JP2017021251A - Coloring structure and method for manufacturing the same - Google Patents
Coloring structure and method for manufacturing the same Download PDFInfo
- Publication number
- JP2017021251A JP2017021251A JP2015139969A JP2015139969A JP2017021251A JP 2017021251 A JP2017021251 A JP 2017021251A JP 2015139969 A JP2015139969 A JP 2015139969A JP 2015139969 A JP2015139969 A JP 2015139969A JP 2017021251 A JP2017021251 A JP 2017021251A
- Authority
- JP
- Japan
- Prior art keywords
- concavo
- light
- convex structure
- convex
- color developing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004040 coloring Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 52
- 239000011295 pitch Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 29
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 230000000737 periodic effect Effects 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 5
- 229920005992 thermoplastic resin Polymers 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 30
- 238000003892 spreading Methods 0.000 description 19
- 230000001939 inductive effect Effects 0.000 description 18
- 239000010408 film Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 235000012239 silicon dioxide Nutrition 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 12
- 239000010453 quartz Substances 0.000 description 12
- 238000010894 electron beam technology Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920006267 polyester film Polymers 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000609 electron-beam lithography Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- CRWSWMKELFKJMC-UHFFFAOYSA-N CC.F.F.F.F.F.F Chemical compound CC.F.F.F.F.F.F CRWSWMKELFKJMC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000233 ultraviolet lithography Methods 0.000 description 2
- 241000907681 Morpho Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、表面に形成された構造体により発色する発色構造体およびその製造方法に関する。 The present invention relates to a coloring structure that develops color with a structure formed on a surface and a method for producing the same.
色素のような光吸収による電子遷移を伴う発色現象とは異なり、物質自体には光吸収性はないが、光の波長と同程度、もしくは波長よりも小さい周期構造体による回折や干渉、散乱を利用して、特定波長の光のみを反射、又は透過することにより発色する発色現象が存在する。以下、本明細書においては、この発色現象を構造発色と称する。 Unlike a coloring phenomenon that involves electronic transitions due to light absorption such as dyes, the substance itself does not absorb light, but it does not cause diffraction, interference, or scattering by a periodic structure that is the same as or smaller than the wavelength of light Utilizing this, there is a coloring phenomenon that develops color by reflecting or transmitting only light of a specific wavelength. Hereinafter, in this specification, this coloring phenomenon is referred to as structural coloring.
構造発色は、例えば紫外線により劣化しない無機誘電体材料で構成される場合、構造が保たれる限り紫外線が照射される環境下に放置しても、色褪せすることがない。 For example, when the structure color is composed of an inorganic dielectric material that does not deteriorate due to ultraviolet rays, the structure does not fade even when left in an environment irradiated with ultraviolet rays as long as the structure is maintained.
また、回折、干渉を利用する構造発色は、観察角度により認識される光の波長が変化する特徴があるため、意匠性の高い表現が可能となる。 In addition, structural color development using diffraction and interference has a feature that the wavelength of light recognized by the observation angle changes, so that high designability can be expressed.
このような構造発色による発色体として、屈折率が異なる高分子材料を多層構造とした多層膜干渉を利用した発色構造体が提案されている(特許文献1)。 As a color developing body by such a structural color development, a color forming structure using multilayer film interference in which polymer materials having different refractive indexes are formed in a multilayer structure has been proposed (Patent Document 1).
但し、特許文献1で提案された発色構造体は、高分子材料の多層構造であるため、隣接する各層を構成する材料の屈折率差が小さく、強い反射を得るためには幾重にも積層する必要があり、製造コストが高くなる。さらに、多層膜干渉の影響が支配的となり、観察角度による色変化が急峻となり、特定の色を表現することが困難となる。 However, since the color developing structure proposed in Patent Document 1 is a multilayer structure of polymer materials, the refractive index difference between the materials constituting the adjacent layers is small, and multiple layers are stacked in order to obtain strong reflection. This increases the manufacturing cost. Furthermore, the influence of multilayer film interference becomes dominant, and the color change depending on the observation angle becomes steep, making it difficult to express a specific color.
そこで、自然界に生息するモルフォチョウのように、強い反射を有し、且つ観察する角度による色変化が緩やかである発色体が提案されている(特許文献2)。 Therefore, a chromophoric body has been proposed that has strong reflection and has a gradual color change depending on the viewing angle, such as a morpho butterfly that inhabits nature (Patent Document 2).
特許文献2で提案された発色体は、基材に不均一な凹凸構造を形成し、この凹凸構造上に多層膜を積層することで、多層膜の周期性からなる干渉に凹凸構造の不規則性からなる光の広がり効果を付与し、観察角度による緩やかな色変化を実現している。 The color former proposed in Patent Document 2 forms a non-uniform uneven structure on a base material, and a multilayer film is laminated on the uneven structure, so that irregularities of the uneven structure are not affected by the periodicity of the multilayer film. A light spreading effect that is characteristic is added, and a gradual color change according to the viewing angle is realized.
通常、多層膜干渉により反射される光の強度は、正反射角度から離れると急激に減少するが、特許文献2の発色体は凹凸構造の影響により、正反射角度から外れても一定の反射強度が得られる。 Normally, the intensity of light reflected by multilayer interference decreases sharply when it is away from the regular reflection angle, but the color former of Patent Document 2 has a constant reflection intensity even if it deviates from the regular reflection angle due to the influence of the concavo-convex structure. Is obtained.
しかしながら、特許文献2で提案されている凹凸構造では、光の広がり効果を強めるために凹凸構造を高くすると光を散乱効果が強まることにより、観察角度による色変化は緩やかになるものの、反射光の波長は長波長側にシフトすることに加え、色コントラストが低下してしまう。さらに、散乱効果により光沢も失われてしまう。光沢を加えるために、多層膜と基材との間に金属薄膜を挿入することが提案されているが、多層膜を透過した可視領域の光は金属薄膜で反射されるため、色コントラスト低下の原因となる。 However, in the concavo-convex structure proposed in Patent Document 2, if the concavo-convex structure is increased in order to enhance the light spreading effect, the light scattering effect increases, so that the color change due to the observation angle becomes gradual, but the reflected light In addition to shifting the wavelength to the longer wavelength side, the color contrast is lowered. Further, the gloss is lost due to the scattering effect. In order to add gloss, it has been proposed to insert a metal thin film between the multilayer film and the base material. However, since light in the visible region that has passed through the multilayer film is reflected by the metal thin film, the color contrast decreases. Cause.
一方、散乱効果を抑えるため、凹凸構造を低くしてしまうと、光の広がりが十分に得られず、観察角度による色変化が急峻になってしまう。 On the other hand, if the concavo-convex structure is lowered in order to suppress the scattering effect, the light spread cannot be sufficiently obtained, and the color change depending on the observation angle becomes steep.
それ故に、本発明は、観察角度による色変化を緩やかにしながらも、発色の彩度や光沢感の低下を防止することができる発色構造体およびその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a color forming structure capable of preventing a decrease in color saturation and gloss while reducing a color change depending on an observation angle, and a method for manufacturing the same.
本発明は、基材と、基材表面もしくは基材上に形成された凹凸構造と、凹凸構造上に2層以上の層からなる積層体とを有する発色構造体において、積層体を構成する隣接する2層は、同じ波長帯の光を透過し、且つ、波長帯の光に対して異なる屈折率を持つ材料で構成され、積層体は、波長帯の一部の波長の光を選択的に反射されるように設計され、凹凸構造は、第1方向における線幅が波長帯の最小波長以下であり、第1方向と直交する第2方向における線長が第1方向の線幅よりも長く、第2方向における線長の標準偏差が第1方向の線幅の標準偏差よりも大きい矩形を第1方向及び第2方向に配列して構成される平面形状の凸部を有する凹凸構造Aと、第1方向において、波長帯の最小波長の1/2以上のピッチで配列され、第2方向に延びる複数の凸条からなる凹凸構造Bと、重畳した構造であることを特徴とするものである。 The present invention relates to a color developing structure having a base material, a concavo-convex structure formed on or on the base material surface, and a laminate composed of two or more layers on the concavo-convex structure. The two layers are made of a material that transmits light in the same wavelength band and has a different refractive index with respect to the light in the wavelength band, and the laminate selectively transmits light in a part of the wavelength band. The concavo-convex structure is designed to be reflected, and the line width in the first direction is not more than the minimum wavelength of the wavelength band, and the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction. A concavo-convex structure A having planar convex portions configured by arranging rectangles in which the standard deviation of the line length in the second direction is larger than the standard deviation of the line width in the first direction in the first direction and the second direction; In the first direction, the second direction is arranged with a pitch of 1/2 or more of the minimum wavelength of the wavelength band. A plurality of concave-convex structure composed of convex B extending, is characterized in that it is superimposed structure.
凹凸構造が2段以上の多段構造であることが好ましい。 The concavo-convex structure is preferably a multistage structure having two or more stages.
