JP2017024037A - Continuous casting method and continuous casting piece of molten steel - Google Patents

Continuous casting method and continuous casting piece of molten steel Download PDF

Info

Publication number
JP2017024037A
JP2017024037A JP2015144271A JP2015144271A JP2017024037A JP 2017024037 A JP2017024037 A JP 2017024037A JP 2015144271 A JP2015144271 A JP 2015144271A JP 2015144271 A JP2015144271 A JP 2015144271A JP 2017024037 A JP2017024037 A JP 2017024037A
Authority
JP
Japan
Prior art keywords
mass
molten steel
continuous casting
mold
equiaxed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015144271A
Other languages
Japanese (ja)
Other versions
JP6488931B2 (en
Inventor
笹井 勝浩
Katsuhiro Sasai
勝浩 笹井
諸星 隆
Takashi Morohoshi
隆 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015144271A priority Critical patent/JP6488931B2/en
Publication of JP2017024037A publication Critical patent/JP2017024037A/en
Application granted granted Critical
Publication of JP6488931B2 publication Critical patent/JP6488931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method and a continuous casting piece capable of stably forming both a coarse granular crystal of the central vicinity of a casting piece and a coarse columnar crystal of surrounding it in a fine equiaxial crystal.SOLUTION: Molten steel of including acid soluble Al:0.03 mass% or less, acid soluble Ti:0.014-0.1 mass% and Mg:0.0003-0.006 mass%, is injected into a casting mold while blowing in inert gas of including Ngas or Nby 2 volume % or more from a gas blowing-in type immersion nozzle 3, by using a continuous casting device having an induction electromagnetic agitator 7 between a casting mold inner meniscus 12-casting mold under 10 m, and one kind or more is added to casting mold inner molten steel 11 from among Bi and Sn so as to become 0.0005-0.01 mass% in total, and is cast while turning the molten steel in a horizontal plane by the induction electromagnetic agitator 7. Thus, a continuous casting piece can be manufactured by stably, finely and equiaxially crystallizing both solidification structures of a casting piece surface layer part and the casting piece inside.SELECTED DRAWING: Figure 1

Description

通常の連続鋳造鋳片の横断面には、中心にポロシティや偏析を伴う最終凝固部を取り囲むように配された中心近傍の粗い粒状晶部と、粗い粒状晶部を取り囲む粗い柱状晶部とが観察される。この粗い粒状晶と柱状晶とを微細な等軸晶にし、中心偏析やミクロ偏析を大幅に軽減することができれば、例えばスラブを薄板にした際には成形加工性が顕著に優れた薄板になり、また例えば厚板にした際には低温靱性に優れた厚板となる。本発明は、この粗い粒状晶と柱状晶を微細な等軸晶にできる溶鋼の連続鋳造方法およびそれを用いて鋳造した微細な凝固組織を有する連続鋳造鋳片に関するものである。   In the cross section of a normal continuous cast slab, there are a coarse granular crystal part near the center arranged to surround the final solidified part with porosity and segregation in the center, and a coarse columnar crystal part surrounding the coarse granular crystal part. Observed. If this coarse granular crystal and columnar crystal can be made into fine equiaxed crystals and central segregation and microsegregation can be greatly reduced, for example, when a slab is made into a thin plate, it becomes a thin plate with remarkably excellent moldability. For example, when a thick plate is used, the plate has excellent low-temperature toughness. The present invention relates to a molten steel continuous casting method capable of turning coarse grain crystals and columnar crystals into fine equiaxed crystals, and a continuous cast slab having a fine solidified structure cast using the molten steel.

非特許文献1には、等軸晶は溶鋼過熱度が低いと増加することから、等軸晶化には低温鋳造が有効であることが示されている。また、特許文献1には、誘導電磁攪拌装置を用いて、凝固界面近傍の溶鋼に一方向の旋回流を与え、柱状デンドライトを分断することにより柱状晶を等軸晶にする技術が記載されている。特許文献2には、等軸晶化促進剤としてMgOを含有させた溶鋼を鋳型内に注湯すると共に、鋳片表層の清浄性を高めるため鋳型内で溶鋼を電磁攪拌しながら鋳造する方法が提案され、表面欠陥(電磁攪拌の洗浄効果)と内部欠陥(MgOによる凝固組織の微細化効果)を同時に抑制する技術が開示されている。さらに、特許文献3には、タンディッシュ内でプラズマ加熱装置を用いて等軸晶化促進剤(MgAl24、Ceの酸化物、硫化物等)を溶鋼表面に吹き付け、鋳型内で等軸晶核を多数生成させることにより、鋳片中心近傍の粗い粒状晶を微細化する技術が開示されている。 Non-Patent Document 1 shows that low temperature casting is effective for equiaxed crystallization because equiaxed crystals increase when the degree of superheated molten steel is low. Patent Document 1 describes a technique for making columnar crystals equiaxed by applying a unidirectional swirling flow to the molten steel near the solidification interface using an induction electromagnetic stirrer and dividing the columnar dendrite. Yes. Patent Document 2 discloses a method of pouring molten steel containing MgO as an equiaxed crystallization accelerator into a mold and casting the molten steel with electromagnetic stirring in the mold in order to improve the cleanliness of the slab surface layer. A technique has been proposed which simultaneously suppresses surface defects (electromagnetic stirring cleaning effect) and internal defects (solidification structure refinement effect due to MgO). Further, in Patent Document 3, an equiaxed crystallization accelerator (MgAl 2 O 4 , Ce oxide, sulfide, etc.) is sprayed on the surface of molten steel using a plasma heating device in a tundish, and is equiaxed in a mold. A technique for refining coarse granular crystals near the center of a slab by generating a large number of crystal nuclei is disclosed.

特開昭50−23338号公報Japanese Patent Laid-Open No. 50-23338 特開2000−334559号公報JP 2000-334559 A 特開2001−225153号公報JP 2001-225153 A

鉄鋼便覧第3版、II 製銑・製鋼、p.653Steel Handbook 3rd Edition, II Steelmaking and Steelmaking, p. 653

しかしながら、低温鋳造では、溶融金属の過熱度を液相線に近い温度にし、これを浸漬ノズルから鋳型内に注入する必要があるため、浸漬ノズルの閉塞や鋳型内でのディッケル生成等の凝固異常を招く場合がある。このため、現状の連続鋳造では注入する溶融金属の過熱度は20〜30K程度を採用しており、このような温度条件では近年軽量化ニーズで生産量が増加してきている高強度薄鋼板の成形加工性や高強度厚板の低温靱性を改善できる程の微細等軸晶化は達成されていない。また、誘導電磁攪拌を用いる方法や等軸晶化促進剤を添加する方法についても、高強度鋼の材質が改善できるまでの十分な微細等軸晶が得られているわけではなく、例えば等軸晶が生成し難いC含有率が0.1質量%以下の溶鋼に対しては、鋳片表層部の柱状晶までを十分に微細等軸晶化することは難しい。さらに言えば、MgOやMgAl24の等軸晶化促進剤の効果は安定しておらず、他の酸化物の影響により凝固核生成能が低下するなど、従来知見していない変動要因が存在するものと推定される。 However, in low-temperature casting, it is necessary to set the superheat degree of the molten metal to a temperature close to the liquidus and to inject it into the mold from the immersion nozzle, so solidification abnormalities such as clogging of the immersion nozzle and deckle formation in the mold May be invited. For this reason, the current continuous casting employs a superheat degree of the molten metal to be injected of about 20 to 30 K. Under such temperature conditions, the production of high-strength thin steel sheets whose production volume has been increasing due to the need for weight reduction in recent years. Fine equiaxed crystallization that can improve workability and low-temperature toughness of high-strength thick plates has not been achieved. Also, with respect to the method using induction electromagnetic stirring and the method of adding an equiaxed crystallization accelerator, sufficient fine equiaxed crystals are not obtained until the material of the high-strength steel can be improved. For molten steel with a C content of 0.1% by mass or less, in which crystals are difficult to form, it is difficult to sufficiently equiaxially crystallize the columnar crystals of the slab surface layer. Furthermore, the effects of equiaxed crystallization accelerators such as MgO and MgAl 2 O 4 are not stable, and there is a variable factor that has not been known so far, such as the ability of other oxides to reduce the solidification nucleation ability. Presumed to exist.

本発明は、このような現状を鑑み、高強度鋼用鋳片(C含有率0.1質量%以下の鋳片まで含めて)において中心近傍の粗い粒状晶とそれを取り囲む粗い柱状晶を、安定して共に微細な等軸晶にできる連続鋳造方法、およびそれを用いて鋳造した微細な凝固組織を有する連続鋳造鋳片の提供を課題としている。   In view of such a current situation, the present invention provides a coarse granular crystal near the center and a coarse columnar crystal surrounding it in a high-strength steel slab (including a slab having a C content of 0.1% by mass or less). It is an object of the present invention to provide a continuous casting method capable of stably forming fine equiaxed crystals together and a continuous cast slab having a fine solidified structure cast using the same.

このような状況に鑑み、中心近傍の粗い粒状晶とそれを取り囲む粗い柱状晶を、安定して共に微細な等軸晶にできる連続鋳造方法およびそれを用いて鋳造した微細な凝固組織を有する連続鋳造鋳片を提供するために、凝固組織微細化元素と微細化効果の変動要因の解明、少量添加で効果を安定的に発揮する添加方法や添加場所に関して鋭意研究を重ね、得られた知見を連続鋳造工程の中で最適に組み合わせてプロセス設計することで本発明の完成に至った。   In view of such circumstances, a continuous casting method capable of stably and finely equiaxing a coarse granular crystal near the center and a coarse columnar crystal surrounding it, and a continuous having a fine solidification structure cast using the same. In order to provide cast slabs, elucidate the factors that fluctuate the solidification structure refinement element and the refinement effect, and conduct earnest research on the addition method and location where the effect can be stably exhibited with a small amount of addition, and the knowledge obtained The present invention has been completed by optimally combining the process design in the continuous casting process.

