JP2017014598A - Production method of heat insulation component - Google Patents

Production method of heat insulation component Download PDF

Info

Publication number
JP2017014598A
JP2017014598A JP2015135113A JP2015135113A JP2017014598A JP 2017014598 A JP2017014598 A JP 2017014598A JP 2015135113 A JP2015135113 A JP 2015135113A JP 2015135113 A JP2015135113 A JP 2015135113A JP 2017014598 A JP2017014598 A JP 2017014598A
Authority
JP
Japan
Prior art keywords
thermal spray
spray material
thermal
heat insulation
tsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135113A
Other languages
Japanese (ja)
Inventor
建興 飯塚
Takeoki Iizuka
建興 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015135113A priority Critical patent/JP2017014598A/en
Publication of JP2017014598A publication Critical patent/JP2017014598A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an improving method of heat insulation of a heat insulation component in a heat insulation film formed on a surface of an engine component such as a piston.SOLUTION: In the production method of heat insulation component for producing the piston PS in which the insulation film TB is formed in a top face by performing a spray coating material creating process for creating a spray coating material TSM including zirconia and diatom earth, and the insulation film forming process for forming the insulation film TB by flame spraying the spray coating material TSM to the top face of the piston PS. In the spray coating material TSM crating process, a powdery ceramic of a specified diameter obtained by granulation of the powdery ceramics, and diatom earth of the specified diameter are mixed with a specified rate, and a pre-granulation object obtained by granulation of mixed powder is the spray coating material TSM, in the production method of the heat insulation component.SELECTED DRAWING: Figure 4

Description

本発明は、遮熱性部品の製造方法に関する。   The present invention relates to a method for manufacturing a heat-shielding component.

エンジンの熱効率を改善させるため、ピストンなどのエンジン部品の表面に遮熱膜を形成することが行われている。例えば、ジルコニアなどのセラミックスを溶射材とし、プラズマ溶射などによって遮熱性を有する溶射膜(すなわち遮熱膜)をエンジン部品の表面に形成させている。遮熱膜に関し、熱伝導率が低いほど、言い換えれば遮熱性が高いほどエンジンの熱効率が向上する。遮熱性を向上させるためには、遮熱膜内部の気孔率を増やすことが有効である。   In order to improve the thermal efficiency of the engine, a thermal barrier film is formed on the surface of an engine component such as a piston. For example, ceramics such as zirconia is used as a thermal spray material, and a thermal spray film (that is, a thermal barrier film) having a thermal barrier property is formed on the surface of the engine component by plasma spraying or the like. Regarding the thermal barrier film, the lower the thermal conductivity, in other words, the higher the thermal barrier property, the better the thermal efficiency of the engine. In order to improve the heat shielding property, it is effective to increase the porosity inside the heat shielding film.

遮熱膜内部の気孔率を増やすため、特許文献1には、セラミックスからなる溶射材を溶射した溶射面に、シリカバルーンなどの粉末中空体を供給する方法が開示されている。   In order to increase the porosity inside the thermal barrier film, Patent Document 1 discloses a method of supplying a powdered hollow body such as a silica balloon to a sprayed surface on which a thermal spray material made of ceramics is sprayed.

特開平5−51724号公報JP-A-5-51724

前述の方法において、粉末中空体は、平均粒径が20〜60μm程度のものが用いられる。このような粉末中空体は、溶射面との衝突時に偏平化されたり、圧潰されたりする可能性がある。扁平化や圧潰が生じると気孔率が減少し、遮熱性が損なわれてしまう虞がある。   In the above-described method, the powder hollow body having an average particle diameter of about 20 to 60 μm is used. Such a powder hollow body may be flattened or crushed at the time of collision with the sprayed surface. When flattening or crushing occurs, the porosity decreases and the heat shielding property may be impaired.

開示の方法は、遮熱性を向上させることを目的とする。   The disclosed method aims to improve thermal insulation.

