JP2017020525A - Construction method for regeneration pipe - Google Patents

Construction method for regeneration pipe Download PDF

Info

Publication number
JP2017020525A
JP2017020525A JP2015136374A JP2015136374A JP2017020525A JP 2017020525 A JP2017020525 A JP 2017020525A JP 2015136374 A JP2015136374 A JP 2015136374A JP 2015136374 A JP2015136374 A JP 2015136374A JP 2017020525 A JP2017020525 A JP 2017020525A
Authority
JP
Japan
Prior art keywords
pipe
rehabilitation pipe
rehabilitation
construction method
injection hose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015136374A
Other languages
Japanese (ja)
Inventor
英也 竹西
Hideya Takenishi
英也 竹西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015136374A priority Critical patent/JP2017020525A/en
Publication of JP2017020525A publication Critical patent/JP2017020525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce residual stress generated at a regeneration pipe in its axial direction in a construction method for regeneration pipe.SOLUTION: This invention relates to a construction method for a regeneration pipe comprising an insertion process, a restoration process, a shutdown process, a diameter expansion process and a cooling process. In the insertion process, a regeneration pipe 1 made of thermoplastic resin is inserted into an existing pipe 2 under its non-cylindrical state. In the closing process, both ends of the regeneration pipe 1 are closed under a state in which an extremity end pit 25 of an injection hose 5 is inserted into the regeneration pipe 1 by a pair of sealing jigs 3, 4 including a first jig 3 formed with an open hole 23b where the injection hose 5 is tightly sealed. In the diameter expansion process, the diameter is expanded by pressuring the regeneration pipe 1. In the cooling process, the regeneration pipe 1 is cooled while keeping a relative temperature difference between a start side and a reaching side by injecting heat medium from the extremity pit 25 of the injection hose 5 within the regeneration pipe 1.SELECTED DRAWING: Figure 5

Description

本発明は、既設管の内面を樹脂製の更生管によってライニングする更生管の施工方法に関するものである。   The present invention relates to a construction method for a rehabilitated pipe in which the inner surface of an existing pipe is lined with a rehabilitated pipe made of resin.

従来から、地中に埋設された下水管等の既設管内に、当該既設管の内径よりも小さな外径を有する熱可塑性樹脂からなる更生管を非円筒状の状態で挿入し、挿入された更生管を加熱して円筒状に復元した後、加圧して拡径させることで、既設管の内面を更生管によってライニングする既設管の更生方法が広く知られている。   Conventionally, a rehabilitation pipe made of a thermoplastic resin having an outer diameter smaller than the inner diameter of the existing pipe is inserted into an existing pipe such as a sewer pipe buried in the ground in a non-cylindrical state, and the inserted rehabilitation pipe An existing pipe rehabilitation method is widely known in which a pipe is heated to be restored to a cylindrical shape and then pressurized to expand the diameter so that the inner surface of the existing pipe is lined with a rehabilitation pipe.

このような更生方法では、更生管を拡径させて既設管の内面に張り付けた後、更生管を硬化させるべく例えば空気冷却により更生管の冷却を行うのが一般的である(例えば、特許文献1参照)。   In such a rehabilitation method, after the rehabilitation pipe is expanded and attached to the inner surface of the existing pipe, the rehabilitation pipe is generally cooled by, for example, air cooling in order to cure the rehabilitation pipe (for example, Patent Documents). 1).

特開平11−333934号公報JP-A-11-333934

ところで、加熱し加圧した更生管を冷却すると、更生管には線膨張による収縮が生じることになる。また、既設管の内面に張り付いた状態で冷却が進み硬化しつつある更生管が軸方向に収縮しようとすると、既設管の内面と更生管の外面との間に摩擦抵抗が生じることになる。   By the way, when the heated and pressurized rehabilitation pipe is cooled, the rehabilitation pipe contracts due to linear expansion. In addition, if the rehabilitated pipe that has been cooled and hardened while sticking to the inner surface of the existing pipe attempts to shrink in the axial direction, a frictional resistance is generated between the inner surface of the existing pipe and the outer surface of the rehabilitated pipe. .

そうして、上記更生方法では、加熱し加圧した更生管をその全長に亘って一律に空気冷却することから、更生管に対し収縮力と摩擦抵抗とが作用した状態のまま更生管が硬化してしまうため、更生管の軸方向に残留応力が発生することになる。このような、意図しない残留応力の発生は、更生管の早期破壊を引き起こすおそれがある。   Thus, in the above rehabilitation method, since the heated and pressurized rehabilitation pipe is uniformly air-cooled over its entire length, the rehabilitation pipe is cured while the shrinkage force and the frictional resistance act on the rehabilitation pipe. Therefore, residual stress is generated in the axial direction of the rehabilitated pipe. Such unintentional occurrence of residual stress may cause premature breakage of the rehabilitation pipe.

本発明はかかる点に鑑みてなされたものであり、その目的とするところは、更生管の施工方法において、更生管の軸方向に発生する残留応力を低減する技術を提供することにある。   This invention is made | formed in view of this point, The place made into the objective is to provide the technique which reduces the residual stress which generate | occur | produces in the axial direction of a rehabilitation pipe in the construction method of a rehabilitation pipe.

前記目的を達成するため、本発明に係る更生管の施工方法では、更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を強制的に設けることで、更生管を片側から順次収縮させるようにしている。   In order to achieve the above object, in the rehabilitating pipe construction method according to the present invention, the rehabilitating pipe is forcedly provided with a relative temperature difference between one axial side and the other axial side of the rehabilitating pipe. It is made to shrink sequentially from one side.

具体的には、本発明は、既設管の内面を更生管によってライニングする更生管の施工方法を対象としている。   Specifically, the present invention is directed to a rehabilitation pipe construction method in which the inner surface of an existing pipe is lined with a rehabilitation pipe.

そして、この更生管の施工方法は、上記既設管の内径よりも小さな外径を有する熱可塑性樹脂からなる上記更生管を、非円筒状の状態で上記既設管内に挿入する挿入工程と、上記既設管内に挿入された更生管を加熱することによって円筒状に復元する復元工程と、上記円筒状に復元された更生管の両端を、噴射ホースが密着状態で貫通する貫通孔が形成された一の封止治具を含む一対の封止治具によって、当該噴射ホースの先端部が当該更生管内に挿入された状態で塞ぐ閉塞工程と、上記両端が塞がれた更生管を内部から加圧することによって拡径させる拡径工程と、上記拡径した更生管内で、上記噴射ホースの先端部から熱媒体を噴射することによって、当該更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を設けながら当該更生管を冷却する冷却工程と、を含むことを特徴とするものである。   And this rehabilitation pipe construction method includes an insertion step of inserting the rehabilitation pipe made of a thermoplastic resin having an outer diameter smaller than the inner diameter of the existing pipe into the existing pipe in a non-cylindrical state, A rehabilitation process for restoring the rehabilitation pipe inserted in the pipe to a cylindrical shape and a through-hole through which the injection hose penetrates through both ends of the rehabilitation pipe restored to the cylindrical shape are formed. A closing step in which the tip end portion of the injection hose is inserted in the rehabilitation tube and a rehabilitation tube in which both ends are closed are pressurized from the inside by a pair of sealing jigs including the sealing jig. The diameter expansion step of expanding the diameter of the rehabilitation pipe, and by injecting the heat medium from the tip of the injection hose within the diameter expansion rehabilitation pipe, the relative direction between the one axial side and the other axial side of the rehabilitation pipe A typical temperature difference It is characterized in that comprising a cooling step of cooling the rehabilitating pipe.