その要旨は以下の通りである。すなわち、
(1)鋳型内メニスカス〜鋳型下10mの間に誘導電磁攪拌装置を有する連続鋳造装置を用いて、C:0.03〜0.20質量%、Si:0.08〜1.5質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.002質量%以上、N:0.0005〜0.01質量%、Nb:0.2質量%以下、V:0.2質量%以下、Mo:0.5質量%以下、酸可溶Al:0.03質量%以下、酸可溶Ti:0.014〜0.1質量%、Mg:0.0003〜0.006質量%を含有し、残部が鉄および不可避的不純物からなる溶鋼をガス吹き込み型浸漬ノズルからN2ガスまたはN2を2体積%以上含有する不活性ガスを吹き込みながら鋳型内に注入し、該鋳型内溶鋼にBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加せしめ、該誘導電磁攪拌装置により水平面内で溶鋼を旋回させながら鋳造することを特徴とする連続鋳造方法。
(2)タンディッシュ内でMgを0.0003〜0.006質量%含有させた後に鋳型内に注入することを特徴とする(1)記載の連続鋳造方法。
(3)BiおよびSnの内から1種以上を含有する金属ワイヤーを鋳型内溶鋼中に連続的に供給することを特徴とする(1)または(2)に記載の連続鋳造方法。
(4)BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼表面上に供給することを特徴とする(1)または(2)に記載の連続鋳造方法。
(5)誘導電磁攪拌による溶鋼の旋回流速を25〜105cm/sとすることを特徴とする(1)〜(4)のいずれか一つに記載の連続鋳造方法。
(6)(5)記載の連続鋳造方法により鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下にしたことを特徴とする連続鋳造鋳片。
The summary is as follows. That is,
(1) Using a continuous casting apparatus having an induction electromagnetic stirring device between the meniscus in the mold and 10 m under the mold, C: 0.03 to 0.20 mass%, Si: 0.08 to 1.5 mass%, Mn: 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.002 mass% or more, N: 0.0005 to 0.01 mass%, Nb: 0.2 mass% or less V: 0.2% by mass or less, Mo: 0.5% by mass or less, acid-soluble Al: 0.03% by mass or less, acid-soluble Ti: 0.014 to 0.1% by mass, Mg: 0. A molten steel containing 0003 to 0.006% by mass with the balance being iron and inevitable impurities is injected into the mold while injecting an inert gas containing N 2 gas or 2% by volume of N 2 from a gas blowing type immersion nozzle. 1 or more of Bi and Sn are added to the molten steel in the mold in a total amount of 0.0005 to 0.00. A continuous casting method characterized in that the casting is performed so that the molten steel is added in an amount of 01% by mass and the molten steel is swirled in a horizontal plane by the induction electromagnetic stirring device.
(2) The continuous casting method according to (1), wherein Mg is contained in the tundish in an amount of 0.0003 to 0.006% by mass and then injected into the mold.
(3) The continuous casting method according to (1) or (2), wherein a metal wire containing one or more of Bi and Sn is continuously fed into the molten steel in the mold.
(4) The continuous casting method according to (1) or (2), wherein a mold flux containing one or more of Bi and Sn is supplied onto the molten steel surface in the mold.
(5) The continuous casting method according to any one of (1) to (4), wherein a swirling flow velocity of the molten steel by induction electromagnetic stirring is 25 to 105 cm / s.
(6) The continuous casting casting characterized in that the average equiaxed grain size is set to 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside by the continuous casting method described in (5). Fragment.

本発明によると、鋳片表層部と鋳片内部の凝固組織を、安定して共に微細に等軸晶化した連続鋳造鋳片を製造することができるため、高強度薄鋼板では成形加工性に、高強度厚板では低温靱性に優れた材料を製造することが可能となる。   According to the present invention, it is possible to manufacture a continuous cast slab in which the solidified structure of the slab surface layer and the slab are stably and finely equiaxed together. With a high-strength thick plate, a material excellent in low-temperature toughness can be produced.

ガス吹き込み型浸漬ノズルを用いて溶鋼中にN2ガスを吹き込む方法を説明するための図。Diagram for explaining a method of blowing N 2 gas into the molten steel by using the gas blowing type immersion nozzle. Mgを0.0005質量%含有させた溶鋼をガス吹き込み型浸漬ノズルからN2ガスを吹き込みながら連続鋳造した鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌流速の影響を示す図。The influence of electromagnetic stirring velocity on the molten steel which contains 0.0005% by mass of Mg to the average equiaxed Akiratsubu diameter of the slab inside and slab surface portion continuous casting while blowing N 2 gas from the gas blowing type immersion nozzle FIG. Mgを0.0005質量%含有させた溶鋼をガス吹き込み型浸漬ノズルからN2ガスを吹き込みながら鋳型内に注入すると共に、鋳型内でBiを0.003質量%添加して連続鋳造した鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌流速の影響を示す図。The molten steel containing 0.0005% by mass of Mg is injected into the mold while N 2 gas is being blown from a gas blown immersion nozzle, and 0.003% by weight of Bi is added in the mold and continuously cast. The figure which shows the influence of the electromagnetic stirring flow rate on the average equiaxed crystal grain diameter of a slab surface layer part.

凝固組織の形態は、凝固時の固液界面の温度勾配と凝固速度により決定され、温度勾配が小さい程、凝固速度が大きい程、等軸晶が形成され易くなる。しかし、実際の連続鋳造では鋳片表層から比較的内部まで柱状晶が成長しており、このような凝固組織形態を等軸晶主体に変える程の冷却条件の変更は難しい。そのような条件下で、凝固組織を微細等軸晶化するためには、等軸晶の核生成サイトを溶鋼中に多数分散させ、核生成頻度を上げることで微細等軸晶の形成を促進すること、界面活性効果の高い金属元素を用いて固液界面エネルギーを低下させ柱状晶自体を微細等軸晶化させる2つの方法が考えられる。本発明は、これら2つの凝固組織制御の原理を効果的に複合させ、鋳片全面に渡って凝固組織微細化効果を安定して最大限に引き出すための制御手段を明らかにすると共に、その制御手段を連続鋳造工程の中で最適に組み合わせてプロセス設計することにより完成させたものである。本発明の基本思想は、[1] 等軸晶の核生成サイトとして有効に作用する酸化物を溶鋼中に微細分散させ、これに電磁攪拌を加え溶鋼の過熱度を奪うことにより鋳片内部を安定的に微細等軸晶化させると共に、[2]鋳片表層部に固液界面エネルギーを低下させる金属元素を優先的に添加して、鋳型側から鋳片内部に向かって成長する柱状晶の微細化を図り、その上で電磁攪拌の旋回流でこの微細・脆弱な柱状晶を分断することにより鋳片表層部にも微細な等軸晶を生成させることにある。その結果として、鋳片全面に渡って微細な等軸晶組織を得ることが可能となる。   The form of the solidified structure is determined by the temperature gradient and solidification rate at the solid-liquid interface at the time of solidification. The smaller the temperature gradient and the greater the solidification rate, the easier the formation of equiaxed crystals. However, in actual continuous casting, columnar crystals grow from the slab surface layer to the inside relatively, and it is difficult to change the cooling conditions to such an extent that the solidification structure is changed to be equiaxed crystals. Under such conditions, in order to make the solidified structure fine equiaxed, the formation of fine equiaxed crystals is promoted by dispersing a large number of equiaxed nucleation sites in the molten steel and increasing the frequency of nucleation. In addition, two methods of reducing the solid-liquid interface energy and making the columnar crystal itself into a fine equiaxed crystal using a metal element having a high surface active effect are conceivable. The present invention clarifies a control means for effectively combining these two solidification structure control principles and stably and maximizing the solidification structure refinement effect over the entire surface of the slab. It has been completed by optimally combining the means in the continuous casting process and designing the process. The basic idea of the present invention is as follows: [1] Finely disperse oxides that act effectively as nucleation sites for equiaxed crystals in molten steel, and add electromagnetic stirring to this to take away the degree of superheat of the molten steel. [2] A metal element that lowers the solid-liquid interface energy is preferentially added to the surface of the slab, and the columnar crystals grow from the mold side toward the inside of the slab. It is intended to produce fine equiaxed crystals in the surface layer of the slab by reducing the size and dividing the fine and brittle columnar crystals with a swirling flow of electromagnetic stirring. As a result, a fine equiaxed crystal structure can be obtained over the entire surface of the slab.