開示の方法は、セラミックスと珪藻土を含む溶射材を作製する溶射材作製工程と、前記溶射材を加工対象の部品に溶射し、遮熱膜を前記部品の表面に形成する遮熱膜形成工程とを行う。   The disclosed method includes a thermal spray material production step of producing a thermal spray material containing ceramics and diatomaceous earth, and a thermal barrier film formation step of thermal spraying the thermal spray material on a component to be processed and forming a thermal barrier film on the surface of the component. I do.

開示の方法によれば、遮熱性を向上させることができる。   According to the disclosed method, the heat shielding property can be improved.

遮熱部品の製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of heat insulation components. 溶射材の作製に使用される材料を説明する図である。It is a figure explaining the material used for preparation of a thermal spray material. 溶射材作製工程を模式的に説明する図であり、(A)は第1の作製工程を、(B)は第2の作製工程をそれぞれ示す。It is a figure explaining a thermal spray material production process typically, (A) shows the 1st production process and (B) shows the 2nd production process, respectively. 遮熱膜形成工程を模式的に説明する図であり、(A)は溶射ガンを、(B)は溶射作業をそれぞれ示す。It is a figure which illustrates a thermal barrier film formation process typically, (A) shows a thermal spray gun and (B) shows thermal spraying operation, respectively.

以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、遮熱部品としてピストンを例示し、ピストンの頂面に遮熱膜を形成する製造方法について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a piston is exemplified as the heat shield component, and a manufacturing method for forming a heat shield film on the top surface of the piston will be described.

図1に示すように、この製造方法では、溶射材作製工程(S1)と遮熱膜形成工程(S2)が行われる。   As shown in FIG. 1, in this manufacturing method, a thermal spray material production process (S1) and a thermal barrier film formation process (S2) are performed.

溶射材作製工程(S1)では、遮熱膜の基になる材料である溶射材が作製される。図2に示すように、本実施形態の溶射材は、ジルコニアと2種類の珪藻土(珪藻土A,珪藻土B)から作製される。   In the thermal spray material production step (S1), a thermal spray material, which is a material on which the thermal barrier film is based, is produced. As shown in FIG. 2, the thermal spray material of this embodiment is produced from zirconia and two types of diatomaceous earth (diatomaceous earth A and diatomaceous earth B).

ジルコニアは、セラミック溶射材料の一種であり、対象物に溶射されることで、遮熱性や耐熱性が高い溶射膜(遮熱膜)を対象物の表面に形成する。本実施形態では、粒径が0.5μmから5.0μmのジルコニア粉末を用いている。   Zirconia is a kind of ceramic sprayed material, and forms a thermal sprayed film (heat shielding film) having high heat shielding properties and heat resistance on the surface of the target object by being sprayed on the target object. In this embodiment, zirconia powder having a particle size of 0.5 μm to 5.0 μm is used.

珪藻土は、珪藻の殻の化石で構成される堆積物であり、二酸化ケイ素を主成分とする。珪藻の殻は、細胞壁によって形作られる微細小孔を多数備えている。このため、珪藻土は、微細小孔を多数備える多孔性材料である。そして、珪藻土Aは、粒径が15μmから80μmの分級処理品であり、細孔の大きさが50nm以上である。また、珪藻土Bは、粒径が0.5μmから5.0μmであり、細孔の大きさが50nm以上である。   Diatomaceous earth is a deposit composed of fossil diatom shells, and is mainly composed of silicon dioxide. The diatom shell has many micropores formed by cell walls. For this reason, diatomaceous earth is a porous material provided with many fine pores. Diatomaceous earth A is a classified product having a particle size of 15 μm to 80 μm, and the pore size is 50 nm or more. Diatomaceous earth B has a particle size of 0.5 to 5.0 μm and a pore size of 50 nm or more.

