WO2021145339A1 - Color-development structure and method for manufacturing color-development structure - Google Patents

Color-development structure and method for manufacturing color-development structure Download PDF

Info

Publication number
WO2021145339A1
WO2021145339A1 PCT/JP2021/000844 JP2021000844W WO2021145339A1 WO 2021145339 A1 WO2021145339 A1 WO 2021145339A1 JP 2021000844 W JP2021000844 W JP 2021000844W WO 2021145339 A1 WO2021145339 A1 WO 2021145339A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
layer
dielectric layer
length
convex
Prior art date
Application number
PCT/JP2021/000844
Other languages
French (fr)
Japanese (ja)
Inventor
麻衣 吉村
雅史 川下
谷 卓行
光男 藤原
鈴木 直也
祐樹 安
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2021145339A1 publication Critical patent/WO2021145339A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present disclosure relates to a colored structure exhibiting a structural color and a method for manufacturing the colored structure.
  • the structural color that is often observed as the color of living organisms in the natural world such as morpho butterflies is the color that is visually recognized by the action of optical phenomena caused by the fine structure of an object, such as diffraction, interference, and scattering of light.
  • structural color due to multilayer film interference is generated when light is reflected at the interface between thin films adjacent to each other and the reflected light interferes with each other.
  • Multilayer interference is one of the wing coloring principles of Morpho butterflies.
  • the wing of a morpho butterfly in addition to multi-layer film interference, light is scattered and diffracted by the fine uneven structure on the surface of the wing, and as a result, bright blue color is visually recognized at a wide observation angle.
  • Patent Document 1 As described in Patent Document 1, as a structure that artificially reproduces the structural color like the wing of a morpho butterfly, a multilayer film layer is laminated on the surface of a base material having fine irregularities arranged unevenly. Structure has been proposed. In a structure in which a multilayer film layer is laminated on a flat surface, the wavelength of the reflected light that is visually recognized changes greatly depending on the observation angle, so that the color that is visually recognized changes greatly depending on the observation angle. On the other hand, in the structure of Patent Document 1, since the reflected light enhanced by the interference spreads in multiple directions due to the irregular unevenness, the color change depending on the observation angle becomes gentle. As a result, a structure that exhibits a specific color at a wide observation angle, such as the wing of a morpho butterfly, is realized.
  • An object of the present disclosure is to provide a color-developing structure capable of suppressing a color change due to a change in an observation angle with a simple configuration, and a method for manufacturing the color-developing structure.
  • a coloring structure in one aspect, has a concavo-convex layer having a concavo-convex structure having a flat surface and a convex portion located on the flat surface, and a surface having a shape following the concavo-convex structure, and emits reflected light enhanced by interference. It includes a dielectric layer made of a single-layer thin film.
  • the convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the uneven layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction and the first along a second direction orthogonal to the first direction.
  • the extinction coefficient of the material of the dielectric layer in the visible region has the smallest value in the wavelength range of the dominant color in the reflected light, and has the largest value in the wavelength range other than the dominant color.
  • a coloring structure in another aspect, has a concavo-convex layer having a concavo-convex structure having a flat surface and a convex portion located on the flat surface, and a surface having a shape following the concavo-convex structure, and emits reflected light enhanced by interference. It includes a dielectric layer made of a single-layer thin film.
  • the convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the uneven layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction and the first along a second direction orthogonal to the first direction.
  • the dielectric layer is composed of a metal compound of any one of a metal oxide, a metal nitride, and a metal oxynitride, and the metal compound has a composition in which a metal element is excessive more than a chemical quantitative composition.
  • a method for manufacturing a colored structure has a concave-convex structure in which a flat surface and a convex portion located on the flat surface are provided on the base material by transferring the unevenness of the concave plate to a base material using a step of forming a concave plate and an imprint method.
  • the dielectric layer composed of a single thin film having a surface having a shape following the uneven structure and emitting reflected light enhanced by interference is erased in the visible region.
  • the step of forming the decay coefficient from a material having the smallest value in the wavelength range of the dominant color in the reflected light and having the largest value in the wavelength range other than the dominant color is included.
  • the convex portion has one or more steps from the plane.
  • the convex portion Seen from a viewpoint facing the surface of the resin layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction, and the first along a second direction orthogonal to the first direction. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than one. In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length.
  • a method for manufacturing a colored structure has a concave-convex structure in which a flat plate and a convex portion located on the flat surface are provided on the base material by transferring the unevenness of the concave plate to a base material using a step of forming a concave plate and an imprint method.
  • the convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the resin layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction, and the first along a second direction orthogonal to the first direction. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than one. In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length.
  • FIG. 2A is a diagram showing a planar structure of the concave-convex structure of the first structure
  • FIG. 2B is a diagram showing a cross-sectional structure of the concave-convex structure of the first structure.
  • FIG. 2A is a diagram showing a planar structure of the concave-convex structure of the first structure
  • FIG. 2B is a diagram showing a cross-sectional structure of the concave-convex structure of the first structure.
  • FIG. 2A is a diagram showing a planar structure of the concave-convex structure of the first structure
  • FIG. 2B is a diagram showing a cross-sectional structure of the concave-convex structure of the first structure.
  • FIG. 2B is a diagram showing a cross-sectional structure
  • FIG. 4A is a diagram showing a planar structure of a concave-convex structure composed of only the second convex element
  • FIG. 4B is a diagram showing a cross-sectional structure of the concave-convex structure composed of only the second convex element
  • FIG. 5A is a diagram showing a planar structure of the concave-convex structure of the second structure
  • FIG. 5B is a diagram showing a cross-sectional structure of the concave-convex structure of the second structure.
  • the figure which shows the change according to the wavelength of the refractive index and the extinction coefficient of aluminum The figure which shows the change according to the wavelength of the refractive index and the extinction coefficient of polyethylene terephthalate.
  • the first embodiment of the color-developing structure and the method for manufacturing the color-developing structure will be described with reference to FIGS. 1 to 10.
  • the incident light and reflected light targeted by the color-developing structure are light in the visible region.
  • the light in the visible region refers to the light in the wavelength region of 360 nm or more and 830 nm or less.
  • the color-developing structure 10 includes a base material 12, a resin layer 13 which is an example of an uneven layer, a dielectric layer 14, and a reflective layer 15.
  • the base material 12 is a flat layer and supports the resin layer 13.
  • the base material 12 is composed of a material that transmits light in the entire visible region, that is, a material that is transparent to light in the visible region.
  • a synthetic quartz substrate or a film made of a resin such as polyethylene terephthalate (PET) is used.
  • PET polyethylene terephthalate
  • the base material 12 is preferably a resin film.
  • the film thickness of the base material 12 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the resin layer 13 has an uneven structure on the surface which is the surface opposite to the surface in contact with the base material 12.
  • the uneven structure of the resin layer 13 includes a plurality of irregularly arranged convex portions.
  • the resin layer 13 is composed of a resin that transmits light in the entire visible region, that is, a resin that is transparent to light in the visible region.
  • a thermosetting resin or a photocurable resin is used as the resin of the material of the resin layer 13, for example.
  • the dielectric layer 14 covers the surface of the resin layer 13 and has a surface having a shape that follows the uneven structure of the resin layer 13.
  • the dielectric layer 14 is a layer made of a single-layer thin film composed of a dielectric, and emits reflected light enhanced by interference.
  • the dielectric layer 14 is composed of any material of metal oxide, metal nitride, and metal oxynitride.
  • the refractive index of the material of the dielectric layer 14 is preferably larger than 1.5 and 3.0 or less, and the dielectric layer 14 has a refractive index of 3.0 or less.
  • the film thickness is preferably 10 nm or more and 10 ⁇ m or less.
  • the material and film thickness of the dielectric layer 14 may be selected according to the desired color to be developed by the color-developing structure 10.
  • the reflective layer 15 is on the opposite side of the dielectric layer 14 from the resin layer 13 and is in contact with the dielectric layer 14. That is, the dielectric layer 14 is sandwiched between the resin layer 13 and the reflective layer 15.
  • the reflective layer 15 has a surface having a shape that follows the uneven structure of the surface of the dielectric layer 14.
  • the reflective layer 15 has a function of increasing the intensity of the reflected light that is strengthened and emitted by interference.
  • the material and film thickness of the reflective layer 15 are not limited as long as the reflective layer 15 having a higher reflectance than the transmittance in the visible region can be realized. However, in order to further increase the intensity of the reflected light, the reflective layer 15 is made of a metal material.
  • the thickness of the reflective layer 15 is preferably 50 nm or more.
  • the color-developing structure 10 of the first embodiment uses light entering the color-developing structure 10 from the side where the base material 12 is located with respect to the resin layer 13 as incident light, and the side where the base material 12 is located with respect to the resin layer 13. Observed from. In other words, the color-developing structure 10 is observed from the side where the resin layer 13 is located with respect to the dielectric layer 14.
  • the dielectric layer 14 When the incident light transmitted through the base material 12 and the resin layer 13 enters the dielectric layer 14, the dielectric layer 14 emits reflected light due to thin film interference. That is, the light reflected at the interface between the dielectric layer 14 and the resin layer 13 and the light reflected at the interface between the dielectric layer 14 and the reflective layer 15 cause interference, and light in the enhanced wavelength range is emitted.
  • NS Since the reflective layer 15 is located on the opposite side of the dielectric layer 14 from the resin layer 13, the intensity of the reflected light emitted toward the observer is higher than that in the case where the reflective layer 15 is not provided. Becomes larger. Then, the reflected light enhanced by the interference is scattered by the irregular unevenness of the resin layer 13 and emitted in multiple directions, so that the color change depending on the observation angle becomes gentle.
  • the reflectance of light at the interface between the dielectric layer 14 and the reflective layer 15, that is, the reflectance of light transmitted through the dielectric layer 14 in the reflective layer 15 is 30% or more. It is preferable to have.
  • the refractive index of the material of the dielectric layer 14 is n1, the refractive index of the material of the resin layer 13 is n2, and the refractive index of the material of the reflective layer 15 is n3.
  • n1> n2 and n1> n3 the following equation (1) is satisfied for wavelengths in the visible region that are strengthened by interference.
  • d is the film thickness of the dielectric layer 14
  • m is 0 or an arbitrary positive integer
  • is the incident angle of the incident light
  • is the wavelength of the incident light.
  • the reflected light enhanced by thin film interference is preferably obtained.
  • the dielectric layer for causing single-layer thin film interference or multilayer film interference is a material that transmits light in the entire visible region in order to increase the reflection component, that is, light in the entire visible region. Consists of transparent material.
  • the wavelength range of the reflected light due to the single layer thin film interference does not have a steep peak as the wavelength range of the reflected light due to the multilayer film interference. Therefore, the wavelength selectivity of the reflected light tends to be low, and as a result, the sharpness of the color visually recognized as the reflected light tends to be low. That is, the conventional dielectric layer that causes thin film interference of a single layer is not suitable for use in a structure for developing a specific color.
  • the dielectric layer 14 absorbs at least a part of the light in the visible region other than the dominant color of the reflected light in the dielectric layer 14.
  • the dominant color of the reflected light is a color corresponding to the wavelength range in which the intensity of the reflected light is the highest as a result of light interference. The dominant color is visually recognized in the color-developing structure 10.
  • the extinction coefficient k of the material of the dielectric layer 14 has the smallest value in the wavelength range of the dominant color of the reflected light and is the largest in the wavelength range other than the dominant color. Has a value.
  • the extinction coefficient k of the material of the dielectric layer 14 is 0, and the farther away from the wavelength range, the larger the extinction coefficient k of the material.
  • Such a dielectric layer 14 can be realized by using a metal oxide, a metal nitride, or a metal oxynitride having a composition in which a metal element is excessive than the stoichiometric composition as the material thereof.
  • These metal compounds when having a stoichiometric composition, transmit light over the entire visible region. Then, the minimum value of the extinction coefficient k of the metal compound tends to shift to the lower wavelength side as the amount of the metal element becomes excessive. The extinction coefficient k of the metal increases as the wavelength increases.
  • the color-developing structure 10 of the present embodiment at least a part of the light in the visible region other than the dominant color of the reflected light of the dielectric layer 14 is absorbed by the dielectric layer 14. Therefore, among the incident light, light other than the dominant color of the reflected light, that is, light having a color different from the color desired to be developed by the color-developing structure 10, is reflected by the color-developing structure 10 and visually recognized by the observer. Is suppressed. Therefore, the specific color to be developed by the color-developing structure 10 can be visually recognized more clearly.
  • FIG. 1 shows a color-developing structure 10A which is a color-developing structure 10 having a concavo-convex structure of the first structure.
  • the concave-convex structure of the first structure includes a plurality of convex portions 13a and a concave portion 13b which is a region between the plurality of convex portions 13a.
  • FIG. 2A is a plan view of the resin layer 13 as viewed from a viewpoint facing the surface thereof
  • FIG. 2B is a cross-sectional view of the resin layer 13 along the line II-II of FIG. 2A.
  • dots are added to the convex portion 13a of the concave-convex structure.
  • the first direction Dx and the second direction Dy are directions included in a plane along the spreading direction of the resin layer 13, and the first direction Dx and the second direction Dy are orthogonal to each other.
  • the plane is a plane orthogonal to the thickness direction of the resin layer 13.
  • the pattern formed by the convex portion 13a is a pattern composed of a set of a plurality of rectangles R indicated by broken lines.
  • the rectangle R is an example of a graphic element.
  • Each rectangle R has a shape extending in the second direction Dy, and in each rectangle R, the length d2 of the second direction Dy has a size equal to or larger than the length d1 of the first direction Dx.
  • the plurality of rectangles R are arranged so as not to overlap in either the first direction Dx and the second direction Dy.
  • the length d1 of the first direction Dx is constant.
  • the arrangement interval of the plurality of rectangles R in the first direction Dx is d1, that is, the plurality of rectangles R are arranged in the first direction Dx with a period of d1.
  • the length d2 of the second direction Dy is irregular, and the length d2 in each rectangle R is a value selected from the population having a predetermined standard deviation.
  • This population preferably follows a normal distribution.
  • a plurality of rectangles R having a length d2 distributed with a predetermined standard deviation are tentatively spread in a predetermined area, and the presence or absence of the actual arrangement of each rectangle R is determined according to a certain probability.
  • the length d2 preferably has a distribution having an average value of 4.13 ⁇ m or less and a standard deviation of 1 ⁇ m or less.
  • the area where the rectangle R is arranged is the area where the convex portion 13a is arranged, and when the rectangles R adjacent to each other are in contact with each other, one area where the areas where the rectangle R is arranged is combined is 1 Two convex portions 13a are arranged.
  • the length of the convex portion 13a in the first direction Dx is an integral multiple of the length d1 of the rectangle R.
  • the length d1 of the first direction Dx in the rectangle R is set to be equal to or less than the wavelength of light in the visible region.
  • the length d1 has a length of less than or equal to the sub-wavelength, that is, less than or equal to the wavelength range of the incident light. That is, the length d1 is preferably 830 nm or less, and more preferably 700 nm or less. Further, the length d1 is preferably smaller than the wavelength range of the dominant color of the reflected light in the dielectric layer 14.
  • the length d1 is preferably about 300 nm, and when the color-developing structure 10 develops a green color, the length d1 is about 400 nm.
  • the length d1 is preferably about 460 nm.
  • the uneven structure has many undulations, and it is viewed from the viewpoint facing the surface of the resin layer 13.
  • the ratio of the area occupied by the convex portion 13a per unit area is preferably 40% or more and 60% or less.
  • the ratio of the area of the convex portion 13a to the area of the concave portion 13b per unit area is preferably 1: 1.
  • the height h1 of the convex portion 13a is constant, and the convex portion 13a has one step from the plane on which the base portion of the convex portion 13a is located.
  • the height h1 of the convex portion 13a may be set according to a desired color to be developed by the color-developing structure 10, that is, a wavelength range desired to be reflected from the color-developing structure 10. If the height h1 of the convex portion 13a is larger than the surface roughness of the dielectric layer 14 on the convex portion 13a or the concave portion 13b, the scattering effect of the reflected light can be obtained.
  • the height h1 is preferably 1/2 or less of the wavelength of light in the visible region, that is, 413 nm or less. Further, in order to suppress the interference of the light, the height h1 is more preferably 1/2 or less of the wavelength range of the dominant color of the reflected light in the dielectric layer 14.
  • the height h1 is preferably 10 nm or more and 200 nm or less.
  • the height h1 is preferably about 40 nm or more and 130 nm or less, and in order to prevent the scattering effect from becoming too high.
  • the height h1 is preferably 100 nm or less.
  • the rectangles R may form the pattern of the convex portion 13a by arranging the two rectangles R arranged along the first direction Dx so as to overlap each other. That is, the plurality of rectangles R may be arranged in the first direction Dx at an arrangement interval smaller than the length d1, and the arrangement intervals of the rectangles R may not be constant. In the portion where the rectangles R overlap, one convex portion 13a is located in one area in which the areas where the rectangles R are arranged are combined. In this case, the length of the convex portion 13a in the first direction Dx is different from the integral multiple of the length d1 of the rectangle R.
  • the length d1 of the rectangle R does not have to be constant, and in each rectangle R, the length d2 is the length d1 or more, and the standard deviation of the length d2 in the plurality of rectangles R is the length d1. It should be larger than the standard deviation. In this case as well, the effect of scattering the reflected light can be obtained.
  • FIG. 3 shows a color-developing structure 10B which is a color-developing structure 10 having a concavo-convex structure having a second structure.
  • the form in which the resin layer 13 has the concavo-convex structure of the first structure and the form in which the resin layer 13 has the concavo-convex structure of the second structure are common except for the configuration of the concavo-convex structure in the color-developing structure 10.
  • the first convex portion element similar to the convex portion 13a of the first structure and the second convex portion element extending in a band shape are formed in the thickness direction of the resin layer 13. It has a superposed structure.
  • the color-developing structure 10A having the uneven structure of the first structure the change depending on the observation angle of the color visually recognized by the scattering effect of the reflected light becomes gradual, but the decrease in the intensity of the reflected light due to the scattering causes. The vividness of the visible color is reduced.
  • a sheet capable of observing more vivid colors from a wide observation angle may be required.
  • the second convex element in the second structure is arranged so that the incident light is strongly diffracted in a specific direction, and the light scattering effect based on the first convex element and the light based on the second convex element. Due to the diffraction effect of, a color-developing structure 10B capable of observing more vivid colors from a wide observation angle is realized.
  • FIG. 4A is a plan view of a concavo-convex structure composed of only the second convex element
  • FIG. 4B is a cross-sectional view taken along the line IV-IV of FIG. 4A.
  • the second convex element is indicated by a dot.
  • the second convex element 13Eb has a band shape extending with a constant width along the second direction Dy, and the plurality of second convex elements 13Eb have the first direction Dx. They are lined up at intervals along.
  • the pattern formed by the second convex element 13Eb is a pattern consisting of a plurality of strip-shaped regions extending along the second direction Dy and lining up along the first direction Dx.
  • the length d3 of the first direction Dx in the second convex element 13Eb may be the same as or different from the length d1 of the rectangle R that determines the pattern of the first convex element.
  • the arrangement interval de of the second convex element 13Eb in the first direction Dx is such that at least a part of the reflected light on the surface of the uneven structure of the second convex element 13Eb , Set to be observed as primary diffracted light.
  • the primary diffracted light is, in other words, diffracted light having a diffraction order m of 1 or -1. That is, when the incident angle of the incident light is ⁇ , the reflection angle of the reflected light is ⁇ , and the wavelength of the diffracted light is ⁇ , the arrangement interval de satisfies de ⁇ ⁇ / (sin ⁇ + sin ⁇ ).
  • the arrangement interval de of the second convex element 13Eb may be 180 nm or more, that is, the arrangement interval de is the minimum wavelength in the wavelength range included in the incident light. It may be 1/2 or more of.
  • the arrangement interval de is a distance along the first direction Dx between the ends of the two second convex element 13Eb adjacent to each other, and is the same as the second convex element 13Eb in the first direction Dx. The distance between the ends located on the side of.
  • the periodicity of the pattern formed by the second convex element 13Eb is reflected in the periodicity of the uneven structure of the resin layer 13.
  • the reflected light of a specific wavelength is emitted from the dielectric layer 14 at a specific angle due to the diffraction phenomenon on the outermost surface of the dielectric layer 14.
  • NS Since the reflection intensity of light due to this diffraction is very strong as compared with the reflection intensity of the reflected light generated by the light scattering effect based on the first convex element, light having a brilliance like metallic luster is visually recognized.
  • spectroscopy occurs due to diffraction, and the visually recognized color changes according to the change in the observation angle.
  • the arrangement spacing de of the second convex element 13Eb is about 400 nm to 5 ⁇ m. Assuming a constant value of, strong green to red light due to diffraction is observed depending on the observation angle.
  • the arrangement interval de of the second convex element 13Eb is increased to about 50 ⁇ m, the range of the angle at which the light in the visible region is diffracted becomes narrow, so that the color change due to the diffraction is difficult to see.
  • light with a brilliance such as metallic luster is observed only at a specific observation angle.
  • the arrangement spacing de is selected from, for example, a range of 360 nm or more and 5 ⁇ m or less, and the average value of the arrangement spacing de of the plurality of second convex elements 13Eb is 1 / of the minimum wavelength in the wavelength range included in the incident light. It may be 2 or more.
  • the arrangement interval de of the second convex element 13Eb is such that the reflected light due to diffraction is in the same range as the range in which the light spreads, depending on the angle at which the light spreads due to the light scattering effect based on the first convex element. It is preferable to determine that it is emitted.
  • the array spacing de is set to an average value of 1 ⁇ m or more and 5 ⁇ m or less in the pattern of the second convex element 13Eb.