凹凸構造Bが2種類以上の周期構造の重ね合わせからなり、凹凸構造Bを構成する各周期構造のピッチの平均値が波長帯の最小波長の1/2以上であることが好ましい。 It is preferable that the concavo-convex structure B is composed of two or more types of periodic structures superimposed, and the average value of the pitch of each periodic structure constituting the concavo-convex structure B is ½ or more of the minimum wavelength of the wavelength band.
凹凸構造Bが第1方向及び第2方向の何れの方向にも周期性を有することが好ましい。 It is preferable that the concavo-convex structure B has periodicity in both the first direction and the second direction.
凹凸構造Bを構成する凸条のピッチの平均値および標準偏差の少なくとも一方が第1方向と第2方向とで異なることが好ましい。 It is preferable that at least one of the average value and the standard deviation of the pitches of the ridges constituting the concavo-convex structure B be different between the first direction and the second direction.
また、本発明は、基材と、基材表面もしくは基材上に形成された凹凸構造と、凹凸構造上に2層以上の層からなる積層体とを有する発色構造体において、積層体を構成する隣接する2層は、同じ可視領域の光を透過し、且つ、可視領域の光に対して異なる屈折率を持つ材料で構成され、積層体は、可視領域の一部の波長の光を選択的に反射されるように設計され、凹凸構造は、第1方向における線幅が830nm以下であり、第1方向と直交する第2方向における線長が第1方向の線幅よりも長く、且つ、第2方向における線長の標準偏差が第1方向における線幅の標準偏差よりも大きい矩形を第1方向及び第2方向に配列して構成される平面形状の凸部を有する凹凸構造Cと、第1方向において、180nm以上のピッチで配列され、第2方向に延びる複数の凸条からなる凹凸構造Dと、を重畳した構造であることを特徴とするものである。 The present invention also provides a laminate in a coloring structure having a base material, a concavo-convex structure formed on or on the base material surface, and a laminate composed of two or more layers on the concavo-convex structure. The two adjacent layers are made of a material that transmits the same visible region light and has a different refractive index with respect to the visible region light, and the laminated body selects light of a part of the visible region. The concavo-convex structure is designed such that the line width in the first direction is 830 nm or less, the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and A concavo-convex structure C having a planar convex portion configured by arranging rectangles in which the standard deviation of the line length in the second direction is larger than the standard deviation of the line width in the first direction in the first direction and the second direction; , Arranged in a first direction at a pitch of 180 nm or more, and second A concavo-convex structure D composed of a plurality of convex ridges extending direction, is characterized in that it is superimposed structure.
凹凸構造が2段以上の多段構造であることが好ましい。 The concavo-convex structure is preferably a multistage structure having two or more stages.
凹凸構造Dが2種類以上の周期構造の重ね合わせからなり、凹凸構造Dを構成する各周期構造のピッチの平均値が180nm以上であることが好ましい。 It is preferable that the concavo-convex structure D is formed by superposing two or more types of periodic structures, and the average value of the pitch of each periodic structure constituting the concavo-convex structure D is 180 nm or more.
凹凸構造Dが第1方向及び第2方向の何れの方向にも周期性を有することが好ましい。 It is preferable that the concavo-convex structure D has periodicity in both the first direction and the second direction.
凹凸構造Dを構成する凸条のピッチの平均値および標準偏差の少なくとも一方が第1方向と第2方向とで異なることが好ましい。 It is preferable that at least one of the average value and the standard deviation of the pitches of the ridges constituting the concavo-convex structure D be different between the first direction and the second direction.
凹凸構造Dを構成する凸条の第1方向及び第2方向のピッチの平均値が1μm以上100μm以下であることが好ましい。 The average value of the pitches in the first direction and the second direction of the ridges constituting the concavo-convex structure D is preferably 1 μm or more and 100 μm or less.
基材の両面のうち、凹凸構造が形成された面とは反対側の面に、可視領域の光を吸収する吸収層が形成されていても良い。 An absorption layer that absorbs light in the visible region may be formed on the surface opposite to the surface on which the concavo-convex structure is formed, on both surfaces of the substrate.
凹凸構造と基材表面との間に、可視領域の光を吸収する吸収層が形成されていても良い。 An absorption layer that absorbs light in the visible region may be formed between the uneven structure and the substrate surface.
基材が可視領域の光を吸収する材料により形成されていても良い。 The base material may be formed of a material that absorbs light in the visible region.
また、本発明は、基材と、基材表面もしくは基材上に形成された凹凸構造と、凹凸構造上に2層以上の層からなる積層体とを有し、照射された所定の波長帯の光のうちの一部の波長の光を選択的に反射する発色構造体の製造方法であって、基板上に、第1方向の線幅が波長帯の最小波長以下であり、第1方向と直交する第2方向における線長が第1方向における線幅よりも長く、且つ、第2方向における線長の標準偏差が第1方向の線幅の標準偏差よりも大きい矩形を第1方向及び第2方向に配列して構成される平面形状の第1凹部と、第1方向において、波長帯の最小波長の1/2以上のピッチで配列され、第2方向に延びる複数の線状の第2凹部とを重畳した構造を形成してなるモールドを用意する工程と、基材に光硬化性樹脂を塗布する工程と、光ナノインプリント法により、光硬化性樹脂層にモールドに形成された構造を転写して凹凸構造を形成する工程と、形成された凹凸構造上に、同じ波長帯の光を透過し、且つ、波長帯の光に対して異なる屈折率を持つ材料を交互に積層して積層体を成膜する工程とを具備するものである。 Further, the present invention includes a base material, a concavo-convex structure formed on the base material surface or the base material, and a laminate composed of two or more layers on the concavo-convex structure, and is irradiated with a predetermined wavelength band. A method for manufacturing a color forming structure that selectively reflects light having a part of the wavelength of the first light, wherein the line width in the first direction is less than or equal to the minimum wavelength of the wavelength band on the substrate, and the first direction A rectangle in which the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and the standard deviation of the line length in the second direction is larger than the standard deviation of the line width in the first direction. A plurality of linear first recesses arranged in the second direction and arranged in a pitch of ½ or more of the minimum wavelength of the wavelength band in the first direction and extending in the second direction; (2) preparing a mold having a structure in which concave portions are superimposed, and applying a photocurable resin to the substrate A step of transferring the structure formed in the mold to the photocurable resin layer by the optical nanoimprint method to form a concavo-convex structure, and transmitting light of the same wavelength band on the formed concavo-convex structure; and And a step of alternately laminating materials having different refractive indexes with respect to light in the wavelength band to form a laminate.
また、本発明は、基材と、基材表面もしくは基材上に形成された凹凸構造と、凹凸構造上に2層以上の層からなる積層体とを有し、照射された所定の波長帯の光のうちの一部の波長の光を選択的に反射する発色構造体の製造方法であって、基板上に、第1方向の線幅が波長帯の最小波長以下であり、第1方向と直交する第2方向における線長が第1方向における線幅よりも長く、且つ、第2方向における線長の標準偏差が第1方向の線幅の標準偏差よりも大きい矩形を第1方向及び第2方向に配列して構成される平面形状の第1凹部と、第1方向において、波長帯の最小波長の1/2以上のピッチで配列され、第2方向に延びる複数の線状の第2凹部とを重畳した構造を形成してなるモールドを用意する工程と、基材に熱可塑性樹脂、もしくは熱硬化性樹脂を塗布する工程と、熱ナノインプリント法により、熱可塑性樹脂層もしくは熱硬化性樹脂層にモールドに形成された構造を転写して凹凸構造を形成する工程と、形成された凹凸構造上に、同じ波長帯の光を透過し、且つ、波長帯の光に対して異なる屈折率を持つ材料を交互に積層して積層体を成膜する工程とを具備するものである。 Further, the present invention includes a base material, a concavo-convex structure formed on the base material surface or the base material, and a laminate composed of two or more layers on the concavo-convex structure, and is irradiated with a predetermined wavelength band. A method for manufacturing a color forming structure that selectively reflects light having a part of the wavelength of the first light, wherein the line width in the first direction is less than or equal to the minimum wavelength of the wavelength band on the substrate, and the first direction A rectangle in which the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and the standard deviation of the line length in the second direction is larger than the standard deviation of the line width in the first direction. A plurality of linear first recesses arranged in the second direction and arranged in a pitch of ½ or more of the minimum wavelength of the wavelength band in the first direction and extending in the second direction; 2 A step of preparing a mold formed with a structure in which concave portions are superimposed, and a thermoplastic resin or A step of applying a thermosetting resin, a step of transferring a structure formed in a mold to a thermoplastic resin layer or a thermosetting resin layer by a thermal nanoimprint method, and forming a concavo-convex structure; And a step of forming a laminate by alternately laminating materials that transmit light in the same wavelength band and have different refractive indexes for the light in the wavelength band.
上記の製造方法において、第1方向における第1凹部の線幅が830nm以下であり、第1方向における第2凹部のピッチが180nm以上であっても良い。 In the above manufacturing method, the line width of the first recess in the first direction may be 830 nm or less, and the pitch of the second recess in the first direction may be 180 nm or more.