珪藻土Aを用いた第1溶射材は、図3(A)に示す手順で作製される。最初に、造粒工程(S11)が行われ、粉末状のジルコニアが造粒される。造粒には、スプレードライヤを用いることができる。例えば、結合材溶液にジルコニアを懸濁させて懸濁液を調整し、スプレードライヤで懸濁液を熱風気流中に噴霧させることで、ジルコニアが造粒される。   The 1st thermal spray material using diatomaceous earth A is produced in the procedure shown to FIG. 3 (A). First, a granulation process (S11) is performed, and powdery zirconia is granulated. A spray dryer can be used for granulation. For example, zirconia is granulated by suspending zirconia in a binder solution and adjusting the suspension, and spraying the suspension into a hot air stream using a spray dryer.

続いて分級工程(S12)が行われる。分級工程では、造粒したジルコニアの中から所定粒径範囲のものが篩によって選別される。本実施形態では、珪藻土Aと同じ粒径のジルコニアが、具体的には粒径が15μmから80μmのジルコニアが選別される。便宜上、以下の説明では、選別されたジルコニアのことを粒状ジルコニアという。   Subsequently, a classification step (S12) is performed. In the classification step, the granulated zirconia is selected from the zirconia having a predetermined particle size range by a sieve. In the present embodiment, zirconia having the same particle diameter as that of diatomaceous earth A, specifically, zirconia having a particle diameter of 15 μm to 80 μm is selected. For convenience, in the following description, the selected zirconia is referred to as granular zirconia.

続いて混合工程(S13)が行われる。混合工程では、粒状ジルコニアと珪藻土Aが所定比率で混合される。本実施形態では、粒状ジルコニアと珪藻土Aが、重量比で90:10から30:70の範囲で混合される。混合は、例えばミキサーを使用して機械的に行われる。混合工程が行われることで、第1溶射材が作製される。   Subsequently, a mixing step (S13) is performed. In the mixing step, granular zirconia and diatomaceous earth A are mixed at a predetermined ratio. In this embodiment, granular zirconia and diatomaceous earth A are mixed in the range of 90:10 to 30:70 by weight ratio. Mixing is performed mechanically, for example using a mixer. A 1st thermal spray material is produced by performing a mixing process.

珪藻土Bを用いた第2溶射材は、図3(B)に示す手順で作製される。最初に、混合工程(S21)が行われ、ジルコニアと珪藻土Bが所定比率で混合された造粒用粉末が作製される。本実施形態では、ジルコニアと珪藻土Bが、重量比で90:10から30:70の範囲で混合される。混合には、例えばミキサーが使用されて機械的に行われる。   The 2nd thermal spray material using diatomaceous earth B is produced in the procedure shown in Drawing 3 (B). First, a mixing step (S21) is performed to produce a granulating powder in which zirconia and diatomaceous earth B are mixed at a predetermined ratio. In the present embodiment, zirconia and diatomaceous earth B are mixed in a weight ratio of 90:10 to 30:70. Mixing is performed mechanically using, for example, a mixer.

続いて造粒工程(S22)が行われる。造粒工程では、造粒用粉末の粒状物が作製される。造粒には、スプレードライヤを用いることができる。このスプレードライヤでは、結合材溶液に造粒用粉末を懸濁させた懸濁液を、熱風気流中に噴霧させることで粒状物が作製される。   Subsequently, a granulation step (S22) is performed. In the granulation step, a granular material of granulation powder is produced. A spray dryer can be used for granulation. In this spray dryer, a granular material is produced by spraying a suspension obtained by suspending a granulating powder in a binder solution into a hot air stream.

続いて分級工程(S23)が行われる。分級工程では、造粒した粒状物の中から所定粒径範囲のものが篩によって選別される。本実施形態では、粒径が15μmから80μmの粒状物が選別され。分級工程を経た粒状物が第2溶射材となる。   Subsequently, a classification step (S23) is performed. In the classification step, the granulated particles are selected with a sieve within a predetermined particle size range. In this embodiment, a granular material having a particle size of 15 μm to 80 μm is selected. The granular material that has undergone the classification step becomes the second thermal spray material.