  • the standard deviation is set to about 1 ⁇ m.
  • the concave-convex structure based on the plurality of second convex element 13Eb is different from the structure for diffracting and extracting light in a specific wavelength range, and by dispersing the arrangement interval de, a predetermined angular range is used by using diffraction. It is a structure for emitting light in various wavelength ranges.
  • a square region having a side of 10 ⁇ m or more and 100 ⁇ m or less is set as a unit region, and in the pattern of the second convex element 13Eb for each unit region, the array spacing de is set to the average value. It may be about 1 ⁇ m or more and 5 ⁇ m or less, and the standard deviation may be about 1 ⁇ m.
  • the plurality of unit regions may include regions in which the sequence spacing de is a constant value included in the range of 1 ⁇ m or more and 5 ⁇ m or less.
  • the second convex element 13Eb shown in FIGS. 4A and 4B has periodicity due to the arrangement interval de only in the first direction Dx.
  • the light scattering effect based on the first convex element mainly acts on the reflected light in the direction along the first direction Dx in the plan view of the color-developing structure 10, but the direction along the second direction Dy. It can also partially affect the reflected light to. Therefore, the second convex element 13Eb may also have periodicity in the second direction Dy. That is, the pattern of the second convex element 13Eb may be a pattern in which a plurality of strip-shaped regions extending in the second direction Dy are arranged along each of the first direction Dx and the second direction Dy.
  • the average value of each of the arrangement interval along the first direction Dx and the arrangement interval along the second direction Dy of the strip-shaped region is 1 ⁇ m or more and 100 ⁇ m or less. It suffices to have some variation.
  • the average value of the array spacing along the first direction Dx and the average value may be different from each other, and the standard deviation of the sequence spacing along the first direction Dx and the standard deviation of the sequence spacing along the second direction Dy are mutually exclusive. It may be different.
  • the height h2 of the second convex element 13Eb may be larger than the surface roughness of the dielectric layer 14 on the convex portion 13c and the concave portion 13b.
  • the height h2 increases, the diffraction effect based on the second convex element 13Eb becomes dominant in the effect of the uneven structure on the reflected light, and it becomes difficult to obtain the light scattering effect based on the first convex element. Therefore, the height h2 is preferably about the same as the height h1 of the first convex element, and the height h2 may coincide with the height h1.
  • the height h1 of the first convex element and the height h2 of the second convex element 13Eb are preferably included in the range of 10 nm or more and 200 nm or less.
  • the height h1 of the 1-convex element and the height h2 of the 2nd convex element 13Eb are preferably included in the range of 10 nm or more and 130 nm or less.
  • FIG. 5A is a plan view of the resin layer 13 as viewed from a viewpoint facing the surface thereof
  • FIG. 5B is a cross-sectional view of the resin layer 13 along the VV line of FIG. 5A.
  • dots having different densities are attached to the pattern formed by the first convex element and the pattern formed by the second convex element.
  • the patterns formed by the convex portion 13c are the first pattern, which is the pattern formed by the first convex portion element 13Ea, and the second pattern.
  • the region S3 including only the part element 13Eb is included.
  • the first convex element 13Ea and the second convex element 13Eb are overlapped so that their ends are aligned in the first direction Dx, but the end of the first convex element 13Ea. And may be off the end of the second convex element 13Eb.
  • the height of the convex portion 13c is the height h1 of the first convex portion element 13Ea. Further, in the region S2, the height of the convex portion 13c is the sum of the height h1 of the first convex portion element 13Ea and the height h2 of the second convex portion element 13Eb. Further, in the region S3, the height of the convex portion 13c is the height h2 of the second convex portion element 13Eb.
  • the projected image of the resin layer 13 in the thickness direction forms the first pattern, the first convex portion element 13Ea having a predetermined height h1 and the projection in the thickness direction.
  • the image forms a second pattern, and the second convex element 13Eb having a predetermined height h2 has a plurality of steps overlapped in the height direction.
  • the convex portion 13c can be regarded as having the second convex element 13Eb laminated on the first convex element 13Ea from the base of the convex portion 13c, and the first convex portion on the second convex element 13Eb. It can also be considered that the elements 13Ea are stacked.
  • the pattern formed by the first convex element 13Ea and the pattern formed by the second convex element 13Eb are arranged so that the first convex element 13Ea and the second convex element 13Eb do not overlap each other. good. Even with such a structure, the light scattering effect based on the first convex element 13Ea and the light diffraction effect based on the second convex element 13Eb can be obtained. However, if the first convex element 13Ea and the second convex element 13Eb are arranged so as not to overlap each other, the first convex element 13Ea can be arranged per unit area as compared with the first structure. Area becomes smaller and the light scattering effect is reduced.
  • the first convex element 13Ea and the second convex element 13Eb are combined. It is preferable that the convex portions 13c have a shape having a plurality of steps.
  • the characteristics of the dielectric layer 14 will be described with reference to simulation results.
  • titanium oxide (TiO 2 ) having a stoichiometric composition is used as the material of the dielectric layer 14, and a metal element rather than the stoichiometric composition.
  • the wavelength range of the reflected light was determined for each of the cases where excess titanium oxide (TiO x: 0 ⁇ x ⁇ 2) was used.
  • TiO x is titanium oxide in a state in which oxygen is deficient with respect to TiO 2.
  • aluminum was applied to the material of the reflective layer 15.
  • FIGS. 6 to 8 show the refractive index n and the extinction coefficient k of the materials of the dielectric layer 14 and the reflective layer 15.
  • 6 shows a refractive index n and extinction coefficient k of TiO 2
  • oxygen show a refractive index n and extinction coefficient k of TiO x was deposited to lack, 8, aluminum
  • the refractive index n and the extinction coefficient k of FIG. 9 shows the refractive index n and the extinction coefficient k of polyethylene terephthalate used as the base material 12.
  • Figures 6, 8 and 9 are standard values for commercially available products, and FIGS. 7 and 7 are actual measurement values.
  • the extinction coefficient k is 0 in the entire visible region, that is, TiO 2 transmits light in the entire visible region.
  • the extinction coefficient k is 0 in the wavelength range of about 410 nm to about 450 nm, which is a part of the wavelength range of blue light, and the extinction coefficient k becomes 0 as the distance from the wavelength range increases.
  • the decay coefficient k is increasing.
  • the extinction coefficient k in the wavelength range of about 750 nm or more is around 0.05.
  • the extinction coefficient k is the smallest in the wavelength range of blue light, and in the wavelength range other than blue light, it is higher than the wavelength range of blue light. Is also big.
  • the extinction coefficient k becomes maximum in the wavelength region of red light in the visible region. As shown in FIGS. 6 and 7, there is no difference in the refractive index n between TiO 2 and TiO x.
  • the incident angle of the incident light is 30 °
  • the thickness of the reflective layer 15 is 0.1 ⁇ m
  • the optimum film thickness in which is blue was searched for using a genetic algorithm.
  • the film thickness of TiO 2 suitable for blue color development was 0.0682 ⁇ m
  • the film thickness of TiO x suitable for blue color development was 0.0624 ⁇ m.
  • the film thickness of the dielectric layer 14 is set to a film thickness suitable for the blue color development, and the film thickness of the reflective layer 15 is set to 0.1 ⁇ m.
  • the wavelength range of the reflected light from the laminate of the dielectric layer 14 and the reflective layer 15 was determined.
  • FIG. 10 shows the result. Note that FIG. 10 shows the wavelength range of the reflected light in the blue-colored multilayer film layer as a reference value.
  • This multilayer film layer is an alternating laminate of a TiO 2 thin film and a SiO 2 thin film.
  • the dielectric layer 14 when the dielectric layer 14 composed of a single-layer thin film is used, it corresponds to a wavelength range other than blue light, that is, a color different from the dominant color, as compared with the case where a multilayer film layer is used. It can be seen that the intensity of the reflected light in the wavelength range is high. However, comparing the case where TiO 2 is used as the material of the dielectric layer 14 and the case where dio x is used, the intensity of the reflected light in the wavelength range other than blue light is higher in the case where TiO x is used. Is low. This is because, as described above, the extinction coefficient k of TiO x is larger than the extinction coefficient k of TiO 2 in the wavelength range other than blue light.
  • the dielectric layer 14 made of TiO x has an absorbency of light other than blue light, and as a result, as compared with the case where TiO 2 having no absorbency in the entire visible region is used,
  • the intensity of the reflected light in the wavelength region other than the blue light in other words, the intensity of the reflected light in the long wavelength region is lower than that in the wavelength region of the blue light.
  • the dielectric layer 14 made of a single-layer thin film is used, the amount of light of a color other than blue contained in the reflected light is less when TiO x is used than when TiO 2 is used. As a result, the reflected blue light is easily visible. In other words, a brighter blue color is observed.
  • the film thickness of the dielectric layer 14 is unified to the film thickness of TiO 2 suitable for blue color development, and the TiO x film suitable for blue color development. Similar results were obtained in all cases where the thickness was unified. That is, when TiO x was used, the intensity of the reflected light in the wavelength range other than blue light was lower.
  • the resin layer 13 is formed on the base material 12.
  • a nanoimprint method is used.
  • the material of the resin layer 13 is included in the surface on which the unevenness of the mold, which is an intaglio having the inverted unevenness of the unevenness to be formed, is formed.
  • the coating liquid is applied.
  • a resin having photocurability is used as the material of the resin layer 13.
  • the coating method of the coating liquid is not particularly limited, and known coating methods such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, and a gravure coating method may be used.
  • the base material 12 is superposed on the surface of the layer made of the coating liquid, and light is irradiated from the base material 12 side or the mold side in a state where the base material 12 and the mold are pressed against each other. Subsequently, the mold is released from the layer made of the cured resin and the base material 12. As a result, the unevenness of the mold is transferred to the resin to form the resin layer 13 having the unevenness on the surface, and a laminate composed of the base material 12 and the resin layer 13 is formed.
  • the mold is made of, for example, synthetic quartz or silicon, and is formed by using known microfabrication techniques such as lithography and dry etching for irradiating light or charged particle beams.
  • the coating liquid may be applied to the surface of the base material 12 and irradiated with light in a state where the mold is pressed against the layer made of the coating liquid on the base material 12. Further, the thermal nanoimprint method may be used instead of the optical nanoimprint method.
  • the dielectric layer 14 is formed on the uneven surface of the resin layer 13. Further, the reflective layer 15 is formed on the surface of the dielectric layer 14.
  • the dielectric layer 14 and the reflective layer 15 are formed by a known thin film forming technique such as sputtering or vacuum vapor deposition, depending on the material. As a result, the color-developing structure 10 is formed.
  • the amount of the material introduced during the film formation of the dielectric layer 14 it is possible to produce a metal compound having a composition in which the metal element is excessive compared to the stoichiometric composition.
  • the oxygen flow rate is reduced as compared with the case of forming a thin film having a stoichiometric composition, so that the dielectric layer 14 having an excess composition of metal elements can be formed.
  • the color-developing structure 10 of the present embodiment includes a dielectric layer 14 made of a single thin film as a layer that causes interference, the structure thereof is compared with a structure that has a multilayer film layer as a layer that causes interference. Is simple, and the number of thin films required is small. Further, as compared with the structure including the multilayer film layer, the influence of the manufacturing error of the film thickness of one thin film on the color development of the color development structure 10 is small. Therefore, the load required for manufacturing the color-developing structure 10 can be reduced, and the desired color can be easily obtained.
  • the dielectric layer 14 that causes interference is a single-layer thin film
  • the structure of the color-developing structure 10 is simplified as compared with the case where a multilayer film layer is used. Therefore, in the color-developing structure 10 in which the color change due to the change in the observation angle is suppressed due to the light scattering effect due to the irregular unevenness, the load required for its manufacture is reduced.
  • the dielectric layer 14 Since the dielectric layer 14 has absorption of light other than the dominant color of the reflected light in the visible region, the light in the wavelength range having this absorption is included in the reflected light from the color-developing structure 10. Is suppressed. Therefore, the sharpness of the dominant color exhibited by the color-developing structure 10 is enhanced.
  • the extinction coefficient k of the material of the dielectric layer 14 in the visible region has the smallest value in the wavelength range of the dominant color of the reflected light in the dielectric layer 14, and is other than the wavelength range of the dominant color. Has the largest value in.
  • the dielectric layer 14 is composed of a metal compound of any one of a metal oxide, a metal nitride, and a metal oxynitride, and the metal compound has a composition in which a metal element is excessive more than a chemical quantitative composition. .. With these, the above-mentioned effect can be obtained.
  • the color-developing structure 10 includes a reflective layer 15 located on the opposite side of the resin layer 13 with respect to the dielectric layer 14. As a result, the intensity of the reflected light is increased in the color-developing structure 10 observed from the side where the resin layer 13 is located with respect to the dielectric layer 14. Therefore, the visibility of the color exhibited by the color-developing structure 10 is enhanced.
  • the dielectric layer 14 has a thickness of 10 nm or more and 10 ⁇ m or less, and the refractive index of the material of the dielectric layer 14 is larger than 1.5 and 3.0 or less. Interference of light in No. 14 is preferably likely to occur.
  • the reflectance of the light transmitted through the dielectric layer 14 in the reflective layer 15 is 30% or more, the reflective layer 15 is made of a metal material, and the reflective layer 15 has a thickness of 50 nm or more.
  • Each of the possessions further enhances the intensity of the reflected light.
  • the concavo-convex structure provides a diffusion effect and a diffraction effect of reflected light.
  • the reflected light enhanced by the interference that is, the dominant color can be observed at a wide observation angle, and the intensity of the reflected light is increased, so that a vivid color with a glossy feeling is visually recognized.
  • the resin layer 13 having fine irregularities can be preferably and easily formed. Further, when the color-developing structure 10 includes the base material 12 that supports the resin layer 13, the imprint method can be easily applied.
  • the reflective layer 15 is in contact with the resin layer 13, and the dielectric layer 14 is located on the opposite side of the reflective layer 15 from the resin layer 13. There is. That is, in the color-developing structure 11 of the second embodiment, the positions of the dielectric layer 14 and the reflective layer 15 with respect to the resin layer 13 are opposite to those of the first embodiment, and the resin layer 13 and the dielectric layer 14 The reflective layer 15 is sandwiched between the two.
  • the dielectric layer 14 is the outermost layer of the color-developing structure 11 and is in contact with the air layer.
  • FIG. 11 illustrates a form in which the resin layer 13 has a concavo-convex structure having a second structure.
  • the base material 12 and the resin layer 13 in the second embodiment are the same as those in the first embodiment.
  • the reflective layer 15 covers the surface of the resin layer 13 and has a surface having a shape that follows the uneven structure of the resin layer 13.
  • the dielectric layer 14 has a surface having a shape following the uneven structure of the surface of the reflective layer 15, that is, having a surface having a shape following the uneven structure of the resin layer 13.
  • the configuration other than the positional relationship between the dielectric layer 14 and the reflective layer 15, that is, the materials and properties of the dielectric layer 14 and the reflective layer 15 are the same as those in the first embodiment.
  • the method for producing the color-developing structure 11 is the same as that of the first embodiment, except that the order of formation of the dielectric layer 14 and the reflective layer 15 is opposite.
  • the color-developing structure 11 of the second embodiment uses light entering the color-developing structure 11 from the side opposite to the base material 12 with respect to the resin layer 13 as incident light, and is opposite to the base material 12 with respect to the resin layer 13, that is, , Observed from the side where the dielectric layer 14 is located with respect to the resin layer 13.
  • the dielectric layer 14 When light is incident on the dielectric layer 14, the dielectric layer 14 emits reflected light due to thin film interference. That is, the light reflected at the interface between the dielectric layer 14 and the air layer and the light reflected at the interface between the dielectric layer 14 and the reflective layer 15 cause interference, and light in the enhanced wavelength range is emitted. ..
  • the intensity of the reflected light emitted toward the observer is higher than that in the case where the reflective layer 15 is not provided. Becomes larger. Then, the reflected light enhanced by the interference is scattered by the irregular unevenness and emitted in multiple directions, so that the color change depending on the observation angle becomes gentle.
  • the refractive index of the material of the dielectric layer 14 is n1, the refractive index of air is n4, and the refractive index of the material of the reflective layer 15 is n3.
  • n1> n4 and n1> n3 the following equation (3) is satisfied for wavelengths in the visible region that are strengthened by interference.
  • d is the film thickness of the dielectric layer 14
  • m is 0 or an arbitrary positive integer
  • is the incident angle of the incident light
  • is the wavelength of the incident light.
  • the reflected light enhanced by thin film interference is preferably obtained.
  • the material of the dielectric layer 14 As the material of the dielectric layer 14, a metal oxide, a metal nitride, or a metal oxynitride having a composition in which a metal element is excessive compared to the stoichiometric composition is used. Then, in the visible region, the extinction coefficient k of the material of the dielectric layer 14 has the smallest value in the wavelength range of the dominant color of the reflected light in the dielectric layer 14, and is other than the wavelength range of the dominant color. Has the largest value.
  • the light in the visible region at least a part of the light other than the dominant color of the reflected light in the dielectric layer 14 is absorbed by the dielectric layer 14. Therefore, among the incident light, light other than the dominant color of the reflected light, that is, light having a color different from the color desired to be developed by the color-developing structure 11, is reflected by the color-developing structure 11 and visually recognized by the observer. Since it is suppressed, the specific color to be developed by the color-developing structure 11 can be visually recognized more clearly.
  • the color-developing structure 11 includes a reflective layer 15 located between the dielectric layer 14 and the resin layer 13. As a result, the intensity of the reflected light is increased in the color-developing structure 11 observed from the side where the dielectric layer 14 is located with respect to the resin layer 13. Therefore, the visibility of the color exhibited by the color-developing structure 11 is enhanced.
  • the color-developing structure may include an absorbing layer instead of the reflective layer 15.
  • the absorption layer is located deeper than the dielectric layer 14 when viewed from the observer.
  • the absorption layer 16 is the surface of the base material 12 opposite to the resin layer 13. Cover.
  • the absorption layer 16 absorbs at least a part of the light in the visible region other than the dominant color of the reflected light in the dielectric layer 14.
  • the absorption layer 16 is a black layer containing a black pigment or the like, and may absorb light in the entire visible region.
  • the absorption layer Since the absorption layer is provided, light in a wavelength range different from the wavelength range of the dominant color of the reflected light in the dielectric layer 14 can be applied to the interface of each layer inside the color-developing structure and the color-developing structure and its outside. It is suppressed that it is reflected at the interface and emitted toward the observer. Therefore, the sharpness of the dominant color visually recognized in the coloring structure is enhanced.
  • the reflective layer may be provided at a position of the base material 12 that covers the surface opposite to the resin layer 13. Even if light other than the dominant color is mixed with the light transmitted through the dielectric layer 14, the resin layer 13 and the base material 12 and reflected by the reflective layer, the dielectric layer 14 absorbs light other than the dominant color. Therefore, it is possible to prevent light other than the dominant color from being emitted toward the observer. As a result, the reflective layer contributes to further increasing the intensity of the dominant color light in the reflected light.
  • the color-developing structure is a layer different from the layers described in the above embodiments and modifications, such as a protective layer forming the outermost part of the color-developing structure on the side opposite to the base material 12, and a layer having an ultraviolet absorbing function. You may also have more.
  • An uneven structure may be formed on the base material 12, and the base material 12 may function as an uneven layer. That is, a functional layer such as a dielectric layer 14 or a reflective layer 15 may be laminated on the surface of the base material 12 having a concavo-convex structure.
  • the uneven structure is formed by using, for example, a dry etching method.
  • the figure forming the pattern formed by the convex portion 13a in the first structure of the concave-convex structure in the concave-convex layer and the pattern formed by the first convex portion element 13Ea in the second structure are not limited to rectangles. ..
  • the graphic forming these patterns may be an oval or the like, and in short, it may be a graphic element having a shape in which the length along the second direction Dy is equal to or greater than the length along the first direction Dx. Just do it. Then, it is sufficient that the length d1 of the first direction Dx and the length d2 of the second direction Dy in the graphic element satisfy various conditions described in the description of the first structure.
  • the width of the convex portion of the concave-convex structure of the concave-convex layer may gradually decrease from the base to the top in the first direction Dx.
  • the dielectric layer 14 and the reflective layer 15 are likely to be formed on the convex portion.
  • the length d1 and the length d3 of the first direction Dx are defined by the pattern formed by the bottom surface of the convex portion.
  • the use of the color-developing structure is not particularly limited.
  • the colored structure may be attached to the article for decoration or may be attached to the article to prevent counterfeiting. Further, in each application, the color-developing structure may be applied to a sealing member and attached to an article, or may be applied to a transfer sheet and transferred to an article.
  • the above-mentioned color-developing structure and a method for producing the same will be described with reference to specific examples.
  • the color-developing structure of this embodiment has a structure corresponding to the first embodiment.
  • a mold was formed to form a concavo-convex structure using the optical imprint method. Since light having a wavelength of 365 nm is used as the light to be irradiated in the optical nanoimprint method, synthetic quartz that transmits light of this wavelength was used as the material for the mold.
  • a mold was formed by forming the inverted unevenness of the unevenness to be formed on the resin layer on the synthetic quartz substrate by electron beam drawing and dry etching.
  • the concavo-convex structure to be formed is the concavo-convex structure of the second structure.
  • Optool HD-1100 manufactured by Daikin Industries, Ltd.
  • a photocurable resin is applied onto a PET film that has been easily adhered to one side, and the surface on which the unevenness of the mold is formed is pressed against this resin to irradiate the resin with light having a wavelength of 365 nm.
  • the cured resin and PET film were peeled off from the mold.
  • a laminate of a resin layer having an uneven structure and a PET film as a base material was obtained.
  • a single titanium oxide film having a film thickness of 60 nm was formed as a dielectric layer on the uneven surface of the obtained laminate of the resin layer and the base material by a sputtering method.
  • a titanium oxide film was formed so that the amount of metal elements exceeded the stoichiometric composition.
  • a single aluminum film having a film thickness of 100 nm was formed as a reflective layer on the upper surface of the dielectric layer by a sputtering method.
  • the colored structure of the example was obtained.
  • the colored structure of the example was observed from the side where the resin layer is located with respect to the dielectric layer.
  • a glossy blue color was confirmed with good visibility.