本発明によれば、光の広がり効果を誘起するための凹凸構造Aに、回折光効果を誘起するための線状構造からなる凹凸構造Bを重畳した凹凸構造を設けることによって、観察角度による色変化を緩やかにしながらも、発色の彩度や光沢感の低下を防止することができる発色構造体およびその製造方法を提供できる。 According to the present invention, by providing a concavo-convex structure in which a concavo-convex structure B composed of a linear structure for inducing a diffracted light effect is provided on a concavo-convex structure A for inducing a light spreading effect, the color depending on the observation angle is provided. It is possible to provide a color forming structure capable of preventing the color saturation and glossiness from being lowered while slowing the change, and a method for producing the same.
本発明において、発色構造体が作用する波長帯は、凹凸構造を構成する凸部(凹部)の線幅及び配列ピッチと、凹凸構造上に形成する積層体の屈折率及び膜厚とにより決定される。本発明においては、発色構造体が対象とする波長帯は限定されるものではないが、以下の実施形態では、特に可視領域の光を対象とした発色構造体について図面を用いて説明する。尚、本実施形態において、可視領域は360nm〜830nmの波長帯の光を指すものとする。 In the present invention, the wavelength band in which the color forming structure acts is determined by the line width and arrangement pitch of the convex portions (concave portions) constituting the concavo-convex structure, and the refractive index and film thickness of the laminate formed on the concavo-convex structure. The In the present invention, the wavelength band targeted by the coloring structure is not limited, but in the following embodiments, a coloring structure that specifically targets light in the visible region will be described with reference to the drawings. In the present embodiment, the visible region refers to light having a wavelength band of 360 nm to 830 nm.
図1は、実施形態に係る発色構造体において、光の広がり効果を誘起するために設けられる凹凸構造Aの概略図である。図1(a)は、平面概略図であり、図1(b)は、図1(a)に示したα−α’線に沿う断面概略図である。説明の便宜上、図1(a)においては、凹凸構造を構成する凸部が並列する方向をX方向とし、X方向と直交する方向であって、凸部が延伸する方向をY方向とし、X軸及びY軸を用いて方向を特定する。 FIG. 1 is a schematic view of a concavo-convex structure A provided for inducing a light spreading effect in the coloring structure according to the embodiment. FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along the line α-α ′ shown in FIG. For convenience of explanation, in FIG. 1A, the direction in which the convex portions constituting the concavo-convex structure are arranged in the X direction, the direction orthogonal to the X direction and the direction in which the convex portion extends is the Y direction, and X The direction is specified using the axis and the Y axis.
図1に示した凹凸構造Aは、X方向の線幅がd1であり、Y方向の線長がd1以上である矩形をX方向及びY方向のいずれにも重複しないように配列した平面形状の凸部11を有する。凸部11の平面形状を構成する矩形のY方向の線長は、所定の標準偏差を有する母集団から選択される。可視領域の発色構造体の場合、d1は830nm以下であることが好ましく、例えば、青色の発色構造体とする場合は、d1は300nm程度が好ましい。図1の例では、凸部11を構成する矩形がX方向において重複しないように配列される。よって、図1の例では、1つの凸部11のX方向における幅はd1の整数倍となる。 The concavo-convex structure A shown in FIG. 1 has a planar shape in which rectangles whose line width in the X direction is d1 and whose line length in the Y direction is not less than d1 are arranged so as not to overlap in either the X direction or the Y direction. Convex portion 11 is provided. The line length in the Y direction of the rectangle constituting the planar shape of the convex portion 11 is selected from a population having a predetermined standard deviation. In the case of a color developing structure in the visible region, d1 is preferably 830 nm or less. For example, in the case of a blue color forming structure, d1 is preferably about 300 nm. In the example of FIG. 1, the rectangles forming the convex portions 11 are arranged so as not to overlap in the X direction. Therefore, in the example of FIG. 1, the width in the X direction of one convex portion 11 is an integral multiple of d1.
尚、凸部11を構成する矩形は、X方向において重複するように配列して凸部11の平面形状を構成してもよく、1つの凸部11の幅はd1の整数倍でなくても良い。1つの凸部11の幅がd1の整数倍でない場合でも光の広がり効果を誘起することは可能である。 In addition, the rectangle which comprises the convex part 11 may be arranged so that it may overlap in the X direction, and may comprise the planar shape of the convex part 11, and the width | variety of one convex part 11 may not be an integral multiple of d1. good. Even when the width of one protrusion 11 is not an integral multiple of d1, it is possible to induce a light spreading effect.
凹凸構造Aの構造高さh1は、発色構造体の表面で反射させる光の波長に応じて最適な値に設計すれば良い。h1の値は、後述する積層体表面の表面粗さより大きい値であれば回折効果を得ることは出来る。ただし、h1を過剰に大きくすると、光の散乱効果が強まり、積層体表面から反射される光の彩度が損なわれるため、対象となる波長帯が可視領域の発色構造体の場合は、h1の値は通常10nm〜200nmの範囲にあることが好ましく、例えば青色の発色構造体では、効果的な光の広がりを得るためには40〜150nm程度が好ましい。散乱効果を抑制するために、青色の発色構造体では、h1が100nm以下であることがより好ましい。 The structure height h1 of the concavo-convex structure A may be designed to an optimum value according to the wavelength of light reflected by the surface of the color forming structure. If the value of h1 is larger than the surface roughness of the laminate surface described later, a diffraction effect can be obtained. However, if h1 is excessively increased, the light scattering effect is strengthened, and the saturation of light reflected from the surface of the laminate is impaired. Therefore, in the case where the target wavelength band is a color developing structure in the visible region, h1 In general, the value is preferably in the range of 10 nm to 200 nm. For example, in the case of a blue coloring structure, it is preferably about 40 to 150 nm in order to obtain effective light spread. In order to suppress the scattering effect, it is more preferable that h1 is 100 nm or less in the blue coloring structure.
図2は、実施形態に係る発色構造体において、回折を誘起するために設けられる凹凸構造Bの概略図である。図2(a)は、平面概略図であり、図2(b)は、図1(a)に示したβ−β’線に沿う断面概略図である。 FIG. 2 is a schematic view of the concavo-convex structure B provided for inducing diffraction in the color developing structure according to the embodiment. 2A is a schematic plan view, and FIG. 2B is a schematic cross-sectional view taken along the line β-β ′ shown in FIG.
図2に示す凹凸構造Bは、図1に示した凹凸構造A上に重畳して形成されるものであり、凸形状の線状構造(凸条)21から構成される。尚、図2に示したX方向及びY方向は、それぞれ、図1に示したX方向及びY方向と同方向である。線状構造21は、反射光の少なくとも一部が1次回折光(回折次数m=±1)として観測されるように設計する。よって、入射角度をθ、反射角度をφ、回折する光の波長λとした場合、線状構造21のX方向における配列ピッチdはd≧λ/(sinθ+sinφ)を満たす必要がある。例えば、λ=360nmの可視光線を対象とするならば、線状構造21の配列ピッチは180nm以上であれば良い。 The concavo-convex structure B shown in FIG. 2 is formed so as to overlap the concavo-convex structure A shown in FIG. 1, and is composed of a convex linear structure (projection) 21. Note that the X direction and the Y direction shown in FIG. 2 are the same as the X direction and the Y direction shown in FIG. 1, respectively. The linear structure 21 is designed so that at least a part of the reflected light is observed as first-order diffracted light (diffraction order m = ± 1). Therefore, when the incident angle is θ, the reflection angle is φ, and the wavelength λ of the light to be diffracted, the arrangement pitch d of the linear structures 21 in the X direction needs to satisfy d ≧ λ / (sin θ + sin φ). For example, if visible light with λ = 360 nm is targeted, the arrangement pitch of the linear structures 21 may be 180 nm or more.
線状構造21のX方向における線幅d2は、図1に示した凹凸構造Aの線幅d1と等しくても良いし、異なっていても良い。 The line width d2 in the X direction of the linear structure 21 may be equal to or different from the line width d1 of the concavo-convex structure A shown in FIG.