上記基本思想を実現するための具体的方法と条件について、以下に述べる。まず、[1]の等軸晶の核生成サイトとなる酸化物の条件であるが、Ti脱酸溶鋼にはチタニア系介在物が、Al脱酸溶鋼にはアルミナ系介在物が多数存在するが、これらの介在物は等軸晶の核生成サイトとはなり難く、さらに凝集・合体して粗大な酸化物となるため、等軸晶生成の核として有効に作用しない。これに対し、本発明者らは、溶鋼中にTiやAlよりも強脱酸元素であるMgを添加し、チタニア系介在物およびアルミナ系介在物をMgO、或いはMgAl24に改質することにより、比較的微細な酸化物を溶鋼中に均一に分散できること、これら酸化物が微細な等軸晶生成の核になり易いことを見いだした。これは、チタニアやアルミナと比較して、MgO、或いはMgAl24が溶鋼と濡れ易いためだと考えられる。ここで、Mgの添加量は0.0003〜0.006質量%に規定した。これは、Mgの添加量が0.0003質量%未満では等軸晶核生成サイトの量が少なくなることにより、反対に0.006質量%を超えると生成酸化物が粗大化し易くなることにより、何れも鋳片内の凝固組織を微細な等軸晶にする効果が失われるためである。 Specific methods and conditions for realizing the basic idea will be described below. First, regarding the condition of the oxide that becomes the nucleation site of the equiaxed crystal of [1], there are many titania-based inclusions in the Ti deoxidized molten steel and many alumina-based inclusions in the Al deoxidized molten steel. These inclusions are unlikely to become equiaxed crystal nucleation sites, and further aggregate and coalesce to form coarse oxides, so that they do not act effectively as nuclei for forming equiaxed crystals. On the other hand, the present inventors add Mg, which is a stronger deoxidizing element than Ti and Al, to the molten steel to modify the titania inclusions and alumina inclusions to MgO or MgAl 2 O 4 . As a result, it has been found that relatively fine oxides can be uniformly dispersed in molten steel, and that these oxides are likely to become nuclei for the formation of fine equiaxed crystals. This is considered to be because MgO or MgAl 2 O 4 is easily wetted with molten steel as compared with titania and alumina. Here, the addition amount of Mg was defined to be 0.0003 to 0.006 mass%. This is because when the amount of Mg added is less than 0.0003 mass%, the amount of equiaxed crystal nucleation sites decreases, and conversely, when it exceeds 0.006 mass%, the generated oxide tends to be coarsened. This is because the effect of making the solidified structure in the slab a fine equiaxed crystal is lost.

実際の連続鋳造では、空気やスラグなどによる溶鋼再酸化が生じ、溶鋼中で新たにアルミナ系介在物やチタニア系介在物が生成する。これら介在物の生成量が多くなると、等軸晶核生成サイトとなるMgOおよびMgAl24の表面に等軸晶核生成能の小さいアルミナ系介在物やチタニア系介在物が付着するため、所定のMg量を添加しても凝固組織微細化の効果が得にくく、最悪の場合全く等軸晶化しないことを本発明者らは知見している。この知見は、不活性ガス雰囲気でMgを添加して溶製した10kg溶鋼を不活性雰囲気と空気雰囲気で鋳型に注入し、得られた鋼塊の凝固組織を観察した結果、不活性雰囲気での鋳造組織が微細等軸晶化するのに対し、空気雰囲気の鋳造組織が粗大粒状晶化することで確認している。さらに、本発明者らは、溶鋼の再酸化が生じる実プロセスでも、Mg添加による凝固組織微細化効果を安定的に享受するためには、MgOおよびMgAl24の表面に付着したアルミナ系介在物やチタニア系介在物上に、等軸晶核生成能の高いTiNを核生成サイトとして析出させ、複合介在物全体としての核生成能を高めて、MgOおよびMgAl24の等軸晶核生成能の低下を補うことが有効であることを見いだした。空気やスラグなどによる溶鋼再酸化は取鍋やタンディッシュ内溶鋼注入部で主に起こること、TiNは高温の溶鋼中では比較的不安定であることから、再酸化で生成したアルミナ系介在物やチタニア系介在物上に安定的にTiNを析出させるためには、再酸化介在物が生成するタンディッシュ内の溶鋼注入部より下流側で、できるだけ溶鋼温度が低く、再酸化介在物がTiNと接触する頻度の高い強攪拌の浸漬ノズル内で添加することが効果的である。しかし、粉体のTiNを浸漬ノズル内に吹き込み、溶鋼中に分散させることは困難であるため、本発明者らは、図1に示すようにタンディッシュ1内の溶鋼2を、ガス吹き込み型浸漬ノズル3を介して鋳型6内に注入する際、ガス吹き込み型浸漬ノズル3のガス導入管5から多孔質内孔体4を通してN2ガスまたはN2を2体積%以上含有する不活性ガスを吹き込み、該浸漬ノズル内の溶鋼中でTiと反応させて再酸化介在物上にTiNを析出させる新たな方法を考案した。溶鋼中に吹き込まれたN2ガスは(1)式によりノズル内壁近傍の溶鋼中に一旦溶解し、その後(2)式により溶鋼中のTiと反応して、MgOおよびMgAl24の表面に付着したアルミナ系介在物やチタニア系介在物上にTiNを生成する。
2(ガス)= 2(溶存) (1)
Ti(溶存)+ (溶存)= TiN(固体) (2)
100%N2ガスを吹き込む場合、TiN生成に必要なTi(酸可溶Ti)濃度を熱力学データーから算出すると0.014質量%となるので、本方法でTiNを生成させるためには溶鋼中のTi濃度を0.014質量%以上にする必要がある。また、後述するがTi濃度が高すぎるとチタニア系介在物が多量に生成し、MgOおよびMgAl24の等軸晶核生成能を低下させてしまうため、Ti濃度を0.1質量%以下にする必要があるが、その場合N2ガス吹き込みでTiNを生成させるためには2体積%以上のN2ガス濃度にする必要がある。よって、TiN生成によりMgOおよびMgAl24の等軸晶核生成能の低下を補い、溶鋼再酸化時でも安定して等軸晶微細化効果を得るためには、吹き込みガス中のN2ガス濃度を2〜100体積%にする必要がある。吹き込みガス中の必要N2ガス濃度下限をTi濃度の関数として表すと、N2ガス濃度(体積%)=0.0196/[質量%Ti]2となる。N2ガス濃度を変更するための混合ガスは溶鋼と反応しない不活性ガスとする必要がある。不活性ガスとは本発明においては希ガスをいい、コスト面等からArガスが望ましい。また、MgOおよびMgAl24の表面に付着したアルミナ系介在物やチタニア系介在物の上に微細なTiNとして僅かでも析出させれば、その部分が等軸晶の核となってMgOおよびMgAl24の等軸晶核生成能の低下を補うことができるため、下限の吹き込みN2ガス流量は規定されるものではない。一方、N2ガスを過剰に吹き込むと、溶鋼中のTiと反応してTiNとならなかったN分が、溶鋼中のAlと反応して粗大な析出物を生成し加工性を劣化させることが懸念されるが、ガス吹き込み型浸漬ノズル3への溶鋼通過流量を標準的な2t/分程度としてN2ガスを10Nl/分で吹き込むと、溶鋼中のN濃度は最大でも0.0006質量%の増加に留まり、後述する適正N濃度0.0005〜0.01質量%から考えても材質劣化の問題は生じない。このため、上限のN2ガス吹き込み流量も一概に規定するものではないが、同鋳造条件で溶鋼中N濃度が上限の0.01質量%の6割を超えない範囲とすれば、100Nl/分が望ましい上限値である。また、N2ガスと不活性ガスの混合ガスで吹き込む場合には、不活性ガスは溶鋼中に吸収されないので、N2ガス分のみの流量で100Nl/分を超えないことが望ましい。
In actual continuous casting, molten steel is reoxidized by air, slag, etc., and alumina inclusions and titania inclusions are newly generated in the molten steel. When the amount of these inclusions increases, alumina inclusions and titania inclusions with small equiaxed crystal nucleation ability adhere to the surfaces of MgO and MgAl 2 O 4 that are equiaxed crystal nucleation sites. The present inventors have found that even if the amount of Mg is added, the effect of refining the solidification structure is difficult to obtain, and in the worst case, no equiaxed crystallization occurs. As a result of observing the solidification structure of the steel ingot obtained by injecting 10 kg molten steel prepared by adding Mg in an inert gas atmosphere into a mold in an inert atmosphere and an air atmosphere, This is confirmed by the fact that the cast structure is finely equiaxed and the cast structure in the air atmosphere is coarsely crystallized. Furthermore, in order to stably enjoy the effect of refining the solidification structure due to the addition of Mg even in the actual process in which re-oxidation of molten steel occurs, the present inventors have intervened alumina-based media attached to the surfaces of MgO and MgAl 2 O 4. TiN with high equiaxed crystal nucleation ability is deposited as a nucleation site on the inclusions and titania inclusions, and the nucleation ability of the composite inclusions as a whole is enhanced, so that equiaxed nuclei of MgO and MgAl 2 O 4 It has been found that it is effective to compensate for the decrease in productivity. Molten steel re-oxidation by air or slag mainly occurs in ladle and molten steel injection part in tundish, and TiN is relatively unstable in high temperature molten steel. In order to deposit TiN stably on titania inclusions, the molten steel temperature is as low as possible downstream of the molten steel injection part in the tundish where reoxidation inclusions are generated, and the reoxidation inclusions contact TiN. It is effective to add in a strong stirring immersion nozzle that is frequently used. However, since it is difficult to blow powder TiN into the immersion nozzle and disperse it in the molten steel, the present inventors have introduced the molten steel 2 in the tundish 1 as shown in FIG. When injecting into the mold 6 through the nozzle 3, an inert gas containing 2% by volume or more of N 2 gas or N 2 is blown from the gas introduction tube 5 of the gas blowing type immersion nozzle 3 through the porous inner hole body 4. A new method has been devised in which TiN is precipitated on the reoxidation inclusions by reacting with Ti in the molten steel in the immersion nozzle. The N 2 gas blown into the molten steel is once dissolved in the molten steel near the inner wall of the nozzle by the equation (1), and then reacts with Ti in the molten steel by the equation (2) to form the MgO and MgAl 2 O 4 surfaces. TiN is generated on the adhered alumina inclusions and titania inclusions.
N 2 (gas) = 2 N (dissolved) (1)
Ti (dissolved) + N (dissolved) = TiN (solid) (2)
When 100% N 2 gas is blown, the Ti (acid-soluble Ti) concentration required for TiN generation is 0.014% by mass when calculated from thermodynamic data. Therefore, in order to generate TiN in this method, It is necessary to make the Ti concentration of 0.014% by mass or more. In addition, as will be described later, if the Ti concentration is too high, a large amount of titania inclusions are generated and the ability to produce equiaxed nuclei of MgO and MgAl 2 O 4 is reduced. In this case, in order to generate TiN by blowing N 2 gas, the N 2 gas concentration needs to be 2 % by volume or more. Therefore, in order to compensate for the decrease in the equiaxed crystal nucleation ability of MgO and MgAl 2 O 4 by TiN generation, and to obtain an equiaxed crystal refinement effect stably even during reoxidation of molten steel, N 2 gas in the blown gas The concentration needs to be 2 to 100% by volume. When the required lower limit of N 2 gas concentration in the blowing gas is expressed as a function of Ti concentration, N 2 gas concentration (volume%) = 0.196 / [mass% Ti] 2 is obtained. The mixed gas for changing the N 2 gas concentration needs to be an inert gas that does not react with molten steel. The inert gas refers to a rare gas in the present invention, and Ar gas is desirable from the viewpoint of cost. Further, if even a small amount of fine TiN is deposited on the alumina inclusions and titania inclusions attached to the surfaces of MgO and MgAl 2 O 4 , the portion becomes the nucleus of equiaxed crystals and becomes MgO and MgAl. Since the lowering of equiaxed crystal nucleation ability of 2 O 4 can be compensated for, the lower limit blown N 2 gas flow rate is not specified. On the other hand, if N 2 gas is blown in excessively, the N content that does not react with Ti in the molten steel to become TiN reacts with Al in the molten steel to generate coarse precipitates and deteriorate workability. Although there is a concern, when N 2 gas is blown at 10 Nl / min with the flow rate of molten steel passing through the gas blowing type immersion nozzle 3 being about 2 t / min, the N concentration in the molten steel is 0.0006% by mass at the maximum. However, the problem of material deterioration does not occur even when considering an appropriate N concentration of 0.0005 to 0.01% by mass described later. For this reason, the upper limit N 2 gas blowing flow rate is not generally defined, but if the N concentration in the molten steel is within a range not exceeding 60% of the upper limit of 0.01% by mass under the same casting conditions, 100 Nl / min. Is a desirable upper limit. Further, in the case of blowing with a mixed gas of N 2 gas and inert gas, the inert gas is not absorbed into the molten steel, so it is desirable that the flow rate of only N 2 gas does not exceed 100 Nl / min.