図1に示すように、溶射材作製工程(S1)に続いて遮熱膜形成工程(S2)が行われる。遮熱膜形成工程(S2)では、遮熱部品の表面に遮熱膜を形成する。本実施形態では、前述の第1溶射材や第2溶射材を溶射ガンに供給する。そして、溶射ガンで生成したプラズマジェットに乗せて、各溶射材をピストン(遮熱部品の一例)の頂面に溶射する。   As shown in FIG. 1, a thermal barrier film forming step (S2) is performed subsequent to the thermal spray material manufacturing step (S1). In the heat shield film forming step (S2), a heat shield film is formed on the surface of the heat shield component. In the present embodiment, the first spray material and the second spray material are supplied to the spray gun. Then, each sprayed material is sprayed onto the top surface of a piston (an example of a heat shield component) by being placed on a plasma jet generated by a spray gun.

図4(A)に示すように、溶射ガン1は、前筒部10と、後筒部20と、インシュレータ30とを備えている。   As shown in FIG. 4A, the thermal spray gun 1 includes a front cylinder part 10, a rear cylinder part 20, and an insulator 30.

前筒部10は、ガンノズル11と、陽極12と、溶射材供給部13と、冷却水導入部14を備えると共に、内部に冷却水流路CWの前側部分が設けられた中空部材である。ガンノズル11は、生成されたプラズマジェットを所定方向へ向けて放出する筒状部である。陽極12は、後述する陰極23との間でアーク放電を生じさせる電極であり、銅などの電極材料が用いられている。本実施形態の陽極12は、ガンノズル11に向けて縮径されたテーパー形状をしている。溶射材供給部13は、溶射材TSM(図4(B)を参照,第1溶射材や第2溶射材が相当する)をガンノズル11へ供給する部分であり、直径数mm程度の筒状部材で作製されている。冷却水導入部14は、冷却水の導入路を形成する筒状部材である。   The front cylinder portion 10 is a hollow member that includes a gun nozzle 11, an anode 12, a thermal spray material supply portion 13, and a cooling water introduction portion 14, and in which a front side portion of the cooling water flow path CW is provided. The gun nozzle 11 is a cylindrical part that discharges the generated plasma jet in a predetermined direction. The anode 12 is an electrode that generates an arc discharge with the cathode 23 described later, and an electrode material such as copper is used. The anode 12 of this embodiment has a tapered shape with a diameter reduced toward the gun nozzle 11. The thermal spray material supply unit 13 is a portion that supplies the thermal spray material TSM (refer to FIG. 4B, corresponding to the first thermal spray material and the second thermal spray material) to the gun nozzle 11, and is a cylindrical member having a diameter of about several millimeters. It is made with. The cooling water introduction part 14 is a cylindrical member that forms a cooling water introduction path.

後筒部20は、電極支持部21と、冷却水排出部22を備えると共に、内部に冷却水流路CWの後側部分が設けられた中空部材である。電極支持部21は、陰極23の基端部に挿入され、この陰極23を支持する中空突起である。陰極23は、先端が尖った略円錐形状とされ、タングステンなどの電極材料によって作製されている。冷却水排出部22は、冷却水の排出路を形成する筒状部材であり、冷却水流路CWに連通されると共に、後筒部20の後面から後方に突出されている。   The rear cylinder part 20 is a hollow member provided with an electrode support part 21 and a cooling water discharge part 22, and a rear side part of the cooling water flow path CW provided therein. The electrode support portion 21 is a hollow protrusion that is inserted into the base end portion of the cathode 23 and supports the cathode 23. The cathode 23 has a substantially conical shape with a sharp tip, and is made of an electrode material such as tungsten. The cooling water discharge part 22 is a cylindrical member that forms a cooling water discharge path, communicates with the cooling water flow path CW, and protrudes rearward from the rear surface of the rear cylinder part 20.