線状構造21の配列ピッチは、後述する積層体最表面の凹凸構造の周期性に反映される。よって、線状構造21の配列ピッチが一定の場合、特定の角度で特定の波長の光が発色構造体の表面で回折現象により反射される。この回折現象による光の反射強度は、図1に示す凹凸構造Aの光の広がり効果により得られる反射強度と比較して非常に強いため、金属光沢のような強い光が視認されるが、一方で観察角度の変化に対して分光されてしまう。したがって、例えば青色を呈する発色構造体が得られるように図1に示した凹凸構造Aを設計した場合に、線状構造21の配列ピッチを400nm〜5μm程度の一定値としてしまうと、観察角度によっては回折により強い緑〜赤色の表面反射が発生してしまう。線状構造21の配列ピッチを例えば50μm程度に大きくすると、可視領域の光が回折される角度範囲が狭くなるため、特定波長の色が視認されにくくなるが、特定の観察角度でのみ金属光沢のような輝きを示すにとどまる。 The arrangement pitch of the linear structures 21 is reflected in the periodicity of the concavo-convex structure on the outermost surface of the laminate, which will be described later. Therefore, when the arrangement pitch of the linear structures 21 is constant, light having a specific wavelength at a specific angle is reflected by the diffraction phenomenon on the surface of the color forming structure. The reflection intensity of light due to this diffraction phenomenon is very strong compared with the reflection intensity obtained by the light spreading effect of the concavo-convex structure A shown in FIG. Thus, the light is dispersed with respect to the change in the observation angle. Therefore, for example, when the concavo-convex structure A shown in FIG. 1 is designed so that a color-developing structure exhibiting a blue color is obtained, if the arrangement pitch of the linear structures 21 is set to a constant value of about 400 nm to 5 μm, depending on the observation angle. Causes strong green to red surface reflections due to diffraction. When the arrangement pitch of the linear structures 21 is increased to, for example, about 50 μm, the angle range in which the light in the visible region is diffracted is narrowed, so that the color of a specific wavelength is difficult to be visually recognized. It only shows such shine.
線状構造21を周期が異なる複数の周期構造の重ね合わせにより形成した場合、回折現象により反射される光の波長は混在化するため、分光された単色性の高い光は視認されにくくなる。但し、周期性の標準偏差が大きくなるにつれ、散乱効果が支配的になり、回折現象による強い反射が得られなくなる。 When the linear structure 21 is formed by superimposing a plurality of periodic structures having different periods, the wavelengths of light reflected by the diffraction phenomenon are mixed, so that the light having a high monochromatic property is not easily recognized. However, as the standard deviation of periodicity increases, the scattering effect becomes dominant and strong reflection due to the diffraction phenomenon cannot be obtained.
そこで、線状構造21の周期性は、図1に示した凹凸構造Aによる光の広がり効果により得られる散乱角度により決定すれば良い。例えば、青色の光が入射角度に対して±40°の範囲で散乱される場合、線状構造21の配列ピッチは、平均値を1〜5μm程度とし、標準偏差を1μm程度とすれば、凹凸構造Aの光の広がり効果による散乱角度と同等の角度領域に回折現象による反射光が発生する。 Therefore, the periodicity of the linear structure 21 may be determined by the scattering angle obtained by the light spreading effect by the concavo-convex structure A shown in FIG. For example, when blue light is scattered within a range of ± 40 ° with respect to the incident angle, the arrangement pitch of the linear structures 21 is uneven when the average value is about 1 to 5 μm and the standard deviation is about 1 μm. Reflected light due to the diffraction phenomenon is generated in an angle region equivalent to the scattering angle due to the light spreading effect of the structure A.
さらに、より長周期の回折現象を付与するために、配列ピッチの平均値を1〜5μm程度とし、標準偏差を1μm程度とする線状構造21を一辺10〜100μmの矩形領域に形成し、この矩形領域を隣接領域と重ねることなく配列することも可能である。 Further, in order to impart a longer period diffraction phenomenon, a linear structure 21 having an average arrangement pitch of about 1 to 5 μm and a standard deviation of about 1 μm is formed in a rectangular region having a side of 10 to 100 μm. It is also possible to arrange the rectangular areas without overlapping the adjacent areas.
さらに、一辺10〜100μmの矩形領域内に、構造周期が1〜5μmの間から選ばれる一定周期の線状構造21を形成したとしても、隣接したいずれかの矩形領域の線状構造の周期が標準偏差1μm程度のばらつき範囲で異なっていれば、人の目の解像度においては同等の効果が期待できる。 Furthermore, even if the linear structure 21 having a constant period selected from 1 to 5 μm is formed in a rectangular area having a side of 10 to 100 μm, the period of the linear structure of any adjacent rectangular area is If the standard deviation is different within a variation range of about 1 μm, the same effect can be expected in the resolution of human eyes.
尚、図2の線状構造21はX方向のみの配列であるが、図1に示した凹凸構造Aによる光の広がり効果はY方向にも一部影響するため、図2の線状構造21はY方向にも周期性を有しても良い。この場合、線状構造21のX方向及びY方向の配列ピッチの平均値は、1μm以上100μm以下であればよい。さらに、その周期性は、図1に示した凹凸構造Aによる光の広がり効果のX方向への影響とY方向への影響とに応じて、配列ピッチの平均値及び標準偏差の少なくとも一方が異なる構成としても良い。 2 is arranged only in the X direction, but the light spreading effect by the concavo-convex structure A shown in FIG. 1 also partially affects the Y direction, so the linear structure 21 in FIG. May also have periodicity in the Y direction. In this case, the average value of the arrangement pitch of the linear structure 21 in the X direction and the Y direction may be 1 μm or more and 100 μm or less. Further, the periodicity differs in at least one of the average value and the standard deviation of the arrangement pitch depending on the influence of the light spreading effect by the uneven structure A shown in FIG. 1 in the X direction and the influence in the Y direction. It is good also as a structure.
線状構造21の構造高さh2は、凹凸構造Aの凸部11の構造高さh1と同様に、後述する積層体表面の表面粗さより大きい値とする。但し、h2の値が大きくなるにつれ、線状構造21による回折効果が支配的となる。線状構造21による回折効率が過剰に高くなることに加え、多段構造とすることにより、凹凸構造による散乱効果が高くなることからも、図1で示した凹凸構造Aによる光の広がり効果が十分に得られなくなることが懸念される。よって、h2はh1と同程度であることが好ましく、またh1と等しくても良い。例えば、青色の発色構造体では10〜150nm程度が好ましい。 The structural height h2 of the linear structure 21 is set to a value larger than the surface roughness of the laminate surface described later, similarly to the structural height h1 of the convex portion 11 of the concavo-convex structure A. However, the diffraction effect by the linear structure 21 becomes dominant as the value of h2 increases. In addition to the excessively high diffraction efficiency due to the linear structure 21, the scattering effect due to the concavo-convex structure is enhanced by using a multi-stage structure, and therefore the light spreading effect due to the concavo-convex structure A shown in FIG. 1 is sufficient. There is a concern that it will be impossible to obtain. Therefore, h2 is preferably about the same as h1, and may be equal to h1. For example, about 10 to 150 nm is preferable for a blue coloring structure.
図3は、図1に示した凹凸構造Aと、図2に示した凹凸構造Bとを重ねた凹凸構造の概略図である。図3(a)は、平面概略図であり、図3(b)は、図3(a)に示したγ−γ’線に沿う断面概略図である。尚、図3に示したX方向及びY方向は、それぞれ、図1及び図2に示したX方向及びY方向と同方向である。 FIG. 3 is a schematic diagram of a concavo-convex structure in which the concavo-convex structure A shown in FIG. 1 and the concavo-convex structure B shown in FIG. 2 are overlapped. 3A is a schematic plan view, and FIG. 3B is a schematic cross-sectional view taken along the line γ-γ ′ shown in FIG. Note that the X direction and the Y direction shown in FIG. 3 are the same as the X direction and the Y direction shown in FIGS. 1 and 2, respectively.
図1に示した凹凸構造Aの凸部11と、図2に示した凹凸構造Bの線状構造21とが重なった重なり部31の構造高さは、h1とh2の和となる。尚、当該発色構造体においては、光の広がり効果を誘起するための凹凸構造Aと、回折現象を誘起するための凹凸構造Bとが重なるように設計しているが、重ならないように設計しても本発明による効果を得ることは可能である。但し、この場合、線状構造21が形成される領域には、光の広がり効果を誘起するための凹凸構造は形成できなくなり、光の広がり効果を誘起するための凹凸構造形成領域が狭くなってしまうため、図3のように多段構造とすることがより好ましい。 The height of the overlapping portion 31 where the convex portion 11 of the concave-convex structure A shown in FIG. 1 and the linear structure 21 of the concave-convex structure B shown in FIG. 2 overlap is the sum of h1 and h2. In the color developing structure, the concavo-convex structure A for inducing the light spreading effect and the concavo-convex structure B for inducing the diffraction phenomenon are designed to overlap, but not to overlap. However, the effect of the present invention can be obtained. However, in this case, the uneven structure for inducing the light spreading effect cannot be formed in the region where the linear structure 21 is formed, and the uneven structure forming region for inducing the light spreading effect becomes narrow. Therefore, a multi-stage structure as shown in FIG. 3 is more preferable.
図3に示した凹凸構造を基材上に加工するには、例えば電子線や紫外線リソグラフィとドライエッチングなど公知の技術を用いれば良い。 In order to process the concavo-convex structure shown in FIG. 3 on the substrate, a known technique such as electron beam, ultraviolet lithography, and dry etching may be used.
