚いことを特徴とする請求項1に記載の二次電池。
The first current collector plate is a negative electrode current collector plate, the second current collector plate is a positive electrode current collector plate,
The secondary battery according to claim 1, wherein a thickness of the positive electrode current collector plate is thicker than a thickness of the negative electrode current collector plate.
前記正極集電板の材質は、アルミニウム又はアルミニウム合金であり、前記負極集電板の材質は、銅又は銅合金であることを特徴とする請求項6又は請求項7に記載の二次電池。   The secondary battery according to claim 6 or 7, wherein a material of the positive electrode current collector plate is aluminum or an aluminum alloy, and a material of the negative electrode current collector plate is copper or a copper alloy.
JP2015146142A 2015-07-23 2015-07-23 Secondary battery Active JP6403644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015146142A JP6403644B2 (en) 2015-07-23 2015-07-23 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015146142A JP6403644B2 (en) 2015-07-23 2015-07-23 Secondary battery

Publications (2)

Publication Number Publication Date
JP2017027819A true JP2017027819A (en) 2017-02-02
JP6403644B2 JP6403644B2 (en) 2018-10-10

Family

ID=57946140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015146142A Active JP6403644B2 (en) 2015-07-23 2015-07-23 Secondary battery

Country Status (1)

Country Link
JP (1) JP6403644B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048065A (en) * 2018-01-17 2019-07-23 三洋电机株式会社 Secondary cell and its manufacturing method
JP2022028968A (en) * 2018-01-17 2022-02-16 三洋電機株式会社 Secondary battery
JP2022049727A (en) * 2020-09-17 2022-03-30 プライムプラネットエナジー&ソリューションズ株式会社 Terminal for secondary battery and secondary battery including the same
US12068507B2 (en) 2021-08-06 2024-08-20 Prime Planet Energy & Solutions, Inc. Terminal component and secondary battery and assembled battery each including the terminal component
US12100865B2 (en) 2020-09-17 2024-09-24 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161763A (en) * 1995-12-13 1997-06-20 Sony Corp Lithium ion secondary battery
JP2011505671A (en) * 2007-11-30 2011-02-24 エイ 123 システムズ,インク. Battery cell design with asymmetric terminals
JP2012059361A (en) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd Battery
JP2013161559A (en) * 2012-02-02 2013-08-19 Nissan Motor Co Ltd Electric device module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161763A (en) * 1995-12-13 1997-06-20 Sony Corp Lithium ion secondary battery
JP2011505671A (en) * 2007-11-30 2011-02-24 エイ 123 システムズ,インク. Battery cell design with asymmetric terminals
JP2012059361A (en) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd Battery
JP2013161559A (en) * 2012-02-02 2013-08-19 Nissan Motor Co Ltd Electric device module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048065A (en) * 2018-01-17 2019-07-23 三洋电机株式会社 Secondary cell and its manufacturing method
JP2019125491A (en) * 2018-01-17 2019-07-25 三洋電機株式会社 Secondary battery and manufacturing method therefor
JP6996308B2 (en) 2018-01-17 2022-01-17 三洋電機株式会社 Secondary battery and its manufacturing method
JP2022028968A (en) * 2018-01-17 2022-02-16 三洋電機株式会社 Secondary battery
JP7291771B2 (en) 2018-01-17 2023-06-15 三洋電機株式会社 secondary battery
JP2022049727A (en) * 2020-09-17 2022-03-30 プライムプラネットエナジー&ソリューションズ株式会社 Terminal for secondary battery and secondary battery including the same
JP7245208B2 (en) 2020-09-17 2023-03-23 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY TERMINAL AND SECONDARY BATTERY INCLUDING THE TERMINAL
US11710880B2 (en) 2020-09-17 2023-07-25 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
US12100865B2 (en) 2020-09-17 2024-09-24 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
US12068507B2 (en) 2021-08-06 2024-08-20 Prime Planet Energy & Solutions, Inc. Terminal component and secondary battery and assembled battery each including the terminal component

Also Published As

Publication number Publication date
JP6403644B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
US20170250388A1 (en) Prismatic secondary battery
JP6198844B2 (en) Assembled battery
JP6328271B2 (en) Prismatic secondary battery
JP6410833B2 (en) Prismatic secondary battery
JP6446239B2 (en) Secondary battery
JP5334894B2 (en) Lithium ion secondary battery
JP6208258B2 (en) Prismatic secondary battery
KR101841340B1 (en) Sealed battery
JP6403644B2 (en) Secondary battery
JP6577998B2 (en) Prismatic secondary battery
JPWO2015093288A1 (en) Prismatic secondary battery
US20120156532A1 (en) Secondary battery
WO2016088505A1 (en) Rectangular secondary cell
JP6207950B2 (en) Square secondary battery and battery pack
JP2017033707A (en) Secondary battery
JP6562726B2 (en) Rectangular secondary battery and manufacturing method thereof
JP6216203B2 (en) Winding type secondary battery
JP2016143618A (en) Rectangular secondary battery
JP2021064519A (en) Secondary battery
JP2015204236A (en) Secondary battery and battery module
KR20160057220A (en) Rechargeable battery
JP2016012499A (en) Secondary battery
JP6360305B2 (en) Prismatic secondary battery
JP2013218824A (en) Square secondary battery
JP2018056086A (en) Secondary battery and method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250