インシュレータ30は、前筒部10と後筒部20の間に介在され、前筒部10と後筒部20を電気的に絶縁する。このため、インシュレータ30は、電気絶縁性を備える耐熱材料によって作製される。本実施形態のインシュレータ30は、作動ガス供給部31を備えると共に、内周部分が陰極23用の収容室CHを区画し、外周部分が冷却水流路CWの中間部分を区画する二重管部材である。作動ガス供給部31には作動ガスが供給される。作動ガスとしては、アルゴンガスやヘリウムガスが用いられる。供給された作動ガスは収容室CHに供給される。   The insulator 30 is interposed between the front cylinder part 10 and the rear cylinder part 20 and electrically insulates the front cylinder part 10 and the rear cylinder part 20. For this reason, the insulator 30 is made of a heat-resistant material having electrical insulation. The insulator 30 of the present embodiment is a double tube member that includes a working gas supply unit 31, an inner peripheral portion that defines a storage chamber CH for the cathode 23, and an outer peripheral portion that defines an intermediate portion of the cooling water flow path CW. is there. The working gas is supplied to the working gas supply unit 31. Argon gas or helium gas is used as the working gas. The supplied working gas is supplied to the storage chamber CH.

図4(B)に示すように、遮熱膜形成工程では、冷却水導入部14から冷却水流路CWに向けて冷却水が供給され、熱交換後の冷却水が冷却水排出部22から排出される。これにより、溶射ガン1の過加熱が抑制される。そして、作動ガス供給部31からは、高圧の作動ガスが陰極23用の収容室CHに供給される。陽極12と陰極23との間に直流高電圧が与えられているので、電極12,23の間にはアーク放電ARが生じる。このアーク放電ARによって作動ガスがプラズマ化され、5000〜10000℃程度のプラズマジェットPJがガンノズル11から放出される。放出されたプラズマジェットPJはピストンPSの頂面に吹き付けられる。   As shown in FIG. 4B, in the thermal barrier film forming step, the cooling water is supplied from the cooling water introduction unit 14 toward the cooling water channel CW, and the cooling water after heat exchange is discharged from the cooling water discharge unit 22. Is done. Thereby, the overheating of the thermal spray gun 1 is suppressed. A high-pressure working gas is supplied from the working gas supply unit 31 to the storage chamber CH for the cathode 23. Since a high DC voltage is applied between the anode 12 and the cathode 23, an arc discharge AR is generated between the electrodes 12 and 23. The working gas is turned into plasma by this arc discharge AR, and a plasma jet PJ of about 5000 to 10000 ° C. is emitted from the gun nozzle 11. The discharged plasma jet PJ is sprayed on the top surface of the piston PS.

溶射材TSMは、溶射材供給部13を通じてガンノズル11へ供給される。供給された溶射材TSMは、プラズマジェットPJの中で溶融並びに加速される。溶融粒子がピストンPSの頂面に吹き付けられると、ピストンPSの頂面には扁平化した溶融粒子(スプラット)が積層され、遮熱膜TBが形成される。   The thermal spray material TSM is supplied to the gun nozzle 11 through the thermal spray material supply unit 13. The supplied thermal spray material TSM is melted and accelerated in the plasma jet PJ. When the molten particles are sprayed onto the top surface of the piston PS, flattened molten particles (splats) are laminated on the top surface of the piston PS, and a heat shielding film TB is formed.

本実施形態では、ジルコニアと珪藻土を含む溶射材TSM(第1溶射材や第2溶射材)が用いられているので、形成された遮熱膜TBでは、珪藻土が備える微細小孔同士が合体される。微細小孔同士の合体であることから、合体後の気孔については扁平化や圧潰が生じ難い。このため、必要な大きさの気孔を容易に作製できる。その結果、遮熱膜TBにおける気孔率を30〜65%の範囲で調整することができる。この場合、遮熱膜TBの熱伝導率は0.1〜0.7W/m−1・K−1になり、エンジンの熱効率については、一般的な遮熱膜TBよりも2%程度の改善が見込まれる。 In this embodiment, since the thermal spray material TSM (the 1st thermal spray material or the 2nd thermal spray material) containing zirconia and diatomaceous earth is used, in the formed thermal barrier film TB, the microscopic holes included in the diatomaceous earth are combined. The Since the pores are coalesced, the pores after coalescence are not easily flattened or crushed. For this reason, pores having a required size can be easily produced. As a result, the porosity in the thermal barrier film TB can be adjusted in the range of 30 to 65%. In this case, the thermal conductivity of the thermal barrier film TB is 0.1 to 0.7 W / m −1 · K −1 , and the thermal efficiency of the engine is improved by about 2% as compared with a general thermal barrier film TB. Is expected.