窒素ガス吹き込みは、溶鋼再酸化が起こりやすい鋳造初期と末期において行うと、特に有効である。鋳造中期については、再酸化が殆ど生じていない場合には窒素ガス吹き込みを行わなくても良い。鋳造中期に窒素ガス吹き込みを行わない場合、アルゴンガスを吹き込むと好ましい。   Nitrogen gas blowing is particularly effective when it is performed at the initial and final stages where molten steel reoxidation is likely to occur. In the middle of casting, nitrogen gas blowing may not be performed when reoxidation hardly occurs. When nitrogen gas is not blown in the middle of casting, it is preferable to blow argon gas.

本発明の等軸晶微細化剤であるMgの沸点は1097℃であり、溶鋼の融点(純鉄1538℃)よりもかなり低いため、溶鋼添加時には爆発的なガス化が生じ、添加後も溶鋼から蒸発していくため、等軸晶が生成する鋳型内までMgを歩留まりよく残存させることが難しい。本発明では、成分調整後の溶鋼移送中のMgロスを極力抑制するため、できるだけタンディッシュに近い位置で取鍋下部深くに、またはタンディッシュ内で鍋溶鋼注入流にワイヤーなどを用いて入れ込むことが効果的である。   The boiling point of Mg, which is the equiaxed crystal refining agent of the present invention, is 1097 ° C., which is considerably lower than the melting point of molten steel (pure iron 1538 ° C.), and therefore explosive gasification occurs when molten steel is added. Therefore, it is difficult to leave Mg in a high yield in the mold in which equiaxed crystals are generated. In the present invention, in order to suppress as much as possible Mg loss during the molten steel transfer after adjusting the components, it is inserted as deep as possible in the bottom of the ladle at a position as close as possible to the tundish or into the ladle molten steel injection flow in the tundish using a wire or the like It is effective.

本発明では、溶鋼中の溶存(酸可溶)Al濃度は0.03質量%以下であり、これを超える酸可溶Al濃度ではアルミナ系介在物をMgO、或いはMgAl24に改質できず、残存した多量のアルミナ系介在物との凝集・合体により粗大化し、等軸晶の核生成サイトとしての能力を失う。MgO、或いはMgAl24のアルミナ系介在物との凝集・合体を抑制し、等軸晶の核生成能を維持するためには酸可溶Al濃度は低い方が良く、下限値は0質量%を含む。また、酸可溶Al濃度とは、酸に溶解したAl量を測定したもので、溶存Alは酸に溶解し、アルミナは酸に溶解しないことを利用した分析方法である。ここで、酸とは、例えば塩酸1、硝酸1、水2の割合で混合した混酸である。 In the present invention, the dissolved (acid-soluble) Al concentration in the molten steel is 0.03% by mass or less, and if the acid-soluble Al concentration exceeds this, the alumina inclusions can be modified to MgO or MgAl 2 O 4. However, it becomes coarse due to agglomeration and coalescence with a large amount of remaining alumina inclusions and loses its ability as a nucleation site for equiaxed crystals. In order to suppress aggregation and coalescence of MgO or MgAl 2 O 4 with alumina inclusions and maintain equiaxed crystal nucleation ability, the acid-soluble Al concentration should be low, and the lower limit is 0 mass. %including. The acid-soluble Al concentration is an analytical method that measures the amount of Al dissolved in an acid, and utilizes that dissolved Al dissolves in an acid and alumina does not dissolve in an acid. Here, the acid is a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1, and water 2, for example.

また、酸可溶Ti濃度も高くなり過ぎると、チタニア系介在物をMgO、或いはMgAl24に改質できず、MgO、或いはMgAl24は残存した多量のチタニア系介在物との凝集・合体により粗大化し、等軸晶の核生成サイトとしての効力を失うことから、酸可溶Ti濃度は0.1質量%以下とし、下限値は上述したように100%N2ガス吹き込みでTiNの生成を可能とする0.014質量%とする。酸可溶Ti濃度は、酸可溶Al濃度と同様、酸に溶解したTi量を測定したもので、溶存Ti濃度に一致する。 If the acid-soluble Ti concentration becomes too high, the titania inclusions cannot be modified to MgO or MgAl 2 O 4 , and MgO or MgAl 2 O 4 aggregates with a large amount of remaining titania inclusions. Since it becomes coarse due to coalescence and loses its effectiveness as a nucleation site for equiaxed crystals, the acid-soluble Ti concentration is set to 0.1% by mass or less, and the lower limit is 100% N 2 gas blown as described above. 0.014% by mass that enables the production of. The acid-soluble Ti concentration is obtained by measuring the amount of Ti dissolved in the acid, similarly to the acid-soluble Al concentration, and matches the dissolved Ti concentration.