Abstract

This color-development structure is provided with: a corrugated layer having a corrugated structure that is equipped with a flat surface and protrusions disposed on said flat surface; and a dielectric layer that has a surface having a shape conforming to the corrugated structure, and that is formed of a single-layer thin film that emits reflected light that has been enhanced by interference. The protrusions are so structured as to have one or more steps above the flat surface. When viewed from a viewpoint opposing the surface of the corrugated layer, the protrusions are arranged so as to form a pattern that includes a set of multiple figurative elements each having a first length not more than a subwavelength along a first direction and a second length not less than the first length along a second direction that is orthogonal to the first direction. In the multiple figurative elements, the standard deviation of the second lengths is greater than that of the first lengths.

Description

発色構造体、および、発色構造体の製造方法Color-developing structure and manufacturing method of color-developing structure
 本開示は、構造色を呈する発色構造体、および、発色構造体の製造方法に関する。 The present disclosure relates to a colored structure exhibiting a structural color and a method for manufacturing the colored structure.
 モルフォ蝶等の自然界の生物の色として多く観察される構造色は、光の回折や干渉や散乱といった、物体の微細な構造に起因した光学現象の作用によって視認される色である。例えば、多層膜干渉による構造色は、相互に隣り合う薄膜の界面で光が反射し、その反射した光が互いに干渉することによって生じる。多層膜干渉は、モルフォ蝶の翅の発色原理の1つである。モルフォ蝶の翅では、多層膜干渉に加えて、翅の表面の微細な凹凸構造によって光の散乱や回折が生じる結果、鮮やかな青色が広い観察角度において視認される。 The structural color that is often observed as the color of living organisms in the natural world such as morpho butterflies is the color that is visually recognized by the action of optical phenomena caused by the fine structure of an object, such as diffraction, interference, and scattering of light. For example, structural color due to multilayer film interference is generated when light is reflected at the interface between thin films adjacent to each other and the reflected light interferes with each other. Multilayer interference is one of the wing coloring principles of Morpho butterflies. In the wing of a morpho butterfly, in addition to multi-layer film interference, light is scattered and diffracted by the fine uneven structure on the surface of the wing, and as a result, bright blue color is visually recognized at a wide observation angle.
 モルフォ蝶の翅のような構造色を人工的に再現する構造として、特許文献1に記載のように、不均一に配列された微細な凹凸を有する基材の表面に、多層膜層が積層された構造が提案されている。平面に多層膜層が積層された構造では、視認される反射光の波長が観察角度によって大きく変化するため、視認される色が観察角度によって大きく変化する。これに対し、特許文献1の構造では、干渉によって強められた反射光が不規則な凹凸によって多方向に広がるため、観察角度による色の変化が緩やかになる。その結果、モルフォ蝶の翅のように広い観察角度で特定の色を呈する構造体が実現される。 As described in Patent Document 1, as a structure that artificially reproduces the structural color like the wing of a morpho butterfly, a multilayer film layer is laminated on the surface of a base material having fine irregularities arranged unevenly. Structure has been proposed. In a structure in which a multilayer film layer is laminated on a flat surface, the wavelength of the reflected light that is visually recognized changes greatly depending on the observation angle, so that the color that is visually recognized changes greatly depending on the observation angle. On the other hand, in the structure of Patent Document 1, since the reflected light enhanced by the interference spreads in multiple directions due to the irregular unevenness, the color change depending on the observation angle becomes gentle. As a result, a structure that exhibits a specific color at a wide observation angle, such as the wing of a morpho butterfly, is realized.
特開2005-153192号公報Japanese Unexamined Patent Publication No. 2005-153192
 しかしながら、多層膜層の製造工程では、互いに異なる材料から形成された薄膜が相互に隣り合うように、複数の薄膜を精密な膜厚で順に積層することが必要である。そのため、上述したような、微細な凹凸構造に多層膜層が積層された構造体を製造するのに要する負荷は大きい。 However, in the manufacturing process of the multilayer film layer, it is necessary to sequentially laminate a plurality of thin films with a precise film thickness so that the thin films formed from different materials are adjacent to each other. Therefore, the load required to manufacture the structure in which the multilayer film layer is laminated on the fine uneven structure as described above is large.
 本開示の目的は、簡易な構成で、観察角度の変化による色変化を抑えることのできる発色構造体、および、発色構造体の製造方法を提供することにある。 An object of the present disclosure is to provide a color-developing structure capable of suppressing a color change due to a change in an observation angle with a simple configuration, and a method for manufacturing the color-developing structure.
 一態様では、発色構造体を提供する。前記発色構造体は、平面と前記平面に位置する凸部とを備える凹凸構造を有する凹凸層と、前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層と、を備える。前記凸部は、前記平面から1段以上の段差を有する。前記凹凸層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されている。前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きい。前記誘電体層の材料の可視領域での消衰係数は、前記反射光における支配色の波長域にて最も小さい値を有し、前記支配色の波長域以外にて最も大きい値を有する。 In one aspect, a coloring structure is provided. The color-developing structure has a concavo-convex layer having a concavo-convex structure having a flat surface and a convex portion located on the flat surface, and a surface having a shape following the concavo-convex structure, and emits reflected light enhanced by interference. It includes a dielectric layer made of a single-layer thin film. The convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the uneven layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction and the first along a second direction orthogonal to the first direction. They are arranged to form a pattern that includes a set of a plurality of graphic elements, each having a second length that is greater than or equal to one. In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length. The extinction coefficient of the material of the dielectric layer in the visible region has the smallest value in the wavelength range of the dominant color in the reflected light, and has the largest value in the wavelength range other than the dominant color.
 別の態様では、発色構造体を提供する。前記発色構造体は、平面と前記平面に位置する凸部とを備える凹凸構造を有する凹凸層と、前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層と、を備える。前記凸部は、前記平面から1段以上の段差を有する。前記凹凸層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されている。前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きい。前記誘電体層は、金属酸化物、金属窒化物、および、金属酸窒化物のいずれかの金属化合物からなり、当該金属化合物は、化学量論組成よりも金属元素が過剰な組成を有する。 In another aspect, a coloring structure is provided. The color-developing structure has a concavo-convex layer having a concavo-convex structure having a flat surface and a convex portion located on the flat surface, and a surface having a shape following the concavo-convex structure, and emits reflected light enhanced by interference. It includes a dielectric layer made of a single-layer thin film. The convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the uneven layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction and the first along a second direction orthogonal to the first direction. They are arranged to form a pattern that includes a set of a plurality of graphic elements, each having a second length that is greater than or equal to one. In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length. The dielectric layer is composed of a metal compound of any one of a metal oxide, a metal nitride, and a metal oxynitride, and the metal compound has a composition in which a metal element is excessive more than a chemical quantitative composition.
 別の態様では、発色構造体の製造方法を提供する。前記方法は、凹版を形成する工程と、インプリント法を用いて前記凹版の凹凸を基材に転写することにより、前記基材上に、平面と前記平面に位置する凸部とを備える凹凸構造を有する樹脂層を形成する工程と、前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層を、可視領域での消衰係数が、前記反射光における支配色の波長域にて最も小さい値を有し、前記支配色の波長域以外にて最も大きい値を有する材料から形成する工程と、を含む。前記凸部は、前記平面から1段以上の段差を有する。前記樹脂層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されている。前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きい。 In another aspect, a method for manufacturing a colored structure is provided. The method has a concave-convex structure in which a flat surface and a convex portion located on the flat surface are provided on the base material by transferring the unevenness of the concave plate to a base material using a step of forming a concave plate and an imprint method. The dielectric layer composed of a single thin film having a surface having a shape following the uneven structure and emitting reflected light enhanced by interference is erased in the visible region. The step of forming the decay coefficient from a material having the smallest value in the wavelength range of the dominant color in the reflected light and having the largest value in the wavelength range other than the dominant color is included. The convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the resin layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction, and the first along a second direction orthogonal to the first direction. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than one. In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length.
 別の態様では、発色構造体の製造方法を提供する。前記方法は、凹版を形成する工程と、インプリント法を用いて前記凹版の凹凸を基材に転写することにより、前記基材上に、平面と前記平面に位置する凸部とを備える凹凸構造を有する樹脂層を形成する工程と、前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層を、金属酸化物、金属窒化物、および、金属酸窒化物のいずれかの金属化合物であって、化学量論組成よりも金属元素が過剰な組成を有する前記金属化合物から形成する工程と、を含む。前記凸部は、前記平面から1段以上の段差を有する。前記樹脂層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されている。前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きい。 In another aspect, a method for manufacturing a colored structure is provided. The method has a concave-convex structure in which a flat plate and a convex portion located on the flat surface are provided on the base material by transferring the unevenness of the concave plate to a base material using a step of forming a concave plate and an imprint method. A metal oxide, a metal, a dielectric layer composed of a single thin film having a surface having a shape following the uneven structure and emitting reflected light enhanced by interference, and a step of forming a resin layer having the above. It comprises a step of forming from the metal compound which is either a nitride or a metal oxynitride and has a composition in which a metal element is excessive than a chemical quantitative composition. The convex portion has one or more steps from the plane. Seen from a viewpoint facing the surface of the resin layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction, and the first along a second direction orthogonal to the first direction. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than one. In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length.
発色構造体の第1実施形態について、第1の構造の凹凸構造を有する発色構造体の断面構造を示す図。The figure which shows the cross-sectional structure of the color-developing structure which has the concavo-convex structure of the 1st structure about 1st Embodiment of a color-developing structure. 図2Aは、第1の構造の凹凸構造の平面構造を示す図、図2Bは、第1の構造の凹凸構造の断面構造を示す図。FIG. 2A is a diagram showing a planar structure of the concave-convex structure of the first structure, and FIG. 2B is a diagram showing a cross-sectional structure of the concave-convex structure of the first structure. 第1実施形態の発色構造体について、第2の構造の凹凸構造を有する発色構造体の断面構造を示す図。The figure which shows the cross-sectional structure of the color-developing structure which has the concavo-convex structure of the second structure about the color-developing structure of 1st Embodiment. 図4Aは、第2凸部要素のみからなる凹凸構造の平面構造を示す図、図4Bは、第2凸部要素のみからなる凹凸構造の断面構造を示す図。FIG. 4A is a diagram showing a planar structure of a concave-convex structure composed of only the second convex element, and FIG. 4B is a diagram showing a cross-sectional structure of the concave-convex structure composed of only the second convex element. 図5Aは、第2の構造の凹凸構造の平面構造を示す図、図5Bは、第2の構造の凹凸構造の断面構造を示す図。FIG. 5A is a diagram showing a planar structure of the concave-convex structure of the second structure, and FIG. 5B is a diagram showing a cross-sectional structure of the concave-convex structure of the second structure. TiOの屈折率および消衰係数の波長に応じた変化を示す図。The figure which shows the change according to the wavelength of the refractive index and the extinction coefficient of TiO 2. TiOの屈折率および消衰係数の波長に応じた変化を示す図。The figure which shows the change according to the wavelength of the refractive index and the extinction coefficient of TiO x. アルミニウムの屈折率および消衰係数の波長に応じた変化を示す図。The figure which shows the change according to the wavelength of the refractive index and the extinction coefficient of aluminum. ポリエチレンテレフタラートの屈折率および消衰係数の波長に応じた変化を示す図。The figure which shows the change according to the wavelength of the refractive index and the extinction coefficient of polyethylene terephthalate. TiOおよびTiOの各々を用いた場合の反射光の波長を示す図。The figure which shows the wavelength of the reflected light when each of TiO 2 and TiO x is used. 発色構造体の第2実施形態について、発色構造体の断面構造を示す図。The figure which shows the cross-sectional structure of the color-developing structure about the 2nd Embodiment of a color-developing structure. 変形例の発色構造体の断面構造を示す図。The figure which shows the cross-sectional structure of the color-developing structure of a modification.
 (第1実施形態)
 図1~図10を参照して、発色構造体、および、発色構造体の製造方法の第1実施形態を説明する。発色構造体が対象とする入射光および反射光は、可視領域の光である。以下の説明において、可視領域の光とは、360nm以上830nm以下の波長域の光を指す。
(First Embodiment)
The first embodiment of the color-developing structure and the method for manufacturing the color-developing structure will be described with reference to FIGS. 1 to 10. The incident light and reflected light targeted by the color-developing structure are light in the visible region. In the following description, the light in the visible region refers to the light in the wavelength region of 360 nm or more and 830 nm or less.
 [発色構造体]
 図1が示すように、発色構造体10は、基材12と、凹凸層の一例である樹脂層13と、誘電体層14と、反射層15とを備えている。
[Coloring structure]
As shown in FIG. 1, the color-developing structure 10 includes a base material 12, a resin layer 13 which is an example of an uneven layer, a dielectric layer 14, and a reflective layer 15.
 基材12は、平坦な層であり、樹脂層13を支持している。基材12は、可視領域全体の光を透過する材料、すなわち、可視領域の光に対して透明な材料から構成される。例えば、基材12としては、合成石英基板や、ポリエチレンテレフタラート(PET)等の樹脂からなるフィルムが用いられる。発色構造体10の可撓性が高められる観点では、基材12は樹脂フィルムであることが好ましい。基材12の膜厚は、例えば、10μm以上100μm以下である。 The base material 12 is a flat layer and supports the resin layer 13. The base material 12 is composed of a material that transmits light in the entire visible region, that is, a material that is transparent to light in the visible region. For example, as the base material 12, a synthetic quartz substrate or a film made of a resin such as polyethylene terephthalate (PET) is used. From the viewpoint of increasing the flexibility of the color-developing structure 10, the base material 12 is preferably a resin film. The film thickness of the base material 12 is, for example, 10 μm or more and 100 μm or less.
 樹脂層13は、基材12と接する面とは反対側の面である表面に、凹凸構造を有する。樹脂層13の有する凹凸構造は、不規則に配置された複数の凸部を含む。樹脂層13は、可視領域全体の光を透過する樹脂、すなわち、可視領域の光に対して透明な樹脂から構成される。樹脂層13の材料の樹脂としては、例えば、熱硬化性樹脂や光硬化性樹脂が用いられる。 The resin layer 13 has an uneven structure on the surface which is the surface opposite to the surface in contact with the base material 12. The uneven structure of the resin layer 13 includes a plurality of irregularly arranged convex portions. The resin layer 13 is composed of a resin that transmits light in the entire visible region, that is, a resin that is transparent to light in the visible region. As the resin of the material of the resin layer 13, for example, a thermosetting resin or a photocurable resin is used.
 誘電体層14は、樹脂層13の表面を覆い、樹脂層13が有する凹凸構造に追従した形状を有する表面を有している。誘電体層14は、誘電体から構成された単層の薄膜からなる層であり、干渉によって強められた反射光を射出する。誘電体層14は、金属酸化物、金属窒化物、および、金属酸窒化物のいずれかの材料から構成される。誘電体層14における光の干渉を好適に生じさせるためには、誘電体層14の材料の屈折率は、1.5より大きく3.0以下であることが好ましく、また、誘電体層14の膜厚は10nm以上10μm以下であることが好ましい。なお、誘電体層14の材料および膜厚は、発色構造体10にて発色させる所望の色に応じて、選択されればよい。 The dielectric layer 14 covers the surface of the resin layer 13 and has a surface having a shape that follows the uneven structure of the resin layer 13. The dielectric layer 14 is a layer made of a single-layer thin film composed of a dielectric, and emits reflected light enhanced by interference. The dielectric layer 14 is composed of any material of metal oxide, metal nitride, and metal oxynitride. In order to preferably cause light interference in the dielectric layer 14, the refractive index of the material of the dielectric layer 14 is preferably larger than 1.5 and 3.0 or less, and the dielectric layer 14 has a refractive index of 3.0 or less. The film thickness is preferably 10 nm or more and 10 μm or less. The material and film thickness of the dielectric layer 14 may be selected according to the desired color to be developed by the color-developing structure 10.
 反射層15は、誘電体層14に対して樹脂層13とは反対側で、誘電体層14に接している。すなわち、誘電体層14は樹脂層13と反射層15との間に挟まれている。反射層15は、誘電体層14の表面の凹凸構造に追従した形状を有する表面を有している。反射層15は、干渉によって強められて射出される反射光の強度を高める機能を有する。可視領域について透過率よりも反射率の方が大きい反射層15を実現可能であれば、その材料および膜厚は限定されないが、反射光の強度をより高めるためには、反射層15は金属材料から構成されることが好ましく、反射層15の膜厚は50nm以上であることが好ましい。 The reflective layer 15 is on the opposite side of the dielectric layer 14 from the resin layer 13 and is in contact with the dielectric layer 14. That is, the dielectric layer 14 is sandwiched between the resin layer 13 and the reflective layer 15. The reflective layer 15 has a surface having a shape that follows the uneven structure of the surface of the dielectric layer 14. The reflective layer 15 has a function of increasing the intensity of the reflected light that is strengthened and emitted by interference. The material and film thickness of the reflective layer 15 are not limited as long as the reflective layer 15 having a higher reflectance than the transmittance in the visible region can be realized. However, in order to further increase the intensity of the reflected light, the reflective layer 15 is made of a metal material. The thickness of the reflective layer 15 is preferably 50 nm or more.
 第1実施形態の発色構造体10は、樹脂層13に対して基材12の位置する側から発色構造体10に入る光を入射光として、樹脂層13に対して基材12の位置する側から観察される。言い換えれば、発色構造体10は、誘電体層14に対して樹脂層13の位置する側から観察される。 The color-developing structure 10 of the first embodiment uses light entering the color-developing structure 10 from the side where the base material 12 is located with respect to the resin layer 13 as incident light, and the side where the base material 12 is located with respect to the resin layer 13. Observed from. In other words, the color-developing structure 10 is observed from the side where the resin layer 13 is located with respect to the dielectric layer 14.
 基材12および樹脂層13を透過した入射光が誘電体層14に入ると、誘電体層14は、薄膜干渉による反射光を射出する。すなわち、誘電体層14と樹脂層13との界面で反射した光および誘電体層14と反射層15との界面で反射した光が干渉を起こし、これによって強められた波長域の光が射出される。反射層15が、誘電体層14に対して樹脂層13と反対側に位置することにより、反射層15が設けられていない場合と比較して、観察者に向けて射出される反射光の強度が大きくなる。そして、干渉によって強められた反射光が、樹脂層13の不規則な凹凸によって散乱されて多方向に射出されるため、観察角度による色の変化が緩やかになる。 When the incident light transmitted through the base material 12 and the resin layer 13 enters the dielectric layer 14, the dielectric layer 14 emits reflected light due to thin film interference. That is, the light reflected at the interface between the dielectric layer 14 and the resin layer 13 and the light reflected at the interface between the dielectric layer 14 and the reflective layer 15 cause interference, and light in the enhanced wavelength range is emitted. NS. Since the reflective layer 15 is located on the opposite side of the dielectric layer 14 from the resin layer 13, the intensity of the reflected light emitted toward the observer is higher than that in the case where the reflective layer 15 is not provided. Becomes larger. Then, the reflected light enhanced by the interference is scattered by the irregular unevenness of the resin layer 13 and emitted in multiple directions, so that the color change depending on the observation angle becomes gentle.
 反射光の強度を高めるためには、誘電体層14と反射層15との界面における光の反射率、すなわち、反射層15における誘電体層14を透過した光の反射率は、30%以上であることが好ましい。 In order to increase the intensity of the reflected light, the reflectance of light at the interface between the dielectric layer 14 and the reflective layer 15, that is, the reflectance of light transmitted through the dielectric layer 14 in the reflective layer 15 is 30% or more. It is preferable to have.
 誘電体層14の材料の屈折率をn1、樹脂層13の材料の屈折率をn2、反射層15の材料の屈折率をn3とする。n1>n2、かつ、n1>n3であるとき、干渉で強め合う可視領域の波長について下記式(1)が満たされる。下記式(1)において、dは誘電体層14の膜厚であり、mは0または任意の正の整数であり、θは入射光の入射角度であり、λは入射光の波長である。 The refractive index of the material of the dielectric layer 14 is n1, the refractive index of the material of the resin layer 13 is n2, and the refractive index of the material of the reflective layer 15 is n3. When n1> n2 and n1> n3, the following equation (1) is satisfied for wavelengths in the visible region that are strengthened by interference. In the following equation (1), d is the film thickness of the dielectric layer 14, m is 0 or an arbitrary positive integer, θ is the incident angle of the incident light, and λ is the wavelength of the incident light.
 2×n1×d×cosθ=(1/2+m)λ ・・・(1)
 また、n1>n2、かつ、n1<n3であるとき、干渉で強め合う可視領域の波長について下記式(2)が満たされる。下記式(2)において、dは誘電体層14の膜厚であり、mは任意の正の整数であり、θは入射光の入射角度であり、λは入射光の波長である。
2 × n1 × d × cos θ = (1/2 + m) λ ・ ・ ・ (1)
Further, when n1> n2 and n1 <n3, the following equation (2) is satisfied for the wavelengths in the visible region that are strengthened by interference. In the following equation (2), d is the film thickness of the dielectric layer 14, m is an arbitrary positive integer, θ is the incident angle of the incident light, and λ is the wavelength of the incident light.
 2×n1×d×cosθ=m×λ      ・・・(2)
 上記式(1)または(2)が満たされる場合、薄膜干渉によって強められた反射光が好適に得られる。
2 × n1 × d × cos θ = m × λ ・ ・ ・ (2)
When the above formula (1) or (2) is satisfied, the reflected light enhanced by thin film interference is preferably obtained.
 ここで、一般に、単層の薄膜干渉あるいは多層膜干渉を生じさせるための誘電体層は、反射成分を増大させるために、可視領域全体の光を透過する材料、すなわち、可視領域の全域の光に対して透明な材料から構成される。しかしながら、単層の薄膜干渉による反射光の波長域は、多層膜干渉による反射光の波長域ほど急峻なピークを有さない。そのため、反射光の波長選択性が低くなりやすく、その結果、反射光として視認される色の鮮明さが低くなりやすい。つまり、単層の薄膜干渉を生じさせる従来の誘電体層は、特定の色を発色させるための構造体に用いるには不向きであった。 Here, in general, the dielectric layer for causing single-layer thin film interference or multilayer film interference is a material that transmits light in the entire visible region in order to increase the reflection component, that is, light in the entire visible region. Consists of transparent material. However, the wavelength range of the reflected light due to the single layer thin film interference does not have a steep peak as the wavelength range of the reflected light due to the multilayer film interference. Therefore, the wavelength selectivity of the reflected light tends to be low, and as a result, the sharpness of the color visually recognized as the reflected light tends to be low. That is, the conventional dielectric layer that causes thin film interference of a single layer is not suitable for use in a structure for developing a specific color.