さらに、第1溶射材では、混合工程(S13)で粒状ジルコニアと珪藻土Aが所定比率で混合されているので、ジルコニアと珪藻土を一定比率で含み、気孔率が均一な遮熱膜TBを容易に形成できる。   Furthermore, in the first thermal spray material, since the granular zirconia and diatomaceous earth A are mixed at a predetermined ratio in the mixing step (S13), the thermal barrier film TB containing zirconia and diatomaceous earth at a constant ratio and having a uniform porosity can be easily obtained. Can be formed.

また、第2溶射材では、混合工程(S21)でジルコニアと珪藻土Bが所定比率で混合された造粒用粉末が作製され、造粒工程(S22)で造粒用粉末の粒状物が作製されているので、ジルコニアと珪藻土を一定比率で含み、気孔率が均一な遮熱膜TBを容易に形成できる。   Further, in the second thermal spray material, a granulating powder in which zirconia and diatomaceous earth B are mixed at a predetermined ratio is produced in the mixing step (S21), and a granule of the granulating powder is produced in the granulating step (S22). Therefore, it is possible to easily form the thermal barrier film TB containing zirconia and diatomaceous earth at a constant ratio and having a uniform porosity.

以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。   The above description of the embodiment is for facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof. For example, you may comprise as follows.

遮熱性部品に関し、前述の実施形態ではピストンPSを例示したが、ピストンPSに限定されるものではない。例えば、シリンダライナであってもよい。また、シリンダヘッドや吸排気バルブであってもよい。   Regarding the heat-insulating component, the piston PS is exemplified in the above-described embodiment, but is not limited to the piston PS. For example, a cylinder liner may be used. Further, it may be a cylinder head or an intake / exhaust valve.

遮熱膜TBの形成に用いるセラミックスに関し、前述の実施形態ではジルコニアを例示したが、ジルコニアに限定されるものではない。例えば、アルミナやチタニアなど、溶射材TSMとして使用可能なセラミックスであれば使用できる。   Regarding the ceramic used for forming the thermal barrier film TB, zirconia is exemplified in the above-described embodiment, but is not limited to zirconia. For example, any ceramic that can be used as the thermal spray material TSM, such as alumina or titania, can be used.

溶射材TSMに関し、前述の実施形態では、粒径が15μmから80μm(所定粒径範囲)のものを使用したが、この範囲より小さい粒径或いは大きい粒径の溶射材TSMであっても使用することができる。なお、本実施形態のように、粒径が15μmから80μmの溶射材TSMを用いることで、溶射ガン1に供給する際の目詰まりが抑制され、作業効率の向上が図れる。   Regarding the thermal spray material TSM, in the above-described embodiment, the one having a particle size of 15 μm to 80 μm (predetermined particle size range) is used, but even a thermal spray material TSM having a particle size smaller or larger than this range is used. be able to. Note that, as in the present embodiment, by using the thermal spray material TSM having a particle size of 15 μm to 80 μm, clogging during supply to the thermal spray gun 1 is suppressed, and work efficiency can be improved.