この構成によれば、予め更生管内に挿入しておいた噴射ホースの先端部から噴射される冷却水や温風等といった熱媒体によって、更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を設けながら更生管の冷却を行うことから、更生管が例えば軸方向一方側から冷えていくことになる。それ故、線膨張による収縮力によって軸方向一方側から強制的に更生管が縮んでいくが、相対的に温度が高い軸方向他方側では未だ冷却による硬化が進んでいないので、既設管の内面と更生管の外面との間に生じる摩擦抵抗は、冷却が進み硬化しつつある更生管の外面と既設管の内面との間に摩擦抵抗に比して小さい。そうして、例えば熱媒体の噴射量を減らしたり、熱媒体の温度を下げたりすることで、更生管における軸方向一方側と軸方向他方側との間の相対的な温度差を徐々に小さくし、更生管における軸方向他方側まで冷却が進むと、更生管をその全長に亘って一律に空気冷却した場合に比して更生管に発生する軸方向の残留応力を低減することができる。   According to this structure, between the axial direction one side and the axial direction other side in a rehabilitation pipe | tube by heat media, such as cooling water and a warm air which are injected from the front-end | tip part of the injection hose previously inserted in the rehabilitation pipe | tube. Since the rehabilitating pipe is cooled while providing a relative temperature difference, the rehabilitating pipe cools from one side in the axial direction, for example. Therefore, the rehabilitation pipe is forcibly shrunk from one side in the axial direction due to the contraction force due to linear expansion, but hardening by cooling has not yet progressed on the other side in the axial direction where the temperature is relatively high. The frictional resistance generated between the outer surface of the rehabilitating pipe and the outer surface of the rehabilitated pipe is smaller than the frictional resistance between the outer surface of the rehabilitating pipe and the inner surface of the existing pipe which is being hardened by cooling. Thus, for example, by reducing the injection amount of the heat medium or lowering the temperature of the heat medium, the relative temperature difference between the one side in the axial direction and the other side in the regenerative pipe is gradually reduced. When the cooling proceeds to the other side in the axial direction of the rehabilitation pipe, the residual stress in the axial direction generated in the rehabilitation pipe can be reduced as compared with the case where the rehabilitation pipe is uniformly air-cooled over its entire length.

ここで、更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を設ける一態様として、上記更生管の施工方法では、上記熱媒体は冷却水であり、上記冷却工程では、上記噴射ホースの先端部から冷却水を噴射しながら、上記更生管における軸方向一方側から他方側へ当該噴射ホースの先端部を移動させることが好ましい。   Here, as one aspect of providing a relative temperature difference between the one axial side and the other axial side of the rehabilitated pipe, in the rehabilitating pipe construction method, the heat medium is cooling water, and the cooling step Then, it is preferable to move the tip end portion of the injection hose from one side in the axial direction of the rehabilitation pipe to the other side while jetting cooling water from the tip end portion of the injection hose.

この構成によれば、更生管における軸方向一方側からスタートし、噴射ホースの先端部から所定時間冷却水を噴射した後、噴射ホースを軸方向他方側へ所定距離だけ移動させ、その地点で所定時間冷却水を噴射するという作業を繰り返すことによって、更生管を軸方向一方側から冷却することが可能となる。   According to this configuration, starting from one side in the axial direction of the rehabilitation pipe, after injecting the cooling water from the tip of the injection hose for a predetermined time, the injection hose is moved to the other side in the axial direction by a predetermined distance, and at that point By repeating the operation of injecting the time cooling water, the rehabilitation pipe can be cooled from one side in the axial direction.

また、更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を設ける別の態様として、上記更生管の施工方法では、上記熱媒体は温風であり、上記冷却工程では、上記更生管における軸方向一方側から軸方向他方側へ冷気を送りながら、当該更生管における軸方向他方側の端部に位置する上記噴射ホースの先端部から温風を噴射することが好ましい。   As another aspect of providing a relative temperature difference between one axial side and the other axial side of the rehabilitated pipe, in the rehabilitating pipe construction method, the heat medium is hot air, and the cooling step Then, it is preferable to inject hot air from the tip end portion of the injection hose located at the end portion on the other axial side of the rehabilitation pipe while feeding cool air from one axial side of the rehabilitation pipe to the other side in the axial direction. .

この構成によれば、更生管における軸方向一方側から軸方向他方側へ冷気を送ることから、更生管が軸方向一方側から冷えていくことになる。もっとも、更生管における軸方向一方側から単に冷気を送るだけでは、更生管における軸方向一方側と軸方向他方側の端部がほぼ同時に冷えて硬化してしまい、線膨張による収縮力によって軸方向一方側から強制的に更生管を縮ませることが困難になるおそれがある。この点、本発明では、更生管における軸方向他方側の端部に位置する噴射ホースの先端部から温風を噴射するので、冷気によって更生管を軸方向一方側から冷やしていく途中で、更生管における軸方向他方側の端部が自然に冷えて硬化するのを抑えることができる。したがって、線膨張による収縮力によって軸方向一方側から強制的に更生管を縮ませて、更生管に発生する残留応力を小さくすることができる。   According to this configuration, since the cool air is sent from the one axial side of the rehabilitation pipe to the other side in the axial direction, the rehabilitation pipe cools from the one side in the axial direction. However, if the cool air is simply sent from one side in the axial direction of the rehabilitation pipe, the ends of the one side and the other side of the rehabilitation pipe are cooled and hardened almost simultaneously, and the contraction force due to linear expansion causes the axial direction. It may be difficult to force the rehabilitation tube to be contracted from one side. In this respect, in the present invention, since warm air is injected from the tip of the injection hose located at the end on the other side in the axial direction of the rehabilitation pipe, the rehabilitation is performed while cooling the rehabilitation pipe from one side in the axial direction by cold air. It can suppress that the edge part of the axial direction other side in a pipe | tube cools naturally and hardens | cures. Therefore, the rehabilitation pipe can be forcibly contracted from one side in the axial direction by the contraction force due to the linear expansion, and the residual stress generated in the rehabilitation pipe can be reduced.

さらに、上記更生管の施工方法では、上記噴射ホースは、全周に亘って斜め後方に冷却水を噴射可能な先端ピットと、耐熱ホースとを備え、噴射される冷却水の水圧を調整することによって、更生管内で停止および移動することが可能に構成されていることが好ましい。   Furthermore, in the construction method of the rehabilitation pipe, the injection hose includes a tip pit capable of injecting cooling water obliquely rearward over the entire circumference and a heat-resistant hose, and adjusts the water pressure of the injected cooling water. Therefore, it is preferable to be configured to be able to stop and move in the rehabilitation pipe.

この構成によれば、噴射ホースは、斜め後方に冷却水を噴射可能な先端ピットを有していることから、例えば噴射される冷却水の水圧を高くすれば、更生管の内面に対する噴射の反力により噴射ホースを軸方向他方側へ向けて前進させることができる。したがって、作業者が入れないような小径の更生管においても、更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を設けながら更生管を冷却することが可能となる。   According to this configuration, since the injection hose has the tip pit capable of injecting the cooling water obliquely rearward, for example, if the water pressure of the injected cooling water is increased, the reaction of the injection to the inner surface of the rehabilitation pipe is increased. The injection hose can be advanced toward the other side in the axial direction by the force. Therefore, even in a small diameter renovated pipe that an operator cannot enter, it is possible to cool the renovated pipe while providing a relative temperature difference between one axial side and the other axial side of the regenerated pipe. .

また、上記更生管の施工方法では、上記一対の封止治具は、上記更生管内に気体を出し入れするための蒸気ホースが接続可能な接続口と、内周部にOリングが設けられた上記貫通孔と、が形成された第1封止治具と、上記接続口のみが形成された第2封止治具と、からなることが好ましい。   In the rehabilitating pipe construction method, the pair of sealing jigs are provided with a connection port to which a steam hose for taking gas in and out of the rehabilitating pipe can be connected, and an O-ring provided on the inner periphery. It is preferable to include a first sealing jig in which a through hole is formed and a second sealing jig in which only the connection port is formed.

この構成によれば、第1および第2封止治具の両方に、更生管内に気体を出し入れするための蒸気ホースが接続可能な接続口が形成されていることから、例えば一方の蒸気ホースから圧縮空気を送り且つ他方の蒸気ホースを閉じれば、更生管を膨張させることができ、また、更生管を膨張させた状態で、両方の蒸気ホースを閉じれば圧力を維持することができる。さらに、例えば一方の蒸気ホースから冷気を送り且つ他方の蒸気ホースを小さく開けば、更生管を軸方向一方側から冷やすことができる。   According to this structure, since the connection port which can connect the steam hose for taking in and out gas in the renovation pipe is formed in both the 1st and 2nd sealing jigs, for example from one steam hose If the compressed air is fed and the other steam hose is closed, the rehabilitation pipe can be expanded, and if both steam hoses are closed while the rehabilitation pipe is expanded, the pressure can be maintained. Furthermore, for example, if cool air is sent from one steam hose and the other steam hose is opened small, the rehabilitation pipe can be cooled from one side in the axial direction.