 そこで、本実施形態では、誘電体層14が、可視領域の光のうち、誘電体層14における反射光の支配色以外の少なくとも一部の光を、吸収する。反射光の支配色とは、光の干渉が生じた結果、反射光において最も強度が大きくなる波長域に対応する色である。発色構造体10では支配色が視認される。 Therefore, in the present embodiment, the dielectric layer 14 absorbs at least a part of the light in the visible region other than the dominant color of the reflected light in the dielectric layer 14. The dominant color of the reflected light is a color corresponding to the wavelength range in which the intensity of the reflected light is the highest as a result of light interference. The dominant color is visually recognized in the color-developing structure 10.
 詳細には、可視領域において、誘電体層14の材料の消衰係数kは、反射光の支配色の波長域にて最も小さい値を有し、かつ、支配色の波長域以外にて最も大きい値を有する。例えば、反射光の支配色の波長域において、誘電体層14の材料の消衰係数kは0であり、当該波長域から離れるほど、上記材料の消衰係数kが大きくなる。 Specifically, in the visible region, the extinction coefficient k of the material of the dielectric layer 14 has the smallest value in the wavelength range of the dominant color of the reflected light and is the largest in the wavelength range other than the dominant color. Has a value. For example, in the wavelength range of the dominant color of the reflected light, the extinction coefficient k of the material of the dielectric layer 14 is 0, and the farther away from the wavelength range, the larger the extinction coefficient k of the material.
 こうした誘電体層14は、その材料として、化学量論組成よりも金属元素が過剰な組成を有する金属酸化物、金属窒化物、金属酸窒化物を用いることにより実現できる。これらの金属化合物は、化学量論組成を有する場合には、可視領域全体の光を透過する。そして、金属化合物の消衰係数kの最小値は、金属元素が過剰になるにつれて低波長側にシフトしやすい。なお、金属の消衰係数kは、波長が大きくなるにつれて大きくなる。 Such a dielectric layer 14 can be realized by using a metal oxide, a metal nitride, or a metal oxynitride having a composition in which a metal element is excessive than the stoichiometric composition as the material thereof. These metal compounds, when having a stoichiometric composition, transmit light over the entire visible region. Then, the minimum value of the extinction coefficient k of the metal compound tends to shift to the lower wavelength side as the amount of the metal element becomes excessive. The extinction coefficient k of the metal increases as the wavelength increases.
 本実施形態の発色構造体10によれば、可視領域の光のうち、誘電体層14の反射光の支配色以外の少なくとも一部の光が、誘電体層14に吸収される。したがって、入射光のうち、反射光の支配色以外の光、すなわち、発色構造体10にて発色させたい色とは異なる色の光が、発色構造体10にて反射して観察者に視認されることが抑えられる。そのため、発色構造体10にて発色させたい特定の色がより鮮明に視認されるようになる。 According to the color-developing structure 10 of the present embodiment, at least a part of the light in the visible region other than the dominant color of the reflected light of the dielectric layer 14 is absorbed by the dielectric layer 14. Therefore, among the incident light, light other than the dominant color of the reflected light, that is, light having a color different from the color desired to be developed by the color-developing structure 10, is reflected by the color-developing structure 10 and visually recognized by the observer. Is suppressed. Therefore, the specific color to be developed by the color-developing structure 10 can be visually recognized more clearly.
 [凹凸構造]
 樹脂層13が有する凹凸構造の詳細について説明する。凹凸構造としては、第1の構造と第2の構造との2つの構造のいずれもが適用可能であり、これらの2つの構造の各々について説明する。図1は、第1の構造の凹凸構造を有する発色構造体10である発色構造体10Aを示している。第1の構造の凹凸構造は、複数の凸部13aと、複数の凸部13aの間の領域である凹部13bとを含む。
[Concave and convex structure]
The details of the uneven structure of the resin layer 13 will be described. As the uneven structure, any of the two structures, the first structure and the second structure, can be applied, and each of these two structures will be described. FIG. 1 shows a color-developing structure 10A which is a color-developing structure 10 having a concavo-convex structure of the first structure. The concave-convex structure of the first structure includes a plurality of convex portions 13a and a concave portion 13b which is a region between the plurality of convex portions 13a.
 <第1の構造>
 図2Aおよび図2Bを参照して、第1の構造の凹凸構造の詳細を説明する。図2Aは、樹脂層13をその表面と対向する視点から見た平面図であり、図2Bは、図2AのII-II線に沿った樹脂層13の断面図である。図2Aにおいては、凹凸構造の凸部13aにドットを付して示している。
<First structure>
The details of the uneven structure of the first structure will be described with reference to FIGS. 2A and 2B. FIG. 2A is a plan view of the resin layer 13 as viewed from a viewpoint facing the surface thereof, and FIG. 2B is a cross-sectional view of the resin layer 13 along the line II-II of FIG. 2A. In FIG. 2A, dots are added to the convex portion 13a of the concave-convex structure.
 図2Aが示すように、第1方向Dxと第2方向Dyとは、樹脂層13の広がる方向に沿った平面に含まれる方向であり、第1方向Dxと第2方向Dyとは直交する。上記平面は、樹脂層13の厚さ方向と直交する面である。 As shown in FIG. 2A, the first direction Dx and the second direction Dy are directions included in a plane along the spreading direction of the resin layer 13, and the first direction Dx and the second direction Dy are orthogonal to each other. The plane is a plane orthogonal to the thickness direction of the resin layer 13.
 樹脂層13をその表面と対向する視点から見たとき、凸部13aが形成するパターンは、破線によって示す複数の矩形Rの集合からなるパターンである。矩形Rは、図形要素の一例である。各矩形Rは、第2方向Dyに延びる形状を有し、各矩形Rにおいて、第2方向Dyの長さd2は、第1方向Dxの長さd1以上の大きさを有する。複数の矩形Rは、第1方向Dxおよび第2方向Dyのいずれにおいても重ならないように配列されている。 When the resin layer 13 is viewed from the viewpoint facing the surface thereof, the pattern formed by the convex portion 13a is a pattern composed of a set of a plurality of rectangles R indicated by broken lines. The rectangle R is an example of a graphic element. Each rectangle R has a shape extending in the second direction Dy, and in each rectangle R, the length d2 of the second direction Dy has a size equal to or larger than the length d1 of the first direction Dx. The plurality of rectangles R are arranged so as not to overlap in either the first direction Dx and the second direction Dy.
 複数の矩形Rにおいて、第1方向Dxの長さd1は一定である。第1方向Dxにおける複数の矩形Rの配列間隔はd1であり、すなわち、複数の矩形Rは、第1方向Dxにd1の周期で配置されている。 In the plurality of rectangles R, the length d1 of the first direction Dx is constant. The arrangement interval of the plurality of rectangles R in the first direction Dx is d1, that is, the plurality of rectangles R are arranged in the first direction Dx with a period of d1.
 一方、複数の矩形Rにおいて、第2方向Dyの長さd2は不規則であって、各矩形Rにおける長さd2は、所定の標準偏差を有する母集団から選択された値である。この母集団は、正規分布に従うことが好ましい。複数の矩形Rからなるパターンは、例えば、所定の標準偏差で分布する長さd2を有する複数の矩形Rを所定の領域内に仮に敷き詰め、各矩形Rの実際の配置の有無を一定の確率に従って決定することにより、矩形Rの配置される領域と矩形Rの配置されない領域とを設定することによって形成される。誘電体層14からの反射光を効率よく散乱させるためには、長さd2は、平均値が4.13μm以下、かつ、標準偏差が1μm以下の分布を有することが好ましい。 On the other hand, in the plurality of rectangles R, the length d2 of the second direction Dy is irregular, and the length d2 in each rectangle R is a value selected from the population having a predetermined standard deviation. This population preferably follows a normal distribution. In the pattern consisting of a plurality of rectangles R, for example, a plurality of rectangles R having a length d2 distributed with a predetermined standard deviation are tentatively spread in a predetermined area, and the presence or absence of the actual arrangement of each rectangle R is determined according to a certain probability. By determining, it is formed by setting the area where the rectangle R is arranged and the area where the rectangle R is not arranged. In order to efficiently scatter the reflected light from the dielectric layer 14, the length d2 preferably has a distribution having an average value of 4.13 μm or less and a standard deviation of 1 μm or less.
 矩形Rの配置されている領域が、凸部13aの配置される領域であり、互いに隣接する矩形Rが接する場合には、各矩形Rの配置されている領域が結合された1つの領域に1つの凸部13aが配置される。この場合、凸部13aの第1方向Dxの長さは、矩形Rの長さd1の整数倍である。 The area where the rectangle R is arranged is the area where the convex portion 13a is arranged, and when the rectangles R adjacent to each other are in contact with each other, one area where the areas where the rectangle R is arranged is combined is 1 Two convex portions 13a are arranged. In this case, the length of the convex portion 13a in the first direction Dx is an integral multiple of the length d1 of the rectangle R.
 凹凸に起因して虹色の分光が生じることを抑えるために、矩形Rにおける第1方向Dxの長さd1は可視領域の光の波長以下とされる。換言すれば、長さd1は、サブ波長以下、すなわち、入射光の波長域以下の長さを有する。すなわち、長さd1は830nm以下であることが好ましく、700nm以下であることがより好ましい。さらに、長さd1は、誘電体層14における反射光の支配色の波長域よりも小さいことが好ましい。例えば、発色構造体10にて青色を発色させる場合は、長さd1は300nm程度であることが好ましく、発色構造体10にて緑色を発色させる場合は、長さd1は400nm程度であることが好ましく、発色構造体10にて赤色を発色させる場合は、長さd1は460nm程度であることが好ましい。 In order to suppress the occurrence of iridescent spectroscopy due to unevenness, the length d1 of the first direction Dx in the rectangle R is set to be equal to or less than the wavelength of light in the visible region. In other words, the length d1 has a length of less than or equal to the sub-wavelength, that is, less than or equal to the wavelength range of the incident light. That is, the length d1 is preferably 830 nm or less, and more preferably 700 nm or less. Further, the length d1 is preferably smaller than the wavelength range of the dominant color of the reflected light in the dielectric layer 14. For example, when the color-developing structure 10 develops a blue color, the length d1 is preferably about 300 nm, and when the color-developing structure 10 develops a green color, the length d1 is about 400 nm. Preferably, when the color-developing structure 10 develops a red color, the length d1 is preferably about 460 nm.
 誘電体層14からの反射光の広がりを大きくするため、すなわち、反射光の散乱効果を高めるためには、凹凸構造の起伏が多いことが好ましく、樹脂層13の表面と対向する視点から見て、単位面積あたりにおいて凸部13aが占める面積の比率は40%以上60%以下であることが好ましい。例えば、樹脂層13の表面と対向する視点から見て、単位面積あたりにおける凸部13aの面積と凹部13bとの面積の比率は、1:1であることが好ましい。 In order to increase the spread of the reflected light from the dielectric layer 14, that is, to enhance the scattering effect of the reflected light, it is preferable that the uneven structure has many undulations, and it is viewed from the viewpoint facing the surface of the resin layer 13. The ratio of the area occupied by the convex portion 13a per unit area is preferably 40% or more and 60% or less. For example, when viewed from the viewpoint facing the surface of the resin layer 13, the ratio of the area of the convex portion 13a to the area of the concave portion 13b per unit area is preferably 1: 1.
 図2Bが示すように、凸部13aの高さh1は一定であり、凸部13aは、凸部13aの基部が位置する平面から1段の段差を有する。凸部13aの高さh1は、発色構造体10にて発色させる所望の色、すなわち、発色構造体10から反射させることの望まれる波長域に応じて設定されればよい。凸部13a上や凹部13b上における誘電体層14の表面粗さよりも、凸部13aの高さh1が大きければ、反射光の散乱効果は得られる。 As shown in FIG. 2B, the height h1 of the convex portion 13a is constant, and the convex portion 13a has one step from the plane on which the base portion of the convex portion 13a is located. The height h1 of the convex portion 13a may be set according to a desired color to be developed by the color-developing structure 10, that is, a wavelength range desired to be reflected from the color-developing structure 10. If the height h1 of the convex portion 13a is larger than the surface roughness of the dielectric layer 14 on the convex portion 13a or the concave portion 13b, the scattering effect of the reflected light can be obtained.
 ただし、凹凸での反射に起因した光の干渉を抑えるために、高さh1は可視領域の光の波長の1/2以下であることが好ましく、すなわち、413nm以下であることが好ましい。さらに、上記光の干渉を抑えるために、高さh1は、誘電体層14における反射光の支配色の波長域の1/2以下であることがより好ましい。 However, in order to suppress light interference caused by reflection on unevenness, the height h1 is preferably 1/2 or less of the wavelength of light in the visible region, that is, 413 nm or less. Further, in order to suppress the interference of the light, the height h1 is more preferably 1/2 or less of the wavelength range of the dominant color of the reflected light in the dielectric layer 14.
 また、高さh1が過剰に大きいと、凹凸による反射光の散乱効果が高くなりすぎて、反射光の強度が低くなりやすいため、高さh1は10nm以上200nm以下であることが好ましい。例えば、青色を呈する発色構造体10では、効果的な光の広がりを得るためには、高さh1は40nm以上130nm以下の程度であることが好ましく、散乱効果が高くなりすぎることを抑えるためには、高さh1は100nm以下であることが好ましい。 Further, if the height h1 is excessively large, the scattering effect of the reflected light due to the unevenness becomes too high, and the intensity of the reflected light tends to be low. Therefore, the height h1 is preferably 10 nm or more and 200 nm or less. For example, in the color-developing structure 10 exhibiting blue color, in order to obtain an effective spread of light, the height h1 is preferably about 40 nm or more and 130 nm or less, and in order to prevent the scattering effect from becoming too high. The height h1 is preferably 100 nm or less.
 なお、矩形Rは、第1方向Dxに沿って並ぶ2つの矩形Rの一部が重なるように配列されることにより、凸部13aのパターンを形成していてもよい。すなわち、複数の矩形Rは、第1方向Dxに、長さd1よりも小さい配列間隔で配置されていてもよいし、矩形Rの配列間隔は一定でなくてもよい。矩形Rが重なり合う部分では、各矩形Rの配置されている領域が結合された1つの領域に1つの凸部13aが位置する。この場合、凸部13aの第1方向Dxの長さは、矩形Rの長さd1の整数倍とは異なる長さとなる。また、矩形Rの長さd1は、一定でなくてもよく、各矩形Rにおいて、長さd2が長さd1以上であって、複数の矩形Rにおける長さd2の標準偏差が長さd1の標準偏差よりも大きければよい。この場合にも、反射光の散乱効果は得られる。 Note that the rectangles R may form the pattern of the convex portion 13a by arranging the two rectangles R arranged along the first direction Dx so as to overlap each other. That is, the plurality of rectangles R may be arranged in the first direction Dx at an arrangement interval smaller than the length d1, and the arrangement intervals of the rectangles R may not be constant. In the portion where the rectangles R overlap, one convex portion 13a is located in one area in which the areas where the rectangles R are arranged are combined. In this case, the length of the convex portion 13a in the first direction Dx is different from the integral multiple of the length d1 of the rectangle R. Further, the length d1 of the rectangle R does not have to be constant, and in each rectangle R, the length d2 is the length d1 or more, and the standard deviation of the length d2 in the plurality of rectangles R is the length d1. It should be larger than the standard deviation. In this case as well, the effect of scattering the reflected light can be obtained.
 <第2の構造>
 図3は、第2の構造の凹凸構造を有する発色構造体10である発色構造体10Bを示している。樹脂層13が第1の構造の凹凸構造を有する形態と、第2の構造の凹凸構造を有する形態とで、発色構造体10における凹凸構造の構成以外は共通する。
<Second structure>
FIG. 3 shows a color-developing structure 10B which is a color-developing structure 10 having a concavo-convex structure having a second structure. The form in which the resin layer 13 has the concavo-convex structure of the first structure and the form in which the resin layer 13 has the concavo-convex structure of the second structure are common except for the configuration of the concavo-convex structure in the color-developing structure 10.
 第2の構造の凹凸構造の凸部13cは、第1の構造の凸部13aと同様の第1凸部要素と、帯状に延びる第2凸部要素とが、樹脂層13の厚さ方向に重畳された構造を有する。
 第1の構造の凹凸構造を有する発色構造体10Aによれば、反射光の散乱効果によって視認される色の観察角度による変化は緩やかになるものの、散乱に起因した反射光の強度の低下によって、視認される色の鮮やかさは低下する。発色構造体10の用途等によっては、より鮮やかな色を広い観察角度で観察可能なシートが求められる場合もある。第2の構造における第2凸部要素は、入射光が特定の方向へ強く回折されるように配列されており、第1凸部要素に基づく光の散乱効果と第2凸部要素に基づく光の回折効果とによって、より鮮やかな色を広い観察角度で観察可能な発色構造体10Bが実現される。
In the convex portion 13c of the concave-convex structure of the second structure, the first convex portion element similar to the convex portion 13a of the first structure and the second convex portion element extending in a band shape are formed in the thickness direction of the resin layer 13. It has a superposed structure.
According to the color-developing structure 10A having the uneven structure of the first structure, the change depending on the observation angle of the color visually recognized by the scattering effect of the reflected light becomes gradual, but the decrease in the intensity of the reflected light due to the scattering causes. The vividness of the visible color is reduced. Depending on the application of the color-developing structure 10, a sheet capable of observing more vivid colors from a wide observation angle may be required. The second convex element in the second structure is arranged so that the incident light is strongly diffracted in a specific direction, and the light scattering effect based on the first convex element and the light based on the second convex element. Due to the diffraction effect of, a color-developing structure 10B capable of observing more vivid colors from a wide observation angle is realized.
 図4Aおよび図4Bを参照して、第2凸部要素について説明する。図4Aは、第2凸部要素のみからなる凹凸構造の平面図であり、図4Bは、図4AのIV-IV線に沿った断面図である。図4Aにおいては、第2凸部要素にドットを付して示している。 The second convex element will be described with reference to FIGS. 4A and 4B. FIG. 4A is a plan view of a concavo-convex structure composed of only the second convex element, and FIG. 4B is a cross-sectional view taken along the line IV-IV of FIG. 4A. In FIG. 4A, the second convex element is indicated by a dot.
 図4Aが示すように、平面視において、第2凸部要素13Ebは、第2方向Dyに沿って一定の幅で延びる帯状を有し、複数の第2凸部要素13Ebは、第1方向Dxに沿って、間隔をあけて並んでいる。換言すれば、第2凸部要素13Ebが形成するパターンは、第2方向Dyに沿って延び、第1方向Dxに沿って並ぶ複数の帯状領域からなるパターンである。第2凸部要素13Ebにおける第1方向Dxの長さd3は、第1凸部要素のパターンを決定する上記矩形Rの長さd1と一致していてもよいし、異なっていてもよい。 As shown in FIG. 4A, in a plan view, the second convex element 13Eb has a band shape extending with a constant width along the second direction Dy, and the plurality of second convex elements 13Eb have the first direction Dx. They are lined up at intervals along. In other words, the pattern formed by the second convex element 13Eb is a pattern consisting of a plurality of strip-shaped regions extending along the second direction Dy and lining up along the first direction Dx. The length d3 of the first direction Dx in the second convex element 13Eb may be the same as or different from the length d1 of the rectangle R that determines the pattern of the first convex element.
 第1方向Dxにおける第2凸部要素13Ebの配列間隔de、すなわち、第1方向Dxにおける帯状領域の配列間隔は、第2凸部要素13Ebの凹凸構造の表面での反射光の少なくとも一部が、一次回折光として観測されるように設定される。一次回折光は、換言すれば、回折次数mが1または-1である回折光である。すなわち、入射光の入射角度をθ、反射光の反射角度をφ、回折する光の波長をλとした場合、配列間隔deは、de≧λ/(sinθ+sinφ)を満たす。例えば、λ=360nmである可視光線を対象とするとき、第2凸部要素13Ebの配列間隔deは180nm以上であればよく、すなわち、配列間隔deは、入射光に含まれる波長域における最小波長の1/2以上であればよい。なお、配列間隔deは、互いに隣り合う2つの第2凸部要素13Ebの端部間の第1方向Dxに沿った距離であって、第1方向Dxにおいて第2凸部要素13Ebに対して同一の側に位置する端部間の距離である。 The arrangement interval de of the second convex element 13Eb in the first direction Dx, that is, the arrangement interval of the band-shaped region in the first direction Dx is such that at least a part of the reflected light on the surface of the uneven structure of the second convex element 13Eb , Set to be observed as primary diffracted light. The primary diffracted light is, in other words, diffracted light having a diffraction order m of 1 or -1. That is, when the incident angle of the incident light is θ, the reflection angle of the reflected light is φ, and the wavelength of the diffracted light is λ, the arrangement interval de satisfies de ≧ λ / (sinθ + sinφ). For example, when targeting visible light having λ = 360 nm, the arrangement interval de of the second convex element 13Eb may be 180 nm or more, that is, the arrangement interval de is the minimum wavelength in the wavelength range included in the incident light. It may be 1/2 or more of. The arrangement interval de is a distance along the first direction Dx between the ends of the two second convex element 13Eb adjacent to each other, and is the same as the second convex element 13Eb in the first direction Dx. The distance between the ends located on the side of.
 第2凸部要素13Ebが形成するパターンの周期性は、樹脂層13が有する凹凸構造の周期性に反映される。複数の第2凸部要素13Ebの配列間隔deが一定の場合、誘電体層14の最外面での回折現象によって、誘電体層14からは、特定の波長の反射光が特定の角度に出射される。この回折による光の反射強度は、第1凸部要素に基づく光の散乱効果によって生じる反射光の反射強度と比較して非常に強いため、金属光沢のような輝きを有する光が視認されるが、一方で、回折による分光が生じ、観察角度の変化に応じて視認される色が変化する。 The periodicity of the pattern formed by the second convex element 13Eb is reflected in the periodicity of the uneven structure of the resin layer 13. When the arrangement spacing de of the plurality of second convex elements 13Eb is constant, the reflected light of a specific wavelength is emitted from the dielectric layer 14 at a specific angle due to the diffraction phenomenon on the outermost surface of the dielectric layer 14. NS. Since the reflection intensity of light due to this diffraction is very strong as compared with the reflection intensity of the reflected light generated by the light scattering effect based on the first convex element, light having a brilliance like metallic luster is visually recognized. On the other hand, spectroscopy occurs due to diffraction, and the visually recognized color changes according to the change in the observation angle.
 したがって、例えば、青色を呈する発色構造体10が得られるように誘電体層14および第1凸部要素の構造を設計したとしても、第2凸部要素13Ebの配列間隔deを400nm~5μmの程度の一定値とすると、観察角度によっては、回折に起因した強い緑色から赤色の光が観察される。これに対し、例えば、第2凸部要素13Ebの配列間隔deを50μm程度に大きくすると、可視領域の光が回折される角度の範囲が狭くなるため、回折に起因した色の変化が視認されにくくなるが、金属光沢のような輝きを有する光は特定の観察角度でのみしか観察されない。 Therefore, for example, even if the structures of the dielectric layer 14 and the first convex element are designed so that the colored structure 10 exhibiting blue color can be obtained, the arrangement spacing de of the second convex element 13Eb is about 400 nm to 5 μm. Assuming a constant value of, strong green to red light due to diffraction is observed depending on the observation angle. On the other hand, for example, when the arrangement interval de of the second convex element 13Eb is increased to about 50 μm, the range of the angle at which the light in the visible region is diffracted becomes narrow, so that the color change due to the diffraction is difficult to see. However, light with a brilliance such as metallic luster is observed only at a specific observation angle.
 そこで、配列間隔deを一定の値とせず、第2凸部要素13Ebのパターンを、異なる周期を有する複数の周期構造が重ね合わされたパターンとすれば、回折による反射光に複数の波長の光が混じり合うため、分光された単色性の高い光は視認されにくくなる。したがって、光沢感のある鮮やかな色が広い観察角度で観察される。この場合、配列間隔deは、例えば、360nm以上5μm以下の範囲から選択され、複数の第2凸部要素13Ebの配列間隔deの平均値が、入射光に含まれる波長域における最小波長の1/2以上であればよい。 Therefore, if the arrangement interval de is not set to a constant value and the pattern of the second convex element 13Eb is a pattern in which a plurality of periodic structures having different periods are superimposed, light of a plurality of wavelengths is added to the reflected light due to diffraction. Since they are mixed, it is difficult to visually recognize the dispersed and highly monochromatic light. Therefore, a glossy and vivid color is observed at a wide observation angle. In this case, the arrangement spacing de is selected from, for example, a range of 360 nm or more and 5 μm or less, and the average value of the arrangement spacing de of the plurality of second convex elements 13Eb is 1 / of the minimum wavelength in the wavelength range included in the incident light. It may be 2 or more.
 ただし、配列間隔deの標準偏差が大きくなるにつれ、第2凸部要素13Ebの配列が不規則となって散乱効果が支配的になり、回折による強い反射が得られにくくなる。そのため、第2凸部要素13Ebの配列間隔deは、第1凸部要素に基づく光の散乱効果によって光が広がる角度に応じて、この光が広がる範囲と同程度の範囲に回折による反射光が出射されるように決定することが好ましい。例えば、青色の反射光が、入射角度に対して±40°の範囲に広がって出射される場合、第2凸部要素13Ebのパターンにおいて、配列間隔deを、その平均値が1μm以上5μm以下の程度であり、標準偏差が1μm程度であるように設定する。これにより、第1凸部要素に基づく光の散乱効果によって光が広がる角度と同程度の角度に回折による反射光が生じる。 However, as the standard deviation of the arrangement interval de increases, the arrangement of the second convex element 13Eb becomes irregular and the scattering effect becomes dominant, making it difficult to obtain strong reflection due to diffraction. Therefore, the arrangement interval de of the second convex element 13Eb is such that the reflected light due to diffraction is in the same range as the range in which the light spreads, depending on the angle at which the light spreads due to the light scattering effect based on the first convex element. It is preferable to determine that it is emitted. For example, when the reflected blue light is emitted in a range of ± 40 ° with respect to the incident angle, the array spacing de is set to an average value of 1 μm or more and 5 μm or less in the pattern of the second convex element 13Eb. The standard deviation is set to about 1 μm. As a result, the reflected light due to diffraction is generated at an angle similar to the angle at which the light spreads due to the light scattering effect based on the first convex element.