遮熱膜TBの形成に関し、前述の実施形態ではプラズマ溶射を例示したが、プラズマ溶射に限定されるものではない。例えば、フレーム溶射を用いることができる。フレーム溶射では、粉末供給ホッパーから溶射ガン1に所定粒径範囲の溶射材TSMを送給し、酸素−アセチレンなどの燃焼フレームの中で溶射材TSMを溶融及び加速させる。また、粉体を扱うことのできる他の溶射方法を用いることもできる。   Regarding the formation of the thermal barrier film TB, the plasma spraying is exemplified in the above-described embodiment, but the invention is not limited to the plasma spraying. For example, flame spraying can be used. In flame spraying, a thermal spray material TSM having a predetermined particle size range is fed from the powder supply hopper to the thermal spray gun 1, and the thermal spray material TSM is melted and accelerated in a combustion flame such as oxygen-acetylene. Moreover, the other thermal spraying method which can handle powder can also be used.

1…溶射ガン,10…前筒部,11…ガンノズル,12…陽極,13…溶射材供給部,14…冷却水導入部,20…後筒部,21…電極支持部,22…冷却水排出部,23…陰極,30…インシュレータ,31…作動ガス供給部,CW…冷却水流路,TSM…溶射材,CH…収容室,AR…アーク放電,PJ…プラズマジェット,PS…ピストン,TB…遮熱膜 DESCRIPTION OF SYMBOLS 1 ... Thermal spray gun, 10 ... Front cylinder part, 11 ... Gun nozzle, 12 ... Anode, 13 ... Spraying material supply part, 14 ... Cooling water introduction part, 20 ... Rear cylinder part, 21 ... Electrode support part, 22 ... Cooling water discharge | emission , 23 ... Cathode, 30 ... Insulator, 31 ... Working gas supply part, CW ... Cooling water flow path, TSM ... Spraying material, CH ... Storage chamber, AR ... Arc discharge, PJ ... Plasma jet, PS ... Piston, TB ... Blocking Thermal film

Claims (3)

セラミックスと珪藻土を含む溶射材を作製する溶射材作製工程と、
前記溶射材を加工対象の部品に溶射し、遮熱膜を前記部品の表面に形成する遮熱膜形成工程とを行う
遮熱性部品の製造方法。
Thermal spray material production process for producing thermal spray material containing ceramics and diatomaceous earth,
A method for manufacturing a heat-shielding component, comprising: thermally spraying the thermal spray material on a component to be processed and performing a thermal barrier film forming step of forming a thermal barrier film on the surface of the component.
前記溶射材作製工程では、
粉末状セラミックスの造粒で得られた所定粒径のセラミックス造粒物と前記所定粒径の珪藻土を所定割合で混合することにより、前記溶射材を作製する
請求項1に記載の遮熱性部品の製造方法。
In the thermal spray material production process,
2. The thermal spray component according to claim 1, wherein the thermal spray material is produced by mixing ceramic granulated material having a predetermined particle diameter obtained by granulation of powdered ceramic and diatomaceous earth having the predetermined particle diameter at a predetermined ratio. Production method.
前記溶射材作製工程では、
所定割合で混合された粉末状セラミックスと粉末状珪藻土の混合粉末を造粒し、造粒で得られた所定粒径の造粒物を前記溶射材とする
請求項1に記載の遮熱性部品の製造方法。
In the thermal spray material production process,
The heat-shielding component according to claim 1, wherein a powder mixture of powdered ceramic and powdered diatomaceous earth mixed at a predetermined ratio is granulated, and a granulated product having a predetermined particle diameter obtained by granulation is used as the thermal spray material. Production method.
JP2015135113A 2015-07-06 2015-07-06 Production method of heat insulation component Pending JP2017014598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135113A JP2017014598A (en) 2015-07-06 2015-07-06 Production method of heat insulation component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135113A JP2017014598A (en) 2015-07-06 2015-07-06 Production method of heat insulation component

Publications (1)

Publication Number Publication Date
JP2017014598A true JP2017014598A (en) 2017-01-19

Family

ID=57829116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135113A Pending JP2017014598A (en) 2015-07-06 2015-07-06 Production method of heat insulation component

Country Status (1)