また、噴射ホースが貫通する貫通孔の内周部にはOリングが設けられているので、噴射ホースがOリングを介して貫通孔に密着した状態で、換言すると、更生管の内圧を維持したまま噴射ホースを更生管内で移動させることができる。   Moreover, since the O-ring is provided in the inner peripheral portion of the through hole through which the injection hose penetrates, the internal pressure of the rehabilitation pipe is maintained in a state where the injection hose is in close contact with the through hole through the O-ring. The injection hose can be moved in the rehabilitation pipe.

以上、説明したように本発明に係る更生管の施工方法によれば、更生管の軸方向に発生する残留応力を低減することができる。   As described above, according to the rehabilitating pipe construction method according to the present invention, it is possible to reduce the residual stress generated in the axial direction of the rehabilitating pipe.

本発明の実施形態に係る更生管の施工方法の概略を示す図である。It is a figure which shows the outline of the construction method of the rehabilitation pipe | tube which concerns on embodiment of this invention. 更生管の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of a rehabilitation pipe | tube. 第1封止治具を模式的に示す断面図である。It is sectional drawing which shows a 1st sealing jig | tool typically. 噴射ホースを模式的に示す図である。It is a figure which shows an injection hose typically. 更生管の施工方法を模式的に説明する図である。It is a figure which illustrates the construction method of a rehabilitation pipe typically. 実施形態2に係る更生管の施工方法を模式的に説明する図である。It is a figure which illustrates typically the construction method of the renovated pipe which concerns on Embodiment 2. FIG. 実施形態2の変形例を模式的に示す図である。It is a figure which shows the modification of Embodiment 2 typically.

以下、本発明を実施するための形態を図面に基づいて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本実施形態に係る更生管の施工方法の概略を示す図である。なお、図1の符号8は蒸気発生加圧機を、また、符号9は高圧洗浄車をそれぞれ示している。この更生管の施工方法は、地中に埋設された下水管等の既設管2の内面を更生管1によってライニングするものである。より詳しくは、この更生管の施工方法は、図1に示すように、発進側マンホールM1から到達側マンホールM2にかけて既設管2内に更生管1を非円筒状の状態で挿入し、挿入された更生管1を加熱して円筒状に復元した後、加圧して拡径させることで、既設管2の内面を更生管1によってライニングするものである。本実施形態に係る更生管の施工方法は、適用される既設管2の径や長さに特に制限はないが、例えば呼び径250mmで長さが50m程度の下水管等に好適に用いることができる。
(Embodiment 1)
FIG. 1 is a diagram showing an outline of a rehabilitation pipe construction method according to the present embodiment. In addition, the code | symbol 8 of FIG. 1 has shown the vapor generation pressurizer, and the code | symbol 9 has each shown the high pressure washing vehicle. In this rehabilitating pipe construction method, the inner surface of an existing pipe 2 such as a sewage pipe buried in the ground is lined by the rehabilitating pipe 1. More specifically, as shown in FIG. 1, this rehabilitation pipe construction method was inserted by inserting the rehabilitation pipe 1 into the existing pipe 2 in a non-cylindrical state from the starting side manhole M1 to the arrival side manhole M2. After the rehabilitation pipe 1 is heated and restored to a cylindrical shape, the inner surface of the existing pipe 2 is lined by the rehabilitation pipe 1 by pressurizing and expanding the diameter. Although the construction method of the rehabilitating pipe according to the present embodiment is not particularly limited in the diameter and length of the existing pipe 2 to be applied, for example, it is preferably used for a sewer pipe having a nominal diameter of 250 mm and a length of about 50 m. it can.

更生管の施工方法の説明に先立ち、当該施工方法で用いられる更生管1、封止治具3,4、噴射ホース5について説明する。   Prior to the description of the rehabilitation pipe construction method, the rehabilitation pipe 1, the sealing jigs 3 and 4 and the injection hose 5 used in the construction method will be described.

図2は、本実施形態に係る更生管1の一例を模式的に示す斜視図である。更生管1は、ポリ塩化ビニルや高密度ポリエチレンなどの熱可塑性樹脂によって既設管2の内径よりも小さな外径を有する円筒状に形成されたものである。この更生管1は、既設管2に挿入される前は、図2(a)に示すように、非円筒状に形成されていて、形状記憶温度(例えば、70℃)に加熱されることによって、図2(b)に示すように、元の円筒状に復元されるように構成されている。なお、更生管1の外径は、特に規定しないが、既設管2の呼び径250mmの場合には例えば235mmが好ましい。   FIG. 2 is a perspective view schematically showing an example of the rehabilitation pipe 1 according to the present embodiment. The rehabilitation pipe 1 is formed in a cylindrical shape having an outer diameter smaller than the inner diameter of the existing pipe 2 by a thermoplastic resin such as polyvinyl chloride or high density polyethylene. The rehabilitation pipe 1 is formed in a non-cylindrical shape and is heated to a shape memory temperature (for example, 70 ° C.) as shown in FIG. 2A before being inserted into the existing pipe 2. As shown in FIG. 2B, the original cylindrical shape is restored. The outer diameter of the rehabilitated pipe 1 is not particularly defined, but is preferably 235 mm, for example, when the existing pipe 2 has a nominal diameter of 250 mm.

図3は、更生管1の両端を塞ぐ一対の封止治具3,4のうち、第1封止治具3を模式的に示す断面図である。第1封止治具3は、更生管1における発進側端部に取付けられるものである。この第1封止治具3は、図3に示すように、円筒状に復元された更生管1の内側に挿入される挿入部13と、挿入部13にボルト33を介して連結された、略円板状の蓋部23とを有している。挿入部13の外周面には、更生管1の気密性が保たれるように円環状のシール材13aが配設されているとともに、更生管1からの抜け出しを防止するべく、更生管1の内周面に引っ掛る爪部13bが形成されている。蓋部23には、それぞれ当該蓋部23を貫通する接続口23aと貫通孔23bとが形成されている。接続口23aは、蒸気、圧縮空気といった気体を更生管1内に出し入れするための第1蒸気ホース6が接続可能に構成されている。なお、第1蒸気ホース6には開閉弁16(図5および図6参照)が設けられており、第1蒸気ホース6が完全に閉じられた状態、第1蒸気ホース6が若干開いている状態、第1蒸気ホース6が完全に解放されている状態等に切換えることが可能となっている。貫通孔23bは、その内周部にOリング43がセットされていて、後述する噴射ホース5の外周面にOリング43が接触することで、噴射ホース5が密着状態で当該貫通孔23bを貫通するように構成されている。   FIG. 3 is a cross-sectional view schematically showing the first sealing jig 3 out of the pair of sealing jigs 3 and 4 that block both ends of the rehabilitation pipe 1. The first sealing jig 3 is attached to the start side end of the rehabilitation pipe 1. As shown in FIG. 3, the first sealing jig 3 is connected to the insertion portion 13 to be inserted inside the rehabilitation pipe 1 restored to a cylindrical shape, and connected to the insertion portion 13 via a bolt 33. A substantially disc-shaped lid portion 23. An annular seal member 13a is disposed on the outer peripheral surface of the insertion portion 13 so that the hermeticity of the rehabilitation pipe 1 is maintained, and in order to prevent the rehabilitation pipe 1 from coming out, A claw portion 13b that is hooked on the inner peripheral surface is formed. The lid portion 23 is formed with a connection port 23a and a through hole 23b that penetrate the lid portion 23, respectively. The connection port 23a is configured to be connectable to the first steam hose 6 for taking gas such as steam and compressed air into and out of the rehabilitation pipe 1. The first steam hose 6 is provided with an on-off valve 16 (see FIGS. 5 and 6), the first steam hose 6 is completely closed, and the first steam hose 6 is slightly opened. It is possible to switch to a state where the first steam hose 6 is completely released. The through-hole 23b has an O-ring 43 set on the inner periphery thereof, and the O-ring 43 contacts the outer peripheral surface of the injection hose 5 described later, so that the injection hose 5 penetrates the through-hole 23b in a close contact state. Is configured to do.