 すなわち、複数の第2凸部要素13Ebに基づく凹凸構造は、特定の波長域の光を回折させて取り出すための構造とは異なり、配列間隔deの分散により、回折を利用して所定の角度範囲に様々な波長域の光を射出させるための構造である。 That is, the concave-convex structure based on the plurality of second convex element 13Eb is different from the structure for diffracting and extracting light in a specific wavelength range, and by dispersing the arrangement interval de, a predetermined angular range is used by using diffraction. It is a structure for emitting light in various wavelength ranges.
 さらに、より長周期の回折現象を生じさせるために、一辺が10μm以上100μm以下の正方形領域を単位領域とし、単位領域ごとの第2凸部要素13Ebのパターンにおいて、配列間隔deを、平均値が1μm以上5μm以下の程度、かつ、標準偏差が1μm程度としてもよい。なお、複数の単位領域のなかには、配列間隔deが1μm以上5μm以下の範囲に含まれる一定の値である領域が含まれてもよい。配列間隔deが一定である単位領域が存在したとしても、この単位領域と隣接する単位領域のいずれかにおいて、配列間隔deが標準偏差1μm程度のばらつきを有していれば、人の目の解像度においてはすべての単位領域で配列間隔deがばらつきを有している場合と同等の効果が期待できる。 Further, in order to generate a diffraction phenomenon having a longer period, a square region having a side of 10 μm or more and 100 μm or less is set as a unit region, and in the pattern of the second convex element 13Eb for each unit region, the array spacing de is set to the average value. It may be about 1 μm or more and 5 μm or less, and the standard deviation may be about 1 μm. The plurality of unit regions may include regions in which the sequence spacing de is a constant value included in the range of 1 μm or more and 5 μm or less. Even if there is a unit region in which the sequence spacing de is constant, if the sequence spacing de has a variation of about 1 μm in any of the unit regions adjacent to this unit region, the resolution of the human eye. In, the same effect as when the sequence spacing de has variation in all unit regions can be expected.
 なお、図4Aおよび図4Bに示した第2凸部要素13Ebは、第1方向Dxのみに、配列間隔deに起因した周期性を有している。第1凸部要素に基づく光の散乱効果は、主として、発色構造体10の平面視での、第1方向Dxに沿った方向への反射光に作用するが、第2方向Dyに沿った方向への反射光にも一部影響し得る。したがって、第2凸部要素13Ebは、第2方向Dyにも周期性を有してもよい。すなわち、第2凸部要素13Ebのパターンは、第2方向Dyに延びる複数の帯状領域が、第1方向Dxと第2方向Dyとの各々に沿って並ぶパターンであってもよい。 Note that the second convex element 13Eb shown in FIGS. 4A and 4B has periodicity due to the arrangement interval de only in the first direction Dx. The light scattering effect based on the first convex element mainly acts on the reflected light in the direction along the first direction Dx in the plan view of the color-developing structure 10, but the direction along the second direction Dy. It can also partially affect the reflected light to. Therefore, the second convex element 13Eb may also have periodicity in the second direction Dy. That is, the pattern of the second convex element 13Eb may be a pattern in which a plurality of strip-shaped regions extending in the second direction Dy are arranged along each of the first direction Dx and the second direction Dy.
 こうした第2凸部要素13Ebのパターンにおいて、例えば、帯状領域の第1方向Dxに沿った配列間隔と第2方向Dyに沿った配列間隔との各々は、各々の平均値が1μm以上100μm以下であるようにばらつきを有していればよい。また、第1凸部要素に基づく光の散乱効果の第1方向Dxへの影響と第2方向Dyへの影響との違いに応じて、第1方向Dxに沿った配列間隔の平均値と、第2方向Dyに沿った配列間隔の平均値とは互いに異なっていてもよく、第1方向Dxに沿った配列間隔の標準偏差と、第2方向Dyに沿った配列間隔の標準偏差とは互いに異なっていてもよい。 In such a pattern of the second convex element 13Eb, for example, the average value of each of the arrangement interval along the first direction Dx and the arrangement interval along the second direction Dy of the strip-shaped region is 1 μm or more and 100 μm or less. It suffices to have some variation. Further, according to the difference between the influence of the light scattering effect based on the first convex element on the first direction Dx and the influence on the second direction Dy, the average value of the array spacing along the first direction Dx and the average value. The average value of the sequence spacing along the second direction Dy may be different from each other, and the standard deviation of the sequence spacing along the first direction Dx and the standard deviation of the sequence spacing along the second direction Dy are mutually exclusive. It may be different.
 図4Bが示すように、第2凸部要素13Ebの高さh2は、凸部13c上や凹部13b上における誘電体層14の表面粗さよりも大きければよい。ただし、高さh2が大きくなるほど、凹凸構造が反射光に与える効果において第2凸部要素13Ebに基づく回折効果が支配的となって、第1凸部要素に基づく光の散乱効果が得られにくくなるため、高さh2は第1凸部要素の高さh1と同程度であることが好ましく、高さh2は高さh1と一致していてもよい。例えば、第1凸部要素の高さh1と第2凸部要素13Ebの高さh2とは、10nm以上200nm以下の範囲に含まれていることが好ましく、青色を呈する発色構造体10では、第1凸部要素の高さh1と第2凸部要素13Ebの高さh2とは、10nm以上130nm以下の範囲に含まれていることが好ましい。 As shown in FIG. 4B, the height h2 of the second convex element 13Eb may be larger than the surface roughness of the dielectric layer 14 on the convex portion 13c and the concave portion 13b. However, as the height h2 increases, the diffraction effect based on the second convex element 13Eb becomes dominant in the effect of the uneven structure on the reflected light, and it becomes difficult to obtain the light scattering effect based on the first convex element. Therefore, the height h2 is preferably about the same as the height h1 of the first convex element, and the height h2 may coincide with the height h1. For example, the height h1 of the first convex element and the height h2 of the second convex element 13Eb are preferably included in the range of 10 nm or more and 200 nm or less. The height h1 of the 1-convex element and the height h2 of the 2nd convex element 13Eb are preferably included in the range of 10 nm or more and 130 nm or less.
 図5Aおよび図5Bを参照して、第2の構造の凹凸構造の詳細について説明する。図5Aは、樹脂層13をその表面と対向する視点から見た平面図であり、図5Bは、図5AのV-V線に沿った樹脂層13の断面図である。図5Aにおいては、第1凸部要素が形成するパターンと、第2凸部要素が形成するパターンとに異なる密度のドットを付して示している。 The details of the uneven structure of the second structure will be described with reference to FIGS. 5A and 5B. FIG. 5A is a plan view of the resin layer 13 as viewed from a viewpoint facing the surface thereof, and FIG. 5B is a cross-sectional view of the resin layer 13 along the VV line of FIG. 5A. In FIG. 5A, dots having different densities are attached to the pattern formed by the first convex element and the pattern formed by the second convex element.
 図5Aが示すように、樹脂層13をその表面と対向する視点から見た場合、凸部13cが形成するパターンは、第1凸部要素13Eaが形成するパターンである第1パターンと、第2凸部要素13Ebが形成するパターンである第2パターンとが重ね合わされたパターンである。すなわち、凸部13cが位置する領域には、第1凸部要素13Eaのみを含む領域S1と、第1凸部要素13Eaと第2凸部要素13Ebとが重なっている領域S2と、第2凸部要素13Ebのみを含む領域S3とが含まれる。なお、図5Aにおいては、第1凸部要素13Eaと第2凸部要素13Ebとが、第1方向Dxにおいてその端部が揃うように重ねられているが、第1凸部要素13Eaの端部と第2凸部要素13Ebの端部とはずれていてもよい。 As shown in FIG. 5A, when the resin layer 13 is viewed from the viewpoint facing the surface thereof, the patterns formed by the convex portion 13c are the first pattern, which is the pattern formed by the first convex portion element 13Ea, and the second pattern. This is a pattern in which a second pattern, which is a pattern formed by the convex element 13Eb, is superimposed. That is, in the region where the convex portion 13c is located, the region S1 including only the first convex portion element 13Ea, the region S2 in which the first convex portion element 13Ea and the second convex portion element 13Eb overlap, and the second convex portion The region S3 including only the part element 13Eb is included. In FIG. 5A, the first convex element 13Ea and the second convex element 13Eb are overlapped so that their ends are aligned in the first direction Dx, but the end of the first convex element 13Ea. And may be off the end of the second convex element 13Eb.
 図5Bが示すように、領域S1では、凸部13cの高さは、第1凸部要素13Eaの高さh1である。また、領域S2では、凸部13cの高さは、第1凸部要素13Eaの高さh1と第2凸部要素13Ebの高さh2との和である。また、領域S3では、凸部13cの高さは、第2凸部要素13Ebの高さh2である。このように、凸部13cは、樹脂層13の厚さ方向への投影像が第1パターンを形成し、所定の高さh1を有する第1凸部要素13Eaと、上記厚さ方向への投影像が第2パターンを形成し、所定の高さh2を有する第2凸部要素13Ebとが、高さ方向に重ねられた複数段の段差を有する。ちなみに、凸部13cは、凸部13cの基部から、第1凸部要素13Eaに第2凸部要素13Ebが積層されていると捉えることもできるし、第2凸部要素13Ebに第1凸部要素13Eaが積層されていると捉えることもできる。 As shown in FIG. 5B, in the region S1, the height of the convex portion 13c is the height h1 of the first convex portion element 13Ea. Further, in the region S2, the height of the convex portion 13c is the sum of the height h1 of the first convex portion element 13Ea and the height h2 of the second convex portion element 13Eb. Further, in the region S3, the height of the convex portion 13c is the height h2 of the second convex portion element 13Eb. As described above, in the convex portion 13c, the projected image of the resin layer 13 in the thickness direction forms the first pattern, the first convex portion element 13Ea having a predetermined height h1 and the projection in the thickness direction. The image forms a second pattern, and the second convex element 13Eb having a predetermined height h2 has a plurality of steps overlapped in the height direction. By the way, the convex portion 13c can be regarded as having the second convex element 13Eb laminated on the first convex element 13Ea from the base of the convex portion 13c, and the first convex portion on the second convex element 13Eb. It can also be considered that the elements 13Ea are stacked.
 なお、第1凸部要素13Eaが形成するパターンと、第2凸部要素13Ebが形成するパターンとは、第1凸部要素13Eaと第2凸部要素13Ebとが重ならないように配置されてもよい。こうした構造によっても、第1凸部要素13Eaに基づく光の散乱効果と第2凸部要素13Ebに基づく光の回折効果とは得られる。ただし、第1凸部要素13Eaと第2凸部要素13Ebとを互いに重ならないように配置しようとすれば、第1の構造と比較して、単位面積あたりにおける第1凸部要素13Eaの配置可能な面積が小さくなり、光の散乱効果が低下する。したがって、凸部要素13Ea,13Ebに基づく光の散乱効果と回折効果とを高めるためには、図5Aおよび図5Bに示したように、第1凸部要素13Eaと第2凸部要素13Ebとを重ねて凸部13cを複数段の段差を有する形状とすることが好ましい。 Even if the pattern formed by the first convex element 13Ea and the pattern formed by the second convex element 13Eb are arranged so that the first convex element 13Ea and the second convex element 13Eb do not overlap each other. good. Even with such a structure, the light scattering effect based on the first convex element 13Ea and the light diffraction effect based on the second convex element 13Eb can be obtained. However, if the first convex element 13Ea and the second convex element 13Eb are arranged so as not to overlap each other, the first convex element 13Ea can be arranged per unit area as compared with the first structure. Area becomes smaller and the light scattering effect is reduced. Therefore, in order to enhance the light scattering effect and the diffraction effect based on the convex elements 13Ea and 13Eb, as shown in FIGS. 5A and 5B, the first convex element 13Ea and the second convex element 13Eb are combined. It is preferable that the convex portions 13c have a shape having a plurality of steps.
 [誘電体層の特性]
 誘電体層14の特性について、シミュレーション結果を用いて説明する。当該シミュレーションにおいては、発色構造体10に青色を発色させる場合において、誘電体層14の材料として、化学量論組成の酸化チタン(TiO)を用いたときと、化学量論組成よりも金属元素が過剰な酸化チタン(TiO:0<x<2)を用いたときとの各々について、反射光の波長域を求めた。TiOは、言い換えれば、TiOに対して酸素が欠損している状態の酸化チタンである。また、当該シミュレーションにおいては、反射層15の材料にアルミニウムを適用した。
[Characteristics of dielectric layer]
The characteristics of the dielectric layer 14 will be described with reference to simulation results. In the simulation, when the color-developing structure 10 is colored blue, titanium oxide (TiO 2 ) having a stoichiometric composition is used as the material of the dielectric layer 14, and a metal element rather than the stoichiometric composition. The wavelength range of the reflected light was determined for each of the cases where excess titanium oxide (TiO x: 0 <x <2) was used. In other words, TiO x is titanium oxide in a state in which oxygen is deficient with respect to TiO 2. Further, in the simulation, aluminum was applied to the material of the reflective layer 15.
 まず、図6~図8に、誘電体層14および反射層15の材料の屈折率nおよび消衰係数kを示す。図6は、TiOの屈折率nおよび消衰係数kを示し、図7は、酸素が欠損するように成膜したTiOの屈折率nおよび消衰係数kを示し、図8は、アルミニウムの屈折率nおよび消衰係数kを示す。なお、図9は、基材12として用いるポリエチレンテレフタラートの屈折率nおよび消衰係数kを示す。図6,8,9は市販品の規格値であり、図7は実測値である。 First, FIGS. 6 to 8 show the refractive index n and the extinction coefficient k of the materials of the dielectric layer 14 and the reflective layer 15. 6 shows a refractive index n and extinction coefficient k of TiO 2, 7, oxygen show a refractive index n and extinction coefficient k of TiO x was deposited to lack, 8, aluminum The refractive index n and the extinction coefficient k of FIG. 9 shows the refractive index n and the extinction coefficient k of polyethylene terephthalate used as the base material 12. Figures 6, 8 and 9 are standard values for commercially available products, and FIGS. 7 and 7 are actual measurement values.
 図6が示すように、TiOについては、可視領域の全体において消衰係数kが0であり、すなわち、TiOは可視領域の全体において光を透過する。一方、図7が示すように、TiOについては、青色光の波長域の一部である約410nm~約450nmの波長域において消衰係数kが0であり、当該波長域から離れるにつれて、消衰係数kが大きくなっている。例えば、約750nm以上の波長域での消衰係数kは、0.05付近である。このように、化学量論組成よりも金属元素が過剰な酸化チタンにおいては、消衰係数kが、青色光の波長域にて最も小さく、青色光以外の波長域で、青色光の波長域よりも大きい。当該消衰係数kは、可視領域においては、赤色光の波長域にて最大となる。なお、図6および図7が示すように、TiOとTiOとで、屈折率nには差異はない。 As shown in FIG. 6, for TiO 2 , the extinction coefficient k is 0 in the entire visible region, that is, TiO 2 transmits light in the entire visible region. On the other hand, as shown in FIG. 7, for TiO x , the extinction coefficient k is 0 in the wavelength range of about 410 nm to about 450 nm, which is a part of the wavelength range of blue light, and the extinction coefficient k becomes 0 as the distance from the wavelength range increases. The decay coefficient k is increasing. For example, the extinction coefficient k in the wavelength range of about 750 nm or more is around 0.05. As described above, in titanium oxide having an excess of metal elements than the stoichiometric composition, the extinction coefficient k is the smallest in the wavelength range of blue light, and in the wavelength range other than blue light, it is higher than the wavelength range of blue light. Is also big. The extinction coefficient k becomes maximum in the wavelength region of red light in the visible region. As shown in FIGS. 6 and 7, there is no difference in the refractive index n between TiO 2 and TiO x.
 TiOとTiOとの各々について、入射光の入射角を30°、反射層15の膜厚を0.1μmとし、誘電体層14と反射層15との積層体からの反射光の支配色が青色となる最適な膜厚を、遺伝的アルゴリズムを用いて探索した。その結果、青色発色に適したTiOの膜厚は0.0682μmであり、青色発色に適したTiOの膜厚は0.0624μmであった。 For each of TiO 2 and TiO x , the incident angle of the incident light is 30 °, the thickness of the reflective layer 15 is 0.1 μm, and the dominant color of the reflected light from the laminate of the dielectric layer 14 and the reflective layer 15. The optimum film thickness in which is blue was searched for using a genetic algorithm. As a result, the film thickness of TiO 2 suitable for blue color development was 0.0682 μm, and the film thickness of TiO x suitable for blue color development was 0.0624 μm.
 誘電体層14の材料としてTiOとTiOとの各々を用いた場合について、誘電体層14の膜厚を上記青色発色に適した膜厚とし、反射層15の膜厚を0.1μmとして、誘電体層14と反射層15との積層体からの反射光の波長域を求めた。図10は、その結果を示す。なお、図10には、参考値として、青色発色の多層膜層における反射光の波長域を示す。この多層膜層は、TiO薄膜とSiO薄膜との交互積層体である。 When each of TiO 2 and TiO x is used as the material of the dielectric layer 14, the film thickness of the dielectric layer 14 is set to a film thickness suitable for the blue color development, and the film thickness of the reflective layer 15 is set to 0.1 μm. , The wavelength range of the reflected light from the laminate of the dielectric layer 14 and the reflective layer 15 was determined. FIG. 10 shows the result. Note that FIG. 10 shows the wavelength range of the reflected light in the blue-colored multilayer film layer as a reference value. This multilayer film layer is an alternating laminate of a TiO 2 thin film and a SiO 2 thin film.
 図10が示すように、単層の薄膜からなる誘電体層14を用いた場合、多層膜層を用いた場合と比べて、青色光以外の波長域、すなわち、支配色とは異なる色に対応する波長域での反射光の強度が大きいことがわかる。しかし、誘電体層14の材料としてTiOを用いた場合と、TiOを用いた場合とを比較すると、TiOを用いた場合の方が、青色光以外の波長域での反射光の強度が低くなっている。このことは、上述のように、青色光以外の波長域において、TiOの消衰係数kがTiOの消衰係数kよりも大きいことに因る。すなわち、TiOからなる誘電体層14は、青色光以外の光の吸収性を有しており、その結果、可視領域全体で吸収性を有さないTiOを用いた場合と比較して、青色光以外の波長域、言い換えれば、青色光の波長域よりも長波長領域での反射光の強度が低くなっている。 As shown in FIG. 10, when the dielectric layer 14 composed of a single-layer thin film is used, it corresponds to a wavelength range other than blue light, that is, a color different from the dominant color, as compared with the case where a multilayer film layer is used. It can be seen that the intensity of the reflected light in the wavelength range is high. However, comparing the case where TiO 2 is used as the material of the dielectric layer 14 and the case where dio x is used, the intensity of the reflected light in the wavelength range other than blue light is higher in the case where TiO x is used. Is low. This is because, as described above, the extinction coefficient k of TiO x is larger than the extinction coefficient k of TiO 2 in the wavelength range other than blue light. That is, the dielectric layer 14 made of TiO x has an absorbency of light other than blue light, and as a result, as compared with the case where TiO 2 having no absorbency in the entire visible region is used, The intensity of the reflected light in the wavelength region other than the blue light, in other words, the intensity of the reflected light in the long wavelength region is lower than that in the wavelength region of the blue light.
 したがって、単層の薄膜からなる誘電体層14を用いる場合においては、TiOを用いた場合よりも、TiOを用いた場合の方が、反射光に含まれる青色以外の色の光が少なくなり、結果として、青色の反射光が視認されやすくなる。言い換えれば、より鮮やかな青色が観察される。 Therefore, when the dielectric layer 14 made of a single-layer thin film is used, the amount of light of a color other than blue contained in the reflected light is less when TiO x is used than when TiO 2 is used. As a result, the reflected blue light is easily visible. In other words, a brighter blue color is observed.
 なお、TiOとTiOとをそれぞれ用いた場合について、誘電体層14の膜厚を、青色発色に適したTiOの膜厚に統一した場合、および、青色発色に適したTiOの膜厚に統一した場合のいずれにおいても、同様の結果が得られた。すなわち、TiOを用いた場合の方が、青色光以外の波長域での反射光の強度が低くなった。 When TiO 2 and TiO x are used, the film thickness of the dielectric layer 14 is unified to the film thickness of TiO 2 suitable for blue color development, and the TiO x film suitable for blue color development. Similar results were obtained in all cases where the thickness was unified. That is, when TiO x was used, the intensity of the reflected light in the wavelength range other than blue light was lower.
 [発色構造体の製造方法]
 上記発色構造体10の製造方法を説明する。
 まず、基材12上に樹脂層13が形成される。樹脂層13の凹凸構造の形成方法としては、例えば、ナノインプリント法が用いられる。例えば、光ナノインプリント法によって樹脂層13の凹凸構造を形成する場合、まず、形成対象の凹凸の反転された凹凸を有する凹版であるモールドの凹凸が形成された面に、樹脂層13の材料を含む塗布液が塗布される。樹脂層13の材料としては、光硬化性を有する樹脂が用いられる。塗布液の塗布方法は特に限定されず、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法が用いられればよい。
[Manufacturing method of colored structure]
The method for manufacturing the color-developing structure 10 will be described.
First, the resin layer 13 is formed on the base material 12. As a method for forming the uneven structure of the resin layer 13, for example, a nanoimprint method is used. For example, when the concave-convex structure of the resin layer 13 is formed by the optical nanoimprint method, first, the material of the resin layer 13 is included in the surface on which the unevenness of the mold, which is an intaglio having the inverted unevenness of the unevenness to be formed, is formed. The coating liquid is applied. As the material of the resin layer 13, a resin having photocurability is used. The coating method of the coating liquid is not particularly limited, and known coating methods such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, and a gravure coating method may be used.
 次いで、塗布液からなる層の表面に、基材12が重ねられ、基材12とモールドとが互いに押し付けられた状態で、基材12側もしくはモールド側から光が照射される。続いて、硬化した樹脂からなる層および基材12からモールドが離型される。これによって、モールドの有する凹凸が樹脂に転写されて、表面に凹凸を有する樹脂層13が形成され、基材12と樹脂層13とからなる積層体が形成される。モールドは、例えば、合成石英やシリコンから構成され、光または荷電粒子線を照射するリソグラフィやドライエッチング等の公知の微細加工技術を利用して形成される。 Next, the base material 12 is superposed on the surface of the layer made of the coating liquid, and light is irradiated from the base material 12 side or the mold side in a state where the base material 12 and the mold are pressed against each other. Subsequently, the mold is released from the layer made of the cured resin and the base material 12. As a result, the unevenness of the mold is transferred to the resin to form the resin layer 13 having the unevenness on the surface, and a laminate composed of the base material 12 and the resin layer 13 is formed. The mold is made of, for example, synthetic quartz or silicon, and is formed by using known microfabrication techniques such as lithography and dry etching for irradiating light or charged particle beams.
 なお、塗布液は、基材12の表面に塗布され、基材12上の塗布液からなる層にモールドが押し当てられた状態で、光の照射が行われてもよい。また、光ナノインプリント法に代えて、熱ナノインプリント法が用いられてもよい。 The coating liquid may be applied to the surface of the base material 12 and irradiated with light in a state where the mold is pressed against the layer made of the coating liquid on the base material 12. Further, the thermal nanoimprint method may be used instead of the optical nanoimprint method.
 続いて、樹脂層13の凹凸を有する表面に、誘電体層14が形成される。さらに、誘電体層14の表面に、反射層15が形成される。誘電体層14および反射層15は、材料に応じて、スパッタリングや真空蒸着等の公知の薄膜形成技術によって形成される。これにより、発色構造体10が形成される。 Subsequently, the dielectric layer 14 is formed on the uneven surface of the resin layer 13. Further, the reflective layer 15 is formed on the surface of the dielectric layer 14. The dielectric layer 14 and the reflective layer 15 are formed by a known thin film forming technique such as sputtering or vacuum vapor deposition, depending on the material. As a result, the color-developing structure 10 is formed.
 誘電体層14の成膜時における材料の導入量の調整によって、化学量論組成よりも金属元素が過剰な組成を有する金属化合物の生成が可能である。例えば、金属酸化物からなる誘電体層14の形成時には、化学量論組成を有する薄膜の形成時よりも酸素流量を減じることで、金属元素が過剰な組成を有する誘電体層14を形成できる。 By adjusting the amount of the material introduced during the film formation of the dielectric layer 14, it is possible to produce a metal compound having a composition in which the metal element is excessive compared to the stoichiometric composition. For example, when the dielectric layer 14 made of a metal oxide is formed, the oxygen flow rate is reduced as compared with the case of forming a thin film having a stoichiometric composition, so that the dielectric layer 14 having an excess composition of metal elements can be formed.
 本実施形態の発色構造体10は、干渉を生じさせる層として、単層の薄膜からなる誘電体層14を備えるため、干渉を生じさせる層として多層膜層を備える構造と比較して、その構成が簡易であり、必要な薄膜の形成数が少ない。また、多層膜層を備える構造と比較して、1つの薄膜の膜厚の製造誤差が発色構造体10の発色に与える影響が小さい。そのため、発色構造体10の製造に要する負荷の軽減が可能であり、所望の発色も得られやすい。 Since the color-developing structure 10 of the present embodiment includes a dielectric layer 14 made of a single thin film as a layer that causes interference, the structure thereof is compared with a structure that has a multilayer film layer as a layer that causes interference. Is simple, and the number of thin films required is small. Further, as compared with the structure including the multilayer film layer, the influence of the manufacturing error of the film thickness of one thin film on the color development of the color development structure 10 is small. Therefore, the load required for manufacturing the color-developing structure 10 can be reduced, and the desired color can be easily obtained.