図4は、実施形態に係る発色構造体の一例を示す断面概略図である。図4(a)に示す発色構造体は、合成石英からなる基材101表面に図3で示した凹凸構造を加工し、この凹凸構造の上に、可視領域に対して透明、且つ異なる屈折率を有する2つの材料で構成される10層の積層体61が形成されたものである。積層体61は、高屈折率層41と低屈折率槽51とを交互に積層して構成されており、基材101の表面には高屈折率層41が形成され、発色構造体の最表面には低屈折率層51が形成されている。積層体61表面で反射される光の波長は、高屈折率層41と低屈折率層51を構成する材料の屈折率や膜厚、基材101の屈折率によって決定される。したがって、積層体61は、転送行列法などを用いて所望の波長が反射されるように設計すれば良い。また、高屈折率層41と低屈折率層51を構成する材料の屈折率差が大きいほど、積層数が少なくとも高反射率を得ることができる。例えば、無機材料であれば高屈折率層41に二酸化チタン(TiO2)、低屈折率層51に二酸化珪素(SiO2)をそれぞれ適用することが好適である。例えば、青色の発色構造体の場合は、TiO2膜厚は40nm程度、SiO2膜厚は75nm程度が好ましい。但し、隣接する層を構成する材料に屈折率差があれば、界面で光の反射が生じるため、上記組み合わせに限定されるものではない。また、上記のような無機材料により積層体61を形成する場合は、スパッタリング法や原子層堆積法、真空蒸着法などの公知の技術を適用することが可能である。さらには積層体61を形成する材料は有機材料でも良い。有機材料により積層体61を形成する場合は、自己組織化などの公知の技術を適用することが可能である。 FIG. 4 is a schematic cross-sectional view illustrating an example of the color development structure according to the embodiment. The color developing structure shown in FIG. 4A is obtained by processing the concavo-convex structure shown in FIG. 3 on the surface of the base material 101 made of synthetic quartz, and is transparent to the visible region and has a different refractive index on the concavo-convex structure. A 10-layer laminated body 61 composed of two materials having the following structure is formed. The laminated body 61 is configured by alternately laminating high refractive index layers 41 and low refractive index tanks 51. The high refractive index layer 41 is formed on the surface of the substrate 101, and the outermost surface of the coloring structure. Is formed with a low refractive index layer 51. The wavelength of light reflected on the surface of the stacked body 61 is determined by the refractive index and film thickness of the material constituting the high refractive index layer 41 and the low refractive index layer 51 and the refractive index of the substrate 101. Therefore, the stacked body 61 may be designed so that a desired wavelength is reflected using a transfer matrix method or the like. Moreover, the larger the refractive index difference between the materials constituting the high refractive index layer 41 and the low refractive index layer 51, the higher the reflectance of the number of stacked layers. For example, if the inorganic material high refractive index layer 41 to titanium dioxide (TiO 2), it is suitable to apply respectively a low refractive index layer 51 to silicon dioxide (SiO 2). For example, in the case of a blue coloring structure, the TiO 2 film thickness is preferably about 40 nm and the SiO 2 film thickness is preferably about 75 nm. However, if there is a difference in refractive index between the materials constituting the adjacent layers, light is reflected at the interface, and thus the combination is not limited to the above. Moreover, when forming the laminated body 61 with the above inorganic materials, it is possible to apply well-known techniques, such as sputtering method, an atomic layer deposition method, and a vacuum evaporation method. Furthermore, the material for forming the stacked body 61 may be an organic material. When forming the laminated body 61 with an organic material, it is possible to apply well-known techniques, such as self-organization.
図4(a)に示した発色構造体1を構成する材料は、全て可視領域の光を透過する材料で構成されている。そのため、反射する波長帯以外の光は発色構造体を透過するため、例えば基材101の裏面が白色紙である場合、発色構造体1を透過する波長帯の光が色として視認されてしまう。そこで、図4(b)に示すように、炭素などの可視領域の光を吸収する材料で構成された吸収層71を基材裏面に形成することで、発色構造体1を透過した光を吸収し、発色構造体により反射した光のコントラストを向上することが可能である。 All the materials constituting the color forming structure 1 shown in FIG. 4A are made of a material that transmits light in the visible region. For this reason, light other than the reflected wavelength band is transmitted through the color forming structure. For example, when the back surface of the substrate 101 is white paper, the light in the wavelength band transmitted through the color forming structure 1 is visually recognized as a color. Therefore, as shown in FIG. 4B, an absorption layer 71 made of a material that absorbs light in the visible region, such as carbon, is formed on the back surface of the substrate, thereby absorbing light transmitted through the coloring structure 1. In addition, it is possible to improve the contrast of the light reflected by the coloring structure.
また、図3で示した凹凸構造形成には、電子線または紫外線リソグラフィとドライエッチングとの組み合わせなどの公知の技術を用いて作製した原版を用いて、熱または光ナノインプリント法を適用することも可能である。 In addition, for the formation of the concavo-convex structure shown in FIG. 3, it is also possible to apply a thermal or optical nanoimprint method using an original produced using a known technique such as a combination of electron beam or ultraviolet lithography and dry etching. It is.
図5は、実施形態に係る発色構造体の他の一例を示す断面概略図である。図5(a)に示す発色構造体は、光ナノインプリント法により図3で示した凹凸構造を形成したものである。より詳細には、基材102の表面に光硬化性樹脂81を塗布し、光ナノインプリント法により光硬化性樹脂に図3で示した凹凸構造を形成した後、積層体61と、吸収層71とを形成する。光硬化性樹脂81を塗布する前に基材102の裏面に吸収層71をあらかじめ形成することも可能であるが、その場合、光硬化性樹脂81の硬化に用いる光の照射は基材102裏面側からではなく、基板表面側、すなわち原版側から照射する必要がある。この方式を用いる場合、基材102は、光ナノインプリント時に照射する光の波長の透過性を有していなくても良い。また、図5(b)に示したように、基材102表面に吸収層71を形成し、吸収層71表面に光硬化性樹脂81を塗布し、光ナノインプリント法を実施することも可能である。さらには、図5(c)のように、基材103を可視領域の光を吸収する材料で構成することも可能である。基材103を構成する材料としては、例えばカーボンナノチューブを分散させた高分子フィルムなどが適用可能である。 FIG. 5 is a schematic cross-sectional view illustrating another example of the coloring structure according to the embodiment. The color developing structure shown in FIG. 5A is obtained by forming the uneven structure shown in FIG. 3 by an optical nanoimprint method. More specifically, after the photocurable resin 81 is applied to the surface of the base material 102 and the uneven structure shown in FIG. 3 is formed on the photocurable resin by the optical nanoimprint method, the laminate 61, the absorption layer 71, Form. Before the photocurable resin 81 is applied, the absorption layer 71 can be formed on the back surface of the base material 102 in advance. In that case, the light used for curing the photocurable resin 81 is irradiated on the back surface of the base material 102. It is necessary to irradiate from the substrate surface side, that is, the original plate side, not from the side. When this method is used, the base material 102 does not have to be transparent at the wavelength of the light irradiated during optical nanoimprinting. Further, as shown in FIG. 5B, it is also possible to form the absorption layer 71 on the surface of the base material 102, apply the photocurable resin 81 to the surface of the absorption layer 71, and perform the optical nanoimprint method. . Furthermore, as shown in FIG. 5C, the base material 103 can be made of a material that absorbs light in the visible region. As a material constituting the substrate 103, for example, a polymer film in which carbon nanotubes are dispersed can be applied.
本実施形態に係る発色構造体およびその製造方法によれば、光の広がり効果を誘起するための凹凸構造Aと、回折現象を誘起するための凹凸構造Bとが重なりあった凹凸構造体を備えるため、観察角度による色変化を緩やかにしながらも、発色の彩度や光沢感の低下を防止することが可能となる。 According to the coloring structure and the manufacturing method thereof according to the present embodiment, the uneven structure A in which the uneven structure A for inducing the light spreading effect and the uneven structure B for inducing the diffraction phenomenon are overlapped is provided. Therefore, it is possible to prevent the color saturation and glossiness from being lowered while moderating the color change depending on the observation angle.
以下、本発明に係る発色構造体を作製した実施例について図面を用いて説明する。 Hereinafter, examples in which a coloring structure according to the present invention was produced will be described with reference to the drawings.
(実施例)
図6は、実施例に係る発色構造体に設けた凹凸構造の概略図を示している。図6(a)は、光の広がり効果を誘起するための凹凸構造Aの一部領域の平面概略図であり、図6(b)は、回折現象を誘起するための線状構造からなる凹凸構造Bの一部領域の平面概略図であり、図6(c)は、図6(a)に示した凹凸構造Aと、図6(b)に示した凹凸構造Bを重ねた凹凸構造の平面概略図である。また、図6(d)は、図6(c)のδ−δ’線に沿う断面概略図である。尚、図6(a)、(b)、(c)の平面概略図は、当該発色構造体の表面の一辺約5.6μmの微小領域を拡大した図である。また、当該発色構造体の作製には、光ナノインプリント法を採用したが、熱ナノインプリント法を使用しても作製可能である。
(Example)
FIG. 6 shows a schematic view of the concavo-convex structure provided in the color developing structure according to the example. FIG. 6A is a schematic plan view of a partial region of the concavo-convex structure A for inducing the light spreading effect, and FIG. 6B is an undulation having a linear structure for inducing a diffraction phenomenon. FIG. 6C is a schematic plan view of a partial region of the structure B. FIG. 6C shows a concavo-convex structure in which the concavo-convex structure A shown in FIG. 6A and the concavo-convex structure B shown in FIG. FIG. FIG. 6D is a schematic cross-sectional view taken along the line δ-δ ′ in FIG. 6A, 6B, and 6C are enlarged views of a minute region of about 5.6 μm on one side of the surface of the coloring structure. Moreover, although the photo-nanoimprint method was employ | adopted for preparation of the said color development structure, it is producible also using a thermal nanoimprint method.
