JP2017018991A - Manufacturing method of rolling bearing unit - Google Patents

Manufacturing method of rolling bearing unit Download PDF

Info

Publication number
JP2017018991A
JP2017018991A JP2015139543A JP2015139543A JP2017018991A JP 2017018991 A JP2017018991 A JP 2017018991A JP 2015139543 A JP2015139543 A JP 2015139543A JP 2015139543 A JP2015139543 A JP 2015139543A JP 2017018991 A JP2017018991 A JP 2017018991A
Authority
JP
Japan
Prior art keywords
punch
roll
axial direction
hub
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139543A
Other languages
Japanese (ja)
Other versions
JP6222177B2 (en
JP2017018991A5 (en
Inventor
信行 萩原
Nobuyuki Hagiwara
信行 萩原
小林 一登
Kazuto Kobayashi
一登 小林
功 新藤
Isao Shindo
功 新藤
寛 小山
Hiroshi Koyama
寛 小山
中村 敏男
Toshio Nakamura
敏男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015139543A priority Critical patent/JP6222177B2/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to CN201680040787.1A priority patent/CN107848014B/en
Priority to PCT/JP2016/070551 priority patent/WO2017010481A1/en
Priority to EP16824461.4A priority patent/EP3323525B1/en
Priority to US15/572,581 priority patent/US10557505B2/en
Publication of JP2017018991A publication Critical patent/JP2017018991A/en
Publication of JP2017018991A5 publication Critical patent/JP2017018991A5/en
Application granted granted Critical
Publication of JP6222177B2 publication Critical patent/JP6222177B2/en
Priority to US16/700,171 priority patent/US11162538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a manufacturing method which can suppress a manufacturing cost while securing the durability of a rolling bearing unit.SOLUTION: A plurality of punch elements 46, 46 which are divided into a plurality of pieces in a circumferential direction, displaceable in an axial direction, and hindered in displacement to a peripheral direction are assembled, and one end face in the axial direction of a molding punch 39 having processing teeth 44, 44 at the one end face in the axial direction is made to oppose the other end face of a caulked part 20 in the axial direction. In this state, a roll 30a is rotated with a center axis α of a hub main body 8 as a center while pressing the other end face of the molding punch 39 in the axial direction by a pressing face 43 of the roll 30a having a center axis β which is inclined to the center axis α of the hub main body 8.SELECTED DRAWING: Figure 2

Description

本発明は、例えば、等速ジョイントと組み合わせる事で、車輪駆動用軸受ユニットを構成する車輪支持用転がり軸受ユニットとして使用される、転がり軸受ユニットの製造方法に関する。   The present invention relates to a method for manufacturing a rolling bearing unit that is used as a wheel bearing rolling bearing unit that constitutes a wheel driving bearing unit, for example, in combination with a constant velocity joint.

図9は、本発明の対象となる転がり軸受ユニットの1種である、車輪支持用転がり軸受ユニットを組み込んだ車輪駆動用軸受ユニットの従来構造の1例として、特許文献1に記載されたものを示している。この図9に示した車輪駆動用軸受ユニットは、車輪支持用転がり軸受ユニット1と、等速ジョイント用外輪2とを組み合わせて成る。このうちの車輪支持用転がり軸受ユニット1は、外輪3と、ハブ4と、複数個の転動体(図示の例では玉)5、5とを備える。   FIG. 9 shows an example of a conventional structure of a wheel driving bearing unit incorporating a wheel supporting rolling bearing unit, which is a kind of rolling bearing unit that is an object of the present invention. Show. The wheel drive bearing unit shown in FIG. 9 is formed by combining a wheel support rolling bearing unit 1 and a constant velocity joint outer ring 2. Of these, the wheel support rolling bearing unit 1 includes an outer ring 3, a hub 4, and a plurality of rolling elements (balls in the illustrated example) 5 and 5.

このうちの外輪3は、外周面に静止側フランジ6を、内周面に複列の外輪軌道7a、7bを、それぞれ有する。又、前記ハブ4は、ハブ本体8と内輪9とを組み合わせて成る。このうちのハブ本体8は、外周面の軸方向片端寄り部分に回転側フランジ10を、同じく軸方向中間部に軸方向片側の内輪軌道11aを、同じく軸方向他端部に小径段部12を、中心部に中心孔13を、それぞれ有する。尚、本明細書で、軸方向に関して「片側」とは、自動車への組み付け状態で車両の幅方向外側を言い、図9の左側、図1〜4、6の下側を言い、反対に、自動車への組み付け状態で車両の中央側となる、図9の右側、図1〜4、6の上側を、軸方向に関して「他側」と言う。前記中心孔13の軸方向片端部には、結合部材であるボルト15の杆部16を所定の案内隙間を介して挿通可能な小径部14が存在する。又、前記内輪9は、外周面に軸方向他側の内輪軌道11bを有するもので、前記ハブ本体8の小径段部12に締り嵌めで外嵌されている。又、前記各転動体5、5は、前記両外輪軌道7a、7bと前記両内輪軌道11a、11bとの間に、両列毎に複数個ずつ転動自在に設けられている。又、この状態で、前記ハブ本体8の軸方向他端部に設けた円筒部19のうち、前記内輪9の軸方向他端開口から突出した部分を径方向外方に塑性変形させる事によりかしめ部20を形成している。そして、このかしめ部20により前記内輪9の軸方向他端面を抑え付ける事で、前記各転動体5、5に適正な予圧を付与している。又、前記かしめ部20の軸方向他端面には、円周方向に関する凹凸部であるハブ側フェイススプライン21を、全周に亙り形成している。尚、図示の例の場合、このハブ側フェイススプライン21の歯先面を、前記ハブ本体8の中心軸に対して直角な平面としている。   Of these, the outer ring 3 has a stationary flange 6 on the outer peripheral surface and double row outer ring raceways 7a and 7b on the inner peripheral surface. The hub 4 is formed by combining a hub body 8 and an inner ring 9. Of these, the hub body 8 has a rotation-side flange 10 at a portion near one end of the outer peripheral surface in the axial direction, an inner ring raceway 11a on one axial side in the same axial direction, and a small-diameter step 12 at the other end in the same axial direction. Each has a central hole 13 in the center. In this specification, “one side” with respect to the axial direction means the outside in the width direction of the vehicle in the assembled state to the automobile, the left side of FIG. 9, the lower side of FIGS. The right side of FIG. 9 and the upper side of FIGS. 1 to 4 and 6, which are the center side of the vehicle when assembled to an automobile, are referred to as “other side” with respect to the axial direction. At one end portion in the axial direction of the center hole 13, there is a small diameter portion 14 through which the flange portion 16 of the bolt 15 as a coupling member can be inserted through a predetermined guide gap. The inner ring 9 has an inner ring raceway 11b on the outer peripheral surface on the other side in the axial direction, and is externally fitted to the small-diameter step portion 12 of the hub body 8 with an interference fit. Further, a plurality of rolling elements 5, 5 are provided between the outer ring raceways 7a, 7b and the inner ring raceways 11a, 11b so as to be freely rollable in both rows. Further, in this state, of the cylindrical portion 19 provided at the other axial end of the hub body 8, the portion protruding from the other axial opening of the inner ring 9 is caulked by plastic deformation outward in the radial direction. Part 20 is formed. Then, by pressing the other end surface in the axial direction of the inner ring 9 with the caulking portion 20, an appropriate preload is applied to the rolling elements 5 and 5. Further, a hub-side face spline 21 that is an uneven portion in the circumferential direction is formed on the other end surface in the axial direction of the caulking portion 20 over the entire circumference. In the case of the illustrated example, the tooth tip surface of the hub-side face spline 21 is a plane perpendicular to the central axis of the hub body 8.

又、前記等速ジョイント用外輪2は、カップ状のマウス部22と、このマウス部22の底部である端壁部23と、この端壁部23の中心部から軸方向片方に延出する円筒状の軸部24とを有すると共に、この軸部24の中心孔がねじ孔25である。又、前記端壁部23の軸方向片端面の外周寄り部分には、円周方向に関する凹凸部であるジョイント側フェイススプライン26を、全周に亙り形成している。尚、図示の例の場合、このジョイント側フェイススプライン26の歯先面を、前記等速ジョイント用外輪2の中心軸に対して直角な平面としている。又、前記ジョイント側フェイススプライン26の歯数を、前記ハブ側フェイススプライン21の歯数と同じとしている。   The constant velocity joint outer ring 2 includes a cup-shaped mouth portion 22, an end wall portion 23 which is a bottom portion of the mouth portion 22, and a cylinder extending in one axial direction from the center portion of the end wall portion 23. And a central hole of the shaft portion 24 is a screw hole 25. In addition, a joint-side face spline 26 that is an uneven portion in the circumferential direction is formed over the entire circumference of the end wall portion 23 on the outer peripheral portion of one axial end surface. In the illustrated example, the tooth tip surface of the joint-side face spline 26 is a plane perpendicular to the central axis of the constant velocity joint outer ring 2. The number of teeth of the joint-side face spline 26 is the same as the number of teeth of the hub-side face spline 21.

そして、前記ハブ本体8と前記等速ジョイント用外輪2との中心軸同士を一致させた状態で、前記ハブ側、ジョイント側両フェイススプライン21、26同士を噛み合わせる事により、前記ハブ本体8と前記等速ジョイント用外輪2との間での回転力の伝達を可能としている。又、この状態で、前記ハブ本体8の中心孔13の小径部14に、軸方向片側からボルト15の杆部16を挿通すると共に、この杆部16の先端部に設けた雄ねじ部17を前記ねじ孔25に螺合し、更に締め付けている。これにより、前記ボルト15の頭部18と前記等速ジョイント用外輪2との間に前記ハブ本体8を挟持した状態で、これらハブ本体8と等速ジョイント用外輪2とを結合固定している。   Then, the hub body 8 and the joint-side face splines 21 and 26 are engaged with each other while the central axes of the hub body 8 and the constant velocity joint outer ring 2 are aligned with each other. The rotational force can be transmitted to and from the outer ring 2 for the constant velocity joint. In this state, the flange portion 16 of the bolt 15 is inserted into the small diameter portion 14 of the center hole 13 of the hub body 8 from one side in the axial direction, and the male screw portion 17 provided at the tip portion of the flange portion 16 is It is screwed into the screw hole 25 and further tightened. Accordingly, the hub body 8 and the constant velocity joint outer ring 2 are coupled and fixed in a state where the hub body 8 is sandwiched between the head 18 of the bolt 15 and the constant velocity joint outer ring 2. .

上述の様に構成する車輪駆動用軸受ユニットを車両に組み付ける際には、前記外輪3の静止側フランジ6を懸架装置に結合固定すると共に、前記ハブ本体8の回転側フランジ10に車輪(駆動輪)及びディスク等の制動用回転部材を支持固定する。又、エンジンによりトランスミッションを介して回転駆動される、図示しない駆動軸の先端部を、前記等速ジョイント用外輪2の内側に設けた等速ジョイント用内輪27の内側にスプライン係合させる。自動車の走行時には、この等速ジョイント用内輪27の回転を、複数のボール28を介して、前記等速ジョイント用外輪2及びハブ本体8に伝達し、前記車輪を回転駆動する。   When the wheel drive bearing unit configured as described above is assembled to a vehicle, the stationary side flange 6 of the outer ring 3 is coupled and fixed to a suspension device, and the wheel (drive wheel) is attached to the rotation side flange 10 of the hub body 8. ) And a brake rotating member such as a disk. Further, a tip end portion of a drive shaft (not shown) that is rotationally driven by the engine via the transmission is spline-engaged with the inside of the constant velocity joint inner ring 27 provided inside the constant velocity joint outer ring 2. When the automobile travels, the rotation of the constant velocity joint inner ring 27 is transmitted to the constant velocity joint outer ring 2 and the hub main body 8 via a plurality of balls 28 to rotate the wheels.