なお、第1封止治具3と共に更生管1の両端を塞ぐ一対の封止治具3,4を構成する第2封止治具4は、貫通孔23bが形成されていないことを除けば、第1封止治具3と同様に構成されている。すなわち、第2封止治具4も、挿入部14と、接続口24aが形成された蓋部24とを有していて、接続口24aは、気体を更生管1内に出し入れするための第2蒸気ホース7が接続可能に構成されている。また、第2蒸気ホース7にも、第1蒸気ホース6と同様に開閉弁17が設けられており、第2蒸気ホース7が完全に閉じられた状態、第2蒸気ホース7が若干開いている状態、第2蒸気ホース7が完全に解放されている状態等に切換えることが可能となっている。この第2封止治具4は、更生管1における到達側端部に取付けられる。   In addition, the 2nd sealing jig 4 which comprises a pair of sealing jigs 3 and 4 which plugs up both ends of the rehabilitation pipe | tube 1 with the 1st sealing jig 3 is except that the through-hole 23b is not formed. The first sealing jig 3 is configured in the same manner. That is, the second sealing jig 4 also has the insertion portion 14 and the lid portion 24 in which the connection port 24a is formed, and the connection port 24a is a first for taking gas into and out of the rehabilitation pipe 1. Two steam hoses 7 are configured to be connectable. Further, the second steam hose 7 is also provided with an on-off valve 17 like the first steam hose 6, and the second steam hose 7 is slightly opened in a state where the second steam hose 7 is completely closed. It is possible to switch to a state, a state where the second steam hose 7 is completely released, and the like. The second sealing jig 4 is attached to the reaching end of the rehabilitating tube 1.

図4は、噴射ホース5を模式的に示す図である。この噴射ホース5は、第1および第2封止治具3,4によって更生管1の両端を塞ぐ際に更生管1内に挿入されるものであり、図4(a)に示すように、耐熱ホース15と、耐熱ホース15の先端に設けられた先端ピット25と、を備えている。先端ピット25には、φ1mm〜φ2mmの噴射口25aが周方向に間欠的に8〜10か所形成されている。これにより、先端ピット25は、冷却水(熱媒体)CWを全周に亘って斜め後方に噴射することが可能になっている。この噴射ホース5は、地上に設置された高圧洗浄車9のホース等に連結されており、噴射される冷却水CWの水圧を調整することによって、更生管1内で停止および移動することが可能に構成されている。具体的には、冷却水CWの水圧を相対的に低く(例えば2MPa未満に)すると、先端ピット25は移動せず同じ位置で冷却水CWを噴射する一方、冷却水CWの水圧を相対的に高く(例えば2〜10MPaに)すると、更生管1の内面に対する噴射の反力により、図4(b)の白抜き矢印で示すように、先端ピット25を到達側へ向けて前進させることができるように構成されている。なお、噴射ホース5が貫通する貫通孔23bの内周部にはOリング43がセットされているので、噴射ホース5がOリング43を介して貫通孔23bに密着した状態で、換言すると、更生管1の内圧を維持したまま噴射ホース5を更生管1内で移動させることができる。   FIG. 4 is a view schematically showing the injection hose 5. This injection hose 5 is inserted into the rehabilitation pipe 1 when both ends of the rehabilitation pipe 1 are closed by the first and second sealing jigs 3 and 4, as shown in FIG. A heat-resistant hose 15 and a tip pit 25 provided at the tip of the heat-resistant hose 15 are provided. In the tip pit 25, 8 to 10 injection holes 25a of φ1 mm to φ2 mm are intermittently formed in the circumferential direction. As a result, the tip pit 25 can inject the cooling water (heat medium) CW obliquely rearward over the entire circumference. This injection hose 5 is connected to a hose of a high-pressure washing vehicle 9 installed on the ground, and can be stopped and moved in the rehabilitation pipe 1 by adjusting the water pressure of the injected cooling water CW. It is configured. Specifically, when the water pressure of the cooling water CW is relatively low (for example, less than 2 MPa), the tip pit 25 does not move and the cooling water CW is injected at the same position, while the water pressure of the cooling water CW is relatively When it is increased (for example, 2 to 10 MPa), the tip pit 25 can be advanced toward the arrival side by the reaction force of the jet against the inner surface of the rehabilitation pipe 1 as shown by the white arrow in FIG. It is configured as follows. In addition, since the O-ring 43 is set in the inner peripheral portion of the through-hole 23b through which the injection hose 5 passes, in other words, the injection hose 5 is in close contact with the through-hole 23b through the O-ring 43. The injection hose 5 can be moved in the rehabilitation pipe 1 while maintaining the internal pressure of the pipe 1.

次いで、更生管の施工方法について説明する。なお、図5では、図の右側を発進側とし、図の左側を到達側として既設管2や更生管1等を図示している。   Next, a method for constructing the rehabilitation pipe will be described. In FIG. 5, the existing pipe 2, the rehabilitation pipe 1, and the like are illustrated with the right side of the figure as the start side and the left side of the figure as the arrival side.

本実施形態の更生管の施工方法は、挿入工程と、復元工程と、閉塞工程と、拡径工程と、冷却工程と、を含んでいる。   The construction method of the rehabilitation pipe of this embodiment includes an insertion process, a restoration process, a closing process, a diameter expansion process, and a cooling process.

先ず、挿入工程では、熱可塑性樹脂からなる更生管1を、図2(a)に示すような非円筒状の状態で既設管2内に挿入する。この際、更生管1の先端に牽引ワイヤー(図示せず)を連結し、ウインチ(図示せず)を駆動して牽引ワイヤーを巻き取ることで、更生管1を既設管2の内部に引き込むようにしてもよい。更生管1の既設管2内への挿入が完了すると、発進側マンホールM1および到達側マンホールM2において、既設管2の管口より所定長さを残して更生管1の両端部を切断する。なお、所定長さは、少なくとも、第1および第2封止治具3,4の挿入部13,14の軸方向の長さよりも長い値に設定される。   First, in the insertion step, the rehabilitation pipe 1 made of a thermoplastic resin is inserted into the existing pipe 2 in a non-cylindrical state as shown in FIG. At this time, a pulling wire (not shown) is connected to the tip of the rehabilitation pipe 1 and a winch (not shown) is driven to wind the pulling wire so that the rehabilitation pipe 1 is drawn into the existing pipe 2. It may be. When the insertion of the rehabilitation pipe 1 into the existing pipe 2 is completed, the both ends of the rehabilitation pipe 1 are cut at the start side manhole M1 and the arrival side manhole M2 leaving a predetermined length from the pipe opening of the existing pipe 2. The predetermined length is set to a value that is at least longer than the axial length of the insertion portions 13 and 14 of the first and second sealing jigs 3 and 4.

次の復元工程では、既設管2内に挿入された更生管1を加熱することによって円筒状に復元する。具体的には、更生管1の両端部に加熱袋(図示せず)をそれぞれ被せ、蒸気発生加圧機8から第1蒸気ホース6を介して蒸気を加熱袋内に供給し、更生管1を例えば表面温度が70℃以上になるまで加熱して、元の円筒状に復元する。   In the next restoration step, the rehabilitation pipe 1 inserted into the existing pipe 2 is heated to be restored to a cylindrical shape. Specifically, heating bags (not shown) are respectively placed on both ends of the rehabilitation pipe 1, steam is supplied into the heating bag from the steam generation pressurizer 8 through the first steam hose 6, and the rehabilitation pipe 1 is For example, it is heated until the surface temperature reaches 70 ° C. or higher to restore the original cylindrical shape.

次の閉塞工程では、円筒状に復元された更生管1の両端を第1および第2封止治具3,4によって、噴射ホース5の先端部が更生管1内に挿入された状態で塞ぐ。具体的には、更生管1の両端部から加熱袋を取り除いた後、貫通孔23bから噴射ホース5が挿入部13側に突出した状態で、第1封止治具3を更生管1における発進側端部に取付けるとともに、第2封止治具4を更生管1における到達側端部に取付ける。これにより、先端ピット25が更生管1における発進側端部に位置した状態で、更生管1の両端が塞がれることになる。   In the next closing step, both ends of the rehabilitated pipe 1 restored to the cylindrical shape are closed by the first and second sealing jigs 3 and 4 with the tip of the injection hose 5 being inserted into the rehabilitated pipe 1. . Specifically, after removing the heating bag from both ends of the rehabilitation pipe 1, the first sealing jig 3 is started in the rehabilitation pipe 1 in a state where the injection hose 5 protrudes from the through hole 23 b toward the insertion part 13. While attaching to a side edge part, the 2nd sealing jig 4 is attached to the arrival side edge part in the rehabilitation pipe | tube 1. FIG. Thereby, both ends of the rehabilitation pipe 1 are blocked in a state where the tip pit 25 is located at the start side end of the rehabilitation pipe 1.