次に、[1]の電磁攪拌の条件に関して述べる。一般に、電磁攪拌では、凝固界面の溶鋼に旋回流を付与するため、この旋回流が柱状デンドライトを分断し、等軸晶化を促進すると考えられている。しかし、本発明者らの知見では、従来から言われている鋳片表層部の凝固界面における柱状晶分断の効果は弱く、むしろ電磁攪拌により凝固シェルと溶鋼間の熱伝達が促進され、鋳片内部の溶鋼過熱度を低下させる効果が高いことを見いだした。本発明の等軸晶核の生成促進では、この電磁攪拌の溶鋼過熱度を低下させる効果を活用し、電磁攪拌により微細な酸化物を起点に生成した等軸晶核の再溶解を防止している。しかしながら、電磁攪拌による溶鋼過熱度の低減効果を高めていくためには、旋回流速を速くする必要があり、その場合微細な酸化物が凝集・合体により粗大化し、等軸晶の核として有効に機能しなくなる。そこで、C:0.08質量%、Si:0.5質量%、Mn:1.0質量%、P:0.02質量%、S:0.003質量%、N:0.003質量%、酸可溶Al:0.025質量%、酸可溶Ti:0.04質量%の溶鋼に、タンディッシュ内でMgワイヤーを添加して0.0005質量%のMg濃度に調整し、該溶鋼をガス吹き込み型浸漬ノズル3から15体積%N2−85体積%Ar混合ガスを10Nl/分吹き込みながら連続鋳造する実験を実施し、鋳片内部と鋳片表層部の等軸晶粒径におよぼす電磁攪拌の旋回流速の影響を調査した。なお、分岐状柱状晶(分断されていない)、分断された分岐状柱状晶についても、その粒径を同時に評価できるように、等軸晶粒径は2(a・b)0.5と定義した(aは結晶粒の長径、bは結晶粒の短径である。分断されていない分岐状柱状晶についてはひとつの枝をひとつの結晶粒とした。)。鋳片内部の平均等軸晶粒径は、鋳片1/4厚から内部における横断面の等軸晶粒径の平均値、鋳片表層部の平均等軸晶粒径は、表層から鋳片1/4厚における横断面の等軸晶粒径の平均値である。 Next, the conditions for electromagnetic stirring in [1] will be described. In general, in electromagnetic stirring, a swirl flow is imparted to the molten steel at the solidification interface, and this swirl flow is considered to break up columnar dendrites and promote equiaxed crystallization. However, according to the knowledge of the present inventors, the effect of columnar crystal fragmentation at the solidification interface of the slab surface layer portion which has been conventionally known is weak, rather, heat transfer between the solidified shell and the molten steel is promoted by electromagnetic stirring, and the slab It was found that the effect of lowering the internal superheated molten steel was high. In promoting the generation of equiaxed crystal nuclei of the present invention, the effect of reducing the superheated degree of molten steel by electromagnetic stirring is utilized to prevent remelting of equiaxed crystal nuclei generated from fine oxides by electromagnetic stirring. Yes. However, in order to increase the effect of reducing the degree of superheated molten steel by electromagnetic stirring, it is necessary to increase the swirl flow velocity. In that case, fine oxides are coarsened by agglomeration and coalescence, and are effective as equiaxed crystal nuclei. Stops functioning. Therefore, C: 0.08% by mass, Si: 0.5% by mass, Mn: 1.0% by mass, P: 0.02% by mass, S: 0.003% by mass, N: 0.003% by mass, To the molten steel of acid-soluble Al: 0.025 mass%, acid-soluble Ti: 0.04 mass%, Mg wire was added in a tundish to adjust the Mg concentration to 0.0005 mass%, and the molten steel was An experiment was conducted in which continuous casting was performed while blowing a gas mixture of 15 volume% N 2 -85 volume% Ar from the gas blowing type immersion nozzle 3 at a rate of 10 Nl / min. The effect of stirring swirl flow rate was investigated. In addition, the equiaxed crystal grain size was defined as 2 (a · b) 0.5 so that the grain size of the branched columnar crystals (not divided) and the divided branched columnar crystals can be evaluated simultaneously ( a is the major axis of the crystal grains, and b is the minor axis of the crystal grains.For the branched columnar crystals that are not divided, one branch is taken as one crystal grain.) The average equiaxed grain size inside the slab is the average value of the equiaxed grain size of the cross section inside from the slab 1/4 thickness, and the average equiaxed grain size of the slab surface layer is from the surface layer to the slab It is the average value of equiaxed grain size of the transverse section at ¼ thickness.

鋳片内部と鋳片表層部における平均等軸晶粒径におよぼす電磁攪拌流速の影響を図2に示す。図2から分かるように、鋳片内部の平均等軸晶粒径は溶鋼の旋回流速が25cm/s以上で3mm以下に、30cm/s以上で2mm程度まで小さくなるが、100cm/sを超えると反対に平均等軸晶粒径は大きくなり始め、105cm/s超では3mmを超えて粗大化する。この原因は、電磁攪拌の旋回流速が25cm/s以上、より明確には30cm/s以上になると鋳片内部で微細酸化物を起点に生成した等軸晶核の再溶解が抑制されるのに対し、旋回流速が100cm/sを超えると鋳片内部でMgOやMgAl24でも、凝集・合体による粗大化が進行し等軸晶の核として機能し難くなり、さらに105cm/sを超えると等軸晶核として機能しなくなるためだと考えられる。なお、鋳片表層部については、殆どが鋳型側から鋳片内部に向かって一定方向に揃った比較的長い分岐状柱状晶が成長しており、分断されていない分岐状柱状晶、分断した分岐状柱状晶、柱状晶を含む平均等軸晶粒径は粗大であった。これは、電磁攪拌による鋳片表層部の凝固界面における柱状晶分断の効果が比較的弱いためである。したがって、鋳片内部の凝固組織を微細な等軸晶にするためには、電磁攪拌の旋回流速を30〜100cm/sに制御するのが望ましい。また、鋳型下10mよりも更に下方では、既に鋳片表層の凝固はほぼ完了しているため、誘導電磁攪拌装置7は凝固の始まる鋳型内メニスカス12の位置と鋳型下10mの位置との間に設置するのが効果的である。 FIG. 2 shows the influence of the magnetic stirring velocity on the average equiaxed grain size in the slab and in the slab surface layer. As can be seen from FIG. 2, the average equiaxed grain size inside the slab is as small as 3 mm or less when the swirling flow velocity of molten steel is 25 cm / s or more, and to about 2 mm when it is 30 cm / s or more. On the other hand, the average equiaxed grain size starts to increase, and when it exceeds 105 cm / s, it becomes larger than 3 mm. This is because when the swirling flow velocity of electromagnetic stirring is 25 cm / s or more, more specifically 30 cm / s or more, the remelting of equiaxed nuclei generated from fine oxides inside the slab is suppressed. On the other hand, if the swirling flow velocity exceeds 100 cm / s, even with MgO or MgAl 2 O 4 inside the slab, coarsening due to agglomeration and coalescence progresses and it becomes difficult to function as a nucleus of equiaxed crystal, and when it exceeds 105 cm / s. This is probably because it does not function as an equiaxed crystal nucleus. In the slab surface layer portion, relatively long branched columnar crystals that are aligned in a certain direction from the mold side toward the inside of the slab are growing, and undivided branched columnar crystals, divided branches. The average equiaxed grain size including columnar crystals and columnar crystals was coarse. This is because the effect of columnar crystal division at the solidification interface of the slab surface layer by electromagnetic stirring is relatively weak. Therefore, in order to make the solidified structure inside the slab into a fine equiaxed crystal, it is desirable to control the swirl flow rate of electromagnetic stirring to 30 to 100 cm / s. Further, since the solidification of the slab surface layer has already been almost completed below 10 m below the mold, the induction electromagnetic stirrer 7 is located between the position of the meniscus 12 in the mold where the solidification starts and the position of 10 m below the mold. It is effective to install.

次に、[2]固液界面エネルギーを低下させる金属元素の選定であるが、鋼板材質に悪影響を与えることなく少量添加で界面活性効果が得られる元素としてBiおよびSnが有望であることを、これら金属元素を添加した10kg溶鋼の凝固実験で柱状晶間隔を評価することにより見いだした。柱状晶微細化の効果は、これら金属元素の内から1種以上を合計で0.0005質量%以上添加すれば十分であるが、0.01質量%を超えて添加すると鋼板が脆化し圧延時に端部に耳割れが発生した。このため、溶鋼中にはBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加すればよい。さらに、BiおよびSnの添加場所は鋳片材質全体に悪影響を与え難く、なるべく鋳片表層部で柱状晶微細化の効果のみを最大限に享受できるように、鋳型内溶鋼11中に添加するのが望ましい。添加方法としては、BiおよびSnを含有する金属ワイヤーを直接鋳型内の溶鋼上部側に挿入するか、或いはBiおよびSnを含有するモールドフラックスを用いて供給することで、比較的鋳片表層部に効率的に添加できる。モールドフラックスを介して微細化元素を添加する方法としては、事前にBiやSnを混入させたモールドフラックスを使用する方法、添加直前にBiやSnをモールドフラックスに混入させながら鋳型内に供給する方法、鋳造中に一定の速度でBi粉やSn粉を湯面被覆しているモールドフラックス上に供給する方法、などが有効である。BiおよびSnの沸点は各々1560℃と2270℃であり、溶鋼の融点(純鉄1538℃)よりも高いため添加時に爆発的なガス化は生じない。さらに、BiとSnの密度は各々9.8g/cm3と7.3g/cm3であり、溶鋼の密度7.0g/cm3よりも重いことから、ワイヤーやパウダーから溶鋼表面に添加しても直ちに浮上してしまうことはなく、溶鋼中に比較的容易に添加できる。添加したBi、Snの含有量については、スラブ又は圧延鋼板から採取した試料の分析によって評価することができる。 Next, [2] selection of a metal element that lowers the solid-liquid interfacial energy, Bi and Sn are promising as elements that can obtain a surface active effect by adding a small amount without adversely affecting the steel plate material. It was found by evaluating the columnar crystal interval in a solidification experiment of 10 kg molten steel to which these metal elements were added. As for the effect of refining columnar crystals, it is sufficient to add one or more of these metal elements in a total amount of 0.0005% by mass or more, but if added in excess of 0.01% by mass, the steel sheet becomes brittle and during rolling. Ear cracks occurred at the edges. For this reason, what is necessary is just to add 1 or more types from Bi and Sn to molten steel so that it may become 0.0005-0.01 mass% in total. Further, Bi and Sn are added to the molten steel 11 in the mold so that the entire cast slab material is hardly adversely affected and only the effect of refining columnar crystals can be enjoyed as much as possible at the slab surface layer. Is desirable. As an addition method, a metal wire containing Bi and Sn is directly inserted into the molten steel upper side in the mold, or a mold flux containing Bi and Sn is used to supply relatively to the surface of the slab. Can be added efficiently. As a method of adding a fine element through a mold flux, a method of using a mold flux mixed with Bi or Sn in advance, or a method of supplying Bi or Sn into a mold while mixing Bi or Sn into the mold flux immediately before the addition. For example, a method of supplying Bi powder or Sn powder onto the mold flux covering the molten metal surface at a constant speed during casting is effective. The boiling points of Bi and Sn are 1560 ° C. and 2270 ° C., respectively, which are higher than the melting point of molten steel (pure iron 1538 ° C.), so no explosive gasification occurs during addition. Further, the density of Bi and Sn is 9.8 g / cm 3 and 7.3 g / cm 3 , respectively, which is heavier than the density of molten steel 7.0 g / cm 3. However, it does not float immediately and can be added to molten steel relatively easily. The contents of added Bi and Sn can be evaluated by analyzing samples collected from slabs or rolled steel sheets.