図6(a)に示した凸部12は、X方向の線幅d3が300nmで、Y方向の線長がd3の2倍以上の整数倍から選ばれる数値であって、平均値が2.4μm、標準偏差が0.5μmである矩形を、X方向にピッチ100nmで配列し、X方向への矩形の重なりは許容し、Y方向への矩形の重なりは許容せずにXY方向に配列した設計とした。X方向に重なり複数の階層構造となった領域については1層構造に近似した。 The convex portion 12 shown in FIG. 6A is a numerical value in which the line width d3 in the X direction is 300 nm and the line length in the Y direction is selected from an integer multiple of twice or more of d3. Rectangles with a standard deviation of 4 μm and a standard deviation of 0.5 μm are arranged in the X direction with a pitch of 100 nm, rectangular overlaps in the X direction are allowed, and rectangles in the Y direction are not allowed in the XY direction. Designed. A region overlapping in the X direction and having a plurality of hierarchical structures approximated a one-layer structure.
図6(b)に示した線状構造22は、X方向の線幅d4を200nm、Y方向の線長を94μmとした矩形を、X方向の長さが40μm、Y方向の長さが94μmである矩形領域内に、X方向のピッチの平均値1.5μm、標準偏差0.5μmで配列した線状構造を、X方向のピッチの平均値45μm、標準偏差1μm、Y方向のピッチの平均値97μm、標準偏差1μmで配列した設計とした。X方向あるいはY方向に重なり複数の階層構造となった領域については1層構造に近似した。 The linear structure 22 shown in FIG. 6B has a rectangular shape in which the line width d4 in the X direction is 200 nm and the line length in the Y direction is 94 μm, the length in the X direction is 40 μm, and the length in the Y direction is 94 μm. In the rectangular area, a linear structure arranged with an average value of 1.5 μm in the pitch in the X direction and a standard deviation of 0.5 μm, an average value of the pitch in the X direction of 45 μm, a standard deviation of 1 μm, and an average of the pitch in the Y direction The design was arranged with a value of 97 μm and a standard deviation of 1 μm. A region having a plurality of hierarchical structures overlapping in the X direction or the Y direction approximated a single layer structure.
まず、光ナノインプリント用のモールドを用意した。具体的には、光ナノインプリントにおいて照射する光の波長は、365nmであったため、この波長の光を透過する合成石英をモールドの材料とした。合成石英基板表面に、Crをスパッタリングにより成膜し、電子線リソグラフィにより電子線レジストパターンを形成した。使用した電子線レジストはポジ型であり、膜厚は200nmとした。電子線照射領域は図6(a)に示した矩形構造12の領域とした。塩素と酸素との混合ガスに高周波を印加して発生したプラズマにより、表面が露出した領域のCrをエッチング除去した。続いて六弗化エタンガスに高周波を印加して発生したプラズマにより表面が露出した領域の石英をエッチングした。該工程によりエッチングした石英深さは70nmであった。残存したレジスト、及びCr膜を除去し、図6(a)に示した凸部12を形成するための凹部が形成された合成石英基板を得た。 First, a mold for optical nanoimprint was prepared. Specifically, since the wavelength of light irradiated in the optical nanoimprint was 365 nm, synthetic quartz that transmits light of this wavelength was used as a material for the mold. Cr was formed on the surface of the synthetic quartz substrate by sputtering, and an electron beam resist pattern was formed by electron beam lithography. The electron beam resist used was a positive type, and the film thickness was 200 nm. The electron beam irradiation area was an area of the rectangular structure 12 shown in FIG. Cr in the region where the surface was exposed was etched away by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen. Subsequently, quartz was etched in a region where the surface was exposed by plasma generated by applying a high frequency to ethane hexafluoride gas. The quartz depth etched by this process was 70 nm. The remaining resist and the Cr film were removed to obtain a synthetic quartz substrate on which concave portions for forming the convex portions 12 shown in FIG. 6A were formed.
次に、凸部12を形成するための凹部が形成された合成石英基板表面に、Crをスパッタリングにより成膜し、電子線リソグラフィにより電子線レジストパターンを形成した。使用した電子線レジストはポジ型であり膜厚は200nmとした。電子線照射領域は図6(b)に示した線状構造22に対応する領域とした。塩素と酸素との混合ガスに高周波を印加して発生したプラズマにより、表面が露出した領域のCrをエッチング除去した。続いて六弗化エタンガスに高周波を印加して発生したプラズマにより表面が露出した領域の石英をエッチングした。該工程によりエッチングした石英深さは65nmであった。残存したレジスト、及びCr膜を除去し、図6(c)に示した凸部12と線状構造22とを重ねた凹凸構造を形成するための凹部が形成された合成石英基板を得た。 Next, Cr was formed into a film by sputtering on the surface of the synthetic quartz substrate on which the concave portions for forming the convex portions 12 were formed, and an electron beam resist pattern was formed by electron beam lithography. The electron beam resist used was a positive type, and the film thickness was 200 nm. The electron beam irradiation region was a region corresponding to the linear structure 22 shown in FIG. Cr in the region where the surface was exposed was etched away by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen. Subsequently, quartz was etched in a region where the surface was exposed by plasma generated by applying a high frequency to ethane hexafluoride gas. The quartz depth etched by this process was 65 nm. The remaining resist and the Cr film were removed to obtain a synthetic quartz substrate in which a concave portion for forming a concave-convex structure in which the convex portion 12 and the linear structure 22 shown in FIG.
次に、上記合成石英基板表面に離型剤としてオプツールHD−1100(ダイキン工業製)を塗布し、光の広がり効果を誘起するための凹凸構造と回折現象を誘起するための線状構造からなる凹凸構造とを重ねた凹凸構造を形成するための凹部が形成された光ナノインプリント用モールドを得た。 Next, OPTOOL HD-1100 (manufactured by Daikin Industries) is applied to the surface of the synthetic quartz substrate as a release agent, and has a concavo-convex structure for inducing a light spreading effect and a linear structure for inducing a diffraction phenomenon. An optical nanoimprint mold having a concave portion for forming a concave-convex structure overlaid with the concave-convex structure was obtained.
次に、片側に易接着処理を施したポリエステルフィルムコスモシャインA4100(東洋紡製)の易接着面に光硬化性樹脂PAK−02(東洋合成製)を塗工し、上記光ナノインプリント用モールドを押し当て、光ナノインプリント用モールド裏面側から365nmの光を照射して光硬化性樹脂を硬化させ、ポリエステルフィルムを光ナノインプリント用モールドから剥離し、図6(c)に示した凹凸構造が形成されたポリエステルフィルムを得た。 Next, the photo-curable resin PAK-02 (manufactured by Toyo Gosei) is applied to the easy-adhesion surface of the polyester film Cosmo Shine A4100 (manufactured by Toyobo Co., Ltd.) that has been subjected to easy adhesion treatment on one side, and the mold for photo-nanoimprint is pressed against it. The photocurable resin is cured by irradiating 365 nm light from the back side of the optical nanoimprint mold, the polyester film is peeled off from the photonanoimprint mold, and the concavo-convex structure shown in FIG. 6C is formed. Got.
次に、得られたポリエステルフィルム表面に、真空蒸着法を用いて厚さ40nmのTiO2と、厚さ75nmのSiO2とをこの順で交互に5層ずつ成膜し、10層の積層体を形成し、実施例に係る発色構造体を得た。 Then, the resulting polyester film surface, and TiO 2 having a thickness of 40nm by vacuum evaporation deposited five layers and SiO 2 having a thickness of 75nm alternately in this order, the 10-layer laminate And the color developing structure according to the example was obtained.
(比較例)
実施例と同様にして、合成石英基板に、図6(a)に示した凸部12を形成するための凹部を形成し、図6(b)に示した線状構造22を形成するための凹部を重ねて形成せずに離型剤を塗布して、比較例に係る光ナノインプリント用モールドを得た。光ナノインプリント用モールドを用いて、実施例と同様にして、比較例に係る発色構造体を得た。
(Comparative example)
In the same manner as in the example, a concave portion for forming the convex portion 12 shown in FIG. 6A is formed on the synthetic quartz substrate, and the linear structure 22 shown in FIG. 6B is formed. A mold release agent was applied without forming the concave portions in an overlapping manner, to obtain a mold for optical nanoimprinting according to a comparative example. Using the optical nanoimprint mold, a color forming structure according to a comparative example was obtained in the same manner as in the example.