Country Link
JP (1) JP2017014598A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551724A (en) * 1991-08-23 1993-03-02 Toyota Motor Corp Formation of porous sprayed layer
US5722379A (en) * 1995-11-17 1998-03-03 Daimler-Benz Ag Internal-combustion engine and process for applying a thermal barrier layer
JP2000087206A (en) * 1998-09-10 2000-03-28 Tocalo Co Ltd Vessel for molten metal and its surface treatment
JP2010196996A (en) * 2009-02-26 2010-09-09 Ueno Shoten:Kk Chimney for burning appliance
JP2013076142A (en) * 2011-09-30 2013-04-25 Covalent Materials Corp Corrosion resistant member and method for producing the same
JP2016180157A (en) * 2015-03-24 2016-10-13 いすゞ自動車株式会社 Formation method of porous thermal-sprayed film, and internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551724A (en) * 1991-08-23 1993-03-02 Toyota Motor Corp Formation of porous sprayed layer
US5722379A (en) * 1995-11-17 1998-03-03 Daimler-Benz Ag Internal-combustion engine and process for applying a thermal barrier layer
JP2000087206A (en) * 1998-09-10 2000-03-28 Tocalo Co Ltd Vessel for molten metal and its surface treatment
JP2010196996A (en) * 2009-02-26 2010-09-09 Ueno Shoten:Kk Chimney for burning appliance
JP2013076142A (en) * 2011-09-30 2013-04-25 Covalent Materials Corp Corrosion resistant member and method for producing the same
JP2016180157A (en) * 2015-03-24 2016-10-13 いすゞ自動車株式会社 Formation method of porous thermal-sprayed film, and internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN M, ET AL.: ""Application of diatomite coating in centrifugal casting nodular cast-iron tube with thermal mold me", TEZHONG ZHUZAO JI YOUSE HEJIN/SPECIAL CASTING AND NONFERROUS ALLOYS, vol. 31, no. 1, JPN6019018114, January 2011 (2011-01-01), pages 67 - 69, ISSN: 0004144367 *

Similar Documents

Publication Publication Date Title
JP5689456B2 (en) Plasma transfer type wire arc spray system, method for starting plasma transfer type wire arc spray system apparatus, and method for coating cylinder bore surface of combustion engine using plasma transfer type wire arc spray system apparatus
JP5604027B2 (en) Method and apparatus combining plasma and cold spray
JP5171125B2 (en) Nozzle for cold spray and cold spray device using the nozzle for cold spray
JP2005530040A (en) Radial pulsed arc discharge gun for synthesizing nanopowder
WO2014157491A1 (en) Plasma spraying device
JP5515277B2 (en) Plasma spraying equipment
TW201714685A (en) Spherical metal powder and manufacturing method thereof and manufacturing apparatus thereof capable of allowing the fine metal particles to converge into a spherical shape in a relatively long time to achieve the purpose of improving the metal powder roundness
CN204221180U (en) Small-sized endoporus powder plasma cladding welding torch
JP2017014598A (en) Production method of heat insulation component
JP6985097B2 (en) Mixed gas and method of forming a thermal spray coating using it
CN111286693A (en) Microporous anode for cluster plasma spray gun and cluster plasma spraying method
US20120251885A1 (en) High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
CN114920218B (en) Preparation process of nitride nano or submicron powder material
RU142250U1 (en) PLASMOTRON FOR SPRAYING
CN213013056U (en) Microporous anode for cluster plasma spray gun
CN104308349B (en) Powder plasma cladding welding torch for small inner hole
JP6544087B2 (en) Method of manufacturing heat shield parts
RU2607398C2 (en) Method of coatings application by plasma spraying and device for its implementation
JPH04131649U (en) plasma spray gun
JPH05339699A (en) Plasma thermal spraying method
CN115679240B (en) High-energy plasma spray gun device and method for in-situ atomizing metal or ceramic powder
JP2006118013A (en) Powder for thermal spraying, thermal spraying method and thermally sprayed coating
US12030078B2 (en) Plasma transfer wire arc thermal spray system
RU2468989C1 (en) Method to produce nanoparticles
JP6934401B2 (en) Manufacturing method of thermal spraying member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105