さらに、[2]の電磁攪拌の条件について述べる。ここでは、先に述べたように凝固界面における電磁攪拌の柱状晶分断効果が弱いことから、鋳型内にBiおよびSnを添加して、鋳型側から成長する柱状晶を微細・脆弱化させ、この柱状晶を電磁攪拌の弱い剪断力により効果的に分断し、鋳片表層部に微細な等軸晶を造り込むことが重要となる。そこで、C:0.08質量%、Si:0.5質量%、Mn:1.0質量%、P:0.02質量%、S:0.003質量%、N:0.003質量%、酸可溶Al:0.025質量%、酸可溶Ti:0.04質量%、Mg:0.0005質量%の溶鋼を、ガス吹き込み型浸漬ノズル3から15体積%N2−85体積%Ar混合ガスを10Nl/分吹き込みながら鋳型内に注入し、該鋳型内で連鋳パウダーを通してBiを0.003質量%添加する連続鋳造実験により、鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌の旋回流速の影響を調査して図3に示す。なお、Mgはタンディッシュ内でワイヤー添加した。鋳片表層部の平均等軸晶粒径は、電磁攪拌による旋回流速が25cm/s以上になると3mm以下まで、旋回流速が30cm/s以上になると2mm程度まで小さくなり、さらに旋回流速が100cm/s超でもその効果は維持されている。これは、電磁攪拌の旋回流速が25cm/s以上になると、鋳型内でのBi添加により微細・脆弱化された柱状晶が電磁攪拌流により分断されはじめ、さらに30cm/s以上になるとより効果的に柱状晶の分断効果が得られ、鋳片表層部に微細等軸晶を生成できることを示す結果である。一方、図3から分かるように、溶鋼の旋回流速が30cm/s以上になると鋳片内部の平均等軸晶粒径は2mm程度まで小さくなるが、100cm/sを超えると反対に平均等軸晶粒径は大きくなり始める。この原因は、先の実験でも述べたように、電磁攪拌の旋回流速が30cm/s以上になると鋳片内部で微細なMgOやMgAl24を起点に生成した等軸晶核の再溶解が効果的に抑制されるのに対し、旋回流速が100cm/sを超えると鋳片内部でMgOやMgAl24でも、凝集・合体による粗大化が始まり、等軸晶の核として機能し難くなるためだと考えられる。したがって、鋳片全体を微細等軸晶化するには、電磁攪拌流速を30〜100cm/sとすることが効果的である。 Furthermore, the electromagnetic stirring conditions of [2] will be described. Here, as described above, since the columnar crystal fragmentation effect of electromagnetic stirring at the solidification interface is weak, Bi and Sn are added into the mold to make the columnar crystal growing from the mold side fine and brittle. It is important to effectively divide the columnar crystals by the shearing force with weak electromagnetic stirring and to build fine equiaxed crystals in the slab surface layer. Therefore, C: 0.08% by mass, Si: 0.5% by mass, Mn: 1.0% by mass, P: 0.02% by mass, S: 0.003% by mass, N: 0.003% by mass, Acid-soluble Al: 0.025% by mass, acid-soluble Ti: 0.04% by mass, Mg: 0.0005% by mass from a gas blown immersion nozzle 3 to 15% by volume N 2 -85% by volume Ar The average equiaxed crystal grains in the slab and in the slab surface layer were obtained by continuous casting experiment in which a mixed gas was injected into the mold while blowing 10 Nl / min, and 0.003% by mass of Bi was added through the continuous casting powder. The influence of the swirling flow velocity of electromagnetic stirring on the diameter is investigated and shown in FIG. In addition, Mg added the wire in the tundish. The average equiaxed grain size of the slab surface layer portion is reduced to 3 mm or less when the swirling flow rate by electromagnetic stirring is 25 cm / s or more, and is decreased to about 2 mm when the swirling flow rate is 30 cm / s or more. The effect is maintained even if it exceeds s. This is more effective when the swirling flow velocity of electromagnetic stirring is 25 cm / s or more, and columnar crystals refined and weakened by addition of Bi in the mold begin to be divided by the electromagnetic stirring flow, and further 30 cm / s or more. It is a result which shows that the parting effect of a columnar crystal is obtained, and that a fine equiaxed crystal can be generated in the slab surface layer portion. On the other hand, as can be seen from FIG. 3, the average equiaxed grain size inside the slab decreases to about 2 mm when the swirling flow velocity of the molten steel is 30 cm / s or more. The particle size begins to increase. As described in the previous experiment, this is caused by the remelting of equiaxed nuclei generated from fine MgO and MgAl 2 O 4 as the starting point in the slab when the swirling flow rate of electromagnetic stirring is 30 cm / s or more. While effectively suppressed, when the swirl velocity exceeds 100 cm / s, coarsening due to agglomeration and coalescence starts even in MgO and MgAl 2 O 4 inside the slab, making it difficult to function as a nucleus of equiaxed crystals. This is probably because of this. Therefore, in order to make the entire slab fine equiaxed, it is effective to set the magnetic stirring flow rate to 30 to 100 cm / s.

電磁攪拌流速については、柱状晶や分岐状柱状晶組織が発達する連続鋳造条件において、鋳造した鋳片の幅方向中央部の凝固組織をピクリン酸エッチングで現出し、柱状晶や分岐状柱状晶の傾きから流速を評価することができる。この方法によって予め電磁攪拌推力と電磁攪拌流速の関係を求めておき、本発明においても、目標とする電磁攪拌流速を得るための電磁攪拌推力を選択して電磁攪拌を実施すればよい。   With regard to the electromagnetic stirring flow rate, in the continuous casting conditions in which columnar crystals and branched columnar crystal structures develop, the solidified structure at the center in the width direction of the cast slab is revealed by picric acid etching. The flow rate can be evaluated from the slope. By this method, the relationship between the electromagnetic stirring thrust and the electromagnetic stirring flow rate is obtained in advance, and also in the present invention, the electromagnetic stirring is performed by selecting the electromagnetic stirring thrust for obtaining the target electromagnetic stirring flow rate.

上記[1]と[2]の組み合わせによって、鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下(電磁攪拌流速25〜105cm/s)、望ましくは2mm以下(電磁攪拌流速30〜100cm/s)の凝固組織を得ることができる。   By combining the above [1] and [2], the average equiaxed grain size is 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside (electromagnetic stirring flow rate 25 to 105 cm / s). Desirably, a solidified structure having a thickness of 2 mm or less (electromagnetic stirring flow rate of 30 to 100 cm / s) can be obtained.

本発明は、上記説明からも分かるように、スラブへの適用に限られたものではなく、ブルームやビレットに適用しても、十分な凝固組織の微細化効果が得られる。   As can be seen from the above description, the present invention is not limited to application to slabs, and even when applied to bloom or billet, a sufficient solidification structure refinement effect can be obtained.

本発明の溶鋼中の化学成分のうち、Al、Ti、Mg、Bi、Snの限定理由についてはすでに述べたとおりである。最後に、これら以外の化学成分の限定理由について記載する。   Among the chemical components in the molten steel of the present invention, the reasons for limiting Al, Ti, Mg, Bi, and Sn are as already described. Finally, the reasons for limiting the chemical components other than these will be described.

Cは鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには少なくとも0.03質量%が必要である。しかし、過剰に含まれると、Ti等の添加元素によりCを固定したり、冷却条件を駆使しても、伸びフランジ特性に好ましくないセメンタイト相の生成が避けられないので0.20質量%以下とする。   C is an essential element for securing the strength of the steel sheet, and at least 0.03 mass% is necessary to obtain a high-strength steel sheet. However, if excessively contained, even if C is fixed by an additive element such as Ti or the cooling conditions are fully utilized, the formation of a cementite phase that is not preferable for stretch flange characteristics is unavoidable. To do.

Siは曲げ性の劣化を比較的抑えて、強度向上に寄与する元素であり、その効果を発揮するためには0.08質量%以上の添加が必要である。過剰に添加すると溶接性や延性に悪影響を及ぼすので1.5質量%を上限とする。   Si is an element that contributes to strength improvement by relatively suppressing the deterioration of bendability, and 0.08% by mass or more is necessary to exert its effect. If added excessively, the weldability and ductility are adversely affected, so 1.5 mass% is made the upper limit.

MnはC、Siとともに鋼板の高強度化に有効な元素であり、0.5質量%以上は含有させる必要があるが、3.0質量%を超えて含有させると延性が劣化するため上限を3.0質量%とする。   Mn is an element effective for increasing the strength of steel sheets together with C and Si, and it is necessary to contain 0.5% by mass or more, but if it exceeds 3.0% by mass, the ductility deteriorates, so the upper limit is set The content is 3.0% by mass.

Pは固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので0.05質量%以下にする必要がある。固溶強化の必要がなければPを添加する必要はなく、Pの下限値は0質量%を含む。   P is effective as a solid solution strengthening element, but since there is a concern about deterioration of workability due to segregation, it is necessary to make it 0.05 mass% or less. If solid solution strengthening is not necessary, it is not necessary to add P, and the lower limit value of P includes 0% by mass.