次の拡径工程では、両端が塞がれた更生管1を加圧することによって拡径させる。具体的には、第1封止治具3の接続口23aに第1蒸気ホース6を取り付けるとともに、第2封止治具4の接続口24aに第2蒸気ホース7を取り付ける。そうして、第1蒸気ホース6の開閉弁16を開放するとともに、第2蒸気ホース7の開閉弁17を完全に閉じた状態で、蒸気発生加圧機8から第1蒸気ホース6を介して圧縮空気を更生管1内に供給する。これにより、更生管1を例えば0.08〜0.15MPaで拡径させ、既設管2の内面を更生管1によってライニングする。なお、更生管1が十分に拡径した後は、第1蒸気ホース6の開閉弁16を完全に閉じて圧縮空気の供給を止めるとともに、第2蒸気ホース7の開閉弁17を完全に閉じてまたは若干開いて圧力を維持する。   In the next diameter expansion step, the diameter of the rehabilitation pipe 1 whose both ends are closed is increased by pressurization. Specifically, the first steam hose 6 is attached to the connection port 23 a of the first sealing jig 3, and the second steam hose 7 is attached to the connection port 24 a of the second sealing jig 4. Then, the opening / closing valve 16 of the first steam hose 6 is opened and the opening / closing valve 17 of the second steam hose 7 is completely closed, and compression is performed from the steam generating pressurizer 8 through the first steam hose 6. Air is supplied into the rehabilitation pipe 1. Thereby, the diameter of the rehabilitation pipe | tube 1 is expanded by 0.08-0.15 MPa, for example, and the inner surface of the existing pipe | tube 2 is lined with the rehabilitation pipe | tube 1. FIG. After the rehabilitation pipe 1 has sufficiently expanded in diameter, the on-off valve 16 of the first steam hose 6 is completely closed to stop the supply of compressed air, and the on-off valve 17 of the second steam hose 7 is completely closed. Or slightly open to maintain pressure.

次の冷却工程では、拡径した更生管1内で、噴射ホース5の先端部から熱媒体を噴射することによって、更生管1における発進側(軸方向一方側)と到達側(軸方向他方側)との間で相対的な温度差を設けながら更生管1を冷却する。具体的には、本実施形態の冷却工程では、先端ピット25の噴射口25aから冷却水CWを噴射しながら、更生管1における発進側から到達側へ先端ピット25を移動させることで、更生管1を発進側から到達側へ向かって順次冷していく。   In the next cooling step, by injecting the heat medium from the tip of the injection hose 5 in the expanded regenerative pipe 1, the start side (one axial direction) and the arrival side (the other axial side) The rehabilitation pipe 1 is cooled while providing a relative temperature difference with the above. Specifically, in the cooling process of the present embodiment, the regenerated pipe is moved by moving the front pit 25 from the start side to the arrival side in the rehabilitated pipe 1 while injecting the cooling water CW from the injection port 25a of the front pit 25. 1 is gradually cooled from the start side to the arrival side.

より詳しくは、図5(a)に示すように、先端ピット25を移動させることなく、先端ピット25から例えば2MPa未満の水圧で20℃の冷却水CWを噴射することによって、軸方向における約5mの範囲を約10分程度冷却して、更生管1における発進側端部の温度を約30℃まで下げる。その後、図5(b)に示すように、先端ピット25から例えば2〜10MPaの水圧で冷却水CWを噴射し、更生管1の内面に対する噴射の反力により先端ピット25を到達側へ向けて約5m前進させる。そうして、図5(c)に示すように、約5m前進した地点において再び、先端ピット25から例えば2MPa未満の水圧で20℃の冷却水CWを噴射することによって、約5mの範囲を約10分程度冷却して、当該地点における更生管1の温度を約30℃まで下げる。これを繰り返すことで、更生管1を発進側から到達側へ向かって冷していく。なお、更生管1内に噴射された冷却水CWは、既設管2の管口より所定長さ突出した更生管1または第1若しくは第2封止治具3,4に形成された排出口(図示せず)から排出されるので、更生管1内に溜まることはない。   More specifically, as shown in FIG. 5 (a), the coolant water CW at 20 ° C. is injected from the tip pit 25 at a water pressure of, for example, less than 2 MPa without moving the tip pit 25, thereby approximately 5 m in the axial direction. Is cooled for about 10 minutes, and the temperature at the start side end of the rehabilitation pipe 1 is lowered to about 30 ° C. Thereafter, as shown in FIG. 5B, the cooling water CW is injected from the tip pit 25 with a water pressure of 2 to 10 MPa, for example, and the tip pit 25 is directed toward the arrival side by the reaction force of the jet against the inner surface of the rehabilitation pipe 1. Move forward about 5m. Then, as shown in FIG. 5 (c), at a point advanced by about 5 m, by injecting cooling water CW of 20 ° C. with a water pressure of, for example, less than 2 MPa from the tip pit 25, the range of about 5 m is reduced to about 5 m. Cool for about 10 minutes and lower the temperature of the rehabilitation pipe 1 at that point to about 30 ° C. By repeating this, the rehabilitation pipe 1 is cooled from the start side toward the arrival side. The cooling water CW injected into the rehabilitating pipe 1 is discharged from the rehabilitating pipe 1 or the first or second sealing jigs 3 and 4 protruding a predetermined length from the pipe opening of the existing pipe 2 ( Since it is discharged from (not shown), it does not accumulate in the rehabilitation pipe 1.

このように、更生管1を発進側から到達側へ向かって冷却すると、線膨張による収縮力によって発進側から強制的に更生管1が縮んでいく。ここで、相対的に温度が高い到達側では未だ冷却による硬化が進んでいないので、既設管2の内面と更生管1の外面との間に生じる摩擦抵抗は、相対的に小さい。それ故、小さな摩擦抵抗しか生じない状態で、発進側から到達側に向かって更生管1の硬化が進行する。これにより、更生管1における到達側端部まで冷却が進むと、更生管1をその全長に亘って一律に空気冷却した場合に比して、更生管1に発生する残留応力を低減することができる。   Thus, when the rehabilitation pipe 1 is cooled from the start side toward the arrival side, the rehabilitation pipe 1 is forcibly contracted from the start side due to the contraction force due to linear expansion. Here, since the hardening by cooling has not yet progressed on the reach side where the temperature is relatively high, the frictional resistance generated between the inner surface of the existing pipe 2 and the outer surface of the renovated pipe 1 is relatively small. Therefore, curing of the rehabilitating tube 1 proceeds from the starting side to the reaching side in a state where only a small frictional resistance is generated. Thereby, when cooling progresses to the reaching side end in the rehabilitation pipe 1, the residual stress generated in the rehabilitation pipe 1 can be reduced as compared with the case where the rehabilitation pipe 1 is uniformly air-cooled over its entire length. it can.

(実施形態2)
上記実施形態1では、冷却水CWを噴射しながら発進側から到達側に向かって先端ピット25を移動させることで、発進側と到達側との間で相対的な温度差を設けながら更生管1を冷却したが、本実施形態は、発進側から低温の圧縮空気CAを供給するとともに、到達側端部を高温に維持することで、発進側と到達側との間で相対的な温度差を設ける点が、上記実施形態1と異なるものである。以下、実施形態1と異なる点を中心に説明する。
(Embodiment 2)
In the first embodiment, the regenerative pipe 1 is provided with a relative temperature difference between the start side and the arrival side by moving the tip pit 25 from the start side toward the arrival side while injecting the cooling water CW. However, the present embodiment supplies a low-temperature compressed air CA from the start side and maintains the reaching end at a high temperature, thereby providing a relative temperature difference between the start side and the reaching side. The provision point is different from that of the first embodiment. Hereinafter, a description will be given focusing on differences from Embodiment 1.