上述の様に構成する車輪駆動用軸受ユニットを構成する車輪支持用転がり軸受ユニット1を組み立てる際には、先ず、前記ハブ本体8の周囲に前記外輪3を配置すると共に、前記両外輪軌道7a、7bのうち、軸方向片側の外輪軌道7aと、前記軸方向片側の内輪軌道11aとの間に前記各転動体5、5を、軸方向片側の保持器29aにより保持した状態で設ける。次に、前記内輪9の外周面に形成した軸方向他側の内輪軌道11bの周囲に前記各転動体5、5を、軸方向他側の保持器29bにより保持した状態で設置し、この状態で前記内輪9を、前記ハブ本体8の軸方向他端部に形成した小径段部12に締り嵌めで外嵌する。そして、この外嵌作業に伴い、前記軸方向他側の保持器29bにより保持した(軸方向他側列の)前記各転動体5、5の転動面を、前記外輪3の軸方向他端寄り部分の内周面に形成した軸方向他側の外輪軌道7bに当接させる。次いで、前記ハブ本体8の軸方向他端部に形成した円筒部19を径方向外方に塑性変形させ、前記かしめ部20を形成する。そして、このかしめ部20により前記内輪9の軸方向他端面を軸方向に抑え付ける事で、この内輪9を前記ハブ本体8に固定する。   When assembling the wheel support rolling bearing unit 1 constituting the wheel drive bearing unit configured as described above, first, the outer ring 3 is disposed around the hub body 8, and the outer ring raceways 7a, 7b, between the outer ring raceway 7a on one axial side and the inner ring raceway 11a on one axial side, the rolling elements 5, 5 are provided in a state of being held by a cage 29a on one axial side. Next, the rolling elements 5 and 5 are installed around the inner ring raceway 11b on the other axial side formed on the outer peripheral surface of the inner ring 9 while being held by the cage 29b on the other axial side. Then, the inner ring 9 is externally fitted to the small-diameter step portion 12 formed at the other axial end portion of the hub body 8 with an interference fit. Then, along with this external fitting operation, the rolling surface of each of the rolling elements 5, 5 (in the other axial row) held by the cage 29 b on the other axial side is connected to the other axial end of the outer ring 3. It is made to contact | abut to the outer ring | wheel track | orbit 7b of the other axial direction formed in the inner peripheral surface of a shift | offset | difference part. Next, the cylindrical portion 19 formed at the other axial end portion of the hub body 8 is plastically deformed radially outward to form the caulking portion 20. The inner ring 9 is fixed to the hub body 8 by pressing the other axial end surface of the inner ring 9 in the axial direction by the caulking portion 20.

更に、図10に示す様に、前記かしめ部20の軸方向他端面に、前記ハブ本体8の中心軸(前記車輪支持用転がり軸受ユニット1の中心軸)αに対し所定角度θだけ傾斜した中心軸βを有するロール30を用いて揺動鍛造を施す事により、前記ハブ側フェイススプライン21を形成する。尚、前記図10は、前記車輪支持用転がり軸受ユニット1を構成する各部材のうち、ハブ本体8以外の部材(外輪3、転動体5、5及び内輪9等)を省略して示している。前記ロール30の先端面(図10の下端面)は、凸部(加工歯)33、33と凹部34(図12参照)とを全周に亙って交互に配置して成る加工面31としている。この様なロール30の加工面31を前記かしめ部20の軸方向他端面に押し付けた状態で、このロール30を、前記ハブ本体8の中心軸αを中心として回転させる。ここで、このロール30は、自身の中心軸βを中心として回転可能に支持されている。従って、前記かしめ部20の軸方向他端面に前記ハブ側フェイススプライン21(となるべき円周方向に関する凹凸部)が形成される以前の状態では、前記ロール30を、前記ハブ本体8の中心軸αを中心として回転させると、前記加工面31に設けた凸部33、33の先端面と前記かしめ部20の軸方向他端面との摩擦係合に基づいて、前記ロール30が自身の中心軸βを中心として回転(自転)する。一方、前記ハブ側フェイススプライン21がある程度形成された(このハブ側フェイススプライン21の歯丈がある程度大きくなった)後は、前記ロール30を、前記ハブ本体8の中心軸αを中心として回転させると、前記加工面31を構成する凹部34及び凸部33、33と前記ハブ側フェイススプライン21との係合(噛合)に基づいて、前記ロール30が自転する。この様な構成により、前記かしめ部20の軸方向他端面を塑性変形させる事により、このかしめ部20の軸方向他端面に前記ハブ側フェイススプライン21を形成し、更に、このハブ側フェイススプライン21の歯丈を大きくして、加工を完了する。   Further, as shown in FIG. 10, a center inclined at a predetermined angle θ with respect to the central axis (the central axis of the wheel bearing rolling bearing unit 1) α of the hub body 8 at the other axial end surface of the caulking portion 20. The hub-side face spline 21 is formed by performing rocking forging using a roll 30 having an axis β. In FIG. 10, members other than the hub body 8 (outer ring 3, rolling elements 5, 5, inner ring 9, etc.) are omitted from the members constituting the wheel support rolling bearing unit 1. . The front end surface of the roll 30 (lower end surface in FIG. 10) is a processing surface 31 in which convex portions (processing teeth) 33 and 33 and concave portions 34 (see FIG. 12) are alternately arranged over the entire circumference. Yes. The roll 30 is rotated around the central axis α of the hub body 8 in a state where the processed surface 31 of the roll 30 is pressed against the other axial end surface of the caulking portion 20. Here, the roll 30 is supported so as to be rotatable about its own central axis β. Therefore, in a state before the hub-side face spline 21 (uneven portion related to the circumferential direction to be formed) is formed on the other end surface in the axial direction of the caulking portion 20, the roll 30 is moved to the central axis of the hub body 8. When rotated about α, the roll 30 is moved to its central axis based on the frictional engagement between the tip surfaces of the projections 33 and 33 provided on the processing surface 31 and the other axial end surface of the caulking portion 20. Rotates (rotates) around β. On the other hand, after the hub side face spline 21 is formed to some extent (the tooth length of the hub side face spline 21 has increased to some extent), the roll 30 is rotated around the central axis α of the hub body 8. Then, the roll 30 rotates based on the engagement (meshing) of the concave portion 34 and the convex portions 33 and 33 constituting the processed surface 31 with the hub-side face spline 21. With such a configuration, the hub-side face spline 21 is formed on the other axial end surface of the caulking portion 20 by plastically deforming the other axial end surface of the caulking portion 20, and the hub-side face spline 21 is further formed. Increase the tooth height and complete the processing.

上述の様な車輪支持用転がり軸受ユニット1の製造方法は、この車輪支持用転がり軸受ユニット1の耐久性を確保しつつ、製造コストを抑える面からは改良の余地がある。即ち、前記ハブ側フェイススプライン21を形成する作業(揺動鍛造)は、前記ロール30の加工面31を前記かしめ部20の軸方向他端面に大きな力(押圧力)Fで押し付けた状態で、前記ロール30を、前記ハブ本体8の中心軸αを中心に回転させる事により行う。この様な揺動鍛造の際に、このハブ本体8の中心軸αに対する前記ロール30の中心軸βの傾斜角度θが小さいと、このロール30の加工面31と、前記かしめ部20の軸方向他端面との当接面積、即ち、この加工面31を構成する凸部33、33の先端面と、前記かしめ部20の軸方向他端面の当接面積が大きくなる。この結果、前記各凸部33、33の先端面から前記かしめ部20の軸方向他端面(のうち、前記ハブ側フェイススプライン21の歯底となるべき部分)に加わる荷重(前記各凸部33、33の先端面と前記かしめ部20の軸方向他端面との当接面圧)が小さくなる。従って、前記傾斜角度θが小さい場合には、前記押圧力Fを大きくして、前記各凸部33、33の先端面から前記かしめ部20の軸方向他端面に加わる荷重を確保する必要がある。図11は、この傾斜角度θと、前記押圧力Fの最大値との関係を示している。この様な図11から明らかな様に、この傾斜角度θが5度である場合には、この傾斜角度θが15度である場合の2倍程度の押圧力Fが必要となる。この押圧力Fを大きくすると、前記揺動鍛造に用いる加工装置が大型化し、これによって製造コストが増大する。   The manufacturing method of the wheel-supporting rolling bearing unit 1 as described above has room for improvement in terms of reducing the manufacturing cost while ensuring the durability of the wheel-supporting rolling bearing unit 1. That is, the operation of forming the hub-side face spline 21 (oscillating forging) is performed in a state in which the processing surface 31 of the roll 30 is pressed against the other end surface in the axial direction of the caulking portion 20 with a large force (pressing force) F. The roll 30 is rotated by rotating around the central axis α of the hub body 8. In such a swing forging, if the inclination angle θ of the central axis β of the roll 30 with respect to the central axis α of the hub body 8 is small, the processing surface 31 of the roll 30 and the axial direction of the caulking portion 20 The contact area with the other end surface, that is, the contact area between the tip surfaces of the convex portions 33 and 33 constituting the processed surface 31 and the other end surface in the axial direction of the caulking portion 20 is increased. As a result, a load applied to the other end surface in the axial direction of the caulking portion 20 from the tip surface of each of the convex portions 33, 33 (of the portion that should become the tooth bottom of the hub-side face spline 21) (the convex portions 33). , 33 and the contact surface pressure between the other end surface in the axial direction of the caulking portion 20) are reduced. Therefore, when the inclination angle θ is small, it is necessary to increase the pressing force F to ensure a load applied from the front end surfaces of the convex portions 33 and 33 to the other end surface in the axial direction of the caulking portion 20. . FIG. 11 shows the relationship between the inclination angle θ and the maximum value of the pressing force F. As is apparent from FIG. 11, when the inclination angle θ is 5 degrees, a pressing force F that is about twice that when the inclination angle θ is 15 degrees is required. When this pressing force F is increased, the processing apparatus used for the rocking forging increases in size, thereby increasing the manufacturing cost.