Sは、MnSの粗大な延伸介在物を形成して加工性を劣化させるため、従来はS濃度0.002質量%の極低硫化が加工性確保に必須であったが、本発明では微細で硬質なMgO、或いはMgAl24上にMnSを析出させ、圧延時にも変形が起こりにくく、介在物の延伸を防止しているため、S濃度の上限値は特に規定しない。しかしあまりS濃度が高過ぎると、MnSの変形を抑制するMgO、或いはMgAl24が多量に必要となり、それに伴いMgの添加量が0.006質量%を超えるため、MgOまたはMgAl24が粗大化し易くなる不都合があり、0.02質量%以下が望ましい。また、S濃度は従来並の0.002質量%未満に低減するためには、二次精錬で脱硫処理を相当強化する必要があり、脱硫処理コストが高くなりすぎること、且つ本発明の副次的なMnSの形態制御の効果を享受しにくくなるためS濃度の下限値は0.002質量%とする。 Since S forms coarsely stretched inclusions of MnS and degrades workability, conventionally, ultra-low sulfidation with an S concentration of 0.002% by mass has been essential for securing workability. Since MnS is precipitated on hard MgO or MgAl 2 O 4 , deformation does not easily occur during rolling, and the inclusions are prevented from being stretched, so the upper limit of the S concentration is not particularly defined. However, if the S concentration is too high, a large amount of MgO or MgAl 2 O 4 that suppresses the deformation of MnS is required, and accordingly, the amount of Mg added exceeds 0.006% by mass. Therefore, MgO or MgAl 2 O 4 However, 0.02 mass% or less is desirable. In addition, in order to reduce the S concentration to less than 0.002% by mass, the desulfurization treatment needs to be considerably strengthened by secondary refining, the desulfurization treatment cost becomes excessively high, and the secondary of the present invention Therefore, the lower limit value of the S concentration is set to 0.002% by mass.

Nは添加し過ぎると、微量なAlであっても粗大な析出物を生成し、加工性を劣化させるので、0.01質量%を上限とする。一方、0.0005質量%未満とするにはコストがかかるので、0.0005質量%を下限とする。   If N is added too much, even if it is a trace amount of Al, coarse precipitates are generated and the workability is deteriorated, so 0.01 mass% is made the upper limit. On the other hand, since it costs to make it less than 0.0005 mass%, 0.0005 mass% is made the lower limit.

Nb、Vはより高い強度を得るために添加する元素であり、これら元素と結合して形成される炭窒化物による析出強化を利用するものである。析出強化は、これら元素の単独、或いは複合添加で得られるが、過度の添加は加工性を劣化させるため、これら元素の1種または2種でそれぞれ0.2質量%を上限とする。強度向上効果を得るためには、それぞれ0.005質量%以上添加することが好ましい。   Nb and V are elements added to obtain higher strength, and utilize precipitation strengthening by carbonitride formed by combining with these elements. Precipitation strengthening can be obtained by adding these elements alone or in combination. However, excessive addition deteriorates workability, so the upper limit is 0.2% by mass for one or two of these elements. In order to obtain the strength improvement effect, 0.005% by mass or more is preferably added.

Moも強度を向上させるために用いられる元素であるが、主に焼き入れ性を高めるために添加される。過度に添加すると、延性の劣化を招くことから0.5質量%を上限とする。焼き入れ性を確保する場合には、0.05質量%以上添加することが好ましい。Nb,V,Moは含有しなくてもよい。   Mo is also an element used to improve the strength, but is added mainly to improve the hardenability. If added excessively, ductility is deteriorated, so the upper limit is made 0.5 mass%. When ensuring hardenability, it is preferable to add 0.05 mass% or more. Nb, V, and Mo may not be contained.

材質確保の観点から主要な添加元素は以上であるが、スクラップの利用による微量のCu、NiおよびCr等の不可避的不純物としての混入は、本発明を損なうものではない。   From the viewpoint of securing the material, the main additive elements are as described above. However, the incorporation of trace amounts of Cu, Ni, Cr, etc. as unavoidable impurities by using scrap does not impair the present invention.

以下に、実施例及び比較例を挙げて、本発明について説明する。   Hereinafter, the present invention will be described with reference to examples and comparative examples.

表1のMg、Bi、Snを除く化学成分の溶鋼280tを溶製した。表1のMg、BiおよびSnの成分値に応じて、取鍋またはタンディッシュでMgを溶鋼中にワイヤー添加すると共に、ガス吹き込み型浸漬ノズル3から表1のガス成分のN2−Ar混合ガスを吹き込みながら、鋳型内では溶鋼中にBiとSnをワイヤー添加して連続鋳造した。鋳片サイズは厚み250mm×幅1100mmで、鋳造速度は1.0m/minである。誘導電磁攪拌装置7は鋳型内メニスカス12に設置されており、鋳造中はこの誘導電磁攪拌装置7に500A、周波数2Hzの電流を流して溶鋼を40cm/sで攪拌した。凝固組織の観察は、空気による再酸化の激しい鋳造初期、再酸化の少ない鋳造中期、鍋スラグの巻き込みによる再酸化の激しい鋳造末期で実施した。 Molten steel 280t having chemical components excluding Mg, Bi, and Sn in Table 1 was melted. According to the component values of Mg, Bi and Sn in Table 1, Mg is added to the molten steel with a ladle or tundish, and N 2 —Ar mixed gas of the gas components in Table 1 from the gas blowing type immersion nozzle 3 In the mold, Bi and Sn were added to the molten steel and cast continuously. The slab size is 250 mm thick × 1100 mm wide, and the casting speed is 1.0 m / min. The induction electromagnetic stirrer 7 is installed on the meniscus 12 in the mold. During casting, the molten steel was stirred at 40 cm / s by flowing a current of 500 A and a frequency of 2 Hz through the induction electromagnetic stirrer 7. The solidification structure was observed in the early casting stage when reoxidation by air was intense, in the middle stage of casting with little reoxidation, and at the end stage of casting where intense reoxidation was caused by the entrainment of pan slag.

Mg濃度が0.003質量%未満の試験(試験番号1、2、5、6、7、10、16、17、18)ではMgワイヤーを取鍋内で添加、Mg濃度が0.003質量%以上の試験(試験番号11、12、15、19)ではMgワイヤーをタンディッシュ内で添加した。一部の実験(試験番号16、17、18)では、誘導電磁攪拌装置7の電流を変化させ、溶鋼を90cm/s、25cm/sおよび105cm/sで攪拌した。   In the test where the Mg concentration is less than 0.003 mass% (test numbers 1, 2, 5, 6, 7, 10, 16, 17, 18), the Mg wire is added in the ladle, and the Mg concentration is 0.003 mass%. In the above tests (test numbers 11, 12, 15, and 19), Mg wire was added in the tundish. In some experiments (test numbers 16, 17, and 18), the current of the induction electromagnetic stirring device 7 was changed, and the molten steel was stirred at 90 cm / s, 25 cm / s, and 105 cm / s.

本実験で得られた鋳片の凝固組織を調査した結果を表1に示す。本発明の実施例である試験番号1、6、11、16、17、18では、等軸晶の核生成サイトとして有効なMgOおよびMgAl24を溶鋼中に微細分散させ、これに電磁攪拌を加え溶鋼の過熱度を奪うこと、さらに溶鋼の再酸化が激しく、MgOおよびMgAl24の等軸晶核生成能が低下する鋳造初期と末期において、ガス吹き込み型浸漬ノズル3からのN2ガス吹き込みの効果で等軸晶核の生成能の低下を補うことにより、鋳造全期にわたって鋳片内部を粒径3mm以下に微細等軸晶化した。合わせて、鋳型内で固液界面エネルギーを低下させるBiおよびSnを優先的に添加して、鋳型側から鋳片内部に向かって成長する柱状晶の微細・脆弱化を図り、その上で電磁攪拌の旋回流でこの微細・脆弱な柱状晶を分断することにより、鋳造の全域で鋳片表層部にも粒径3mm以下の微細な等軸晶を生成させることに成功した。 Table 1 shows the results of investigating the solidification structure of the slab obtained in this experiment. In Test Nos. 1, 6, 11, 16, 17, and 18, which are examples of the present invention, MgO and MgAl 2 O 4 that are effective as nucleation sites for equiaxed crystals are finely dispersed in molten steel, and this is magnetically stirred. was added to take the degree of superheat of molten steel, further reoxidation of the molten steel is intense, in casting the initial and end-stage equiaxed crystal nucleating ability to produce MgO and MgAl 2 O 4 is reduced, N 2 from gas blowing type immersion nozzle 3 By compensating for the decrease in the ability to generate equiaxed crystal nuclei by the effect of gas blowing, the inside of the slab was finely equiaxed to a particle size of 3 mm or less over the entire casting period. At the same time, Bi and Sn, which lower the solid-liquid interface energy in the mold, are added preferentially, and the columnar crystals that grow from the mold side toward the inside of the slab are made finer and more brittle. By dividing this fine and fragile columnar crystal with a swirling flow, a fine equiaxed crystal having a particle size of 3 mm or less was successfully formed in the slab surface layer throughout the casting.