 以上、第1実施形態によれば、以下の利点を得ることができる。
 (1)干渉を生じさせる誘電体層14が単層の薄膜であるため、多層膜層を用いる場合と比較して、発色構造体10の構成が簡易となる。したがって、不規則な凹凸による光の散乱効果によって観察角度の変化による色変化が抑えられた発色構造体10において、その製造に要する負荷が軽減される。
As described above, according to the first embodiment, the following advantages can be obtained.
(1) Since the dielectric layer 14 that causes interference is a single-layer thin film, the structure of the color-developing structure 10 is simplified as compared with the case where a multilayer film layer is used. Therefore, in the color-developing structure 10 in which the color change due to the change in the observation angle is suppressed due to the light scattering effect due to the irregular unevenness, the load required for its manufacture is reduced.
 (2)誘電体層14が、可視領域において反射光の支配色以外の光の吸収性を有するため、この吸収性を有する波長域の光が、発色構造体10からの反射光に含まれることが抑えられる。したがって、発色構造体10が呈する支配色の鮮明さが高められる。 (2) Since the dielectric layer 14 has absorption of light other than the dominant color of the reflected light in the visible region, the light in the wavelength range having this absorption is included in the reflected light from the color-developing structure 10. Is suppressed. Therefore, the sharpness of the dominant color exhibited by the color-developing structure 10 is enhanced.
 具体的には、誘電体層14の材料の可視領域での消衰係数kが、誘電体層14における反射光の支配色の波長域にて最も小さい値を有し、支配色の波長域以外にて最も大きい値を有する。また、誘電体層14は、金属酸化物、金属窒化物、および、金属酸窒化物のいずれかの金属化合物からなり、当該金属化合物は、化学量論組成よりも金属元素が過剰な組成を有する。これらによって、上記効果が得られる。 Specifically, the extinction coefficient k of the material of the dielectric layer 14 in the visible region has the smallest value in the wavelength range of the dominant color of the reflected light in the dielectric layer 14, and is other than the wavelength range of the dominant color. Has the largest value in. Further, the dielectric layer 14 is composed of a metal compound of any one of a metal oxide, a metal nitride, and a metal oxynitride, and the metal compound has a composition in which a metal element is excessive more than a chemical quantitative composition. .. With these, the above-mentioned effect can be obtained.
 (3)発色構造体10が、誘電体層14に対して樹脂層13と反対側に位置する反射層15を備えている。これにより、誘電体層14に対して樹脂層13の位置する側から観察される発色構造体10において、反射光の強度が高められる。したがって、発色構造体10が呈する色の視認性が高められる。 (3) The color-developing structure 10 includes a reflective layer 15 located on the opposite side of the resin layer 13 with respect to the dielectric layer 14. As a result, the intensity of the reflected light is increased in the color-developing structure 10 observed from the side where the resin layer 13 is located with respect to the dielectric layer 14. Therefore, the visibility of the color exhibited by the color-developing structure 10 is enhanced.
 (4)誘電体層14が10nm以上10μm以下の厚さを有すること、および、誘電体層14の材料の屈折率が1.5より大きく3.0以下であることの各々によって、誘電体層14における光の干渉が好適に生じやすくなる。 (4) The dielectric layer 14 has a thickness of 10 nm or more and 10 μm or less, and the refractive index of the material of the dielectric layer 14 is larger than 1.5 and 3.0 or less. Interference of light in No. 14 is preferably likely to occur.
 (5)反射層15における誘電体層14を透過した光の反射率が30%以上であること、反射層15が金属材料から構成されること、および、反射層15が50nm以上の厚さを有することの各々によって、反射光の強度がより高められる。 (5) The reflectance of the light transmitted through the dielectric layer 14 in the reflective layer 15 is 30% or more, the reflective layer 15 is made of a metal material, and the reflective layer 15 has a thickness of 50 nm or more. Each of the possessions further enhances the intensity of the reflected light.
 (6)樹脂層13が第2の構造の凹凸構造を有する形態では、凹凸構造によって反射光の拡散効果と回折効果とが得られる。その結果、干渉で強められた反射光、すなわち、支配色が広い観察角度で観察可能であるとともに、この反射光の強度が高められることにより光沢感のある鮮やかな色が視認される。 (6) In the form in which the resin layer 13 has a concavo-convex structure having a second structure, the concavo-convex structure provides a diffusion effect and a diffraction effect of reflected light. As a result, the reflected light enhanced by the interference, that is, the dominant color can be observed at a wide observation angle, and the intensity of the reflected light is increased, so that a vivid color with a glossy feeling is visually recognized.
 (7)インプリント法を用いて樹脂層13の凹凸構造が形成されるため、微細な凹凸を有する樹脂層13を好適に、かつ、簡便に形成することができる。また、発色構造体10が樹脂層13を支持する基材12を備える場合、インプリント法の適用が容易に可能である。 (7) Since the concave-convex structure of the resin layer 13 is formed by using the imprint method, the resin layer 13 having fine irregularities can be preferably and easily formed. Further, when the color-developing structure 10 includes the base material 12 that supports the resin layer 13, the imprint method can be easily applied.
 (第2実施形態)
 図11を参照して、発色構造体、および、発色構造体の製造方法の第2実施形態を説明する。第2実施形態では、誘電体層と反射層との位置関係が、第1実施形態と異なる。以下では、第2実施形態と第1実施形態との相違点を中心に説明し、第1実施形態と同様の要素については同じ符号を付してその説明を省略する。
(Second Embodiment)
A second embodiment of the color-developing structure and the method for manufacturing the color-developing structure will be described with reference to FIG. In the second embodiment, the positional relationship between the dielectric layer and the reflective layer is different from that in the first embodiment. Hereinafter, the differences between the second embodiment and the first embodiment will be mainly described, and the same elements as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 図11が示すように、第2実施形態の発色構造体11においては、樹脂層13に反射層15が接し、反射層15に対して樹脂層13と反対側に誘電体層14が位置している。すなわち、第2実施形態の発色構造体11では、樹脂層13に対する誘電体層14と反射層15との位置が第1実施形態とは反対になっており、樹脂層13と誘電体層14との間に反射層15が挟まれている。誘電体層14は、発色構造体11の最外層であり、空気層に接している。 As shown in FIG. 11, in the color-developing structure 11 of the second embodiment, the reflective layer 15 is in contact with the resin layer 13, and the dielectric layer 14 is located on the opposite side of the reflective layer 15 from the resin layer 13. There is. That is, in the color-developing structure 11 of the second embodiment, the positions of the dielectric layer 14 and the reflective layer 15 with respect to the resin layer 13 are opposite to those of the first embodiment, and the resin layer 13 and the dielectric layer 14 The reflective layer 15 is sandwiched between the two. The dielectric layer 14 is the outermost layer of the color-developing structure 11 and is in contact with the air layer.
 第2実施形態においても、樹脂層13が有する凹凸構造としては、第1実施形態で説明した第1の構造と第2の構造とのいずれもが適用可能である。図11では、樹脂層13が第2の構造の凹凸構造を有する形態を例示している。第2実施形態における基材12および樹脂層13は、第1実施形態と同様である。 Also in the second embodiment, as the uneven structure of the resin layer 13, both the first structure and the second structure described in the first embodiment can be applied. FIG. 11 illustrates a form in which the resin layer 13 has a concavo-convex structure having a second structure. The base material 12 and the resin layer 13 in the second embodiment are the same as those in the first embodiment.
 反射層15は、樹脂層13の表面を覆い、樹脂層13が有する凹凸構造に追従した形状を有する表面を有している。誘電体層14は、反射層15の表面の凹凸構造に追従した形状を有する表面を有しており、すなわち、樹脂層13が有する凹凸構造に追従した形状を有する表面を有している。誘電体層14と反射層15との位置関係以外の構成、すなわち、誘電体層14と反射層15との材料および特性は、第1実施形態と同様である。 The reflective layer 15 covers the surface of the resin layer 13 and has a surface having a shape that follows the uneven structure of the resin layer 13. The dielectric layer 14 has a surface having a shape following the uneven structure of the surface of the reflective layer 15, that is, having a surface having a shape following the uneven structure of the resin layer 13. The configuration other than the positional relationship between the dielectric layer 14 and the reflective layer 15, that is, the materials and properties of the dielectric layer 14 and the reflective layer 15 are the same as those in the first embodiment.
 また、誘電体層14と反射層15との形成の順序が反対であること以外は、発色構造体11の製造方法は、第1実施形態と同様である。
 第2実施形態の発色構造体11は、樹脂層13に対して基材12と反対側から発色構造体11に入る光を入射光として、樹脂層13に対して基材12と反対側、すなわち、樹脂層13に対して誘電体層14が位置する側から観察される。
The method for producing the color-developing structure 11 is the same as that of the first embodiment, except that the order of formation of the dielectric layer 14 and the reflective layer 15 is opposite.
The color-developing structure 11 of the second embodiment uses light entering the color-developing structure 11 from the side opposite to the base material 12 with respect to the resin layer 13 as incident light, and is opposite to the base material 12 with respect to the resin layer 13, that is, , Observed from the side where the dielectric layer 14 is located with respect to the resin layer 13.
 誘電体層14に光が入射すると、誘電体層14は、薄膜干渉による反射光を射出する。すなわち、誘電体層14と空気層との界面で反射した光および誘電体層14と反射層15との界面で反射した光が干渉を起こし、これによって強められた波長域の光が射出される。反射層15が、誘電体層14に対して樹脂層13と同じ側に位置することにより、反射層15が設けられていない場合と比較して、観察者に向けて射出される反射光の強度が大きくなる。そして、干渉によって強められた反射光が、不規則な凹凸によって散乱されて多方向に射出されるため、観察角度による色の変化が緩やかになる。 When light is incident on the dielectric layer 14, the dielectric layer 14 emits reflected light due to thin film interference. That is, the light reflected at the interface between the dielectric layer 14 and the air layer and the light reflected at the interface between the dielectric layer 14 and the reflective layer 15 cause interference, and light in the enhanced wavelength range is emitted. .. By locating the reflective layer 15 on the same side as the resin layer 13 with respect to the dielectric layer 14, the intensity of the reflected light emitted toward the observer is higher than that in the case where the reflective layer 15 is not provided. Becomes larger. Then, the reflected light enhanced by the interference is scattered by the irregular unevenness and emitted in multiple directions, so that the color change depending on the observation angle becomes gentle.
 誘電体層14の材料の屈折率をn1、空気の屈折率をn4、反射層15の材料の屈折率をn3とする。n1>n4、かつ、n1>n3であるとき、干渉で強め合う可視領域の波長について下記式(3)が満たされる。下記式(3)において、dは誘電体層14の膜厚であり、mは0または任意の正の整数であり、θは入射光の入射角度であり、λは入射光の波長である。 The refractive index of the material of the dielectric layer 14 is n1, the refractive index of air is n4, and the refractive index of the material of the reflective layer 15 is n3. When n1> n4 and n1> n3, the following equation (3) is satisfied for wavelengths in the visible region that are strengthened by interference. In the following equation (3), d is the film thickness of the dielectric layer 14, m is 0 or an arbitrary positive integer, θ is the incident angle of the incident light, and λ is the wavelength of the incident light.
 2×n1×d×cosθ=(1/2+m)λ ・・・(3)
 また、n4<n1<n3であるとき、干渉で強め合う可視領域の波長について下記式(4)が満たされる。下記式(4)において、dは誘電体層14の膜厚であり、mは任意の正の整数であり、θは入射光の入射角度であり、λは入射光の波長である。
2 × n1 × d × cos θ = (1/2 + m) λ ・ ・ ・ (3)
Further, when n4 <n1 <n3, the following equation (4) is satisfied for wavelengths in the visible region that are strengthened by interference. In the following equation (4), d is the film thickness of the dielectric layer 14, m is an arbitrary positive integer, θ is the incident angle of the incident light, and λ is the wavelength of the incident light.
 2×n1×d×cosθ=m×λ      ・・・(4)
 上記式(3)または(4)が満たされる場合、薄膜干渉によって強められた反射光が好適に得られる。
2 × n1 × d × cos θ = m × λ ・ ・ ・ (4)
When the above formula (3) or (4) is satisfied, the reflected light enhanced by thin film interference is preferably obtained.
 第2実施形態においても、誘電体層14の材料としては、化学量論組成よりも金属元素が過剰な組成を有する金属酸化物、金属窒化物、金属酸窒化物が用いられる。そして、可視領域において、誘電体層14の材料の消衰係数kは、誘電体層14における反射光の支配色の波長域にて最も小さい値を有し、かつ、支配色の波長域以外にて最も大きい値を有する。 Also in the second embodiment, as the material of the dielectric layer 14, a metal oxide, a metal nitride, or a metal oxynitride having a composition in which a metal element is excessive compared to the stoichiometric composition is used. Then, in the visible region, the extinction coefficient k of the material of the dielectric layer 14 has the smallest value in the wavelength range of the dominant color of the reflected light in the dielectric layer 14, and is other than the wavelength range of the dominant color. Has the largest value.
 したがって、可視領域の光のうち、誘電体層14における反射光の支配色以外の少なくとも一部の光が、誘電体層14に吸収される。それゆえ、入射光のうち、反射光の支配色以外の光、すなわち、発色構造体11にて発色させたい色とは異なる色の光が、発色構造体11にて反射して観察者に視認されることが抑えられるため、発色構造体11にて発色させたい特定の色がより鮮明に視認されるようになる。 Therefore, of the light in the visible region, at least a part of the light other than the dominant color of the reflected light in the dielectric layer 14 is absorbed by the dielectric layer 14. Therefore, among the incident light, light other than the dominant color of the reflected light, that is, light having a color different from the color desired to be developed by the color-developing structure 11, is reflected by the color-developing structure 11 and visually recognized by the observer. Since it is suppressed, the specific color to be developed by the color-developing structure 11 can be visually recognized more clearly.
 以上、第2実施形態によれば、第1実施形態の(1),(2),(4)~(7)の利点に加えて、以下の利点を得ることができる。
 (8)発色構造体11が、誘電体層14と樹脂層13との間に位置する反射層15を備えている。これにより、樹脂層13に対して誘電体層14の位置する側から観察される発色構造体11において、反射光の強度が高められる。したがって、発色構造体11が呈する色の視認性が高められる。
As described above, according to the second embodiment, in addition to the advantages of (1), (2), (4) to (7) of the first embodiment, the following advantages can be obtained.
(8) The color-developing structure 11 includes a reflective layer 15 located between the dielectric layer 14 and the resin layer 13. As a result, the intensity of the reflected light is increased in the color-developing structure 11 observed from the side where the dielectric layer 14 is located with respect to the resin layer 13. Therefore, the visibility of the color exhibited by the color-developing structure 11 is enhanced.
 [変形例]
 上記各実施形態は、以下のように変更して実施することが可能である。
 ・発色構造体は、反射層15に代えて、吸収層を備えていてもよい。吸収層は、観察者から見て誘電体層14よりも奥に位置する。例えば、樹脂層13に対して誘電体層14の位置する側から発色構造体が観察される場合、図12が示すように、吸収層16は、基材12における樹脂層13と反対側の面を覆う。吸収層16は、少なくとも、可視領域の光のうち、誘電体層14における反射光の支配色以外の光の一部を吸収する。吸収層16は、黒色顔料等を含む黒色の層であって、可視領域全体の光を吸収してもよい。吸収層が設けられていることにより、誘電体層14における反射光の支配色の波長域とは異なる波長域の光が、発色構造体内部の各層の界面や、発色構造体とその外部との界面で反射して観察者に向けて射出されることが抑えられる。したがって、発色構造体に視認される支配色の鮮明さが高められる。
[Modification example]
Each of the above embodiments can be modified and implemented as follows.
-The color-developing structure may include an absorbing layer instead of the reflective layer 15. The absorption layer is located deeper than the dielectric layer 14 when viewed from the observer. For example, when the color-developing structure is observed from the side where the dielectric layer 14 is located with respect to the resin layer 13, as shown in FIG. 12, the absorption layer 16 is the surface of the base material 12 opposite to the resin layer 13. Cover. The absorption layer 16 absorbs at least a part of the light in the visible region other than the dominant color of the reflected light in the dielectric layer 14. The absorption layer 16 is a black layer containing a black pigment or the like, and may absorb light in the entire visible region. Since the absorption layer is provided, light in a wavelength range different from the wavelength range of the dominant color of the reflected light in the dielectric layer 14 can be applied to the interface of each layer inside the color-developing structure and the color-developing structure and its outside. It is suppressed that it is reflected at the interface and emitted toward the observer. Therefore, the sharpness of the dominant color visually recognized in the coloring structure is enhanced.
 また、樹脂層13に対して誘電体層14の位置する側から発色構造体が観察される場合、樹脂層13と誘電体層14との間に代えて、図12の吸収層16の位置、すなわち、基材12における樹脂層13と反対側の面を覆う位置に反射層が設けられていてもよい。誘電体層14と樹脂層13と基材12とを透過して反射層によって反射される光に、支配色以外の光が混じっていても、誘電体層14が支配色以外の光の吸収性を有するため、支配色以外の光が観察者に向けて射出されることは抑えられる。結果として、反射層は、反射光における支配色の光の強度をさらに高めることに寄与する。 When the color-developing structure is observed from the side where the dielectric layer 14 is located with respect to the resin layer 13, the position of the absorption layer 16 in FIG. 12 is replaced with the position between the resin layer 13 and the dielectric layer 14. That is, the reflective layer may be provided at a position of the base material 12 that covers the surface opposite to the resin layer 13. Even if light other than the dominant color is mixed with the light transmitted through the dielectric layer 14, the resin layer 13 and the base material 12 and reflected by the reflective layer, the dielectric layer 14 absorbs light other than the dominant color. Therefore, it is possible to prevent light other than the dominant color from being emitted toward the observer. As a result, the reflective layer contributes to further increasing the intensity of the dominant color light in the reflected light.
 ・発色構造体は、基材12と反対側で発色構造体の最外部を構成する保護層や、紫外線吸収機能を有する層等、上記各実施形態および変形例で説明した層とは異なる層をさらに備えていてもよい。 The color-developing structure is a layer different from the layers described in the above embodiments and modifications, such as a protective layer forming the outermost part of the color-developing structure on the side opposite to the base material 12, and a layer having an ultraviolet absorbing function. You may also have more.
 ・基材12に凹凸構造が形成され、基材12が凹凸層として機能してもよい。すなわち、凹凸構造を有する基材12の表面に、誘電体層14や反射層15である機能層が積層されていてもよい。この場合、凹凸構造は、例えば、ドライエッチング法を用いて形成される。 An uneven structure may be formed on the base material 12, and the base material 12 may function as an uneven layer. That is, a functional layer such as a dielectric layer 14 or a reflective layer 15 may be laminated on the surface of the base material 12 having a concavo-convex structure. In this case, the uneven structure is formed by using, for example, a dry etching method.
 ・凹凸層における凹凸構造の第1の構造にて凸部13aが形成するパターン、および、第2の構造にて第1凸部要素13Eaが形成するパターンを構成する図形は、矩形に限られない。これらのパターンを構成する図形は、長円等であってもよく、要は、第2方向Dyに沿った長さが第1方向Dxに沿った長さ以上である形状を有する図形要素であればよい。そして、図形要素における第1方向Dxの長さd1と第2方向Dyの長さd2とが、第1の構造の説明にて述べた各種の条件を満たしていればよい。 The figure forming the pattern formed by the convex portion 13a in the first structure of the concave-convex structure in the concave-convex layer and the pattern formed by the first convex portion element 13Ea in the second structure are not limited to rectangles. .. The graphic forming these patterns may be an oval or the like, and in short, it may be a graphic element having a shape in which the length along the second direction Dy is equal to or greater than the length along the first direction Dx. Just do it. Then, it is sufficient that the length d1 of the first direction Dx and the length d2 of the second direction Dy in the graphic element satisfy various conditions described in the description of the first structure.
 ・凹凸層の凹凸構造の凸部は、基部から頂部に向かって第1方向Dxの幅が徐々に小さくなってもよい。この場合、凸部に誘電体層14や反射層15が成膜されやすくなる。この場合、第1方向Dxの長さd1や長さd3は、凸部の底面が形成するパターンにて規定される。 -The width of the convex portion of the concave-convex structure of the concave-convex layer may gradually decrease from the base to the top in the first direction Dx. In this case, the dielectric layer 14 and the reflective layer 15 are likely to be formed on the convex portion. In this case, the length d1 and the length d3 of the first direction Dx are defined by the pattern formed by the bottom surface of the convex portion.
 ・発色構造体の用途は特に限定されない。発色構造体は、装飾のために物品に付されてもよいし、偽造の防止のために物品に付されてもよい。また、各用途において、発色構造体は、シール部材に適用されて物品に貼り付けられてもよいし、転写シートに適用されて物品に転写されてもよい。 ・ The use of the color-developing structure is not particularly limited. The colored structure may be attached to the article for decoration or may be attached to the article to prevent counterfeiting. Further, in each application, the color-developing structure may be applied to a sealing member and attached to an article, or may be applied to a transfer sheet and transferred to an article.
 [実施例]
 上述した発色構造体およびその製造方法を、具体的な実施例を用いて説明する。本実施例の発色構造体は、第1実施形態に対応する構造を有する。
[Example]
The above-mentioned color-developing structure and a method for producing the same will be described with reference to specific examples. The color-developing structure of this embodiment has a structure corresponding to the first embodiment.
 まず、光インプリント法を用いて凹凸構造を形成するためのモールドを形成した。光ナノインプリント法において照射する光として、365nmの波長の光を用いるため、この波長の光を透過する合成石英をモールドの材料として用いた。樹脂層への形成対象の凹凸の反転された凹凸を、電子線描画およびドライエッチング法を用いて合成石英基板に形成することにより、モールドを形成した。形成対象の凹凸構造は、第2の構造の凹凸構造である。モールドの表面には、離型剤としてオプツールHD-1100(ダイキン工業製)を塗布した。 First, a mold was formed to form a concavo-convex structure using the optical imprint method. Since light having a wavelength of 365 nm is used as the light to be irradiated in the optical nanoimprint method, synthetic quartz that transmits light of this wavelength was used as the material for the mold. A mold was formed by forming the inverted unevenness of the unevenness to be formed on the resin layer on the synthetic quartz substrate by electron beam drawing and dry etching. The concavo-convex structure to be formed is the concavo-convex structure of the second structure. Optool HD-1100 (manufactured by Daikin Industries, Ltd.) was applied as a mold release agent to the surface of the mold.
 次に、片面に易接着処理が施されたPETフィルム上に光硬化性樹脂を塗布し、この樹脂にモールドの凹凸が形成されている面を押し当て、365nmの波長の光を照射して樹脂を硬化させた。その後、硬化した樹脂およびPETフィルムをモールドから剥離した。これにより、凹凸構造を有する樹脂層と基材であるPETフィルムとの積層体が得られた。 Next, a photocurable resin is applied onto a PET film that has been easily adhered to one side, and the surface on which the unevenness of the mold is formed is pressed against this resin to irradiate the resin with light having a wavelength of 365 nm. Was cured. Then, the cured resin and PET film were peeled off from the mold. As a result, a laminate of a resin layer having an uneven structure and a PET film as a base material was obtained.
 続いて、得られた樹脂層と基材との積層体の凹凸を有する面に、スパッタリング法によって、誘電体層として、膜厚が60nmである1層の酸化チタン膜を形成した。この際、チャンバーに導入する酸素流量を調整することによって、化学量論組成よりも金属元素が過剰になるように、酸化チタン膜を形成した。さらに、誘電体層の上面に、スパッタリング法によって、反射層として、膜厚が100nmである1層のアルミニウム膜を形成した。 Subsequently, a single titanium oxide film having a film thickness of 60 nm was formed as a dielectric layer on the uneven surface of the obtained laminate of the resin layer and the base material by a sputtering method. At this time, by adjusting the flow rate of oxygen introduced into the chamber, a titanium oxide film was formed so that the amount of metal elements exceeded the stoichiometric composition. Further, a single aluminum film having a film thickness of 100 nm was formed as a reflective layer on the upper surface of the dielectric layer by a sputtering method.
 これにより、実施例の発色構造体が得られた。実施例の発色構造体を誘電体層に対して樹脂層の位置する側から観察した。基材の面に直交する方向に対して30°傾斜した方向から観察した結果、光沢感のある青色が視認性良く確認された。 As a result, the colored structure of the example was obtained. The colored structure of the example was observed from the side where the resin layer is located with respect to the dielectric layer. As a result of observing from a direction inclined by 30 ° with respect to the direction orthogonal to the surface of the base material, a glossy blue color was confirmed with good visibility.
 さらに、誘電体層に対して樹脂層の位置する側に射出される反射光の角度依存性を測定した。発色構造体に対して白色光を30°の入射角で入射させた結果、正反射光に対して±30°の範囲で散乱光が確認された。 Furthermore, the angle dependence of the reflected light emitted to the side where the resin layer is located with respect to the dielectric layer was measured. As a result of injecting white light into the color-developing structure at an incident angle of 30 °, scattered light was confirmed within a range of ± 30 ° with respect to the specularly reflected light.