本実施形態の更生管の施工方法では、実施形態1と同じ更生管1、第1および第2封止治具3,4並びに噴射ホース5を用いる。また、挿入工程、復元工程および閉塞工程については、上記実施形態1と全く同様なので説明を省略する。なお、下記図6では、図の右側を発進側とし、図の左側を到達側として既設管2や更生管1等を図示している。   In the rehabilitation pipe construction method of this embodiment, the same rehabilitation pipe 1 as in the first embodiment, the first and second sealing jigs 3 and 4, and the injection hose 5 are used. In addition, the insertion process, the restoration process, and the closing process are exactly the same as those in the first embodiment, and thus description thereof is omitted. In FIG. 6 below, the existing pipe 2 and the rehabilitation pipe 1 are shown with the right side of the figure as the start side and the left side of the figure as the arrival side.

拡径工程では、第1蒸気ホース6の開閉弁16を開放するとともに、第2蒸気ホース7の開閉弁17を完全に閉じた状態で、蒸気発生加圧機8から第1蒸気ホース6を介して圧縮空気を更生管1内に供給することによって更生管1を例えば0.08〜0.15MPaで拡径させ、既設管2の内面を更生管1によってライニングする。更生管1が十分に拡径した後は、第1蒸気ホース6の開閉弁16を開いたままにするとともに、第2蒸気ホース7の開閉弁17を若干開く。   In the diameter expansion step, the opening / closing valve 16 of the first steam hose 6 is opened, and the opening / closing valve 17 of the second steam hose 7 is completely closed, and the steam generation pressurizer 8 passes through the first steam hose 6. By supplying compressed air into the rehabilitation pipe 1, the rehabilitation pipe 1 is expanded in diameter by, for example, 0.08 to 0.15 MPa, and the inner surface of the existing pipe 2 is lined by the rehabilitation pipe 1. After the diameter of the rehabilitation pipe 1 is sufficiently expanded, the on-off valve 16 of the first steam hose 6 is kept open and the on-off valve 17 of the second steam hose 7 is slightly opened.

次の冷却工程では、蒸気発生加圧機8から第1蒸気ホース6を介して、例えば5〜40℃の低温の圧縮空気(冷気)CAを更生管1内に供給することによって、更生管1を発進側から到達側に向かって冷却する。より詳しくは、第1蒸気ホース6を介して発進側から低温の圧縮空気CAをどんどん供給すると、更生管1内の温かい空気は、開閉弁17が若干開かれた第2蒸気ホース7から更生管1外に排出される。これにより、更生管1内の圧力が維持されたまま、更生管1が発進側から到達側に向かって冷却されることになる。このような低温の圧縮空気CAによる冷却を例えば30〜60分間継続することにより、更生管1を到達側端部まで冷却し硬化させることが可能となる。   In the next cooling step, the regenerated pipe 1 is supplied from the steam generating pressurizer 8 through the first steam hose 6 by supplying compressed air (cold air) CA at a low temperature of 5 to 40 ° C., for example, into the regenerated pipe 1. Cool from the start side to the arrival side. More specifically, when low temperature compressed air CA is supplied from the start side through the first steam hose 6, the warm air in the rehabilitation pipe 1 is regenerated from the second steam hose 7 with the opening / closing valve 17 slightly opened. 1 is discharged outside. As a result, the rehabilitation pipe 1 is cooled from the start side toward the arrival side while the pressure in the rehabilitation pipe 1 is maintained. By continuing such cooling with the low-temperature compressed air CA for 30 to 60 minutes, for example, the rehabilitation pipe 1 can be cooled to the end portion on the arrival side and cured.

なお、拡径工程から冷却工程への一連の流れにおいて、第2蒸気ホース7の開閉弁17を完全に閉じた状態で、第1蒸気ホース6を介して低温の圧縮空気CAを更生管1内に供給し、更生管1が十分に拡径した後、第2蒸気ホース7の開閉弁17を若干開くとともに、低温の圧縮空気CAの供給を継続して冷却工程に移行するようにしてもよい。このようにしても、更生管1が拡径するまでの時間は短時間なので、更生管1全体が冷却されることはない。また、第2蒸気ホース7の開閉弁17を完全に閉じた状態で、蒸気よりも低温で且つ低温の圧縮空気CAよりも高温の圧縮空気を、第1蒸気ホース6を介して更生管1内に供給し、更生管1が十分に拡径した後、第2蒸気ホース7の開閉弁17を若干開くとともに、第1蒸気ホース6を介して供給される気体を低温の圧縮空気CAに切換えることで、冷却工程に移行するようにしてもよい。   In a series of flows from the diameter expansion process to the cooling process, the low-temperature compressed air CA is supplied to the regenerated pipe 1 through the first steam hose 6 with the on-off valve 17 of the second steam hose 7 completely closed. After the rehabilitation pipe 1 has sufficiently expanded in diameter, the on-off valve 17 of the second steam hose 7 may be slightly opened and the supply of the low-temperature compressed air CA may be continued to proceed to the cooling process. . Even if it does in this way, since the time until the rehabilitation pipe 1 expands is short, the rehabilitation pipe 1 as a whole is not cooled. Further, in a state where the on-off valve 17 of the second steam hose 7 is completely closed, compressed air having a temperature lower than that of the steam and higher than that of the compressed air CA having a temperature lower than that of the steam is passed through the first steam hose 6 into the rehabilitation pipe 1. After the rehabilitation pipe 1 has sufficiently expanded in diameter, the on-off valve 17 of the second steam hose 7 is slightly opened, and the gas supplied through the first steam hose 6 is switched to the low-temperature compressed air CA. Thus, the cooling process may be performed.

ところで、上述の如く、低温の圧縮空気CAによる冷却は例えば30〜60分間行われるため、更生管1における発進側から単に低温の圧縮空気CAを供給するだけでは、更生管1における発進側と到達側端部がほぼ同時に冷えて硬化してしまい、線膨張による収縮力によって片側から強制的に更生管1を縮ませることが困難になる場合がある。   By the way, as described above, the cooling with the low-temperature compressed air CA is performed, for example, for 30 to 60 minutes. Therefore, simply supplying the low-temperature compressed air CA from the start side of the rehabilitation pipe 1 reaches the start side of the rehabilitation pipe 1. The side end portions may be cooled and hardened almost simultaneously, and it may be difficult to force the rehabilitation tube 1 to be forcibly contracted from one side due to the contraction force due to linear expansion.

そこで、本実施形態の更生管の施工方法では、更生管1における発進側から到達側へ低温の圧縮空気CAを送りながら、更生管1における到達側端部に位置する噴射ホース5の先端ピット25から温風(熱媒体)WAを噴射することで、更生管1における到達側端部を高温に保つようにしている。   Therefore, in the rehabilitation pipe construction method of this embodiment, the tip pit 25 of the injection hose 5 located at the arrival side end of the rehabilitation pipe 1 while sending low-temperature compressed air CA from the start side to the arrival side of the rehabilitation pipe 1. By injecting warm air (heat medium) WA from the end, the reaching end of the rehabilitation pipe 1 is kept at a high temperature.

具体的には、第2蒸気ホース7の開閉弁17を若干開くとともに低温の圧縮空気CAの供給を始めるのと同時またはそれに前後して、図6(a)に示すように、先端ピット25から例えば2〜10MPaの水圧で40〜60℃の温水HWを噴射し、更生管1の内面に対する噴射の反力により先端ピット25を更生管1の到達側端部まで前進させる。次いで、図6(b)に示すように、更生管1における発進側からの低温の圧縮空気CAの供給を継続しながら、更生管1における到達側端部に位置する噴射ホース5の先端ピット25から45〜60℃の温風WAを噴射する。なお、この場合には、高圧洗浄車9のホース等に連結されていた耐熱ホース15を、例えば、蒸気発生加圧機8とは別の蒸気発生加圧機(図示せず)に連結し直す。そうして、先端ピット25からの温風WAの噴射量を徐々に減らし、または、温風WAの温度を徐々に下げ、最終的には、図6(c)に示すように、先端ピット25からの温風の噴射を止めて、低温の圧縮空気CAによって更生管1の到達側端部を冷却する。   Specifically, as shown in FIG. 6A, the opening / closing valve 17 of the second steam hose 7 is slightly opened and the supply of the low-temperature compressed air CA is started or after that, as shown in FIG. For example, hot water HW of 40 to 60 ° C. is injected at a water pressure of 2 to 10 MPa, and the tip pit 25 is advanced to the arrival side end of the rehabilitation pipe 1 by the reaction force of the injection against the inner surface of the rehabilitation pipe 1. Next, as shown in FIG. 6 (b), the tip pit 25 of the injection hose 5 located at the end on the arrival side in the rehabilitation pipe 1 while continuing to supply the low-temperature compressed air CA from the start side in the rehabilitation pipe 1. To 45 to 60 ° C. hot air WA. In this case, the heat-resistant hose 15 connected to the hose or the like of the high-pressure washing vehicle 9 is connected again to, for example, a steam generating pressurizer (not shown) different from the steam generating pressurizer 8. Then, the injection amount of the hot air WA from the front pit 25 is gradually reduced, or the temperature of the hot air WA is gradually lowered. Finally, as shown in FIG. Is stopped, and the end portion on the reaching side of the rehabilitation pipe 1 is cooled by the low-temperature compressed air CA.