次に、図6(d)に模式図を示すように、実施例及び比較例に係る発色構造体の表面に、入射角度5、15、25、35、45、55度からそれぞれキセノンランプ光源を照射し、反射角度30度における分光特性変化を、分光放射計SR−UL2(トプコン製)を用いて測定した。入射角度、反射角度は、光源の入射方向、または反射方向と、ポリエステルフィルム表面の法線とがなす角度を指す。 Next, as schematically shown in FIG. 6D, xenon lamp light sources are respectively incident on the surfaces of the color forming structures according to the examples and comparative examples from incident angles of 5, 15, 25, 35, 45, and 55 degrees. Irradiation was performed, and changes in spectral characteristics at a reflection angle of 30 degrees were measured using a spectroradiometer SR-UL2 (manufactured by Topcon). The incident angle and the reflection angle refer to an angle formed by the incident direction or the reflection direction of the light source and the normal line of the polyester film surface.
(測定結果)
図7(a)は、比較例に係る発色構造体の反射スペクトルの測定結果であり、図7(b)は、実施例に係る発色構造体の反射スペクトルの測定結果であり、縦軸の表示範囲は両スペクトル共に同じである。両スペクトルの比較から、回折現象を誘起するための線状構造を形成することにより、スペクトルのピーク位置が大きく変化することなく、広範囲の入射角度範囲で比較的強い反射が得られることが示された。
(Measurement result)
FIG. 7A shows the measurement result of the reflection spectrum of the color development structure according to the comparative example, and FIG. 7B shows the measurement result of the reflection spectrum of the color development structure according to the example. The range is the same for both spectra. Comparison of the two spectra shows that by forming a linear structure to induce diffraction phenomena, a relatively strong reflection can be obtained in a wide range of incident angles without a significant change in the peak position of the spectrum. It was.
本発明の発色構造体は、意匠性の高い表示物に利用可能である。特に、表面加飾の分野に好適に利用が期待される。 The coloring structure of the present invention can be used for a display with high design properties. In particular, it is expected to be suitably used in the field of surface decoration.
A…光の広がり効果を誘起するための凹凸構造
B…回折現象を誘起するための線状構造からなる凹凸構造
31…重なり部
41…高屈折率層
51…低屈折率層
61…積層体
71…吸収層
81…光硬化性樹脂
101、102、103…基材
A: Uneven structure for inducing a light spreading effect B: Uneven structure 31 composed of a linear structure for inducing a diffraction phenomenon ... Overlapping portion 41 ... High refractive index layer 51 ... Low refractive index layer 61 ... Laminate 71 ... Absorbing layer 81 ... Photo-curing resin 101, 102, 103 ... Base material
Claims (17)
前記積層体を構成する隣接する2層は、同じ波長帯の光を透過し、且つ、前記波長帯の光に対して異なる屈折率を持つ材料で構成され、
前記積層体は、前記波長帯の一部の波長の光を選択的に反射されるように設計され、
前記凹凸構造は、
第1方向における線幅が前記波長帯の最小波長以下であり、前記第1方向と直交する第2方向における線長が前記第1方向の線幅よりも長く、前記第2方向における線長の標準偏差が前記第1方向の線幅の標準偏差よりも大きい矩形を前記第1方向及び前記第2方向に配列して構成される平面形状の凸部を有する凹凸構造Aと、
前記第1方向において、前記波長帯の最小波長の1/2以上のピッチで配列され、前記第2方向に延びる複数の凸条からなる凹凸構造Bと、
を重畳した構造であることを特徴とする、発色構造体。 In a coloring structure having a base material, a concavo-convex structure formed on the base material surface or the base material, and a laminate composed of two or more layers on the concavo-convex structure,
Two adjacent layers constituting the laminate are made of a material that transmits light of the same wavelength band and has a different refractive index with respect to the light of the wavelength band,
The laminate is designed to selectively reflect light of a part of the wavelength band,
The uneven structure is
The line width in the first direction is less than or equal to the minimum wavelength of the wavelength band, the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and the line length in the second direction is A concavo-convex structure A having a planar convex portion configured by arranging rectangles having a standard deviation larger than the standard deviation of the line width in the first direction in the first direction and the second direction;
In the first direction, a concavo-convex structure B composed of a plurality of ridges arranged at a pitch of ½ or more of the minimum wavelength of the wavelength band and extending in the second direction;
A color developing structure characterized by having a structure in which the above are superimposed.
前記凹凸構造Bを構成する各周期構造のピッチの平均値が前記波長帯の最小波長の1/2以上であることを特徴とする、請求項1または請求項2記載の発色構造体。 The concavo-convex structure B is composed of a superposition of two or more types of periodic structures,
3. The color developing structure according to claim 1, wherein an average value of pitches of the periodic structures constituting the concavo-convex structure B is ½ or more of a minimum wavelength of the wavelength band.
前記積層体を構成する隣接する2層は、同じ可視領域の光を透過し、且つ、可視領域の光に対して異なる屈折率を持つ材料で構成され、
前記積層体は、可視領域の一部の波長の光を選択的に反射されるように設計され、
前記凹凸構造は、
第1方向における線幅が830nm以下であり、前記第1方向と直交する第2方向における線長が前記第1方向の線幅よりも長く、且つ、前記第2方向における線長の標準偏差が前記第1方向における線幅の標準偏差よりも大きい矩形を前記第1方向及び前記第2方向に配列して構成される平面形状の凸部を有する凹凸構造Cと、
前記第1方向において、180nm以上のピッチで配列され、前記第2方向に延びる複数の凸条からなる凹凸構造Dと、
を重畳した構造であることを特徴とする、発色構造体。 In a coloring structure having a base material, a concavo-convex structure formed on the base material surface or the base material, and a laminate composed of two or more layers on the concavo-convex structure,
Two adjacent layers constituting the laminate are made of a material that transmits the same visible region light and has a different refractive index with respect to the visible region light,
The laminate is designed to selectively reflect light having a wavelength in the visible region,
The uneven structure is
The line width in the first direction is 830 nm or less, the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and the standard deviation of the line length in the second direction is A concavo-convex structure C having a planar convex portion configured by arranging rectangles larger than the standard deviation of the line width in the first direction in the first direction and the second direction;
In the first direction, a concavo-convex structure D composed of a plurality of ridges arranged at a pitch of 180 nm or more and extending in the second direction;
A color developing structure characterized by having a structure in which the above are superimposed.
前記凹凸構造Dを構成する各周期構造のピッチの平均値が180nm以上であることを特徴とする、請求項6または請求項7記載の発色構造体。 The concavo-convex structure D consists of a superposition of two or more types of periodic structures,
The color developing structure according to claim 6 or 7, wherein an average value of pitches of the respective periodic structures constituting the uneven structure D is 180 nm or more.