Claims (14)

  1.  平面と前記平面に位置する凸部とを備える凹凸構造を有する凹凸層と、
     前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層と、を備え、
     前記凸部は、前記平面から1段以上の段差を有し、前記凹凸層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されており、
     前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きく、
     前記誘電体層の材料の可視領域での消衰係数は、前記反射光における支配色の波長域にて最も小さい値を有し、前記支配色の波長域以外にて最も大きい値を有する
     発色構造体。
    A concavo-convex layer having a concavo-convex structure including a flat surface and a convex portion located on the flat surface,
    It has a surface having a shape that follows the uneven structure, and includes a dielectric layer made of a single thin film that emits reflected light enhanced by interference.
    The convex portion has one or more steps from the plane, and the convex portion has a first length of a sub-wavelength or less along the first direction when viewed from a viewpoint facing the surface of the concave-convex layer. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than the first length along a second direction orthogonal to the first direction. ,
    In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length.
    The extinction coefficient of the material of the dielectric layer in the visible region has the smallest value in the wavelength range of the dominant color in the reflected light, and has the largest value in the wavelength range other than the dominant color. body.
  2.  平面と前記平面に位置する凸部とを備える凹凸構造を有する凹凸層と、
     前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層と、を備え、
     前記凸部は、前記平面から1段以上の段差を有し、前記凹凸層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されており、
     前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きく、
     前記誘電体層は、金属酸化物、金属窒化物、および、金属酸窒化物のいずれかの金属化合物からなり、当該金属化合物は、化学量論組成よりも金属元素が過剰な組成を有する
     発色構造体。
    A concavo-convex layer having a concavo-convex structure including a flat surface and a convex portion located on the flat surface,
    It has a surface having a shape that follows the uneven structure, and includes a dielectric layer made of a single thin film that emits reflected light enhanced by interference.
    The convex portion has one or more steps from the plane, and the convex portion has a first length of a sub-wavelength or less along the first direction when viewed from a viewpoint facing the surface of the concave-convex layer. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than the first length along a second direction orthogonal to the first direction. ,
    In the plurality of graphic elements, the standard deviation of the second length is larger than the standard deviation of the first length.
    The dielectric layer is composed of a metal compound of any one of a metal oxide, a metal nitride, and a metal oxynitride, and the metal compound has a color-developing structure in which a metal element is excessive in composition rather than a chemical quantitative composition. body.
  3.  前記誘電体層は、酸化チタンからなり、前記酸化チタンは、化学量論組成よりもチタンを多く含む
     請求項1または2に記載の発色構造体。
    The color-developing structure according to claim 1 or 2, wherein the dielectric layer is made of titanium oxide, and the titanium oxide contains more titanium than the stoichiometric composition.
  4.  前記誘電体層は前記凹凸層に接し、
     前記前記発色構造体は、
     前記誘電体層に対して前記凹凸層と反対側に位置し、前記反射光の強度を強める機能を有する反射層をさらに備える
     請求項1~3のいずれか一項に記載の発色構造体。
    The dielectric layer is in contact with the uneven layer and
    The color-developing structure is
    The color-developing structure according to any one of claims 1 to 3, further comprising a reflective layer located on the opposite side of the dielectric layer to the concave-convex layer and having a function of enhancing the intensity of the reflected light.
  5.  前記凹凸層と前記誘電体層との間に位置し、前記反射光の強度を強める機能を有する反射層を備える
     請求項1~3のいずれか一項に記載の発色構造体。
    The color-developing structure according to any one of claims 1 to 3, further comprising a reflective layer located between the uneven layer and the dielectric layer and having a function of enhancing the intensity of the reflected light.
  6.  前記誘電体層は、10nm以上10μm以下の厚さを有する
     請求項1~5のいずれか一項に記載の発色構造体。
    The color-developing structure according to any one of claims 1 to 5, wherein the dielectric layer has a thickness of 10 nm or more and 10 μm or less.
  7.  前記誘電体層の材料の屈折率は、1.5より大きく3.0以下である
     請求項1~6のいずれか一項に記載の発色構造体。
    The color-developing structure according to any one of claims 1 to 6, wherein the refractive index of the material of the dielectric layer is larger than 1.5 and 3.0 or less.
  8.  前記反射層における前記誘電体層を透過した光の反射率が30%以上である
     請求項4または5に記載の発色構造体。
    The color-developing structure according to claim 4 or 5, wherein the reflectance of light transmitted through the dielectric layer in the reflective layer is 30% or more.
  9.  前記反射層は金属材料から構成される
     請求項4,5,8のいずれか一項に記載の発色構造体。
    The color-developing structure according to any one of claims 4, 5 and 8, wherein the reflective layer is made of a metal material.
  10.  前記反射層は、50nm以上の厚さを有する
     請求項4,5,8,9のいずれか一項に記載の発色構造体。
    The color-developing structure according to any one of claims 4, 5, 8 and 9, wherein the reflective layer has a thickness of 50 nm or more.
  11.  前記凹凸層を支持する基材をさらに備える
     請求項1~10のいずれか一項に記載の発色構造体。
    The color-developing structure according to any one of claims 1 to 10, further comprising a base material that supports the uneven layer.
  12.  前記凹凸層の表面と対向する視点から見て、前記凸部は、前記複数の図形要素の集合からなる第1パターンと、前記第2方向に沿って延び、前記第1方向に沿って並ぶ複数の帯状領域からなる第2パターンとが重ね合わされたパターンを形成するように配置されており、
     前記第2パターンにおいて、前記第1方向に沿った前記複数の帯状領域の並ぶ間隔は一定ではなく、前記複数の帯状領域における前記間隔の平均値は、前記誘電体層への入射光に含まれる波長域における最小波長の1/2以上であり、
     前記凸部は、第1の高さを有し、前記凹凸層の厚さ方向への投影像が前記第1パターンを形成する第1の凸部要素と、第2の高さを有し、前記厚さ方向への投影像が前記第2パターンを形成する第2の凸部要素とが高さ方向に重ねられた複数段の段差を有する
     請求項1~11のいずれか一項に記載の発色構造体。
    When viewed from a viewpoint facing the surface of the uneven layer, the convex portion has a first pattern composed of a set of the plurality of graphic elements and a plurality of extending along the second direction and arranging along the first direction. It is arranged so as to form a pattern in which the second pattern consisting of the strip-shaped region of the above is overlapped.
    In the second pattern, the spacing between the plurality of strip-shaped regions along the first direction is not constant, and the average value of the spacing in the plurality of strip-shaped regions is included in the incident light on the dielectric layer. It is more than 1/2 of the minimum wavelength in the wavelength range,
    The convex portion has a first height, and the projected image of the concave-convex layer in the thickness direction has a first convex portion element forming the first pattern and a second height. The invention according to any one of claims 1 to 11, wherein the projected image in the thickness direction has a plurality of steps in which the second convex element forming the second pattern is overlapped in the height direction. Coloring structure.
  13.  凹版を形成する工程と、
     インプリント法を用いて前記凹版の凹凸を基材に転写することにより、前記基材上に、平面と前記平面に位置する凸部とを備える凹凸構造を有する樹脂層を形成する工程と、
     前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層を、可視領域での消衰係数が、前記反射光における支配色の波長域にて最も小さい値を有し、前記支配色の波長域以外にて最も大きい値を有する材料から形成する工程と、を含み
     前記凸部は、前記平面から1段以上の段差を有し、前記樹脂層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されており、前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きい
     発色構造体の製造方法。
    The process of forming an intaglio and
    A step of forming a resin layer having an uneven structure having a flat surface and a convex portion located on the flat surface on the base material by transferring the unevenness of the intaglio plate to the base material using an imprint method.
    A dielectric layer made of a single thin film that has a surface having a shape that follows the uneven structure and emits reflected light enhanced by interference, and the extinction coefficient in the visible region is the dominant color in the reflected light. The convex portion has one or more steps from the plane, including a step of forming from a material having the smallest value in the wavelength range of the above and having the largest value in the wavelength range other than the dominant color. However, when viewed from the viewpoint facing the surface of the resin layer, the convex portion is along a first length that is equal to or less than a sub-wavelength along the first direction and a second direction that is orthogonal to the first direction. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than the first length, and the plurality of graphic elements have the second length. A method for manufacturing a color-developing structure in which the standard deviation is larger than the standard deviation of the first length.
  14.  凹版を形成する工程と、
     インプリント法を用いて前記凹版の凹凸を基材に転写することにより、前記基材上に、平面と前記平面に位置する凸部とを備える凹凸構造を有する樹脂層を形成する工程と、
     前記凹凸構造に追従した形状を有する表面を有し、干渉によって強められた反射光を射出する単層の薄膜からなる誘電体層を、金属酸化物、金属窒化物、および、金属酸窒化物のいずれかの金属化合物であって、化学量論組成よりも金属元素が過剰な組成を有する前記金属化合物から形成する工程と、を含み
     前記凸部は、前記平面から1段以上の段差を有し、前記樹脂層の表面と対向する視点から見て、前記凸部は、第1方向に沿ったサブ波長以下である第1の長さと、前記第1方向と直交する第2方向に沿った前記第1の長さ以上である第2の長さとを各々有する複数の図形要素の集合を含むパターンを形成するように配置されており、前記複数の図形要素において、前記第2の長さの標準偏差は、前記第1の長さの標準偏差よりも大きい
     発色構造体の製造方法。
    The process of forming an intaglio and
    A step of forming a resin layer having an uneven structure having a flat surface and a convex portion located on the flat surface on the base material by transferring the unevenness of the intaglio plate to the base material using an imprint method.
    A dielectric layer composed of a single-layer thin film having a surface having a shape following the uneven structure and emitting reflected light enhanced by interference is formed of a metal oxide, a metal nitride, and a metal oxynitride. The convex portion has one or more steps from the plane, including a step of forming the metal compound from the metal compound having a composition in which the metal element is excessive than the chemical quantitative composition, which is any of the metal compounds. When viewed from the viewpoint facing the surface of the resin layer, the convex portion has a first length that is equal to or less than a sub-wavelength along the first direction and the convex portion along the second direction orthogonal to the first direction. It is arranged so as to form a pattern including a set of a plurality of graphic elements each having a second length equal to or greater than the first length, and the standard of the second length in the plurality of graphic elements. A method for manufacturing a color-developing structure in which the deviation is larger than the standard deviation of the first length.
PCT/JP2021/000844 2020-01-15 2021-01-13 Color-development structure and method for manufacturing color-development structure WO2021145339A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020004685A JP7463733B2 (en) 2020-01-15 2020-01-15 Color-developing structure and method for producing the color-developing structure
JP2020-004685 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021145339A1 true WO2021145339A1 (en) 2021-07-22