以上のように、本実施形態によれば、更生管1における到達側端部に位置する噴射ホース5の先端ピット25から温風WAを噴射するので、低温の圧縮空気CAによって更生管1を発進側から冷やしていく途中で、更生管1における到達側端部が自然に冷えて硬化するのを抑えることができる。したがって、線膨張による収縮力によって発進側から強制的に更生管1を縮ませて、更生管1に発生する残留応力を小さくすることができる。   As described above, according to the present embodiment, since the warm air WA is injected from the tip pit 25 of the injection hose 5 located at the end on the arrival side of the rehabilitation pipe 1, the rehabilitation pipe 1 is started by the low-temperature compressed air CA. In the middle of cooling from the side, it is possible to prevent the reaching-side end portion of the rehabilitation pipe 1 from being naturally cooled and cured. Therefore, the rehabilitation pipe 1 can be forcibly contracted from the start side by the contraction force due to the linear expansion, and the residual stress generated in the rehabilitation pipe 1 can be reduced.

−実施形態2の変形例−
上記実施形態2では、第2蒸気ホース7の開閉弁17を若干開くとともに低温の圧縮空気CAの供給を始めるのと同時またはそれに前後して、先端ピット25を更生管1の到達側端部まで前進させたが、本変形例は、予め先端ピット25を更生管1の到達側端部に配置しておく点が、上記実施形態2と異なるものである。
-Modification of Embodiment 2-
In the second embodiment, the opening / closing valve 17 of the second steam hose 7 is slightly opened and the supply of the low-temperature compressed air CA is started or at the same time or before, the leading end pit 25 is extended to the end of the rehabilitating pipe 1 at the arrival side. Although advanced, this modified example is different from the second embodiment in that the tip pit 25 is arranged in advance at the end of the rehabilitating tube 1.

具体的には、本変形例では、閉塞工程において、第2封止治具4を更生管1における発進側端部に取付けるとともに、貫通孔23bから噴射ホース5が挿入部13側に突出した状態で、第1封止治具3を更生管1における到達側端部に取付ける。これにより、先端ピット25が更生管1における到達側端部に位置した状態で、更生管1の両端が塞がれることになる。   Specifically, in this modification, in the closing step, the second sealing jig 4 is attached to the start side end portion of the rehabilitation pipe 1, and the injection hose 5 protrudes from the through hole 23b to the insertion portion 13 side. Then, the 1st sealing jig 3 is attached to the arrival side edge part in the rehabilitation pipe | tube 1. FIG. Thereby, both ends of the rehabilitation pipe 1 are closed in a state where the tip pit 25 is located at the reaching end of the rehabilitation pipe 1.

後は、低温の圧縮空気CAの供給を始めるのと同時またはそれに前後して、図7に示すように、更生管1における到達側端部に位置する噴射ホース5の先端ピット25から45〜60℃の温風WAを噴射すれば、上記実施形態2と同様に、更生管1における到達側端部を高温に保ちつつ、低温の圧縮空気CAによって更生管1を発進側から冷やしていくことができる。   Thereafter, at the same time as or before and after the start of the supply of the low-temperature compressed air CA, as shown in FIG. 7, from the front end pits 25 to 45 to 60 of the injection hose 5 located at the reaching end of the rehabilitation pipe 1. If hot air WA at 0 ° C. is injected, the regenerated pipe 1 can be cooled from the starting side by the low-temperature compressed air CA while keeping the reaching end of the regenerated pipe 1 at a high temperature, as in the second embodiment. it can.

(その他の実施形態)
本発明は、実施形態に限定されず、その精神または主要な特徴から逸脱することなく他の色々な形で実施することができる。
(Other embodiments)
The present invention is not limited to the embodiments, and can be implemented in various other forms without departing from the spirit or main features thereof.

上記各実施形態では、第1および第2封止治具3,4は、挿入部13,14を更生管1の内側に挿入することで、更生管1の端部にそれぞれ取り付けられたが、これに加えて、更生管1の外周部に締結バンド(図示せず)を巻き付けて、締結バンドと挿入部13,14とで更生管1を径方向に挟むことで、第1および第2封止治具3,4を更生管1に対しより強固に取り付けてもよい。   In each of the above embodiments, the first and second sealing jigs 3 and 4 are respectively attached to the end portions of the rehabilitation pipe 1 by inserting the insertion portions 13 and 14 into the rehabilitation pipe 1. In addition, a fastening band (not shown) is wound around the outer periphery of the rehabilitated tube 1 and the rehabilitated tube 1 is sandwiched in the radial direction between the fastening band and the insertion portions 13 and 14, so that the first and second seals are sealed. The fixing jigs 3 and 4 may be more firmly attached to the rehabilitation pipe 1.

このように、上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   As described above, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明によると、更生管の軸方向に発生する残留応力を低減することができるので、更生管の施工方法に適用して極めて有益である。   According to the present invention, since the residual stress generated in the axial direction of the rehabilitated pipe can be reduced, it is extremely useful when applied to a method for constructing the rehabilitated pipe.

1 更生管
2 既設管
3 第1封止治具
4 第2封止治具
5 噴射ホース
6 第1蒸気ホース
7 第2蒸気ホース
15 耐熱ホース
23a 接続口
23b 貫通孔
24a 接続口
25 先端ピット(先端部)
43 Oリング
CA 低温の圧縮空気(冷気)
CW 冷却水(熱媒体)
WA 温風
DESCRIPTION OF SYMBOLS 1 Rehabilitation pipe 2 Existing pipe 3 1st sealing jig 4 2nd sealing jig 5 Injection hose 6 1st steam hose 7 2nd steam hose 15 Heat-resistant hose 23a Connection port 23b Through-hole 24a Connection port 25 Tip pit (tip Part)
43 O-ring CA Low-temperature compressed air (cold air)
CW Cooling water (heat medium)
WA warm air

Claims (5)