一方、前記傾斜角度θが大きいと、前記ハブ側フェイススプライン21を構成する歯32の歯面(歯の側面)の断面形状の真直度が低下する。即ち、上述の様な従来の車輪支持用転がり軸受ユニット1の製造方法の場合には、前記ロール30の加工面31を構成する複数の凹部34のうち、1個の凹部34の中央位置(このロール30の円周方向に関する中央位置)を前記かしめ部20の軸方向他端面に押し付けた状態(前記1個の凹部34の中央位置を通り、前記ロール30の中心軸βと平行な仮想線γが、前記ハブ本体8の中心軸αとこの中心軸βとを含む仮想平面内に存在する状態)で、前記1個の凹部34により成形される歯32の歯面(当該歯32となるべき凸部の円周方向側面)が、図12の(C)に示す様に、この歯32の歯面と当接する、前記1個の凹部34の内側面(前記ロール30の円周方向に関する側面)と平行になる。この状態から、前記中心軸αを中心として前記ロール30を回転(公転)させると、前記1個の凹部34の内側面が、この1個の凹部34により成形される歯32の歯面(当該歯32となるべき凸部の円周方向側面)に対し傾斜する。この歯32の歯面に対するこの1個の凹部34の円周方向側面の傾斜角度は、前記ロール30の加工面31を構成する複数の凸部33、33のうち、1個の凸部33の中央位置を前記かしめ部20の軸方向他端面に押し付けた状態{図12の(B)又は(D)に示す状態}で最も大きくなる。前記歯32の歯面に対する前記凹部34の内側面の傾斜角度は、前記ハブ本体8の中心軸αに対する前記ロール30の中心軸βの傾斜角度θが大きくなる程大きくなる。そして、前記歯32の歯面に対する前記凹部34の内側面の傾斜角度が大きくなると、前記1個の凹部34の円周方向側面と前記歯32の歯面とが局所的に当接して、この歯32の歯面が局所的に塑性変形させられる。この結果、図13の(B)の鎖線δで囲んだ部分の様に、この歯32の歯面の断面形状の曲率半径が小さくなったり、同じく鎖線εで囲んだ部分の様に、段部35が形成され、前記歯32の歯面の断面形状の真直度が低下する。この真直度が低下すると、前記ハブ側フェイススプライン21と、等速ジョイント用外輪2に形成したジョイント側フェイススプライン26(図9参照)とを噛合させた状態で、前記ハブ側フェイススプライン21を構成する歯32と、前記ジョイント側フェイススプライン26を構成する歯との歯面同士の当接面積が小さくなって、前記ハブ側フェイススプライン21と前記ジョイント側フェイススプライン26との噛合部、延いては、車輪支持用転がり軸受ユニット1全体の耐久性を確保し難くなる可能性がある。   On the other hand, when the inclination angle θ is large, the straightness of the cross-sectional shape of the tooth surfaces (tooth side surfaces) of the teeth 32 constituting the hub-side face spline 21 is lowered. That is, in the case of the conventional method of manufacturing the wheel support rolling bearing unit 1 as described above, among the plurality of recesses 34 constituting the processing surface 31 of the roll 30, the central position of one recess 34 (this A state in which the center position of the roll 30 in the circumferential direction is pressed against the other end face in the axial direction of the caulking portion 20 (passing through the center position of the one recess 34 and parallel to the center axis β of the roll 30) In the imaginary plane including the central axis α of the hub body 8 and the central axis β), the tooth surface of the tooth 32 formed by the one concave portion 34 (to be the tooth 32). As shown in FIG. 12C, the inner side surface of the one concave portion 34 (the side surface in the circumferential direction of the roll 30) in which the circumferential surface of the convex portion abuts on the tooth surface of the tooth 32. ) And parallel. From this state, when the roll 30 is rotated (revolved) around the central axis α, the inner surface of the one recess 34 is the tooth surface of the tooth 32 formed by the one recess 34 (the relevant It is inclined with respect to the circumferential side surface of the convex portion to be the tooth 32. The inclination angle of the circumferential side surface of the single concave portion 34 with respect to the tooth surface of the tooth 32 is that of the convex portion 33 of the plurality of convex portions 33 and 33 constituting the processing surface 31 of the roll 30. It becomes the largest in the state {state shown in (B) or (D) of FIG. 12} in which the center position is pressed against the other end surface in the axial direction of the caulking portion 20. The inclination angle of the inner surface of the recess 34 with respect to the tooth surface of the tooth 32 increases as the inclination angle θ of the central axis β of the roll 30 with respect to the central axis α of the hub body 8 increases. When the inclination angle of the inner surface of the recess 34 with respect to the tooth surface of the tooth 32 increases, the circumferential side surface of the one recess 34 and the tooth surface of the tooth 32 locally contact each other. The tooth surface of the tooth 32 is locally plastically deformed. As a result, the radius of curvature of the cross-sectional shape of the tooth surface of the tooth 32 becomes smaller, as in the portion surrounded by the chain line δ in FIG. 35 is formed, and the straightness of the cross-sectional shape of the tooth surface of the tooth 32 is lowered. When this straightness decreases, the hub side face spline 21 is configured in a state where the hub side face spline 21 and the joint side face spline 26 (see FIG. 9) formed on the constant velocity joint outer ring 2 are engaged with each other. The contact area between the tooth surfaces of the teeth 32 and the teeth constituting the joint-side face spline 26 is reduced, and the meshing portion of the hub-side face spline 21 and the joint-side face spline 26 is extended. There is a possibility that it is difficult to ensure the durability of the entire wheel bearing rolling bearing unit 1.

特開2009−292422号公報JP 2009-292422 A

本発明は、上述の様な事情に鑑みて、転がり軸受ユニットの耐久性を確保しつつ、製造コストを抑える事ができる、転がり軸受ユニットの製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a method of manufacturing a rolling bearing unit that can reduce the manufacturing cost while ensuring the durability of the rolling bearing unit.

本発明の製造方法の対象となる転がり軸受ユニットは、ハブ本体と、内輪とを備える。
このうちのハブ本体は、軸方向中間部外周面に軸方向片側の内輪軌道を有する。
又、前記内輪は、外周面に軸方向他側の内輪軌道を有し、このハブ本体の軸方向他端寄り部分に外嵌している。
そして、前記ハブ本体の軸方向他端部に設けた円筒部を径方向外方に塑性変形させる事で形成したかしめ部により、前記内輪の軸方向他端面を抑え付けてこの内輪を前記ハブ本体に支持固定している。又、前記かしめ部の軸方向他端面に、円周方向に関する凹凸部であるハブ側フェイススプラインを形成している。
上述の様な本発明の製造方法の対象となる転がり軸受ユニットは、より具体的には、内周面に複列の外輪軌道を有する外輪と、これら両外輪軌道と前記両内輪軌道との間に、それぞれ複数個ずつ転動自在に設けられた転動体とを更に備える。
A rolling bearing unit that is an object of the manufacturing method of the present invention includes a hub body and an inner ring.
Of these, the hub main body has an inner ring raceway on one axial side on the outer peripheral surface of the axially intermediate portion.
The inner ring has an inner ring raceway on the other side in the axial direction on the outer peripheral surface, and is externally fitted to a portion near the other end of the hub body in the axial direction.
Then, the other end surface in the axial direction of the inner ring is held down by a caulking portion formed by plastically deforming a cylindrical portion provided at the other end portion in the axial direction of the hub main body in a radially outward direction, and the inner ring is connected to the hub main body. It is fixed to support. Also, a hub-side face spline that is a concavo-convex portion in the circumferential direction is formed on the other end surface in the axial direction of the caulking portion.
More specifically, the rolling bearing unit that is the object of the manufacturing method of the present invention as described above includes an outer ring having double-row outer ring raceways on the inner peripheral surface, and a space between these outer ring raceways and the both inner ring raceways. In addition, a plurality of rolling elements provided in a freely rotatable manner are provided.

又、本発明の転がり軸受ユニットの製造方法は、円周方向に複数に分割された、それぞれが軸方向の変位を可能に、且つ、周方向の変位を阻止された複数のパンチ素子を組み合わせて成り、軸方向片端面に、前記ハブ側フェイススプラインの歯数と同数の加工歯を形成した成形パンチの軸方向片端面を、前記かしめ部の軸方向他端面に対向させる。この状態で、この成形パンチの軸方向他端面を、前記ハブ本体の中心軸に対し傾斜した中心軸を有するロールの、円すい状或いは円すい台状の押圧面により押圧しつつ、このロールを、このハブ本体の中心軸を中心として回転させる。この様な工程により、前記かしめ部の軸方向他端面に前記ハブ側フェイススプラインを形成する。   Further, the method of manufacturing a rolling bearing unit according to the present invention includes a plurality of punch elements that are divided into a plurality of parts in the circumferential direction, each of which is capable of axial displacement and is prevented from being displaced in the circumferential direction. The axial direction one end surface of the forming punch which formed the same number of teeth as the number of teeth of the hub side face spline on the one axial end surface is opposed to the other axial end surface of the caulking portion. In this state, the other end surface in the axial direction of the molding punch is pressed by a conical or conical pressing surface of a roll having a central axis inclined with respect to the central axis of the hub body, Rotate around the center axis of the hub body. By such a process, the hub-side face spline is formed on the other axial end surface of the caulking portion.

上述の様な本発明の転がり軸受ユニットの製造方法を実施する場合に好ましくは、請求項2に記載した発明の様に、前記ハブ本体の中心軸に対する前記ロールの中心軸の傾斜角度を15度以上とする。この場合に好ましくは、この傾斜角度を30度以下とする。   In the case of carrying out the rolling bearing unit manufacturing method of the present invention as described above, preferably, the inclination angle of the central axis of the roll with respect to the central axis of the hub body is 15 degrees as in the invention described in claim 2. That's it. In this case, the inclination angle is preferably 30 degrees or less.

又、上述の様な本発明の転がり軸受ユニットの製造方法を実施する場合に好ましくは、請求項3に記載した発明の様に、前記成形パンチを、前記各加工歯の歯数と同数に分割された前記各パンチ素子から成るものとする。具体的には、これら各パンチ素子を、前記各加工歯毎に分割{隣り合う加工歯同士の間に存在する歯底の中央位置(前記成形パンチの円周方向に関する中央位置)で分割}されたものとするか、或いは、前記各加工歯の歯先の中央位置で分割されたものとする。
この様な請求項3に記載した発明を実施する場合に好ましくは、請求項4に記載した発明の様に、前記各パンチ素子のうちの1個のパンチ素子の軸方向他端面の円周方向両側縁のうち、前記ハブ本体の中心軸を中心とする前記ロールの回転方向後側縁を、このロールの押圧面により押圧した状態で、前記1個のパンチ素子の、前記ハブ本体の中心軸を中心とする前記ロールの回転方向前側隣りに存在するパンチ素子の軸方向他端面の円周方向両側縁のうち、前記ハブ本体の中心軸を中心とする前記ロールの回転方向後側縁(前記1個のパンチ素子側の側縁)を、前記ロールの押圧面により押圧しない様にする。換言すれば、前記1個のパンチ素子の円周方向両側面のうち、前記ハブ本体の中心軸を中心とする前記ロールの回転方向後側面と、このハブ本体の中心軸及び前記ロールの中心軸を含む仮想平面とが同一平面上に存在する状態で、前記1個のパンチ素子の、前記ハブ本体の中心軸を中心とする前記ロールの回転方向前側隣りに存在するパンチ素子の軸方向他端面の円周方向両側縁のうち、この1個のパンチ素子側の側縁と、前記ロールの押圧面とが接触乃至近接対向するにとどまる(前記ロールの回転方向前側隣りに存在するパンチ素子の軸方向他端面を強く押圧する事がない)様に、このロールの押圧面による押圧量(前記ハブ本体の軸方向に関する押圧量)を調節する。
Further, when the method for manufacturing the rolling bearing unit of the present invention as described above is carried out, the molding punch is preferably divided into the same number as the number of teeth of each machining tooth as in the invention described in claim 3. It is assumed that each punch element is made. Specifically, each of these punch elements is divided for each processing tooth {divided at the center position of the tooth bottom existing between adjacent processing teeth (the center position in the circumferential direction of the forming punch)}. Or it shall be divided | segmented in the center position of the tooth tip of each said processing tooth.
When the invention described in claim 3 is carried out, preferably, as in the invention described in claim 4, the circumferential direction of the other axial end face of one of the punch elements The center axis of the hub body of the one punch element in the state where the rear edge in the rotation direction of the roll centering on the center axis of the hub body is pressed by the pressing surface of the roll, Among the circumferential opposite side edges of the other end face in the axial direction of the punch element existing on the front side in the rotational direction of the roll with the center at the center, the rear side edge in the rotational direction of the roll around the central axis of the hub body (the above-mentioned One punch element side edge) is not pressed by the pressing surface of the roll. In other words, among the circumferential side surfaces of the one punch element, the rear surface in the rotational direction of the roll centered on the central axis of the hub main body, the central axis of the hub main body, and the central axis of the roll The other end surface in the axial direction of the punch element existing on the front side in the rotation direction of the roll around the central axis of the hub body of the one punch element in a state where a virtual plane including the same exists on the same plane The side edge on the one punch element side and the pressing surface of the roll are in contact or close to each other in the circumferential direction on both sides (the axis of the punch element existing on the front side in the rotation direction of the roll). The pressing amount by the pressing surface of the roll (the pressing amount in the axial direction of the hub body) is adjusted so that the other end surface in the direction is not strongly pressed.

上述の様な本発明の転がり軸受ユニットの製造方法を実施する場合に好ましくは、請求項5に記載した発明の様に、前記かしめ部の軸方向他端面に形成された前記ハブ側フェイススプラインを構成する歯の歯丈が所望の大きさになった状態で、前記各パンチ素子の一部を、これら各パンチ素子を保持する部分に設けられた段差面部に突き当てる事により、これら各パンチ素子がそれ以上軸方向他方に変位する事を阻止する。   Preferably, when carrying out the manufacturing method of the rolling bearing unit of the present invention as described above, the hub side face spline formed on the other end face in the axial direction of the caulking portion is formed as in the invention described in claim 5. In a state where the tooth height of the teeth constituting a desired size is reached, a part of each of the punch elements is abutted against a stepped surface portion provided in a portion for holding the punch elements, so that each of the punch elements Prevents further displacement in the other axial direction.

上述の様に構成する本発明の転がり軸受ユニットの製造方法によれば、転がり軸受ユニットの耐久性を確保しつつ、製造コストを抑える事ができる。
即ち、本発明の場合、成形パンチの軸方向片端面をかしめ部の軸方向他端面に対向させた状態で、この成形パンチの軸方向他端面を、ハブ本体の中心軸に対し傾斜した中心軸を有するロールの押圧面により押圧しつつ、このロールを、前記ハブ本体の中心軸を中心として回転させる。これにより、前記成形パンチの軸方向片端面に形成された加工歯を前記かしめ部の軸方向他端面に押し付けて、このかしめ部の軸方向他端面に前記ハブ側フェイススプラインを形成する。ここで、本発明の場合には、前記成形パンチを構成する複数のパンチ素子は、軸方向の変位を可能に、且つ、周方向の変位を阻止されている。従って、本発明の場合、前記ハブ側フェイススプラインを形成する加工の際に、前記各加工歯が、このハブ側フェイススプラインを構成する歯の歯面に対し傾斜する事を防止でき、このハブ側フェイススプラインを構成する歯の歯面が局所的に塑性変形させられる様な前記ロールの加工面と前記かしめ部の軸方向端面との局所的な当接の発生を防止できる。従って、これら各歯の真直度を良好にでき、転がり軸受ユニットの耐久性を十分に確保する事ができる。又、前記ロールの押圧面を軸方向他方に向け押圧する力が徒に大きくなるのを抑え、前記ハブ側フェイススプラインを形成する為の加工に用いる加工装置の大型化を防止でき、製造コストの増大を抑えられる。
According to the manufacturing method of the rolling bearing unit of the present invention configured as described above, the manufacturing cost can be suppressed while ensuring the durability of the rolling bearing unit.
That is, in the case of the present invention, in the state where one axial end surface of the molding punch is opposed to the other axial end surface of the caulking portion, the axial end of the molding punch is inclined with respect to the central axis of the hub body. The roll is rotated around the central axis of the hub body while being pressed by the pressing surface of the roll having the. As a result, the processing teeth formed on one axial end surface of the forming punch are pressed against the other axial end surface of the caulking portion, and the hub side face spline is formed on the other axial end surface of the caulking portion. Here, in the case of the present invention, the plurality of punch elements constituting the forming punch are allowed to be displaced in the axial direction and are prevented from being displaced in the circumferential direction. Therefore, in the case of the present invention, when the hub side face spline is formed, each of the processed teeth can be prevented from being inclined with respect to the tooth surface of the tooth constituting the hub side face spline. Generation of local contact between the processing surface of the roll and the end surface in the axial direction of the caulking portion such that the tooth surface of the teeth constituting the face spline is locally plastically deformed can be prevented. Therefore, the straightness of these teeth can be improved, and the durability of the rolling bearing unit can be sufficiently ensured. In addition, it is possible to suppress the force that presses the pressing surface of the roll toward the other side in the axial direction, and to prevent the processing apparatus used for processing for forming the hub-side face spline from being enlarged, thereby reducing the manufacturing cost. Increase can be suppressed.

本発明の実施の形態の1例の製造方法を実施可能な揺動プレス装置の1例を、ハブ側フェイススプラインを形成する為の加工を開始する以前の状態で示す断面図。Sectional drawing which shows one example of the rocking press apparatus which can implement the manufacturing method of one example of embodiment of this invention in the state before starting the process for forming a hub side face spline. 同じく加工中の状態で示す断面図。Sectional drawing similarly shown in the state in process. 同じく加工完了の状態で示す断面図。Sectional drawing similarly shown in the state of processing completion. 図2のa部拡大図(A)と、図3のb部拡大図(B)。FIG. 2A is an enlarged view (A) of FIG. 2 and FIG. 3 is an enlarged view (B) of a portion b of FIG. 1個のパンチ素子を取り出して示す斜視図(A)と、(A)の上方から見た平面図(B)と、(B)のc−c断面図(C)。The perspective view (A) which takes out and shows one punch element, The top view (B) seen from the upper part of (A), and cc sectional drawing (C) of (B). ロールと成形パンチとを取り出して示す側面図(A)と、(A)のd部拡大図(B)。The side view (A) which takes out and shows a roll and a forming punch, and the d section enlarged view (B) of (A). ロールの押圧面と成形パンチの軸方向他端面との当接部の断面を模式的に示す図(A)と、(A)の左方から見た状態を示す図(B)。The figure (A) which shows typically the cross section of the contact part of the press surface of a roll, and the axial direction other end surface of a shaping | molding punch, and the figure (B) which shows the state seen from the left of (A). パンチ素子の別例を示す、図5と同様の図。The figure similar to FIG. 5 which shows another example of a punch element. 本発明の対象となる転がり軸受の1種である車輪支持用軸受ユニットを組み込んだ、車輪駆動用軸受ユニットの従来構造の1例を示す断面図。Sectional drawing which shows an example of the conventional structure of the wheel drive bearing unit incorporating the wheel support bearing unit which is 1 type of the rolling bearing used as the object of this invention. 従来の車輪駆動用軸受ユニットの製造方法の1例を示す断面図。Sectional drawing which shows one example of the manufacturing method of the conventional wheel drive bearing unit. ハブ本体の中心軸に対するロールの中心軸の傾斜角度と、押圧力Fの最大値との関係を示す線図。The diagram which shows the relationship between the inclination angle of the center axis | shaft of the roll with respect to the center axis | shaft of a hub main body, and the maximum value of the pressing force F. FIG. 揺動鍛造によりハブ側フェイススプラインを形成する状態を示す模式図。The schematic diagram which shows the state which forms a hub side face spline by rocking forge. 揺動鍛造により形成されるフェイススプライン歯を示す、ハブ本体の中心軸に対するロールの中心軸の傾斜角度を5度した場合の模式図(A)と、同じく傾斜角度を15度とした場合の模式図(B)。A schematic diagram (A) showing the face spline teeth formed by rocking forging with the inclination angle of the central axis of the roll with respect to the central axis of the hub body being 5 degrees, and a schematic view when the inclination angle is similarly 15 degrees. Figure (B).

本発明の実施の形態の1例について、図1〜7を参照しつつ説明する。尚、本例を含めて本発明の特徴は、車輪支持用転がり軸受ユニット1の耐久性を確保しつつ、製造コストを抑える為に、転がり軸受ユニットを構成するハブ本体のかしめ部の軸方向他端面に、ハブ側フェイススプラインを形成する方法を工夫した点にある。金属材料に、鍛造加工等の塑性加工、旋削等の削り加工、研磨等の仕上加工を施して、車輪支持用転がり軸受ユニット1を構成する各部材を製造する手順等については、従来から広く知られている転がり軸受ユニットの製造方法と同様であるから、説明を省略する。   An example of an embodiment of the present invention will be described with reference to FIGS. It should be noted that the features of the present invention including this example are the axial direction of the caulking portion of the hub body constituting the rolling bearing unit in order to reduce the manufacturing cost while ensuring the durability of the wheel bearing rolling bearing unit 1. The method is to devise a method of forming a hub-side face spline on the end face. Conventionally, the procedures for manufacturing each member constituting the wheel bearing rolling bearing unit 1 by subjecting a metal material to plastic working such as forging, finishing such as turning, and finishing such as polishing have been widely known. Since it is the same as the manufacturing method of the rolling bearing unit currently used, description is abbreviate | omitted.

本例の場合も、前述した従来の製造方法と同様に、ハブ本体8の周囲に外輪3を配置すると共に、軸方向片側の外輪軌道7aと、軸方向片側の内輪軌道11aとの間に複数の転動体5、5を、軸方向片側の保持器29a(図9参照)により保持した状態で設ける。次に、内輪9の外周面に形成した軸方向他側の内輪軌道11bの周囲に転動体5、5を、軸方向他側の保持器29bにより保持した状態で設置し、この状態で前記内輪9を、前記ハブ本体8の軸方向他端部に形成した小径段部12に締り嵌めで外嵌する。そして、この外嵌作業に伴い、軸方向他側列の転動体5、5の転動面を、前記外輪3の軸方向他端寄り部分の内周面に形成した軸方向他側の外輪軌道7bに当接させる。次いで、前記ハブ本体8の軸方向他端部に形成した円筒部19を径方向外方に塑性変形させて、前記かしめ部20を形成する。そして、このかしめ部20により前記内輪9の軸方向他端面を軸方向に抑え付け、この内輪9を前記ハブ本体8に固定する。更に、前記かしめ部20の軸方向他端面にハブ側フェイススプライン21(図9参照)を形成する。   Also in this example, as in the conventional manufacturing method described above, the outer ring 3 is arranged around the hub body 8, and a plurality of outer ring raceways 7a on one axial side and a plurality of inner ring raceways 11a on one axial side are provided. These rolling elements 5 and 5 are provided in a state of being held by a cage 29a (see FIG. 9) on one axial side. Next, the rolling elements 5, 5 are installed around the inner ring raceway 11b on the other axial side formed on the outer peripheral surface of the inner ring 9 in a state of being held by the cage 29b on the other axial side, and in this state, the inner ring 9 is externally fitted to the small-diameter step portion 12 formed at the other axial end portion of the hub body 8 by an interference fit. Then, the outer ring raceway on the other side in the axial direction in which the rolling surfaces of the rolling elements 5 and 5 in the other row in the axial direction are formed on the inner peripheral surface near the other end in the axial direction of the outer ring 3 in accordance with this outer fitting work. 7b. Next, the caulking portion 20 is formed by plastically deforming the cylindrical portion 19 formed at the other axial end portion of the hub body 8 radially outward. Then, the other end surface in the axial direction of the inner ring 9 is held in the axial direction by the caulking portion 20, and the inner ring 9 is fixed to the hub body 8. Further, a hub-side face spline 21 (see FIG. 9) is formed on the other axial end surface of the caulking portion 20.

このハブ側フェイススプライン21を形成する為の揺動鍛造は、図1〜4に示す様な揺動プレス装置36を使用して行う。この揺動プレス装置36は、基台37と、この基台37の軸方向他側面に支持固定されたホルダ38と、ロール30aと、成形パンチ39と、パンチ昇降機構40とを備える。このうちのホルダ38は、軸方向他側面に、前記ハブ本体8の軸方向片端部に設けた、パイロット部と呼ばれる円筒部41をがたつきなく挿入可能な保持凹部42が設けられている。前記ロール30aは、前記ハブ本体8の中心軸αに対して所定の角度θだけ傾斜した自身の中心軸βを中心とする回転(自転)を可能に支持されており、先端面(図1〜3の下端面)を円すい台状の押圧面43としている。尚、本例の場合には、前記所定角度θを15度以上、30度以下(15≦θ≦30)としている。   The swing forging for forming the hub-side face spline 21 is performed using a swing press device 36 as shown in FIGS. The swing press device 36 includes a base 37, a holder 38 supported and fixed on the other side surface in the axial direction of the base 37, a roll 30 a, a forming punch 39, and a punch lifting mechanism 40. Of these, the holder 38 is provided with a holding recess 42 on the other side surface in the axial direction, which is provided at one axial end portion of the hub body 8 and into which a cylindrical portion 41 called a pilot portion can be inserted without rattling. The roll 30a is supported so as to be able to rotate (rotate) about its own central axis β inclined by a predetermined angle θ with respect to the central axis α of the hub body 8, and has a distal end surface (FIG. 1). 3 (lower end surface) is a truncated cone-shaped pressing surface 43. In the case of this example, the predetermined angle θ is set to 15 degrees or more and 30 degrees or less (15 ≦ θ ≦ 30).

前記成形パンチ39は、全体を略円筒状に構成されており、軸方向片端面に、前記ハブ側フェイススプライン21の歯数と同数の加工歯44、44を円周方向等間隔に形成し、外周面の軸方向中間部に、径方向外方に突出したフランジ部45を全周に亙って設けている。この様な成形パンチ39は、前記各加工歯44、44と同数に、これら各加工歯44、44毎に分割された(これら各加工歯44、44同士の間に存在する歯底の中央位置で分割された)パンチ素子46、46から構成されている。換言すれば、前記成形パンチ39を、軸方向から見た形状が扇形で、軸方向片端面に1個の加工歯44が設けられた素子本体47と、この素子本体47の外周面の軸方向中間部に設けられた突出部48とから成るパンチ素子46を、円周方向に組み合わせる事により構成している。この様な構成を有する成形パンチ39は、前記パンチ昇降機構40を構成するパンチ保持プレート49により、前記各パンチ素子46、46がこのパンチ保持プレート49に対して軸方向の変位のみ許容された状態で支持されている。   The molding punch 39 is formed in a substantially cylindrical shape as a whole, and has the same number of machining teeth 44, 44 as the number of teeth of the hub-side face spline 21 on one end face in the axial direction at equal intervals in the circumferential direction. A flange portion 45 protruding radially outward is provided over the entire circumference in the axially intermediate portion of the outer peripheral surface. Such forming punch 39 is divided into each of the machining teeth 44, 44 in the same number as each of the machining teeth 44, 44 (the center position of the tooth base existing between the machining teeth 44, 44). The punch elements 46 and 46 are divided by (1). In other words, the shape of the forming punch 39 when viewed from the axial direction is a sector shape, and an element main body 47 in which one machining tooth 44 is provided on one axial end surface, and the axial direction of the outer peripheral surface of the element main body 47 A punch element 46 composed of a projecting portion 48 provided at an intermediate portion is combined in the circumferential direction. In the forming punch 39 having such a configuration, the punch holding plates 49 constituting the punch lifting mechanism 40 allow the punch elements 46 and 46 to be displaced only in the axial direction with respect to the punch holding plate 49. It is supported by.

前記パンチ昇降機構40は、前記成形パンチ39を昇降(前記ハブ本体8の軸方向に変位)させる為のもので、パンチ保持プレート49と、このパンチ保持プレート49と前記基台37との間に設けられた油圧シリンダ50、50とを備える。このうちのパンチ保持プレート49は、中央部に、前記成形パンチ39を径方向及び円周方向に関するがたつきなく保持する為の保持孔51が設けられている。この保持孔51は、軸方向中間部に、軸方向片側の小径部と軸方向他側の大径部とを連続させる段差面部52を設けている。尚、この大径部の軸方向に関する寸法は、前記成形パンチ39のフランジ部45の軸方向に関する寸法(厚さ)よりも大きい。又、前記保持孔51内に前記成形パンチ39の軸方向片半部を挿通した状態で、この保持孔51の軸方向他側開口の周囲に円輪状の塞ぎ板53を支持固定している。この様なパンチ保持プレート49は、前記各油圧シリンダ50、50により前記基台37に対する昇降を可能(軸方向の位置調節を可能)に支持されている。   The punch raising / lowering mechanism 40 is for raising and lowering the forming punch 39 (displacement in the axial direction of the hub main body 8), and between the punch holding plate 49 and the punch holding plate 49 and the base 37. The hydraulic cylinders 50 and 50 provided are provided. Among these, the punch holding plate 49 is provided with a holding hole 51 at the center for holding the forming punch 39 in the radial direction and the circumferential direction without rattling. The holding hole 51 is provided with a stepped surface portion 52 that allows a small diameter portion on one side in the axial direction and a large diameter portion on the other side in the axial direction to be continuous in the intermediate portion in the axial direction. In addition, the dimension in the axial direction of the large diameter portion is larger than the dimension (thickness) in the axial direction of the flange portion 45 of the molding punch 39. In addition, an annular closing plate 53 is supported and fixed around the other axial opening of the holding hole 51 in a state where the axial half of the forming punch 39 is inserted into the holding hole 51. Such a punch holding plate 49 is supported by the hydraulic cylinders 50 and 50 so as to be movable up and down with respect to the base 37 (position adjustment in the axial direction is possible).

上述の様な揺動プレス装置36を使用して前記かしめ部20の軸方向他端面に前記ハブ側フェイススプライン21を形成する揺動鍛造を行う際には、先ず、図1に示す様に、前記各油圧シリンダ50、50を操作して前記パンチ保持プレート49を、このパンチ保持プレート49に保持された前記成形パンチ39の軸方向片端面と、前記ホルダ38に保持された前記車輪支持用転がり軸受ユニット1の軸方向他端面(前記かしめ部20の軸方向他端面)とが当接しない様に鉛直方向上方に位置させておく。この状態では、前記成形パンチ39のフランジ部45の軸方向片端面が、前記保持孔51の軸方向中間部に設けられた段差面部52に当接し、このフランジ部45の軸方向他端面と、前記塞ぎ板53の軸方向片側面の径方向内端寄り部分との間に隙間が介在した状態となる。又、前記車輪支持用転がり軸受ユニット1は、前記ホルダ38の保持凹部42に、前記ハブ本体8の円筒部(パイロット部)41をがたつきなく挿入した状態で、このホルダ38によりがたつきなく保持しておく。   When performing rocking forging in which the hub side face spline 21 is formed on the other axial end surface of the caulking portion 20 using the rocking press device 36 as described above, first, as shown in FIG. By operating each of the hydraulic cylinders 50, 50, the punch holding plate 49, the axial end surface of the molding punch 39 held by the punch holding plate 49, and the wheel support rolling held by the holder 38 are used. The bearing unit 1 is positioned vertically upward so that it does not come into contact with the other axial end surface (the other axial end surface of the caulking portion 20). In this state, one end surface in the axial direction of the flange portion 45 of the molding punch 39 abuts on a step surface portion 52 provided in the intermediate portion in the axial direction of the holding hole 51, and the other axial end surface of the flange portion 45, A gap is interposed between the closing plate 53 and the radially inner end portion of one side surface in the axial direction. Further, the wheel-supporting rolling bearing unit 1 is rattled by the holder 38 in a state in which the cylindrical portion (pilot portion) 41 of the hub body 8 is inserted into the holding recess 42 of the holder 38 without rattling. Keep without.

次に、前記各油圧シリンダ50、50を操作して前記パンチ保持プレート49を下方に変位させ、このパンチ保持プレート49に保持された前記成形パンチ39の軸方向片端面と、前記かしめ部20の軸方向他端面とを当接させる。この状態から、前記パンチ保持プレート49を更に下方に変位させる事により、前記成形パンチ39をこの保持プレート49に対して軸方向他方に変位させ、図2及び図4の(A)に示す様に、前記成形パンチ39のフランジ部45の軸方向他端面と、前記塞ぎ板53の軸方向片側面の内径寄り部分とを当接させる。この状態では、前記フランジ部45の軸方向片端面と、前記保持孔51の段差面部52との間に全周に亙って隙間54{図4の(A)参照}が介在した状態となる。本例の場合には、この隙間54の軸方向寸法L54が、前記ハブ側フェイススプライン21を構成する歯32(図12参照)の歯丈と同じになる様に、前記フランジ部45や前記保持孔51の軸方向寸法を規制している。次に、前記ロール30aを支持したラムを下降させ、このロール30aの押圧面43を前記成形パンチ39の軸方向他端面に当接させる。 Next, each of the hydraulic cylinders 50, 50 is operated to displace the punch holding plate 49 downward, and one axial end surface of the forming punch 39 held on the punch holding plate 49 and the caulking portion 20 The other axial end surface is brought into contact. From this state, the punch holding plate 49 is further displaced downward to displace the forming punch 39 in the other axial direction with respect to the holding plate 49, as shown in FIG. 2 and FIG. The other end surface in the axial direction of the flange portion 45 of the molding punch 39 is brought into contact with a portion closer to the inner diameter of one side surface in the axial direction of the closing plate 53. In this state, a gap 54 {see FIG. 4A} is interposed over the entire circumference between one axial end surface of the flange portion 45 and the stepped surface portion 52 of the holding hole 51. . In the case of the present example, the axial dimension L 54 of the gap 54, the teeth 32 of the hub-side face splines 21 so as to be the same as the tooth depth (see FIG. 12), the flange portion 45 and the The axial dimension of the holding hole 51 is restricted. Next, the ram supporting the roll 30 a is lowered, and the pressing surface 43 of the roll 30 a is brought into contact with the other axial end surface of the forming punch 39.

そして、前記ロール30aの押圧面43により前記成形パンチ39の軸方向他端面、即ち、この成形パンチ39を構成するパンチ素子46、46の軸方向他端面を軸方向片方に向け、所定の押圧力で押圧した状態で、前記ロール30aを、前記ハブ本体8の中心軸αを中心に回転させる。これにより、このロール30aの押圧面43と当接した前記各パンチ素子46、46を軸方向片方に向け押圧し、これら各パンチ素子46、46の軸方向片端面に形成された加工歯44、44を前記かしめ部20の軸方向他端面に押し付け、このかしめ部20の軸方向他端面を塑性変形させる。そして、前記ロール30aの押圧面43により押圧される前記各パンチ素子46、46は、このロール30aが、前記ハブ本体8の中心軸αを中心として回転(公転)するに従って、前記成形パンチ39の円周方向に関して公転方向と同方向にずれていく。本例の場合には、図6に示す様に、前記各パンチ素子46、46のうちの1個のパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転方向{図6の(B)の矢印λの方向}後側縁ζを、このロール30aの押圧面43により押圧した状態で、前記1個のパンチ素子46の、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転方向前側{図6の(B)の右側}隣りに存在するパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記1個のパンチ素子46側の側縁(前記中心軸αを中心とする前記ロール30aの回転方向後側の側縁)ηを、このロール30aの押圧面43により押圧しない様にしている。具体的には、前記1個のパンチ素子46の円周方向両側面のうち、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転方向後側面と、この中心軸α及び前記ロール30aの中心軸βを含む仮想平面とが同一平面上に存在する状態で、前記1個のパンチ素子46の、前記中心軸αを中心とする前記ロール30aの回転方向前側隣りに存在するパンチ素子46の軸方向他端面の円周方向両側縁のうち、この1個のパンチ素子46側の側縁ηと、前記ロール30aの押圧面46とが接触乃至近接対向するにとどまる様にしている。この為に、前記ハブ本体8の中心軸αを中心とする前記ロール30aの1回転当たりの、このロール30aの押圧面43による前記1個のパンチ素子46の軸方向他端面の押圧量Δdを調節している。   The other end surface in the axial direction of the forming punch 39, that is, the other end surface in the axial direction of the punch elements 46 and 46 constituting the forming punch 39 is directed toward one side in the axial direction by the pressing surface 43 of the roll 30a. In the pressed state, the roll 30a is rotated about the central axis α of the hub body 8. Thereby, each said punch element 46 and 46 contacted | abutted with the press surface 43 of this roll 30a is pressed toward one axial direction, and the process teeth 44 formed in the axial direction one end surface of these each punch elements 46 and 46, 44 is pressed against the other end surface in the axial direction of the caulking portion 20, and the other end surface in the axial direction of the caulking portion 20 is plastically deformed. The punch elements 46, 46 pressed by the pressing surface 43 of the roll 30 a are rotated by the roll 30 a about the central axis α of the hub body 8. The circumferential direction shifts in the same direction as the revolution direction. In the case of this example, as shown in FIG. 6, the center of the hub body 8 is the center of the hub body 8 out of both circumferential edges of the other axial end face of the punch element 46. The rotation direction of the roll 30a about the axis α (the direction of the arrow λ in FIG. 6B) with the rear edge ζ pressed by the pressing surface 43 of the roll 30a, the one punch element 46, both ends in the circumferential direction of the other axial end face of the punch element 46 existing on the front side in the rotational direction of the roll 30a (right side in FIG. 6B) around the central axis α of the hub body 8. Of these, the side edge on the one punch element 46 side (the side edge on the rear side in the rotation direction of the roll 30a around the central axis α) η is not pressed by the pressing surface 43 of the roll 30a. ing. Specifically, among the circumferential side surfaces of the one punch element 46, the rear side surface in the rotation direction of the roll 30a centered on the central axis α of the hub body 8, and the central axis α and the roll Punch element existing on the front side in the rotation direction of the roll 30a around the central axis α of the one punch element 46 in a state where a virtual plane including the central axis β of 30a exists on the same plane Of the two circumferential edges of the other end face in the axial direction of 46, the side edge η on the one punch element 46 side and the pressing face 46 of the roll 30a are kept in contact or close to each other. Therefore, the pressing amount Δd of the other end surface in the axial direction of the one punch element 46 by the pressing surface 43 of the roll 30a per one rotation of the roll 30a around the central axis α of the hub body 8 is determined. It is adjusting.

この押圧量Δdの大きさに就いて、図6、7を参照しつつ説明する。図7の(A)は、前記ロール30aの押圧面43と、前記成形パンチ39の軸方向片端面との当接部の断面を模式的に示している。又、図7の(B)は、同図の(A)を左方から見た状態、即ち、前記ロール30aの押圧面43の外形を、原点を、このロール30aの押圧面43と前記成形パンチ39の軸方向片端面との当接部の径方向外端部とし、互いに直交するx軸、y軸のうちのx軸を図7の(A)の表裏方向に、y軸を前記ハブ本体8の軸方向にそれぞれ一致させたx−y座標系で表している。図7の(A)及び(B)中のRは、前記ロール30aの押圧面43と、前記成形パンチ39の軸方向片端面との当接部の外径を、同じくr(=Rcosθ)は、この押圧面43の最大半径(この当接部の外周縁と、前記ロール30aの中心軸βとの間の寸法)を、それぞれ示している。前記x−y座標系で、前記押圧面43の外形は、次の(1)式で表される。

Figure 2017018991
この(1)式を変形すると、次の(2)式が得られる。
Figure 2017018991
The magnitude of the pressing amount Δd will be described with reference to FIGS. FIG. 7A schematically shows a cross section of a contact portion between the pressing surface 43 of the roll 30 a and one axial end surface of the forming punch 39. 7B shows the state of FIG. 7A viewed from the left side, that is, the outer shape of the pressing surface 43 of the roll 30a, the origin, the pressing surface 43 of the roll 30a and the molding. A radial outer end portion of the abutting portion with the one end surface of the punch 39 in the axial direction, and the x-axis of the x-axis and the y-axis orthogonal to each other is the front-back direction of FIG. It is represented by an xy coordinate system matched with the axial direction of the body 8. 7A and 7B, R represents the outer diameter of the contact portion between the pressing surface 43 of the roll 30a and one axial end surface of the forming punch 39, and r (= R cos θ) is the same. The maximum radius of the pressing surface 43 (the dimension between the outer peripheral edge of the contact portion and the central axis β of the roll 30a) is shown. In the xy coordinate system, the outer shape of the pressing surface 43 is expressed by the following equation (1).
Figure 2017018991
When this equation (1) is modified, the following equation (2) is obtained.
Figure 2017018991

ここで、前記各パンチ素子46、46の幅(前記成形パンチ39の円周方向に関する幅)の最大値L46は、これら各パンチ素子46、46の総数をNとすると、次の(3)式で表される。

Figure 2017018991
この様な(3)式で表される幅L46を前記(2)式に代入する事で、前記1個のパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記中心軸αを中心とする前記ロール30aの回転方向後側縁ζを、このロール30aの押圧面43により押圧した状態で、前記1個のパンチ素子46の、前記中心軸αを中心とする前記ロール30aの回転方向前側(図6の左側)隣りに存在するパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記1個のパンチ素子46側の側縁ηと、前記ロール30aの押圧面43とが接触する、押圧量Δdmax(前記ロール30aの、前記ハブ本体8の中心軸αを中心とする1回転当たりの前記各パンチ素子46、46の押圧量Δdの上限値)を近似的に求める事ができる。本例の場合、具体的には、前記傾斜角度θが15〜30度である場合、前記押圧量Δdを0.13〜0.3[mm]に調整する。 Here, the maximum value L 46 of the width of the punch element 46, 46 (the width in the circumferential direction of the forming punch 39), when the total number of each of these punch elements 46, 46 is N, the following (3) It is expressed by a formula.
Figure 2017018991
By substituting the width L 46 represented by the equation (3) into the equation (2), the central axis of the circumferentially opposite side edges of the other axial end surface of the one punch element 46 can be obtained. The roll 30a about the central axis α of the one punch element 46 in a state in which the rotation direction rear side edge ζ about the roll 30a is pressed by the pressing surface 43 of the roll 30a. Of the circumferentially opposite side edges of the other end face in the axial direction of the punch element 46 that is adjacent to the front side in the rotational direction (left side in FIG. 6) and the side edge η on the one punch element 46 side and the pressure of the roll 30a Approximate the pressing amount Δd max (the upper limit value of the pressing amount Δd of each of the punch elements 46 and 46 per rotation around the central axis α of the hub body 8 of the roll 30a) with which the surface 43 comes into contact. Can be requested. In the case of this example, specifically, when the inclination angle θ is 15 to 30 degrees, the pressing amount Δd is adjusted to 0.13 to 0.3 [mm].

前記揺動鍛造の進行に伴い前記かしめ部20の軸方向他端面に形成されたハブ側フェイススプライン21を構成する歯32の歯丈が大きくなると、前記成形パンチ39が下降し、前記隙間54の軸方向寸法L54が小さくなる。そして、前記各歯32の歯丈が所望の大きさになり、前記成形パンチ39のフランジ部45の軸方向片端面と、前記保持孔51の段差面部52とが当接した(L54=0となった)状態で、前記揺動鍛造を完了する。 When the tooth length of the teeth 32 constituting the hub-side face spline 21 formed on the other axial end surface of the caulking portion 20 increases with the progress of the swing forging, the forming punch 39 descends and the gap 54 The axial dimension L54 is reduced. Then, the tooth height of each tooth 32 becomes a desired size, and one end surface in the axial direction of the flange portion 45 of the molding punch 39 and the stepped surface portion 52 of the holding hole 51 abut (L 54 = 0). In this state, the rocking forging is completed.

尚、本例の場合には、このロール30aを、自身の中心軸βを中心とする回転(自転)を可能に支持している。従って、前記ロール30aを、前記ハブ本体8の中心軸αを中心として回転させると、このロール30aの押圧面43と前記成形パンチ39の軸方向他端面との摩擦係合に基づいて、このロール30aが自身の中心軸βを中心として回転(自転)する。   In the case of this example, this roll 30a is supported so as to be able to rotate (rotate) about its own central axis β. Therefore, when the roll 30a is rotated about the central axis α of the hub body 8, the roll 30a is rotated based on the frictional engagement between the pressing surface 43 of the roll 30a and the other axial end surface of the forming punch 39. 30a rotates (rotates) about its own central axis β.

上述の様な本例の車輪支持用転がり軸受ユニット1の製造方法によれば、この車輪支持用転がり軸受ユニット1の耐久性を確保しつつ、製造コストを抑える事ができる。
即ち、本例の場合には、前記成形パンチ39の軸方向片端面を前記かしめ部20の軸方向他端面に対向させた状態で、この成形パンチ39の軸方向他端面を、前記ロール30aの押圧面43により押圧しつつ、このロール30aを、前記ハブ本体8の中心軸αを中心として回転させる。これにより、前記成形パンチ39の軸方向片端面に形成された加工歯44、44を前記かしめ部20の軸方向他端面に押し付ける事で、このかしめ部20の軸方向他端面に前記ハブ側フェイススプライン21を形成する様にしている。ここで、前記成形パンチ39を構成する前記各パンチ素子46、46は、軸方向の変位のみ可能としている。この為、これら各パンチ素子46、46の軸方向他端面を、前記ハブ本体8の中心軸αを中心として前記ロール30aを回転させながらこのロール30aの押圧面43により押圧しても、前記各加工歯44、44の歯面が、前記ハブ側フェイススプライン21を構成する歯32の歯面に対し傾斜する事はない。従って、これら各歯32の歯面が局所的に塑性変形させられる様な前記各加工歯44、44の歯面と前記かしめ部20の軸方向端面との局所的な当接の発生を防止できる。従って、前記各歯32の断面形状の真直度を良好にでき、前記ハブ側フェイススプライン21と、等速ジョイント用外輪2に形成したジョイント側フェイススプライン26(図9参照)とを噛合させた状態で、前記ハブ側フェイススプライン21を構成する歯32と、前記ジョイント側フェイススプライン26を構成する歯との歯面同士の当接面積を十分に大きくする事ができる。この結果、前記ハブ側フェイススプライン21と前記ジョイント側フェイススプライン26との噛合部、延いては、車輪支持用転がり軸受ユニット1全体の耐久性を十分に確保する事ができる。
According to the manufacturing method of the wheel supporting rolling bearing unit 1 of the present example as described above, the manufacturing cost can be suppressed while ensuring the durability of the wheel supporting rolling bearing unit 1.
That is, in the case of this example, with the one axial end surface of the molding punch 39 opposed to the other axial end surface of the caulking portion 20, the other axial end surface of the molding punch 39 is connected to the roll 30a. While being pressed by the pressing surface 43, the roll 30 a is rotated around the central axis α of the hub body 8. As a result, the processing teeth 44, 44 formed on one axial end surface of the forming punch 39 are pressed against the other axial end surface of the caulking portion 20, so that the hub side face is pressed against the other axial end surface of the caulking portion 20. The spline 21 is formed. Here, the punch elements 46 and 46 constituting the forming punch 39 can only be displaced in the axial direction. Therefore, even if the other axial end surfaces of the punch elements 46 and 46 are pressed by the pressing surface 43 of the roll 30a while rotating the roll 30a around the central axis α of the hub body 8, The tooth surfaces of the processing teeth 44, 44 are not inclined with respect to the tooth surfaces of the teeth 32 constituting the hub-side face spline 21. Accordingly, it is possible to prevent the occurrence of local contact between the tooth surfaces of the processed teeth 44 and 44 and the axial end surfaces of the caulking portions 20 such that the tooth surfaces of the teeth 32 are locally plastically deformed. . Accordingly, the straightness of the cross-sectional shape of each tooth 32 can be improved, and the hub-side face spline 21 and the joint-side face spline 26 (see FIG. 9) formed on the constant velocity joint outer ring 2 are engaged with each other. Thus, the contact area between the tooth surfaces of the teeth 32 constituting the hub-side face spline 21 and the teeth constituting the joint-side face spline 26 can be sufficiently increased. As a result, it is possible to sufficiently ensure the durability of the meshing portion between the hub-side face spline 21 and the joint-side face spline 26, and hence the wheel support rolling bearing unit 1 as a whole.

又、前記傾斜角度θを大きくできる(この傾斜角度θを15度以上にできる)為、前記ロール30aの押圧面43を、前記成形パンチ39を介して前記かしめ部20の軸方向他端面に向けて押し付ける力(押圧力)Fが過度に大きくなる事を防止できる。この結果、前記プレス装置36が徒に大型化するのを防止でき、前記車輪支持用転がり軸受ユニット1の製造コストの増大を抑えられる。特に本例の場合には、前記各パンチ素子46、46のうちの1個のパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記中心軸αを中心とする前記ロール30aの回転方向後側縁ζを、このロール30aの押圧面43により押圧した状態で、前記1個のパンチ素子46の、前記中心軸αを中心とする前記ロール30aの回転方向前側に存在するパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記1個のパンチ素子46側の側縁ηと、前記ロール30aの押圧面43とが接触する様にしている。従って、このロール30aの押圧面43が前記1個のパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記中心軸αを中心とする前記ロール30aの回転方向後側縁を押圧している状態から、前記ロール30aが、前記ハブ本体8の中心軸αを中心に回転すると、前記1個のパンチ素子46、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転方向前側隣りに存在するパンチ素子46が、このロール30aの押圧面43により押圧され始める。この様に、このロール30aによる押圧力を、前記かしめ部20の軸方向他端面を塑性変形させる為の力として有効に利用する事ができて、前記力Fを小さく抑えられると共に、加工に要する時間を短縮する事ができる。   Further, since the inclination angle θ can be increased (this inclination angle θ can be 15 degrees or more), the pressing surface 43 of the roll 30a is directed toward the other end surface in the axial direction of the caulking portion 20 via the forming punch 39. The pressing force (pressing force) F can be prevented from becoming excessively large. As a result, it is possible to prevent the press device 36 from being increased in size, and to suppress an increase in the manufacturing cost of the wheel support rolling bearing unit 1. Particularly in the case of this example, of the circumferentially opposite side edges of the other axial end face of one punch element 46 of the punch elements 46, 46, the roll 30a centered on the central axis α A punch element that is present on the front side in the rotation direction of the roll 30a around the central axis α of the one punch element 46 in a state where the rear edge ζ in the rotation direction is pressed by the pressing surface 43 of the roll 30a. Out of both circumferential edges of the other end face in the axial direction of 46, the side edge η on the one punch element 46 side and the pressing face 43 of the roll 30a are in contact with each other. Accordingly, the pressing surface 43 of the roll 30a presses the rear side edge in the rotational direction of the roll 30a centered on the central axis α, out of both circumferential edges of the other axial end surface of the one punch element 46. When the roll 30a is rotated about the central axis α of the hub body 8 from the state where the roll 30a is rotated, the rotation of the roll 30a about the central axis α of the one punch element 46 and the hub body 8 is rotated. The punch element 46 existing on the front side in the direction starts to be pressed by the pressing surface 43 of the roll 30a. Thus, the pressing force by the roll 30a can be effectively used as a force for plastically deforming the other end surface in the axial direction of the caulking portion 20, and the force F can be kept small and required for processing. Time can be shortened.

尚、前述の図11から明らかな通り、前記ハブ本体8の中心軸αに対する前記ロール30aの中心軸βの傾斜角度θが、30度を超えると、このロール30aの押圧面43と、前記成形パンチ39の軸方向他端面との当接面積が小さくなり、これら両面同士の当接面圧が過度に大きくなって、前記ロール30aの押圧面43の耐久性が確保し難くなる可能性がある。そこで、本例の場合には、前記傾斜角度θを30度以下としている。   As is apparent from FIG. 11 described above, when the inclination angle θ of the central axis β of the roll 30a with respect to the central axis α of the hub body 8 exceeds 30 degrees, the pressing surface 43 of the roll 30a and the molding There is a possibility that the contact area with the other end surface in the axial direction of the punch 39 is reduced, the contact surface pressure between these two surfaces is excessively increased, and it is difficult to ensure the durability of the pressing surface 43 of the roll 30a. . Therefore, in the case of this example, the inclination angle θ is set to 30 degrees or less.

又、本発明を実施する場合に、成形パンチの外周面に径方向外方に突出するフランジ部を設けず、この成形パンチの外周面を軸方向に関して外径が変化しない単一円筒面とする事もできる。即ち、この成形パンチを、図8に示す様な、軸方向片端面に加工歯44を設けたパンチ素子46aを複数組み合わせたものとする。この場合には、例えば、ハブ本体8の軸方向に関するロール30aの変位量を検出し、この変位量が、ハブ側フェイススプライン21を構成する歯32の歯丈と同じになった時点で、このハブ側フェイススプライン21を形成する為の加工を完了する。   Further, when carrying out the present invention, the outer peripheral surface of the molding punch is not provided with a flange portion protruding radially outward, and the outer peripheral surface of the molding punch is a single cylindrical surface whose outer diameter does not change in the axial direction. You can also do things. That is, it is assumed that this forming punch is a combination of a plurality of punch elements 46a each having a processing tooth 44 on one end face in the axial direction as shown in FIG. In this case, for example, the displacement amount of the roll 30a in the axial direction of the hub body 8 is detected, and when the displacement amount becomes the same as the tooth height of the teeth 32 constituting the hub-side face spline 21, Processing for forming the hub-side face spline 21 is completed.

前述した図1〜4に示す、揺動プレス装置36を使用して、本発明の転がり軸受ユニットの製造方法を実施する場合に、1個のパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転方向後側縁を、このロール30aの押圧面43により押圧した状態で、前記1個のパンチ素子46の、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転方向前側(図6の左側)隣りに存在するパンチ素子46の軸方向他端面の円周方向両側縁のうち、前記1個のパンチ素子46側の側縁と、前記ロール30aの押圧面43とが接触する、押圧量Δdmaxに就いて、具体例を示す。
先ず、成形パンチ39を構成するパンチ素子46、46の総数Nを31とし、ハブ本体8の中心軸αに対する前記ロール30aの中心軸βの傾斜角度θを30度とし、このロール30aの押圧面43の最大径Rを24[mm]とした場合には、前記押圧量Δdmaxは0.3[mm]となる。そこで、例えば、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転数(回転速度)を200[rpm]とする場合には、このロール30aを、1[mm/秒]の速度で軸方向片側に向けて押し付ける(変位させる)。
或いは、前記総数Nを31とし、前記傾斜角度θを15度とし、前記最大径Rを24[mm]とした場合には、前記押圧量Δdmaxは0.13[mm]となる。そこで、例えば、前記ハブ本体8の中心軸αを中心とする前記ロール30aの回転数を300[rpm]とする場合には、このロール30aを、0.65[mm/秒]の速度で軸方向片側に向けて押し付ける(変位させる)。
When the manufacturing method of the rolling bearing unit of the present invention is carried out using the oscillating press device 36 shown in FIGS. 1 to 4 described above, both sides in the circumferential direction of the other axial end surface of one punch element 46. Of the edges, the rear edge in the rotation direction of the roll 30a around the central axis α of the hub body 8 is pressed by the pressing surface 43 of the roll 30a, and the one punch element 46 is Of the circumferentially opposite side edges of the other end face in the axial direction of the punch element 46 existing on the front side in the rotational direction (left side in FIG. 6) of the roll 30a around the central axis α of the hub body 8, the one punch A specific example of the pressing amount Δd max in which the side edge on the element 46 side and the pressing surface 43 of the roll 30a come into contact with each other will be described.
First, the total number N of punch elements 46, 46 constituting the forming punch 39 is 31, and the inclination angle θ of the central axis β of the roll 30a with respect to the central axis α of the hub body 8 is 30 degrees. When the maximum diameter R of 43 is 24 [mm], the pressing amount Δd max is 0.3 [mm]. Therefore, for example, when the rotation speed (rotational speed) of the roll 30a around the central axis α of the hub body 8 is set to 200 [rpm], the roll 30a is moved at a speed of 1 [mm / sec]. Press (displace) toward one side in the axial direction.
Alternatively, when the total number N is 31, the inclination angle θ is 15 degrees, and the maximum diameter R is 24 [mm], the pressing amount Δd max is 0.13 [mm]. Therefore, for example, when the rotation speed of the roll 30a about the central axis α of the hub body 8 is set to 300 [rpm], the roll 30a is rotated at a speed of 0.65 [mm / sec]. Press toward one side (displace).

1 車輪支持用軸受ユニット
2 等速ジョイント用外輪
3 外輪
4 ハブ
5 転動体
6 静止側フランジ
7a、7b 外輪軌道
8 ハブ本体
9 内輪
10 回転側フランジ
11a、11b 内輪軌道
12 小径段部
13 中心孔
14 小径部
15 ボルト
16 杆部
17 雄ねじ部
18 頭部
19 円筒部
20 かしめ部
21 ハブ側フェイススプライン
22 マウス部
23 端壁部
24 軸部
25 ねじ孔
26 ジョイント側フェイススプライン
27 等速ジョイント用内輪
28 ボール
29a、29b 保持器
30、30a ロール
31 加工面
32 フェイススプライン歯
33 加工歯
34 凹部
35 段部
36 揺動プレス装置
37 基台
38 ホルダ
39 成形パンチ
40 パンチ昇降機構
41 円筒部
42 保持凹部
43 押圧面
44 加工歯
45 フランジ部
46 パンチ素子
47 素子本体
48 突出部
49 パンチ保持プレート
50 油圧シリンダ
51 保持孔
52 段差面部
53 塞ぎ板
54 隙間
DESCRIPTION OF SYMBOLS 1 Wheel support bearing unit 2 Outer ring for constant velocity joint 3 Outer ring 4 Hub 5 Rolling element 6 Stationary side flange 7a, 7b Outer ring raceway 8 Hub body 9 Inner ring 10 Rotation side flange 11a, 11b Inner ring raceway 12 Small diameter step 13 Central hole 14 Small-diameter portion 15 Bolt 16 Hook portion 17 Male thread portion 18 Head portion 19 Cylindrical portion 20 Caulking portion 21 Hub side face spline 22 Mouse portion 23 End wall portion 24 Shaft portion 25 Screw hole 26 Joint side face spline 27 Inner ring for constant velocity joint 28 Ball 29a, 29b Cage 30, 30a Roll 31 Processing surface 32 Face spline teeth 33 Processing teeth 34 Recess 35 Step portion 36 Oscillating press device 37 Base 38 Holder 39 Molding punch 40 Punch lifting mechanism 41 Cylindrical portion 42 Holding recess 43 Pressing surface 44 Processing teeth 45 Flange 6 punch element 47 the element body 48 protruding portion 49 punch holding plate 50 the hydraulic cylinder 51 holding hole 52 step portion 53 closing plate 54 gap

Claims (5)

軸方向中間部外周面に軸方向片側の内輪軌道を有するハブ本体と、
外周面に軸方向他側の内輪軌道を有し、このハブ本体の軸方向他端寄り部分に外嵌された内輪とを備え、
前記ハブ本体の軸方向他端部に設けた円筒部を径方向外方に塑性変形させる事で形成したかしめ部により、前記内輪の軸方向他端面を抑え付けてこの内輪を前記ハブ本体に固定し、このかしめ部の軸方向他端面に、円周方向に関する凹凸部であるハブ側フェイススプラインを形成した転がり軸受ユニットを造る為に、
円周方向に複数に分割された、それぞれが軸方向の変位を可能に、且つ、周方向の変位を阻止された複数のパンチ素子を組み合わせて成り、軸方向片端面に、前記ハブ側フェイススプラインの歯数と同数の加工歯を形成した成形パンチの軸方向片端面を、前記かしめ部の軸方向他端面に対向させた状態で、この成形パンチの軸方向他端面を、前記ハブ本体の中心軸に対し傾斜した中心軸を有するロールの押圧面により押圧しつつ、このロールを、このハブ本体の中心軸を中心として回転させる事により、前記かしめ部の軸方向他端面に前記ハブ側フェイススプラインを形成する
転がり軸受ユニットの製造方法。
A hub body having an inner ring raceway on one side in the axial direction on an outer peripheral surface in the axial direction;
An inner ring raceway on the other side in the axial direction on the outer peripheral surface, and an inner ring fitted on a portion near the other axial end of the hub body,
The inner ring is fixed to the hub body by pressing the other end surface in the axial direction of the inner ring by a caulking part formed by plastically deforming a cylindrical part provided at the other axial end of the hub body radially outward. In order to construct a rolling bearing unit in which a hub side face spline that is an uneven portion in the circumferential direction is formed on the other end surface in the axial direction of the caulking portion,
The hub-side face spline is formed by combining a plurality of punch elements divided into a plurality in the circumferential direction, each of which can be displaced in the axial direction and blocked in the circumferential direction. With one axial end surface of the molding punch having the same number of teeth as the number of teeth as opposed to the other axial end surface of the caulking portion, the other axial end surface of the molding punch is set to the center of the hub body. The hub-side face spline is formed on the other end surface in the axial direction of the caulking portion by rotating the roll around the central axis of the hub body while pressing the pressing surface of the roll having a central axis inclined with respect to the axis. A method of manufacturing a rolling bearing unit.
前記ハブ本体の中心軸に対する前記ロールの中心軸の傾斜角度が15度以上である、請求項1に記載した転がり軸受ユニットの製造方法。   The method for manufacturing a rolling bearing unit according to claim 1, wherein an inclination angle of the central axis of the roll with respect to the central axis of the hub body is 15 degrees or more. 前記成形パンチは、前記各加工歯の歯数と同数に分割された前記各パンチ素子から成る、請求項1〜2のうちの何れか1項に記載した転がり軸受ユニットの製造方法。   3. The method for manufacturing a rolling bearing unit according to claim 1, wherein the forming punch is composed of the punch elements divided into the same number as the number of teeth of the processing teeth. 4. 前記各パンチ素子のうちの1個のパンチ素子の軸方向他端面の円周方向両側縁のうち、前記ハブ本体の中心軸を中心とする前記ロールの回転方向後側縁を、このロールの押圧面により押圧した状態で、前記1個のパンチ素子の、前記ハブ本体の中心軸を中心とする前記ロールの回転方向前側隣りに存在するパンチ素子の軸方向他端面の円周方向両側縁のうち、この1個のパンチ素子側の側縁を、前記ロールの押圧面により押圧しない様にする、請求項3に記載した転がり軸受ユニットの製造方法。   Among the punch elements of one of the punch elements, of the circumferential opposite side edges of the other axial end surface, the rear edge in the rotation direction of the roll centered on the central axis of the hub body is pressed by the roll. Out of both circumferential edges of the other end surface in the axial direction of the punch element existing on the front side in the rotational direction of the roll centered on the central axis of the hub body of the one punch element in a state of being pressed by the surface The method for manufacturing a rolling bearing unit according to claim 3, wherein the side edge on the one punch element side is not pressed by the pressing surface of the roll. 前記かしめ部の軸方向他端面に形成された前記ハブ側フェイススプラインを構成する歯の歯丈が所望の大きさになった状態で、前記各パンチ素子の一部を、これら各パンチ素子を保持する部分に設けられた段差面部に突き当てる事により、これら各パンチ素子がそれ以上軸方向他方に変位する事を阻止する、請求項1〜4に記載した転がり軸受ユニットの製造方法。   A part of each punch element is held by each of the punch elements in a state where the tooth length of the hub side face spline formed on the other end surface in the axial direction of the caulking portion has a desired size. The manufacturing method of the rolling bearing unit according to claim 1, wherein each punch element is prevented from being further displaced in the other axial direction by abutting against a stepped surface portion provided in a portion to be performed.
JP2015139543A 2015-07-13 2015-07-13 Rolling bearing unit manufacturing method, vehicle manufacturing method Active JP6222177B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015139543A JP6222177B2 (en) 2015-07-13 2015-07-13 Rolling bearing unit manufacturing method, vehicle manufacturing method
PCT/JP2016/070551 WO2017010481A1 (en) 2015-07-13 2016-07-12 Method and device for manufacuturing bearing unit
EP16824461.4A EP3323525B1 (en) 2015-07-13 2016-07-12 Method and device for manufacuturing bearing unit
US15/572,581 US10557505B2 (en) 2015-07-13 2016-07-12 Method and device for manufacturing bearing unit
CN201680040787.1A CN107848014B (en) 2015-07-13 2016-07-12 Method and apparatus for manufacturing bearing unit
US16/700,171 US11162538B2 (en) 2015-07-13 2019-12-02 Method and device for manufacturing bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139543A JP6222177B2 (en) 2015-07-13 2015-07-13 Rolling bearing unit manufacturing method, vehicle manufacturing method

Publications (3)

Publication Number Publication Date
JP2017018991A true JP2017018991A (en) 2017-01-26
JP2017018991A5 JP2017018991A5 (en) 2017-09-21
JP6222177B2 JP6222177B2 (en) 2017-11-01

Family

ID=57888996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139543A Active JP6222177B2 (en) 2015-07-13 2015-07-13 Rolling bearing unit manufacturing method, vehicle manufacturing method

Country Status (1)

Country Link
JP (1) JP6222177B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138711A1 (en) 2018-01-10 2019-07-18 日本精工株式会社 Hub-unit-bearing manufacturing method, hub-unit-bearing manufacturing device, and vehicle manufacturing method
CN110290885A (en) * 2017-03-02 2019-09-27 日本精工株式会社 The manufacturing method for swinging forging apparatus, swinging forging method, the manufacturing method for the hub unit bearing for having used the swing forging method and vehicle
WO2020208947A1 (en) 2019-04-10 2020-10-15 日本精工株式会社 Method for manufacturing caulking assembly, method for manufacturing hub unit bearing, and method for manufacturing vehicle
IT202100008984A1 (en) * 2021-04-12 2022-10-12 Skf Ab METHOD FOR FORMING A FACE TOOTH ON AN INNER RING OF A WHEEL HUB AND ASSOCIATED EQUIPMENT
US12103065B2 (en) 2019-04-10 2024-10-01 Nsk Ltd. Staking assembly manufacturing method, hub unit bearing manufacturing method, and vehicle manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1625131A (en) * 1924-01-26 1927-04-19 Timken Roller Bearing Co Die
JPS63224833A (en) * 1987-03-12 1988-09-19 Aida Eng Ltd Forming die
JPH0381239U (en) * 1989-12-05 1991-08-20
JPH07317755A (en) * 1994-05-20 1995-12-08 Ntn Corp Hub unit bearing outer wheel and manufacture thereof
JP2002254901A (en) * 2000-12-26 2002-09-11 Ntn Corp Wheel bearing device, and manufacturing method thereof
JP2013224746A (en) * 2013-07-16 2013-10-31 Ntn Corp Outside joint member for fixed constant velocity universal joint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1625131A (en) * 1924-01-26 1927-04-19 Timken Roller Bearing Co Die
JPS63224833A (en) * 1987-03-12 1988-09-19 Aida Eng Ltd Forming die
JPH0381239U (en) * 1989-12-05 1991-08-20
JPH07317755A (en) * 1994-05-20 1995-12-08 Ntn Corp Hub unit bearing outer wheel and manufacture thereof
JP2002254901A (en) * 2000-12-26 2002-09-11 Ntn Corp Wheel bearing device, and manufacturing method thereof
JP2013224746A (en) * 2013-07-16 2013-10-31 Ntn Corp Outside joint member for fixed constant velocity universal joint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290885A (en) * 2017-03-02 2019-09-27 日本精工株式会社 The manufacturing method for swinging forging apparatus, swinging forging method, the manufacturing method for the hub unit bearing for having used the swing forging method and vehicle
CN110290885B (en) * 2017-03-02 2023-09-19 日本精工株式会社 Swing forging device, swing forging method, method for manufacturing hub unit bearing using the same, and method for manufacturing vehicle
WO2019138711A1 (en) 2018-01-10 2019-07-18 日本精工株式会社 Hub-unit-bearing manufacturing method, hub-unit-bearing manufacturing device, and vehicle manufacturing method
WO2020208947A1 (en) 2019-04-10 2020-10-15 日本精工株式会社 Method for manufacturing caulking assembly, method for manufacturing hub unit bearing, and method for manufacturing vehicle
US12103065B2 (en) 2019-04-10 2024-10-01 Nsk Ltd. Staking assembly manufacturing method, hub unit bearing manufacturing method, and vehicle manufacturing method
IT202100008984A1 (en) * 2021-04-12 2022-10-12 Skf Ab METHOD FOR FORMING A FACE TOOTH ON AN INNER RING OF A WHEEL HUB AND ASSOCIATED EQUIPMENT
US20220324011A1 (en) * 2021-04-12 2022-10-13 Aktiebolaget Skf Method for forming a front toothing on an inner ring of a wheel hub and associated equipment
US11806775B2 (en) * 2021-04-12 2023-11-07 Aktiebolaget Skf Method for forming a front toothing on an inner ring of a wheel hub and associated equipment

Also Published As

Publication number Publication date
JP6222177B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6222177B2 (en) Rolling bearing unit manufacturing method, vehicle manufacturing method
JP6213528B2 (en) Rolling bearing unit manufacturing method and vehicle manufacturing method
WO2017010481A1 (en) Method and device for manufacuturing bearing unit
US9630237B2 (en) Face spline molding device, face spline molding method, outer joint member, and constant velocity universal joint
JP6379798B2 (en) Rolling bearing unit manufacturing method and vehicle manufacturing method
JP6724895B2 (en) Bearing unit manufacturing method and rocking press device
US20190375235A1 (en) Flanged inner ring optimized for orbital forming operation and associated tool
JP2017018991A5 (en) Rolling bearing unit manufacturing method, vehicle manufacturing method
JP6372627B2 (en) Manufacturing method and manufacturing apparatus for wheel support bearing unit, and manufacturing method of vehicle
JP6222197B2 (en) Method and apparatus for manufacturing rolling bearing unit and method for manufacturing vehicle
JP2013023086A (en) Hub unit for supporting wheel, and method for manufacturing the same
JP2004162913A (en) Method for manufacturing rolling bearing unit for supporting wheel, and manufacturing apparatus
JP2017067254A5 (en)
KR20160103564A (en) Wheel bearing
KR101696907B1 (en) Wheel bearing and manufacturing method of the same
US20230296136A1 (en) Staking apparatus and staking method for bearing unit, manufacturing method and manufacturing apparatus of hub unit bearing, and manufacturing method of vehicle
US12123466B2 (en) Staking apparatus and staking method for bearing unit, manufacturing method and manufacturing apparatus of hub unit bearing, and manufacturing method of vehicle
JP2017001524A (en) Hub unit and method for manufacturing hub unit
JP2022505492A (en) Methods for machining bearing rings and manufacturing rolling bearings
KR20170010688A (en) Wheel bearing and manufacturing method of the same
JP2009166690A (en) Hub shaft, axle bearing device using the same, and wheel fitting structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150