一方、比較例である試験番号2、7、12では鋳型内でのBiおよびSn添加を実施しなかったため鋳片表層部の分岐状柱状晶が粗大化し、比較例である試験番号3、8、13では等軸晶の核生成サイトとして有効なMgを溶鋼中に含有させなかったため鋳片内部の等軸晶が粗大化し、比較例である試験番号4、9、14ではMgの含有もなく、鋳型内でのBiおよびSn添加もなかったため、鋳片内部と表層部の何れにおいても等軸晶は粗大化した。さらにガス吹き込み型浸漬ノズル3からN2ガスを吹き込まなかった比較例の試験番号5、10、15では、鋳造中期では凝固組織は微細化したものの、溶鋼再酸化の激しい鋳造初期と鋳造末期では、Mgを添加したにも関わらず、鋳片内部の等軸晶は粗大化した。これは、溶鋼再酸化で生じた多量のアルミナ系介在物やチタニア系介在物が、等軸晶核生成サイトのMgOおよびMgAl24の表面に付着したことにより、等軸晶微細化能を消失したためである。また、Mgを過剰添加した比較例の試験番号19では、生成した等軸晶核生成サイトのMgOおよびMgAl24が粗大化したため、鋳片内部の等軸晶は粗大化した。 On the other hand, in the test numbers 2, 7, and 12 which are comparative examples, Bi and Sn addition in the mold was not performed, so that the branched columnar crystals in the slab surface layer portion were coarsened, and test numbers 3 and 8 which were comparative examples. In No. 13, Mg that is effective as a nucleation site for equiaxed crystals was not contained in the molten steel, so the equiaxed crystals inside the slab became coarse, and in Test Nos. 4, 9, and 14 as comparative examples, Mg was not contained. Since there was no addition of Bi and Sn in the mold, the equiaxed crystal was coarsened both in the slab and in the surface layer. Furthermore, in the test numbers 5, 10, and 15 of the comparative examples in which N 2 gas was not blown from the gas blown immersion nozzle 3, the solidification structure was refined in the middle of casting, but in the early casting stage and the final casting stage where molten steel reoxidation was severe, Despite the addition of Mg, the equiaxed crystals inside the slab became coarse. This is because a large amount of alumina inclusions and titania inclusions generated by reoxidation of molten steel adhered to the surface of MgO and MgAl 2 O 4 at the equiaxed crystal nucleation site, thereby improving the equiaxed crystal refinement ability. This is because it disappeared. Further, in Test No. 19 of the comparative example in which Mg was excessively added, MgO and MgAl 2 O 4 at the generated equiaxed crystal nucleation site were coarsened, so the equiaxed crystal inside the slab was coarsened.

Figure 2017024037
Figure 2017024037

1 タンディッシュ
2 溶鋼
3 ガス吹き込み型浸漬ノズル
4 多孔質内孔体
5 ガス導入管
6 鋳型
7 誘導電磁攪拌装置
11 鋳型内溶鋼
12 メニスカス
DESCRIPTION OF SYMBOLS 1 Tundish 2 Molten steel 3 Gas blowing type immersion nozzle 4 Porous inner hole body 5 Gas introduction pipe 6 Mold 7 Induction electromagnetic stirrer 11 Molten steel 12 in a mold Meniscus

Claims (6)

鋳型内メニスカス〜鋳型下10mの間に誘導電磁攪拌装置を有する連続鋳造装置を用いて、C:0.03〜0.20質量%、Si:0.08〜1.5質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.002質量%以上、N:0.0005〜0.01質量%、Nb:0.2質量%以下、V:0.2質量%以下、Mo:0.5質量%以下、酸可溶Al:0.03質量%以下、酸可溶Ti:0.014〜0.1質量%、Mg:0.0003〜0.006質量%を含有し、残部が鉄および不可避的不純物からなる溶鋼をガス吹き込み型浸漬ノズルからN2ガスまたはN2を2体積%以上含有する不活性ガスを吹き込みながら鋳型内に注入し、該鋳型内溶鋼にBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加せしめ、該誘導電磁攪拌装置により水平面内で溶鋼を旋回させながら鋳造することを特徴とする連続鋳造方法。 Using a continuous casting apparatus having an induction electromagnetic stirring device between the meniscus in the mold and 10 m below the mold, C: 0.03 to 0.20 mass%, Si: 0.08 to 1.5 mass%, Mn: 0 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.002 mass% or more, N: 0.0005 to 0.01 mass%, Nb: 0.2 mass% or less, V: 0.2% by mass or less, Mo: 0.5% by mass or less, acid-soluble Al: 0.03% by mass or less, acid-soluble Ti: 0.014-0.1% by mass, Mg: 0.0003-0 It contained .006 wt%, injecting molten steel balance of iron and unavoidable impurities into the mold while blowing an inert gas containing N 2 gas or N 2 2 vol% or more from the gas blowing type immersion nozzle, 0.0005-0.01 quality in total of one or more of Bi and Sn in the molten steel in the mold A continuous casting method characterized in that it is added so as to be in an amount of%, and the molten steel is cast in a horizontal plane by the induction electromagnetic stirring device. タンディッシュ内でMgを0.0003〜0.006質量%含有させた後に鋳型内に注入することを特徴とする請求項1記載の連続鋳造方法。   The continuous casting method according to claim 1, wherein 0.0003 to 0.006 mass% of Mg is contained in the tundish and then poured into the mold. BiおよびSnの内から1種以上を含有する金属ワイヤーを鋳型内溶鋼中に連続的に供給することを特徴とする請求項1または2に記載の連続鋳造方法。   The continuous casting method according to claim 1 or 2, wherein a metal wire containing one or more of Bi and Sn is continuously fed into the molten steel in the mold. BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼表面上に供給することを特徴とする請求項1または2に記載の連続鋳造方法。   The continuous casting method according to claim 1 or 2, wherein a mold flux containing at least one of Bi and Sn is supplied onto the molten steel surface in the mold. 誘導電磁攪拌による溶鋼の旋回流速を25〜105cm/sとすることを特徴とする請求項1〜4のいずれか一項に記載の連続鋳造方法。   The continuous casting method according to any one of claims 1 to 4, wherein a swirling flow velocity of the molten steel by induction electromagnetic stirring is set to 25 to 105 cm / s. 請求項5記載の連続鋳造方法により鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下にしたことを特徴とする連続鋳造鋳片。   6. A continuous cast slab characterized in that the average equiaxed crystal grain size is 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside by the continuous casting method according to claim 5.
JP2015144271A 2015-07-21 2015-07-21 Continuous casting method for molten steel Active JP6488931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015144271A JP6488931B2 (en) 2015-07-21 2015-07-21 Continuous casting method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144271A JP6488931B2 (en) 2015-07-21 2015-07-21 Continuous casting method for molten steel

Publications (2)

Publication Number Publication Date
JP2017024037A true JP2017024037A (en) 2017-02-02
JP6488931B2 JP6488931B2 (en) 2019-03-27

Family

ID=57949168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144271A Active JP6488931B2 (en) 2015-07-21 2015-07-21 Continuous casting method for molten steel

Country Status (1)

Country Link
JP (1) JP6488931B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061598A (en) * 1998-08-21 2000-02-29 Nippon Steel Corp Method for continuously casting molten steel
JP2002126856A (en) * 2000-10-20 2002-05-08 Nippon Steel Corp Continuous casting method and cast piece
JP2005305489A (en) * 2004-04-20 2005-11-04 Nippon Steel Corp Method for continuously casting steel
JP2011218370A (en) * 2010-04-05 2011-11-04 Sumitomo Metal Ind Ltd Thick plate steel, and method for continuous casting of ingot as raw material of thick plate steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061598A (en) * 1998-08-21 2000-02-29 Nippon Steel Corp Method for continuously casting molten steel
JP2002126856A (en) * 2000-10-20 2002-05-08 Nippon Steel Corp Continuous casting method and cast piece
JP2005305489A (en) * 2004-04-20 2005-11-04 Nippon Steel Corp Method for continuously casting steel
JP2011218370A (en) * 2010-04-05 2011-11-04 Sumitomo Metal Ind Ltd Thick plate steel, and method for continuous casting of ingot as raw material of thick plate steel

Also Published As

Publication number Publication date
JP6488931B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
US7226493B2 (en) Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy
CN110184548B (en) Method for refining solidification structure of high manganese steel continuous casting billet
JP6455289B2 (en) Continuous casting method for molten steel
CN110777230B (en) Steel continuous casting billet solidification structure refining method based on target isometric crystal size and ratio
JP4858295B2 (en) Continuous casting method of high strength steel with finely dispersed precipitates and slab for high strength steel
JP4561575B2 (en) Continuous casting method of low alloy steel and steel slab with suppressed austenite grain growth during reheating
TWI394843B (en) Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting
JP7260731B2 (en) High purity steel and its refining method
JP6728934B2 (en) Continuous casting method for molten steel
JP4569458B2 (en) Continuous casting method of steel material with finely dispersed precipitates and slab for steel material
JP6488931B2 (en) Continuous casting method for molten steel
JP6728933B2 (en) Continuous casting method for molten steel
JP6500630B2 (en) Continuous casting method for molten steel and continuous cast slab
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP6825507B2 (en) Manufacturing method of low carbon steel thin wall slab and manufacturing method of low carbon steel thin wall slab and low carbon steel thin steel sheet
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP2001225154A (en) Continuous casting method for steel and continuously cast slab
JP2003342630A (en) Method for continuous casting molten steel containing added rare earth element
JP2018193595A (en) Carbon steel cast slab and manufacturing method of carbon steel cast slab
JP2018135578A (en) Carbon steel cast slab and method for manufacturing carbon steel cast slab
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
JP3971698B2 (en) Method for preventing nozzle clogging in continuous casting
RU2535428C1 (en) Out-of-furnace steel treatment with calcium method
RU2407606C1 (en) Procedure for production of continuous cast work piece of upgraded quality
JP2005213583A (en) Steel having superior performance at welded joint, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R151 Written notification of patent or utility model registration

Ref document number: 6488931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350