既設管の内面を更生管によってライニングする更生管の施工方法であって、
上記既設管の内径よりも小さな外径を有する熱可塑性樹脂からなる上記更生管を、非円筒状の状態で上記既設管内に挿入する挿入工程と、
上記既設管内に挿入された更生管を加熱することによって円筒状に復元する復元工程と、
上記円筒状に復元された更生管の両端を、噴射ホースが密着状態で貫通する貫通孔が形成された一の封止治具を含む一対の封止治具によって、当該噴射ホースの先端部が当該更生管内に挿入された状態で塞ぐ閉塞工程と、
上記両端が塞がれた更生管を内部から加圧することによって拡径させる拡径工程と、
上記拡径した更生管内で、上記噴射ホースの先端部から熱媒体を噴射することによって、当該更生管における軸方向一方側と軸方向他方側との間で相対的な温度差を設けながら当該更生管を冷却する冷却工程と、を含むことを特徴とする更生管の施工方法。
A rehabilitation pipe construction method in which the inner surface of an existing pipe is lined with a rehabilitation pipe,
An insertion step of inserting the rehabilitation pipe made of a thermoplastic resin having an outer diameter smaller than the inner diameter of the existing pipe into the existing pipe in a non-cylindrical state;
A restoration step of restoring the cylindrical shape by heating the rehabilitation pipe inserted into the existing pipe;
The tip of the injection hose is formed by a pair of sealing jigs including a sealing jig in which a through-hole through which the injection hose penetrates in close contact with both ends of the rehabilitation pipe restored to the cylindrical shape. A blockage step of closing the rehabilitation tube while being inserted;
A diameter expansion step for expanding the diameter by pressurizing the rehabilitation pipe whose both ends are blocked;
The rehabilitation pipe is provided with a relative temperature difference between one axial side and the other axial side of the rehabilitation pipe by injecting a heat medium from the tip of the injection hose within the enlarged diameter rehabilitation pipe. And a cooling process for cooling the pipe.
上記請求項1に記載の更生管の施工方法において、
上記熱媒体は冷却水であり、
上記冷却工程では、上記噴射ホースの先端部から冷却水を噴射しながら、上記更生管における軸方向一方側から他方側へ当該噴射ホースの先端部を移動させることを特徴とする更生管の施工方法。
In the construction method of the rehabilitation pipe according to claim 1,
The heat medium is cooling water,
In the cooling step, the rehabilitating pipe construction method is characterized in that the front end part of the injection hose is moved from one axial side of the rehabilitation pipe to the other side while injecting cooling water from the front end part of the injection hose. .
上記請求項1に記載の更生管の施工方法において、
上記熱媒体は温風であり、
上記冷却工程では、上記更生管における軸方向一方側から軸方向他方側へ冷気を送りながら、当該更生管における軸方向他方側の端部に位置する上記噴射ホースの先端部から温風を噴射することを特徴とする更生管の施工方法。
In the construction method of the rehabilitation pipe according to claim 1,
The heat medium is warm air,
In the cooling step, while sending cool air from one axial side of the rehabilitation pipe to the other side in the axial direction, hot air is injected from the tip of the injection hose located at the end of the other side of the rehabilitation pipe. Rehabilitation pipe construction method characterized by that.
上記請求項2または3に記載の更生管の施工方法において、
上記噴射ホースは、全周に亘って斜め後方に冷却水を噴射可能な先端ピットと、耐熱ホースとを備え、噴射される冷却水の水圧を調整することによって、更生管内で停止および移動することが可能に構成されていることを特徴とする更生管の施工方法。
In the construction method of the rehabilitation pipe according to claim 2 or 3,
The injection hose includes a tip pit capable of injecting cooling water obliquely rearward over the entire circumference and a heat-resistant hose, and stops and moves in the rehabilitation pipe by adjusting the water pressure of the injected cooling water. The construction method of the rehabilitation pipe | tube characterized by the above-mentioned being comprised.
上記請求項1〜4のいずれか1つに記載の更生管の施工方法において、
上記一対の封止治具は、上記更生管内に気体を出し入れするための蒸気ホースが接続可能な接続口と、内周部にOリングが設けられた上記貫通孔と、が形成された第1封止治具と、上記接続口のみが形成された第2封止治具と、からなることを特徴とする更生管の施工方法。
In the construction method of the rehabilitation pipe according to any one of claims 1 to 4,
The pair of sealing jigs is a first in which a connection port to which a steam hose for taking gas in and out of the rehabilitation pipe can be connected, and the through hole in which an O-ring is provided on an inner peripheral portion is formed. A rehabilitating pipe construction method comprising: a sealing jig; and a second sealing jig in which only the connection port is formed.
JP2015136374A 2015-07-07 2015-07-07 Construction method for regeneration pipe Pending JP2017020525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136374A JP2017020525A (en) 2015-07-07 2015-07-07 Construction method for regeneration pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136374A JP2017020525A (en) 2015-07-07 2015-07-07 Construction method for regeneration pipe

Publications (1)

Publication Number Publication Date
JP2017020525A true JP2017020525A (en) 2017-01-26

Family

ID=57887816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136374A Pending JP2017020525A (en) 2015-07-07 2015-07-07 Construction method for regeneration pipe

Country Status (1)

Country Link
JP (1) JP2017020525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130948A (en) * 2017-02-15 2018-08-23 積水化学工業株式会社 Method for renovation of existing pipe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154882A (en) * 1988-09-26 1990-06-14 Nu Pipe Inc Method and device for installing thermoplastic pipe to existing conduit
JPH0347732A (en) * 1989-07-17 1991-02-28 Japan Steel & Tube Constr Co Ltd Lining technique
JPH0752246A (en) * 1993-08-13 1995-02-28 Furukawa Electric Co Ltd:The Lining technique for inner face of pipe now in use
JPH11268129A (en) * 1998-03-25 1999-10-05 Shonan Gosei Jushi Seisakusho:Kk Pipe lining method
JP2002262425A (en) * 2001-03-02 2002-09-13 Kaaz Corp Method for installing cable in sewer
JP2003314748A (en) * 2002-04-17 2003-11-06 Sekisui Chem Co Ltd Passage regeneration method of regeneration pipe
JP2004069053A (en) * 2002-06-11 2004-03-04 Sekisui Chem Co Ltd Pipe opening water-proof structure and pipe opening water-proofing method of regeneration pipe
JP2007283541A (en) * 2006-04-13 2007-11-01 Sekisui Chem Co Ltd Regeneration method of existing pipe
JP2012207677A (en) * 2011-03-29 2012-10-25 Kubota-Ci Co Pipe end sealing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154882A (en) * 1988-09-26 1990-06-14 Nu Pipe Inc Method and device for installing thermoplastic pipe to existing conduit
JPH0347732A (en) * 1989-07-17 1991-02-28 Japan Steel & Tube Constr Co Ltd Lining technique
JPH0752246A (en) * 1993-08-13 1995-02-28 Furukawa Electric Co Ltd:The Lining technique for inner face of pipe now in use
JPH11268129A (en) * 1998-03-25 1999-10-05 Shonan Gosei Jushi Seisakusho:Kk Pipe lining method
JP2002262425A (en) * 2001-03-02 2002-09-13 Kaaz Corp Method for installing cable in sewer
JP2003314748A (en) * 2002-04-17 2003-11-06 Sekisui Chem Co Ltd Passage regeneration method of regeneration pipe
JP2004069053A (en) * 2002-06-11 2004-03-04 Sekisui Chem Co Ltd Pipe opening water-proof structure and pipe opening water-proofing method of regeneration pipe
JP2007283541A (en) * 2006-04-13 2007-11-01 Sekisui Chem Co Ltd Regeneration method of existing pipe
JP2012207677A (en) * 2011-03-29 2012-10-25 Kubota-Ci Co Pipe end sealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130948A (en) * 2017-02-15 2018-08-23 積水化学工業株式会社 Method for renovation of existing pipe

Similar Documents

Publication Publication Date Title
US9851040B2 (en) Apparatus and method to repair the junction of a sewer main line and lateral pipe
EP1653145B1 (en) Lateral pipe lining material and lateral pipe lining method
US5549856A (en) Method of repairing a pipeline with an injected resin
KR101354120B1 (en) Method and apparatus for non-digging renovation
US9261219B2 (en) Method of installing and curing a liner in a sewer pipe
JP4750610B2 (en) Rehabilitation of existing pipes
JP2017020525A (en) Construction method for regeneration pipe
KR101618686B1 (en) the improved pipe line repairing structure and the construction method thereof
KR102215552B1 (en) Method for inserting uv device and method for repairing reinforcing underground pipe include this same
JP2002303376A (en) Reclaiming method of existing pipe and pipe end sealing member used for the method
JP2008183874A (en) Method for lining duct with cable laid
JP2018063023A (en) Pipe end sealing tool and cooling method of pipe reclamation member
JP6009754B2 (en) Rehabilitation pipe and method for forming the same
JP6771974B2 (en) Closure repair member, heating member, sealing member, and closure repair method.
JP6863766B2 (en) How to rehabilitate existing pipes
KR19980076513A (en) Old tube repair liner and liner coating method
JPH01188325A (en) Repairing technique of branch pipe
JP6523835B2 (en) Renewal method of existing pipe
JP6404054B2 (en) Rehabilitation of existing pipes
JP2011121282A (en) Method for regenerating existing pipe
JP2007092917A (en) Repair structure of existing pipe, repair device, and repair method for existing pipe by use of repair device
JP2002052612A (en) Method for lining branch pipe attaching part
JP2002303377A (en) Method for reclaiming existing pipe and reclaiming member used for the method
JP6457916B2 (en) Repair method for tubular objects
JPH11311393A (en) Reclamation method of existing conduit line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806