基板上に、第1方向の線幅が前記波長帯の最小波長以下であり、前記第1方向と直交する第2方向における線長が前記第1方向における線幅よりも長く、且つ、前記第2方向における線長の標準偏差が前記第1方向の線幅の標準偏差よりも大きい矩形を前記第1方向及び前記第2方向に配列して構成される平面形状の第1凹部と、前記第1方向において、前記波長帯の最小波長の1/2以上のピッチで配列され、前記第2方向に延びる複数の線状の第2凹部とを重畳した構造を形成してなるモールドを用意する工程と、
前記基材に光硬化性樹脂を塗布する工程と、
光インプリント法により、前記光硬化性樹脂層にモールドに形成された構造を転写して前記凹凸構造を形成する工程と、
形成された前記凹凸構造上に、同じ波長帯の光を透過し、且つ、前記波長帯の光に対して異なる屈折率を持つ材料を交互に積層して前記積層体を成膜する工程とを具備することを特徴とする、発色構造体の製造方法。 A substrate, a concavo-convex structure formed on the substrate surface or on the substrate, and a laminate composed of two or more layers on the concavo-convex structure; A method for producing a coloring structure that selectively reflects light of some wavelengths,
On the substrate, the line width in the first direction is less than or equal to the minimum wavelength of the wavelength band, the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and the first A first concave portion having a planar shape configured by arranging, in the first direction and the second direction, a rectangle in which the standard deviation of the line length in two directions is larger than the standard deviation of the line width in the first direction; Preparing a mold having a structure in which a plurality of linear second recesses arranged in one direction at a pitch of ½ or more of the minimum wavelength of the wavelength band and extending in the second direction are overlapped When,
Applying a photocurable resin to the substrate;
Transferring the structure formed in the mold to the photocurable resin layer by a photoimprint method to form the concavo-convex structure;
A step of forming a film on the concavo-convex structure by alternately laminating materials having different refractive indexes with respect to the light of the same wavelength band and transmitting the light of the same wavelength band; A method for producing a color developing structure, comprising:
基板上に、第1方向の線幅が前記波長帯の最小波長以下であり、前記第1方向と直交する第2方向における線長が前記第1方向における線幅よりも長く、且つ、前記第2方向における線長の標準偏差が前記第1方向の線幅の標準偏差よりも大きい矩形を前記第1方向及び前記第2方向に配列して構成される平面形状の第1凹部と、前記第1方向において、前記波長帯の最小波長の1/2以上のピッチで配列され、前記第2方向に延びる複数の線状の第2凹部とを重畳した構造を形成してなるモールドを用意する工程と、
前記基材に熱可塑性樹脂、もしくは熱硬化性樹脂を塗布する工程と、
熱インプリント法により、前記熱可塑性樹脂層もしくは前記熱硬化性樹脂層にモールドに形成された構造を転写して前記凹凸構造を形成する工程と、
形成された前記凹凸構造上に、同じ波長帯の光を透過し、且つ、前記波長帯の光に対して異なる屈折率を持つ材料を交互に積層して前記積層体を成膜する工程とを具備することを特徴とする、発色構造体の製造方法。 A substrate, a concavo-convex structure formed on the substrate surface or on the substrate, and a laminate composed of two or more layers on the concavo-convex structure; A method for producing a coloring structure that selectively reflects light of some wavelengths,
On the substrate, the line width in the first direction is less than or equal to the minimum wavelength of the wavelength band, the line length in the second direction orthogonal to the first direction is longer than the line width in the first direction, and the first A first concave portion having a planar shape configured by arranging, in the first direction and the second direction, a rectangle in which the standard deviation of the line length in two directions is larger than the standard deviation of the line width in the first direction; Preparing a mold having a structure in which a plurality of linear second recesses arranged in one direction at a pitch of ½ or more of the minimum wavelength of the wavelength band and extending in the second direction are overlapped When,
Applying a thermoplastic resin or a thermosetting resin to the substrate;
Transferring the structure formed in the mold to the thermoplastic resin layer or the thermosetting resin layer by a thermal imprint method, and forming the concavo-convex structure;
A step of forming a film on the concavo-convex structure by alternately laminating materials having different refractive indexes with respect to the light of the same wavelength band and transmitting the light of the same wavelength band; A method for producing a color developing structure, comprising:
前記第1方向における前記第2凹部のピッチが180nm以上であることを特徴とする、請求項15または請求項16に記載の発色構造体の製造方法。 A line width of the first recess in the first direction is 830 nm or less;
The method for producing a color developing structure according to claim 15 or 16, wherein a pitch of the second recesses in the first direction is 180 nm or more.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015139969A JP6176290B2 (en) | 2015-07-13 | 2015-07-13 | Coloring structure and method for producing the same |
EP16824083.6A EP3324222B1 (en) | 2015-07-13 | 2016-07-13 | Color-development structure and method for manufacturing same |
CN201680040998.5A CN107850709B (en) | 2015-07-13 | 2016-07-13 | Color developing structure and method for producing same |
PCT/JP2016/003317 WO2017010099A1 (en) | 2015-07-13 | 2016-07-13 | Color-development structure and method for manufacturing same |
KR1020187000706A KR102563399B1 (en) | 2015-07-13 | 2016-07-13 | Color-development structure and method for manufacturing same |
US15/860,532 US10571607B2 (en) | 2015-07-13 | 2018-01-02 | Color developing structure and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015139969A JP6176290B2 (en) | 2015-07-13 | 2015-07-13 | Coloring structure and method for producing the same |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017137298A Division JP6477795B2 (en) | 2017-07-13 | 2017-07-13 | Coloring structure and method for producing the same |
JP2017137299A Division JP6500943B2 (en) | 2017-07-13 | 2017-07-13 | Chromogenic structure, mold and method for producing chromogenic structure using mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017021251A true JP2017021251A (en) | 2017-01-26 |
JP6176290B2 JP6176290B2 (en) | 2017-08-09 |
Family
ID=57888350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015139969A Active JP6176290B2 (en) | 2015-07-13 | 2015-07-13 | Coloring structure and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6176290B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019200337A (en) * | 2018-05-17 | 2019-11-21 | 凸版印刷株式会社 | Security device and manufacturing method for the same |
JP2020008759A (en) * | 2018-07-10 | 2020-01-16 | 凸版印刷株式会社 | Transcription sheet, coloring sheet, coloring article, and transcription method |
JP2020012932A (en) * | 2018-07-17 | 2020-01-23 | 凸版印刷株式会社 | Decorative sheet |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5294288A (en) * | 1990-11-05 | 1994-03-15 | Eastman Kodak Company | Forming sol-gel dichroic color filters |
JP2003053875A (en) * | 2001-08-09 | 2003-02-26 | Kansai Tlo Kk | Coloring body |
JP2003227923A (en) * | 2001-11-30 | 2003-08-15 | Nissan Motor Co Ltd | Light reflecting functional body |
JP2005153192A (en) * | 2003-11-21 | 2005-06-16 | Kansai Tlo Kk | Color developing body and its manufacturing method |
JP2007108208A (en) * | 2005-10-11 | 2007-04-26 | Kawasaki Microelectronics Kk | Coloring apparatus and its manufacturing method |
JP2007225935A (en) * | 2006-02-23 | 2007-09-06 | Institute Of Physical & Chemical Research | Display device and method for manufacturing the same |
JP2011145657A (en) * | 2009-12-18 | 2011-07-28 | Nikon Corp | Structure color developing body and camera using the same |
-
2015
- 2015-07-13 JP JP2015139969A patent/JP6176290B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5294288A (en) * | 1990-11-05 | 1994-03-15 | Eastman Kodak Company | Forming sol-gel dichroic color filters |
JP2003053875A (en) * | 2001-08-09 | 2003-02-26 | Kansai Tlo Kk | Coloring body |
JP2003227923A (en) * | 2001-11-30 | 2003-08-15 | Nissan Motor Co Ltd | Light reflecting functional body |
JP2005153192A (en) * | 2003-11-21 | 2005-06-16 | Kansai Tlo Kk | Color developing body and its manufacturing method |
JP2007108208A (en) * | 2005-10-11 | 2007-04-26 | Kawasaki Microelectronics Kk | Coloring apparatus and its manufacturing method |
JP2007225935A (en) * | 2006-02-23 | 2007-09-06 | Institute Of Physical & Chemical Research | Display device and method for manufacturing the same |
JP2011145657A (en) * | 2009-12-18 | 2011-07-28 | Nikon Corp | Structure color developing body and camera using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019200337A (en) * | 2018-05-17 | 2019-11-21 | 凸版印刷株式会社 | Security device and manufacturing method for the same |
JP2020008759A (en) * | 2018-07-10 | 2020-01-16 | 凸版印刷株式会社 | Transcription sheet, coloring sheet, coloring article, and transcription method |
WO2020013229A1 (en) * | 2018-07-10 | 2020-01-16 | 凸版印刷株式会社 | Transfer sheet, color forming sheet, color forming article, and transfer method |
EP3822669A4 (en) * | 2018-07-10 | 2021-09-08 | Toppan Printing Co., Ltd. | Transfer sheet, color forming sheet, color forming article, and transfer method |
JP7192277B2 (en) | 2018-07-10 | 2022-12-20 | 凸版印刷株式会社 | Transfer sheet, coloring sheet, coloring article, and transfer method |
JP2020012932A (en) * | 2018-07-17 | 2020-01-23 | 凸版印刷株式会社 | Decorative sheet |
Also Published As
Publication number | Publication date |
---|---|
JP6176290B2 (en) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017010099A1 (en) | Color-development structure and method for manufacturing same | |
JP4228058B2 (en) | Colored body and method for producing the same | |
JP6413300B2 (en) | Display body and manufacturing method of display body | |
JP7192277B2 (en) | Transfer sheet, coloring sheet, coloring article, and transfer method | |
JP6801181B2 (en) | Color-developing structure and its manufacturing method | |
JP6766860B2 (en) | Display body and manufacturing method of display body | |
JP6201289B2 (en) | Image display body and information medium | |
JP6500943B2 (en) | Chromogenic structure, mold and method for producing chromogenic structure using mold | |
JP2018528486A (en) | Security element with subwavelength diffraction grating | |
JP6176290B2 (en) | Coloring structure and method for producing the same | |
JP6769226B2 (en) | Display body and manufacturing method of display body | |
JP2008107471A (en) | Display body and printed matter | |
JP6477795B2 (en) | Coloring structure and method for producing the same | |
JP6379547B2 (en) | Image display body and information medium | |
JP7190249B2 (en) | optical device | |
JP7463734B2 (en) | Color-developing structure | |
KR20120058923A (en) | Biomimetic security device and manufacturing method thereof | |
JP6766579B2 (en) | Manufacturing method of optical device and optical device | |
JP7302277B2 (en) | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY | |
JP5776247B2 (en) | Indicator | |
JP7136163B2 (en) | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY | |
JP2022102879A (en) | Display body | |
WO2021145339A1 (en) | Color-development structure and method for manufacturing color-development structure | |
JP2019200337A (en) | Security device and manufacturing method for the same | |
JP2023019616A (en) | Color development structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161215 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20161215 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6176290 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |