JP2017016977A - Battery temperature control structure - Google Patents

Battery temperature control structure Download PDF

Info

Publication number
JP2017016977A
JP2017016977A JP2015135323A JP2015135323A JP2017016977A JP 2017016977 A JP2017016977 A JP 2017016977A JP 2015135323 A JP2015135323 A JP 2015135323A JP 2015135323 A JP2015135323 A JP 2015135323A JP 2017016977 A JP2017016977 A JP 2017016977A
Authority
JP
Japan
Prior art keywords
heat
battery
temperature control
control structure
battery module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135323A
Other languages
Japanese (ja)
Inventor
且行 浦山
Katsuyuki Urayama
且行 浦山
下野園 均
Hitoshi Shimonosono
均 下野園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2015135323A priority Critical patent/JP2017016977A/en
Publication of JP2017016977A publication Critical patent/JP2017016977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery temperature control structure capable of effectively controlling a temperature of a battery by sufficiently absorbing a clearance even in the case where the clearance between constitutive members is varied.SOLUTION: The battery temperature control structure comprises: a battery module M including one or two or more battery cells C; a housing 60 in which the battery module is accommodated; a thermoelectric element 30 which is disposed between the battery module and an inner peripheral surface of the housing and includes a heat absorption surface 30a and a heat radiation surface 30b; and heat transfer members 50A and 50B which are disposed at least between the battery module and the thermoelectric element and perform heat transfer by circulating a heat medium 200 of which the phase changes into a gas phase G and a liquid phase L. The heat transfer member itself includes clearance absorption means 100 (100A and 100B) for absorbing a clearance between the battery module and the heat transfer member or between the heat transfer member and the thermoelectric element.SELECTED DRAWING: Figure 1

Description

本発明は、バッテリセルを備えたバッテリモジュールを冷却あるいは加熱するバッテリ調温構造に関する。   The present invention relates to a battery temperature control structure that cools or heats a battery module including battery cells.

電気自動車やハイブリット自動車などには、電動機等に電気を供給するバッテリが搭載されている。バッテリとしては、繰返し充放電が可能なニッカド(Ni−Cd)電池、ニッケル−水素電池、リチウムイオン電池などの二次バッテリが用いられる。   A battery for supplying electricity to an electric motor or the like is mounted on an electric vehicle or a hybrid vehicle. As the battery, a secondary battery such as a nickel-cadmium (Ni-Cd) battery, a nickel-hydrogen battery, or a lithium ion battery that can be repeatedly charged and discharged is used.

このようなバッテリを環境温度に応じて、ペルチェ素子等の熱電素子を利用して冷却あるいは加熱して調温してバッテリ特性を向上させる調温構造が従来から存在する。   Conventionally, there is a temperature control structure that improves the battery characteristics by cooling or heating such a battery using a thermoelectric element such as a Peltier element according to the environmental temperature.

ところで、バッテリを効率的に冷却、加熱するためには、バッテリ等の発熱部側の伝熱面と、熱電素子等の冷却、加熱部側の伝熱面との間には隙間がないことが望ましい。   By the way, in order to efficiently cool and heat the battery, there may be no gap between the heat transfer surface on the heat generating part side of the battery and the heat transfer surface on the cooling and heating part side of the thermoelectric element or the like. desirable.

そこで、弾性体を用いて伝熱面間の隙間を低減する調温構造に関する技術が提案されている(例えば特許文献1等)。   Therefore, a technique relating to a temperature control structure that reduces the gap between the heat transfer surfaces using an elastic body has been proposed (for example, Patent Document 1).

特開2008−66061号公報JP 2008-66061 A

ここで、従来技術では、弾性シート等の弾性体を用いて複数のバッテリと収容ケースとの間の隙間を低減している。   Here, in the prior art, the clearance gap between a some battery and a storage case is reduced using elastic bodies, such as an elastic sheet.

しかしながら、電池や収容ケースなどの構成部材を製造する際の誤差等により、部材間の隙間にもバラツキを生じるため、規格化されたサイズの弾性シート等を部材間に介在させても隙間を十分に吸収できない場合がある。   However, due to errors in manufacturing components such as batteries and storage cases, the gaps between the members also vary. Therefore, even if a standardized elastic sheet or the like is interposed between the members, the gaps are sufficient. May not be absorbed.

そのため、バッテリと収容ケースとの間にペルチェ素子を介在させて冷却、加熱する調温構造において、弾性シート等によって隙間を十分に吸収できない場合には、各バッテリとペルチェ素子の吸熱面、放熱面との間にも結果的に隙間を生じ、バッテリの効果的な調温を行うことができないという問題があった。   Therefore, in the temperature control structure that cools and heats with a Peltier element interposed between the battery and the housing case, if the gap cannot be sufficiently absorbed by an elastic sheet or the like, the heat absorbing surface and heat radiating surface of each battery and Peltier element As a result, there is a problem that a gap is generated between the battery and the battery, and the battery cannot be effectively temperature-controlled.

本発明は、上記課題に鑑みてなされたものであり、各構成部材間の隙間にバラツキを有する場合であってもその隙間を十分に吸収して、バッテリの効果的な調温を行うことのできるバッテリ調温構造を提供することを目的とする。   The present invention has been made in view of the above problems, and even when there are variations in the gaps between the constituent members, the gaps can be sufficiently absorbed to effectively regulate the battery temperature. It aims at providing the battery temperature control structure which can be performed.

上記目的を達成するため、本発明に係るバッテリ調温構造は、1または2以上のバッテリセルを備えたバッテリモジュールと、前記バッテリモジュールを収容する筐体と、前記バッテリモジュールと前記筐体の内周面との間に配置され、吸熱面と放熱面を備えた熱電素子と、少なくとも前記バッテリモジュールと前記熱電素子との間に配置され、気相と液相とに相変化する熱媒の循環により熱輸送を行う熱輸送部材と、を備え、前記熱輸送部材自体、前記バッテリモジュールと前記熱輸送部材との間、または前記熱輸送部材と前記熱電素子との間の何れかに、隙間を吸収する隙間吸収手段を設けたことを要旨とする。   In order to achieve the above object, a battery temperature control structure according to the present invention includes a battery module including one or more battery cells, a housing that houses the battery module, the battery module, and the housing. Circulation of a heat medium that is arranged between the peripheral surface and has a heat absorption surface and a heat dissipation surface, and a heat medium that is arranged at least between the battery module and the thermoelectric element and changes phase between a gas phase and a liquid phase A heat transport member that performs heat transport by a gap between the heat transport member itself, the battery module and the heat transport member, or between the heat transport member and the thermoelectric element. The gist is that a gap absorbing means for absorbing is provided.

本発明に係るバッテリ調温構造によれば、熱輸送部材自体、バッテリモジュールと熱輸送部材との間、または熱輸送部材と熱電素子との間の何れかに、隙間を吸収する隙間吸収手段が設けられているので、各構成部材間の隙間にバラツキを有する場合であってもその隙間を十分に吸収して、バッテリの効果的な調温を行うことができる。   According to the battery temperature control structure of the present invention, the gap absorbing means for absorbing the gap is provided either in the heat transport member itself, between the battery module and the heat transport member, or between the heat transport member and the thermoelectric element. Since it is provided, even if there are variations in the gaps between the constituent members, the gaps can be sufficiently absorbed to effect effective temperature control of the battery.

第1の実施の形態に係るバッテリ調温構造の構成例を示す一部断面図である。It is a partial cross section figure which shows the structural example of the battery temperature control structure which concerns on 1st Embodiment. 第1の実施の形態に係るバッテリ調温構造の要部を示す正面図である。It is a front view which shows the principal part of the battery temperature control structure which concerns on 1st Embodiment. 第1の実施の形態に係るバッテリ調温構造の構成例を示す一部断面図である。It is a partial cross section figure which shows the structural example of the battery temperature control structure which concerns on 1st Embodiment. 第1の実施の形態に係るバッテリ調温構造に適用される熱輸送部材の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the heat transport member applied to the battery temperature control structure which concerns on 1st Embodiment. 第2の実施の形態に係るバッテリ調温構造の構成例を示す一部断面図である。It is a partial cross section figure which shows the structural example of the battery temperature control structure which concerns on 2nd Embodiment. 第3の実施の形態に係るバッテリ調温構造の構成例を示すい一部断面図である。It is a partial cross section figure which shows the structural example of the battery temperature control structure which concerns on 3rd Embodiment.

以下、本発明の一例としての実施の形態を図面に基づいて詳細に説明する。ここで、添付図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。なお、ここでの説明は本発明が実施される最良の形態であることから、本発明は当該形態に限定されるものではない。   Hereinafter, an embodiment as an example of the present invention will be described in detail with reference to the drawings. Here, in the accompanying drawings, the same reference numerals are given to the same members, and duplicate descriptions are omitted. In addition, since description here is the best form by which this invention is implemented, this invention is not limited to the said form.

[第1の実施の形態に係るバッテリ調温構造]
図1〜図4を参照して、第1の実施の形態に係るバッテリ調温構造B1について説明する。
[Battery temperature control structure according to the first embodiment]
With reference to FIGS. 1-4, battery temperature control structure B1 which concerns on 1st Embodiment is demonstrated.

ここで、図1は、第1の実施の形態に係るバッテリ調温構造B1の構成例を示す一部断面図、図2はバッテリ調温構造B1の要部を示す正面図、図3はバッテリ調温構造B1の構成例を示す一部断面図である。   Here, FIG. 1 is a partial cross-sectional view showing a configuration example of the battery temperature control structure B1 according to the first embodiment, FIG. 2 is a front view showing the main part of the battery temperature control structure B1, and FIG. It is a partial cross section figure which shows the structural example of temperature control structure B1.

また、図4は、バッテリ調温構造B1に適用される熱輸送部材50Aの構成を模式的に示す説明図である。   Moreover, FIG. 4 is explanatory drawing which shows typically the structure of 50 A of heat transport members applied to battery temperature control structure B1.

第1の実施の形態に係るバッテリ調温構造B1は、図1および図2に示すように、複数のバッテリセルCを図上、奥行き方向に積層して備えるバッテリモジュールMと、バッテリモジュールMを収容するアルミニウム等の金属で構成される筐体60と、バッテリモジュールMと筐体60の内周面との間に配置され、吸熱面30aと放熱面30bを備えたペルチェ素子等で構成される熱電素子30とを備えている。   As shown in FIGS. 1 and 2, the battery temperature adjustment structure B <b> 1 according to the first embodiment includes a battery module M including a plurality of battery cells C stacked in the depth direction in the figure, and the battery module M. A housing 60 made of a metal such as aluminum to be accommodated, and a Peltier element or the like provided between the battery module M and the inner peripheral surface of the housing 60 and having a heat absorbing surface 30a and a heat radiating surface 30b. The thermoelectric element 30 is provided.

また、バッテリモジュールMと熱電素子30との間に配置され、気相Gと液相Lとに相変化する熱媒200の循環により熱輸送を行う熱輸送部材50Aを備えている。なお、熱輸送部材50Aの構成については図4を参照して後述する。   In addition, a heat transport member 50A that is disposed between the battery module M and the thermoelectric element 30 and transports heat by circulation of the heat medium 200 that changes phase between the gas phase G and the liquid phase L is provided. The configuration of the heat transport member 50A will be described later with reference to FIG.

そして、本実施の形態において、熱輸送部材50A自体が、隙間を吸収する隙間吸収手段100Aを備えている。   In the present embodiment, the heat transport member 50A itself includes the gap absorbing means 100A that absorbs the gap.

また、熱輸送部材50Aの一端50Aa側の第1伝熱部H1と熱電素子30との間には、他の隙間吸収手段として接合材100Bが設けられている。   Further, a bonding material 100B is provided as another gap absorbing means between the first heat transfer portion H1 on the one end 50Aa side of the heat transport member 50A and the thermoelectric element 30.

なお、図1等において、左右一対の熱輸送部材50Aは、バッテリモジュールMの左右の側壁にネジ11で固定されている。   In FIG. 1 and the like, the pair of left and right heat transport members 50A are fixed to the left and right side walls of the battery module M with screws 11.

また、図1等に示すように、筐体60は、下側の容器部60aと、容器部60aの上部を密閉する蓋部60bとから構成されている。   Moreover, as shown in FIG. 1 etc., the housing | casing 60 is comprised from the lower container part 60a and the cover part 60b which seals the upper part of the container part 60a.

また 各熱輸送部材50Aの上端側には、左右に突出するブラケット10が設けられている。容器部60aの内壁上部の所定部位には、熱輸送部材の固定部20が設けられており、各熱輸送部材50Aのブラケット10とボルト21を介して固定されるようになっている。   Further, a bracket 10 that protrudes to the left and right is provided on the upper end side of each heat transport member 50A. A heat transport member fixing portion 20 is provided at a predetermined portion of the inner wall upper portion of the container portion 60a, and is fixed via the bracket 10 and the bolt 21 of each heat transport member 50A.

また、容器部60aの底面には、熱電素子30が予め固定されている。なお、図1等では、熱電素子30の上面側を吸熱面30a、下面側を放熱面30bとして示しているが、熱電素子30への通電方向を変えることにより、吸熱面と放熱面とを容易に変更することができる。このような通電方向の制御を行うことにより、熱輸送部材50Aを介してバッテリモジュールMの冷却または加熱を行うことができ、環境温度に応じてバッテリモジュールMの調温を実現することができる。   Further, the thermoelectric element 30 is fixed in advance to the bottom surface of the container portion 60a. In FIG. 1 and the like, the upper surface side of the thermoelectric element 30 is shown as the heat absorbing surface 30a and the lower surface side is shown as the heat radiating surface 30b. Can be changed. By performing such control of the energization direction, the battery module M can be cooled or heated via the heat transport member 50A, and the temperature control of the battery module M can be realized according to the environmental temperature.

ここで、隙間吸収手段100Aは、図2に示すように、熱輸送部材50Aの一端50Aa側の第1伝熱部H1と、他端50Ab側の第2伝熱部H2との間に設けた弾性変形可能な弾性変形部100Aで構成されている。   Here, as shown in FIG. 2, the gap absorbing means 100A is provided between the first heat transfer portion H1 on the one end 50Aa side of the heat transport member 50A and the second heat transfer portion H2 on the other end 50Ab side. The elastic deformation portion 100A is elastically deformable.

即ち、熱輸送部材50Aを構成する銅板等を予め折曲げ加工して、図2に示すように、第2伝熱部H2側の端部を水平面に対して角度θの傾斜を有するように初期変形が加えられている。   That is, the copper plate or the like constituting the heat transport member 50A is bent in advance so that the end on the second heat transfer portion H2 side is inclined at an angle θ with respect to the horizontal plane as shown in FIG. Deformation has been added.

これにより、図1に示すように、バッテリモジュールM等を容器部60aに収容して、各熱輸送部材50Aのブラケット10と固定部20とをボルト21を介して固定すると、熱輸送部材50Aの第2伝熱部H2側の端部が、筐体の60の底面側に配置されている熱電素子30および接合材100Bに対して押圧して当接される。この際に、弾性変形部100Aが弾性変形して、熱輸送部材50Aの第2伝熱部H2側の端部が熱電素子30および接合材100B側に付勢され、両者が隙間なく密着される。   Thereby, as shown in FIG. 1, when the battery module M or the like is accommodated in the container portion 60 a and the bracket 10 and the fixing portion 20 of each heat transport member 50 </ b> A are fixed via the bolts 21, The end portion on the second heat transfer portion H2 side is pressed and brought into contact with the thermoelectric element 30 and the bonding material 100B arranged on the bottom surface side of the housing 60. At this time, the elastically deforming portion 100A is elastically deformed, and the end portion on the second heat transfer portion H2 side of the heat transport member 50A is urged toward the thermoelectric element 30 and the bonding material 100B side, and the two are in close contact with each other without a gap. .

また、接合材100Bは、温度変化により液相Lと固相Sとに相変化する相変化材料で構成され、熱電素子30の吸熱面30aの表面に塗布(例えば接合材100Bがペースト状の場合)あるいは載置(例えば接合材100Bがシート状の場合)されている。   Further, the bonding material 100B is made of a phase change material that changes in phase between a liquid phase L and a solid phase S due to a temperature change, and is applied to the surface of the endothermic surface 30a of the thermoelectric element 30 (for example, when the bonding material 100B is a paste) ) Or placed (for example, when the bonding material 100B is a sheet).

より具体的には、接合材100Bとして、相変化材料としてシリコーンやポリマ樹脂等を用いることができる。また、これらの材料に、熱伝導性フィラを混合するようにして、熱伝導性を高めるようにしてもよい。   More specifically, as the bonding material 100B, silicone, polymer resin, or the like can be used as the phase change material. Further, these materials may be mixed with a heat conductive filler to increase the heat conductivity.

また、例えばワックス類に平均粒径2〜100μmの窒化硼素やアルミナ粒子を10〜80質量%充填した相変化材料をシート状に加工したものを用いるようにしてもよい。   Further, for example, a material obtained by processing a phase change material in which wax is filled with 10 to 80% by mass of boron nitride or alumina particles having an average particle diameter of 2 to 100 μm may be used.

また、エチレン−酢酸ビニル共重合体等の加熱により軟化する樹脂15〜60体積%に、平均粒径1.5μm程度の窒化アルミニウム粉末を40〜85体積%充填し、分散剤を添加した相変化材料をシート状に加工したものを用いることもできる。   Further, phase change in which 15 to 60% by volume of a resin softened by heating such as ethylene-vinyl acetate copolymer is filled with 40 to 85% by volume of aluminum nitride powder having an average particle size of about 1.5 μm and a dispersant is added. What processed the material into the sheet form can also be used.

このような相変化材料で構成される接合材100Bは、例えば加熱により液相Lから固相Sに変化して固化する性質を有している。したがって、熱電素子30が通電により発熱した際に、接合材100Bが液相Lから固相Sに変化して固化(図3の接合材100Baは、図2の接合材100Bが固化した状態を示す)し、熱輸送部材50Aの第2伝熱部H2側の端部と、熱電素子30とが接合材100Bにより隙間なく密着状態で固定される。   The bonding material 100B made of such a phase change material has a property of changing from a liquid phase L to a solid phase S and solidifying by heating, for example. Therefore, when the thermoelectric element 30 generates heat by energization, the bonding material 100B changes from the liquid phase L to the solid phase S and solidifies (the bonding material 100Ba in FIG. 3 shows a state in which the bonding material 100B in FIG. 2 is solidified. Then, the end of the heat transport member 50A on the second heat transfer portion H2 side and the thermoelectric element 30 are fixed in a tight contact state by the bonding material 100B without any gap.

このような構成の第1の実施の形態に係るバッテリ調温構造B1によれば、バッテリモジュールMや熱輸送部材50A等の各構成部材間の隙間にバラツキを有する場合であっても、その隙間を弾性変形部100Aおよび接合材100Bで十分に吸収して、熱伝導性を向上させ、バッテリモジュールMの効果的な調温を行うことができる。   According to the battery temperature control structure B1 according to the first embodiment having such a configuration, even when the gaps between the constituent members such as the battery module M and the heat transport member 50A have variation, the gap Can be sufficiently absorbed by the elastic deformation portion 100A and the bonding material 100B to improve the thermal conductivity and to effectively regulate the temperature of the battery module M.

(バッテリ調温構造に適用される熱輸送部材の構成)
ここで、図4を参照して、実施の形態に係るバッテリ調温構造B1に適用される熱輸送部材50Aについて説明する。
(Configuration of heat transport member applied to battery temperature control structure)
Here, with reference to FIG. 4, 50 A of heat transport members applied to battery temperature control structure B1 which concerns on embodiment are demonstrated.

図4に示すように、熱輸送部材50Aは、熱媒200がD1、D2方向に循環可能なアルミニウム等で構成される流路51を備えている。なお、図4に示す熱輸送部材50Aは、横方向が長手となる長方形となる板状あるいはシート状に成形されている。   As shown in FIG. 4, the heat transport member 50 </ b> A includes a flow path 51 made of aluminum or the like through which the heat medium 200 can circulate in the directions D <b> 1 and D <b> 2. Note that the heat transport member 50A shown in FIG. 4 is formed in a plate shape or a sheet shape having a rectangular shape in which the horizontal direction is the longitudinal direction.

熱媒200は、気相Gと液相Lとに相変化可能なフロン、ブタン、水、アルコール等で構成される。   The heat medium 200 is composed of chlorofluorocarbon, butane, water, alcohol, or the like that can change into a gas phase G and a liquid phase L.

そして、熱輸送部材50Aの長手方向の一端(A端)側が放熱部となる際には、他端(B端)が冷却部として機能し、逆に一端(A端)側が冷却部となる際には、他端(B端)が放熱部として機能する。   And when one end (A end) side in the longitudinal direction of the heat transport member 50A becomes a heat radiating part, the other end (B end) functions as a cooling part, and conversely when one end (A end) side becomes a cooling part. The other end (B end) functions as a heat radiating part.

このような熱輸送部材50Aの熱輸送効果は、熱媒200の気相GのD1、D2方向への移動および液相Lの自励振動によって得られる。   Such a heat transport effect of the heat transport member 50A is obtained by the movement of the gas phase G in the directions D1 and D2 of the heat medium 200 and the self-excited vibration of the liquid phase L.

即ち、熱吸収により熱媒200が相変化し、気相(蒸気)Gの移動によって潜熱を輸送する。また、熱媒200の核沸騰(表面温度が液体の沸点より低いが、熱流束が臨界熱流束を下回る場合に起こる沸騰の一形態)により液相Lが振動し、この振動により顕熱が輸送されるという原理を応用している。   That is, the heat medium 200 changes phase by heat absorption, and latent heat is transported by movement of the gas phase (steam) G. Further, the liquid phase L vibrates due to nucleate boiling of the heating medium 200 (a form of boiling that occurs when the surface temperature is lower than the boiling point of the liquid but the heat flux is below the critical heat flux), and this vibration transports sensible heat. Applying the principle of being.

ここで、本実施の形態で適用した熱輸送部材50Aの実効熱伝導率は、約10000〜30000W/m℃程度に達する。これに対して、一般的なヒートパイプ等に適用される鉄の熱伝導率は84W/m℃、アルミニウムの熱伝導率は236W/m℃、銅の熱伝導率は398W/m℃であり、熱輸送部材50の熱伝導率が非常に高いことが分かる。   Here, the effective thermal conductivity of the heat transport member 50A applied in the present embodiment reaches about 10,000 to 30000 W / m ° C. On the other hand, the thermal conductivity of iron applied to a general heat pipe or the like is 84 W / m ° C., the thermal conductivity of aluminum is 236 W / m ° C., and the thermal conductivity of copper is 398 W / m ° C., It can be seen that the heat conductivity of the heat transport member 50 is very high.

このような特性を有する熱輸送部材50Aを用いることにより、効率的に熱輸送を行って、バッテリモジュールMを効果的に冷却することができる。   By using the heat transport member 50A having such characteristics, it is possible to efficiently transport the heat and cool the battery module M effectively.

なお、熱輸送部材50Aを可撓性を有するシート状とすることにより、バッテリモジュールMの外周面等の形状に沿って、熱輸送部材50Aを密着させて配置することができる。   In addition, by making the heat transport member 50A into a flexible sheet shape, the heat transport member 50A can be disposed in close contact with the outer peripheral surface of the battery module M and the like.

[第2の実施の形態に係るバッテリ調温構造]
図5を参照して、第2の実施の形態に係るバッテリ調温構造B2について説明する。
[Battery Temperature Control Structure According to Second Embodiment]
With reference to FIG. 5, a battery temperature control structure B2 according to the second embodiment will be described.

ここで、図5は、第2の実施の形態に係るバッテリ調温構造B2の構成例を示す一部断面図である。   Here, FIG. 5 is a partial cross-sectional view showing a configuration example of the battery temperature control structure B2 according to the second embodiment.

なお、第1の実施の形態に係るバッテリ調温構造B1と同様の構成については、同一符号を付して重複した説明は省略する。   In addition, about the structure similar to battery temperature control structure B1 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

第2の実施の形態に係るバッテリ調温構造B2では、隙間吸収手段として弾性変形部100Aに代えて、熱輸送部材50Bの一端50Ba側の第1伝熱部H1と、他端50Bb側の第2伝熱部H2との間に設けた可撓性を有する可撓変形部151で構成されている。   In the battery temperature control structure B2 according to the second embodiment, instead of the elastic deformation portion 100A as the gap absorbing means, the first heat transfer portion H1 on the one end 50Ba side of the heat transport member 50B and the first heat transfer portion H1 on the other end 50Bb side. 2 It is comprised with the flexible deformation | transformation part 151 which has the flexibility provided between the heat-transfer parts H2.

可撓変形部151は、例えばアルミニウム等の金属で構成される熱輸送部材50Bの該当部を蛇腹状に加工したり、或いは該当部をゴムや可撓性樹脂で構成するなどして構成される。   The flexible deformation portion 151 is configured by processing a corresponding portion of the heat transport member 50B made of a metal such as aluminum into a bellows shape, or forming the corresponding portion with rubber or a flexible resin. .

図5に示す構成例では、熱輸送部材50Bの端部50Bbは熱電素子30の吸熱面30aに固定されている。   In the configuration example shown in FIG. 5, the end 50 </ b> Bb of the heat transport member 50 </ b> B is fixed to the heat absorbing surface 30 a of the thermoelectric element 30.

また、第1の実施の形態に係るバッテリ調温構造B1で述べた接合材100Bと同様に相変化材料で構成される接合材100Cを介して、熱電素子30の放熱面30bと容器部60aの底面とが接合されている。   Further, the heat radiation surface 30b of the thermoelectric element 30 and the container portion 60a are connected to each other through the joining material 100C composed of a phase change material, similarly to the joining material 100B described in the battery temperature control structure B1 according to the first embodiment. The bottom is joined.

なお、第1の実施の形態に係るバッテリ調温構造B1の説明で述べたように、熱電素子30への通電方向を変えることにより、吸熱面と放熱面とは容易に変更することができる。   As described in the description of the battery temperature control structure B1 according to the first embodiment, the heat absorption surface and the heat dissipation surface can be easily changed by changing the energization direction to the thermoelectric element 30.

そして、熱電素子30の放熱面30bの表面に接合材100Cを塗布(例えば接合材100Cがペースト状の場合)あるいは配置(例えば接合材100Cがシート状の場合)した状態で、図5に示すように、バッテリモジュールM等を容器部60aに収容して、各熱輸送部材50Aのブラケット10と固定部20とをボルト21を介して固定する。   Then, the bonding material 100C is applied to the surface of the heat dissipation surface 30b of the thermoelectric element 30 (for example, when the bonding material 100C is a paste) or arranged (for example, when the bonding material 100C is a sheet), as shown in FIG. In addition, the battery module M and the like are accommodated in the container portion 60a, and the bracket 10 and the fixing portion 20 of each heat transport member 50A are fixed via the bolts 21.

これにより、熱電素子30の放熱面30bと容器部60aの底面とが接した状態で保持される。   Thereby, the heat dissipation surface 30b of the thermoelectric element 30 and the bottom surface of the container portion 60a are held in contact with each other.

この際に、バッテリモジュールMや熱輸送部材50B等の各構成部材間の隙間にバラツキを有する場合であっても、その隙間は可撓変形部151および接合材100Cで十分に吸収される。   At this time, even if the gaps between the constituent members such as the battery module M and the heat transport member 50B have variations, the gaps are sufficiently absorbed by the flexible deformation portion 151 and the bonding material 100C.

また、相変化材料で構成される接合材100Cは、熱電素子30が通電により発熱した際に、液相Lから固相Sに変化して固化し、熱電素子30の放熱面30bと容器部60aの底面とが接合材100Cによって隙間なく密着状態で固定される。   Also, the bonding material 100C made of a phase change material is solidified by changing from the liquid phase L to the solid phase S when the thermoelectric element 30 generates heat by energization, and the heat dissipation surface 30b of the thermoelectric element 30 and the container portion 60a. The bottom surface is fixed in close contact with the bonding material 100C without any gap.

これにより、熱伝導性を向上させ、バッテリモジュールMの効果的な調温を行うことができる。   Thereby, heat conductivity can be improved and the effective temperature control of the battery module M can be performed.

[第3の実施の形態に係るバッテリ調温構造]
図6を参照して、第3の実施の形態に係るバッテリ調温構造B3について説明する。
[Battery Temperature Control Structure According to Third Embodiment]
With reference to FIG. 6, a battery temperature control structure B3 according to a third embodiment will be described.

ここで、図6は、第3の実施の形態に係るバッテリ調温構造B3の構成例を示す一部断面図である。   Here, FIG. 6 is a partial cross-sectional view showing a configuration example of the battery temperature control structure B3 according to the third embodiment.

なお、第1の実施の形態に係るバッテリ調温構造B1および第2の実施の形態に係るバッテリ調温構造B2と同様の構成については、同一符号を付して重複した説明は省略する。   In addition, about the structure similar to battery temperature control structure B1 which concerns on 1st Embodiment, and battery temperature control structure B2 which concerns on 2nd Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

第3の実施の形態に係るバッテリ調温構造B3では、第2の実施の形態に係るバッテリ調温構造B2のように熱電素子30の放熱面30bと容器部60aの底面とを接合材100Cを介して固定するのに代えて、固定具70を介して固定するようにしている。   In the battery temperature control structure B3 according to the third embodiment, the bonding material 100C is bonded to the heat radiation surface 30b of the thermoelectric element 30 and the bottom surface of the container portion 60a as in the battery temperature control structure B2 according to the second embodiment. Instead of fixing via a fixing tool 70, fixing is performed via a fixing tool 70.

固定具70は、図6に示すように中央部に熱電素子30の収容部70aを有する銅などの金属で構成され、容器部60aの底面側から螺合されるボルト71で固定されるように構成されている。   As shown in FIG. 6, the fixture 70 is made of a metal such as copper having a receiving portion 70a for the thermoelectric element 30 at the center, and is fixed by a bolt 71 screwed from the bottom side of the container portion 60a. It is configured.

また、固定具70の上面70bは、熱輸送部材50Bの端部50Bbに固定されている。   Further, the upper surface 70b of the fixture 70 is fixed to the end portion 50Bb of the heat transport member 50B.

そして、図6に示すように、バッテリモジュールM等を容器部60aに収容して、各熱輸送部材50Aのブラケット10と固定部20とをボルト21を介して固定する。   Then, as shown in FIG. 6, the battery module M and the like are accommodated in the container part 60 a and the bracket 10 and the fixing part 20 of each heat transport member 50 </ b> A are fixed via the bolts 21.

これにより、固定具70が熱電素子30の放熱面30bを容器部60aの底面に接した状態で保持される。   Thereby, the fixing tool 70 is hold | maintained in the state which contact | connected the thermal radiation surface 30b of the thermoelectric element 30 with the bottom face of the container part 60a.

この際に、バッテリモジュールMや熱輸送部材50B等の各構成部材間の隙間にバラツキを有する場合であっても、その隙間は可撓変形部151で十分に吸収される。   At this time, even when the gaps between the constituent members such as the battery module M and the heat transport member 50 </ b> B have variations, the gaps are sufficiently absorbed by the flexible deformation portion 151.

次いで、容器部60aの底面に穿設されている挿通孔からボルト71を挿通させ、固定具70に螺合させる。   Next, the bolt 71 is inserted through the insertion hole formed in the bottom surface of the container 60 a and screwed into the fixture 70.

これにより、固定具70が容器部60aの底面に接した状態で固定される。   Thereby, the fixing tool 70 is fixed in the state which contact | connected the bottom face of the container part 60a.

このような構成のバッテリ調温構造B3によれば、熱伝導性を向上させ、バッテリモジュールMの効果的な調温を行うことができる。   According to the battery temperature adjustment structure B3 having such a configuration, the thermal conductivity can be improved and the battery module M can be effectively adjusted in temperature.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって開示された技術に限定されるものではないと考えるべきである。すなわち、本発明の技術的な範囲は、前記の実施の形態における説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載にしたがって解釈すべきであり、特許請求の範囲の記載技術と均等な技術および特許請求の範囲内でのすべての変更が含まれる。   Although the invention made by the present inventor has been specifically described based on the embodiments, the embodiments disclosed herein are illustrative in all respects and are not limited to the disclosed technology. Should not be considered. That is, the technical scope of the present invention should not be construed restrictively based on the description in the above embodiment, but should be construed according to the description of the scope of claims. All the modifications within the scope of the claims and the equivalent technique to the described technique are included.

B1〜B3…バッテリ調温構造
C…バッテリセル
H1…第1伝熱面
H2…第2伝熱面
M…バッテリモジュール
10…ブラケット
20…固定部
30…熱電素子(ペルチェ素子)
30a…吸熱面
30b…放熱面
50(50A、50B)…熱輸送部材
51…流路
60…筐体
60a…容器部
60b…蓋部
70…固定具
100…隙間吸収手段
100A…弾性変形部(隙間吸収手段)
100B…接合材(隙間吸収手段)
100C…接合材(隙間吸収手段)
151…可撓変形部(隙間吸収手段)
200…熱媒
G…気相
L…液相
B1-B3 ... Battery temperature control structure C ... Battery cell H1 ... 1st heat transfer surface H2 ... 2nd heat transfer surface M ... Battery module 10 ... Bracket 20 ... Fixed part 30 ... Thermoelectric element (Peltier element)
30a ... endothermic surface 30b ... heat dissipation surface 50 (50A, 50B) ... heat transport member 51 ... flow path 60 ... casing 60a ... container part 60b ... lid part 70 ... fixture 100 ... gap absorbing means 100A ... elastic deformation part (gap) Absorption means)
100B: Bonding material (gap absorbing means)
100C ... Joint (gap absorbing means)
151: Flexible deformation part (gap absorbing means)
200 ... heat medium G ... gas phase L ... liquid phase

Claims (4)

1または2以上のバッテリセル(C)を備えたバッテリモジュール(M)と、
前記バッテリモジュールを収容する筐体(60)と、
前記バッテリモジュールと前記筐体の内周面との間に配置され、吸熱面(30a)と放熱面(30b)を備えた熱電素子(30)と、
少なくとも前記バッテリモジュールと前記熱電素子との間に配置され、気相(G)と液相(L)とに相変化する熱媒(200)の循環により熱輸送を行う熱輸送部材(50A、50B)と、を備え、
前記熱輸送部材自体、前記バッテリモジュールと前記熱輸送部材との間、または前記熱輸送部材と前記熱電素子との間の何れかに、隙間を吸収する隙間吸収手段(100)を設けたことを特徴とするバッテリ調温構造。
A battery module (M) comprising one or more battery cells (C);
A housing (60) for housing the battery module;
A thermoelectric element (30) disposed between the battery module and the inner peripheral surface of the housing, and having a heat absorption surface (30a) and a heat dissipation surface (30b);
Heat transport members (50A, 50B) that are disposed between at least the battery module and the thermoelectric element and perform heat transport by circulation of a heat medium (200) that changes phase between a gas phase (G) and a liquid phase (L). ) And
A gap absorbing means (100) for absorbing a gap is provided either in the heat transport member itself, between the battery module and the heat transport member, or between the heat transport member and the thermoelectric element. Battery temperature control structure.
前記隙間吸収手段は、前記熱輸送部材の一端(50Aa)側の第1伝熱部(H1)と、他端(50Ab)側の第2伝熱部(H2)との間に設けた弾性変形可能な弾性変形部(100A)で構成されることを特徴とする請求項1に記載のバッテリ調温構造。   The gap absorbing means is an elastic deformation provided between the first heat transfer portion (H1) on one end (50Aa) side of the heat transport member and the second heat transfer portion (H2) on the other end (50Ab) side. The battery temperature control structure according to claim 1, wherein the battery temperature control structure is configured by a possible elastic deformation portion (100 </ b> A). 前記隙間吸収手段は、前記熱輸送部材の一端(50Aa)側の第1伝熱部(H1)または他端(50Ab)側の第2伝熱部(H2)と前記熱電素子との間、或いは前記熱電素子と前記筐体の内周面との間に設けられる接合材で構成されることを特徴とする請求項1または請求項2に記載のバッテリ調温構造。   The gap absorbing means includes a first heat transfer part (H1) on one end (50Aa) side of the heat transport member or a second heat transfer part (H2) on the other end (50Ab) side and the thermoelectric element, or The battery temperature control structure according to claim 1, wherein the battery temperature control structure is configured by a bonding material provided between the thermoelectric element and an inner peripheral surface of the casing. 前記接合材は、温度変化により液相(L)と固相(S)とに相変化する相変化材料で構成されていることを特徴とする請求項3に記載のバッテリ調温構造。   The battery temperature control structure according to claim 3, wherein the bonding material is made of a phase change material that changes phase between a liquid phase (L) and a solid phase (S) according to a temperature change.
JP2015135323A 2015-07-06 2015-07-06 Battery temperature control structure Pending JP2017016977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135323A JP2017016977A (en) 2015-07-06 2015-07-06 Battery temperature control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135323A JP2017016977A (en) 2015-07-06 2015-07-06 Battery temperature control structure

Publications (1)

Publication Number Publication Date
JP2017016977A true JP2017016977A (en) 2017-01-19

Family

ID=57831093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135323A Pending JP2017016977A (en) 2015-07-06 2015-07-06 Battery temperature control structure

Country Status (1)

Country Link
JP (1) JP2017016977A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768773A (en) * 2017-10-31 2018-03-06 华南理工大学 The High Efficiency Thermal management system and control method of a kind of large-sized power battery
DE102017215376A1 (en) * 2017-09-01 2019-03-07 Audi Ag Temperature control for tempering a battery and motor vehicle
KR20200028712A (en) * 2018-09-07 2020-03-17 주식회사 엘지화학 Secondary battery and battery pack comprising the same
KR20200065948A (en) * 2018-11-30 2020-06-09 주식회사 엘지화학 Secondary cylinderical battery having piezoelectric element and thermoelectric element
CN112563616A (en) * 2020-12-11 2021-03-26 南方电网电力科技股份有限公司 Heat radiation module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215376A1 (en) * 2017-09-01 2019-03-07 Audi Ag Temperature control for tempering a battery and motor vehicle
CN107768773A (en) * 2017-10-31 2018-03-06 华南理工大学 The High Efficiency Thermal management system and control method of a kind of large-sized power battery
CN107768773B (en) * 2017-10-31 2023-04-28 华南理工大学 Efficient thermal management system and control method for large power battery
KR20200028712A (en) * 2018-09-07 2020-03-17 주식회사 엘지화학 Secondary battery and battery pack comprising the same
KR102511430B1 (en) 2018-09-07 2023-03-17 주식회사 엘지에너지솔루션 Secondary battery and battery pack comprising the same
KR20200065948A (en) * 2018-11-30 2020-06-09 주식회사 엘지화학 Secondary cylinderical battery having piezoelectric element and thermoelectric element
KR102398572B1 (en) 2018-11-30 2022-05-13 주식회사 엘지에너지솔루션 Secondary cylinderical battery having piezoelectric element and thermoelectric element
CN112563616A (en) * 2020-12-11 2021-03-26 南方电网电力科技股份有限公司 Heat radiation module

Similar Documents

Publication Publication Date Title
JP2017016977A (en) Battery temperature control structure
JP6049752B2 (en) Newly structured bus bar
CN108140915A (en) Battery module, the battery pack including battery module and the vehicle including battery pack
WO2015041149A1 (en) Cell heat dissipation system, and cell heat dissipation unit
WO2013140502A1 (en) Power conversion apparatus
JP2019197641A (en) connector
JP2013519987A (en) Radiator and electrical energy storage
JP2017535952A (en) Heat sink assembly for transient cooling
JP2016178078A (en) Cooling member and power storage module
JP6555107B2 (en) Cooling member and power storage module
CN107168415B (en) Quick response phase change temperature control device
US20180212290A1 (en) Storage battery system
Huang et al. An integrated cooling system for hybrid electric vehicle motors: Design and simulation
CN112204806A (en) Battery module and battery pack including the same
JP6186209B2 (en) Battery cooling and heating structure
CN210430029U (en) Plate-type heating and cooling heat conduction device and temperature-controllable lithium battery pack adopting same
CN107509365B (en) Ultrathin microwave assembly and heat pipe radiating device
JP2017027720A (en) Battery cooling structure
WO2016148225A1 (en) Cooling member and power storage module
CN100492621C (en) Heat radiator
US9865886B2 (en) Coolable battery system, method for cooling a battery and automobile comprising a coolable battery system
JP2015204267A (en) battery pack
JP2019009090A (en) Conductor with heat absorber and battery pack
CN108649296B (en) Lithium ion battery energy storage rapid heat dissipation device and method based on liquid metal heat conduction
JP2015002105A (en) Cooling device for battery module