Family

ID=76863862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000844 WO2021145339A1 (en) 2020-01-15 2021-01-13 Color-development structure and method for manufacturing color-development structure

Country Status (2)

Country Link
JP (1) JP7463733B2 (en)
WO (1) WO2021145339A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763915A (en) * 1993-08-26 1995-03-10 Canon Inc Thin film nd filter and its production
WO2015037577A1 (en) * 2013-09-13 2015-03-19 独立行政法人産業技術総合研究所 Optical device
WO2019004229A1 (en) * 2017-06-28 2019-01-03 凸版印刷株式会社 Coloring structure, display body, and method for manufacturing coloring structure
US20190099978A1 (en) * 2017-09-29 2019-04-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532439B (en) 2014-12-22 2016-04-06 浙江理工大学 A kind ofly knit print in conjunction with jacquard fabric design method based on full colour developing structure
CN113376724B (en) 2021-06-21 2023-02-17 宁波舜宇奥来技术有限公司 Method for manufacturing diffraction element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763915A (en) * 1993-08-26 1995-03-10 Canon Inc Thin film nd filter and its production
WO2015037577A1 (en) * 2013-09-13 2015-03-19 独立行政法人産業技術総合研究所 Optical device
WO2019004229A1 (en) * 2017-06-28 2019-01-03 凸版印刷株式会社 Coloring structure, display body, and method for manufacturing coloring structure
US20190099978A1 (en) * 2017-09-29 2019-04-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Also Published As

Publication number Publication date
JP7463733B2 (en) 2024-04-09
JP2021110906A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
WO2020013229A1 (en) Transfer sheet, color forming sheet, color forming article, and transfer method
US11398166B2 (en) Display and method of producing display
JP6981194B2 (en) A method for manufacturing a color-developing structure, a display body, a color-developing sheet, a molded body, and a color-developing structure.
EP3495856B1 (en) Optical element
JP6766860B2 (en) Display body and manufacturing method of display body
JP6500943B2 (en) Chromogenic structure, mold and method for producing chromogenic structure using mold
WO2021145339A1 (en) Color-development structure and method for manufacturing color-development structure
WO2021145340A1 (en) Coloring structure
JP6176290B2 (en) Coloring structure and method for producing the same
JP6379547B2 (en) Image display body and information medium
JP6477795B2 (en) Coloring structure and method for producing the same
JP7004134B2 (en) A method for manufacturing a color-developing sheet, a transfer foil, a molded product, and a transfer foil.
JP7024221B2 (en) Display body, device with display body, and manufacturing method of display body
JP2019159159A (en) Color structure and method for producing the same, display, color sheet, and molded article
JP7326833B2 (en) Coloring structure, display, and method for producing coloring structure
JP2022026090A (en) Coloring sheet, coloring article, transfer foil and manufacturing method of transfer foil
JP7302277B2 (en) DISPLAY AND METHOD FOR MANUFACTURING DISPLAY
JP2022102879A (en) Display body
JP2023019615A (en) Color development structure
JP2023019616A (en) Color development structure
JP2023013264A (en) Color development structure body
JP2022034246A (en) Color development structure
JP2021005102A (en) Display body, and manufacturing method for display body
JP2023086445A (en) Color development structural body
JP2022075250A (en) Color developing sheet, color development article, transfer foil and manufacturing method of transfer foil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741426

Country of ref document: EP

Kind code of ref document: A1