JP2017014581A - 3次元形成装置および3次元形成方法 - Google Patents

3次元形成装置および3次元形成方法 Download PDF

Info

Publication number
JP2017014581A
JP2017014581A JP2015133342A JP2015133342A JP2017014581A JP 2017014581 A JP2017014581 A JP 2017014581A JP 2015133342 A JP2015133342 A JP 2015133342A JP 2015133342 A JP2015133342 A JP 2015133342A JP 2017014581 A JP2017014581 A JP 2017014581A
Authority
JP
Japan
Prior art keywords
sintered
dimensional
single layer
flattening
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015133342A
Other languages
English (en)
Inventor
本間 研吾
Kengo Honma
研吾 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015133342A priority Critical patent/JP2017014581A/ja
Publication of JP2017014581A publication Critical patent/JP2017014581A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】焼結層の上面、すなわち次の焼結層が積層される側の面を、平坦化することによって高い精度の3次元造形物を得ること目的とする。【解決手段】ステージと、金属粉末と、バインダーと、が混練された被焼結材料を前記ステージに供給する材料供給手段と、前記材料供給手段から供給された前記被焼結材料に、前記被焼結材料を焼結可能とするエネルギーを供給する加熱手段と、前記ステージに対して、前記材料供給手段と、前記加熱手段と、が、相対的に3次元移動が可能となるステージ駆動手段と、を備え、前記加熱手段によって焼結された焼結体の集合体として形成される焼結単層の、前記ステージ側とは反対の端面部の少なくとも一部を除去して平坦化する平坦化手段を備える3次元形成装置。【選択図】図1

Description

本発明は、3次元形成装置および3次元形成方法に関する。
従来、金属材料を用いて3次元形状を簡便に形成する製造方法として、特許文献1に示すような方法が開示されている。特許文献1に開示されている3次元形状造形物の製造方法は、原料に金属粉末と、溶剤と、粘着増進剤と、を有する金属ペーストを層状の材料層に形成して用いる。そして、層状の材料層に光ビームを照射して金属の焼結層もしくは金属の溶融層を形成し、材料層の形成と、光ビームの照射と、を繰り返すことにより焼結層もしくは熔融層が積層され、所望の3次元形状造形物が得られる。
特許文献1の3次元形状造形物の製造方法では、3次元形状造形物を構成する積層される材料層の一つの層において、3次元CADのデータなどから得られる光ビームの照射経路に沿うように光ビームがガルバノミラーによってスキャンし、材料層が溶融、凝固されて所望の焼結層を得ることができる。
特開2008−184622号公報
特許文献1に開示された3次元形状造形物の製造方法において、金属粉末と溶剤と粘着増進剤とを有する金属ペーストを用いて形成される材料層は、ワイパーによってスキージされた状態で、層厚みは均一化可能ではあるが、焼結層または溶融層を構成する金属粉末の密度分布を均一化することは困難であった。
従って、材料層に光ビームを照射して焼結、もしくは溶融させることによる材料層の収縮に分布を生じてしまい、プレートからの焼結層の高さに高低差が発生する虞があった。この焼結層の高低差が、焼結層を複数、積層させることによって累積されて、形成される3次元形状造形物にゆがみやひずみなどを生じさせ、3次元形状造形物の寸法精度を低下させることになっていた。そこで、焼結層の上面、すなわち次の焼結層が積層される側の面を、平坦化することによって高い精度の3次元造形物を得ること目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
〔適用例1〕本適用例の3次元形成装置は、ステージと、金属粉末と、バインダーと、が混練された被焼結材料を前記ステージに供給する材料供給手段と、前記材料供給手段から供給された前記被焼結材料に、前記被焼結材料を焼結可能とするエネルギーを供給する加熱手段と、前記ステージに対して、前記材料供給手段と、前記加熱手段と、が、相対的に3次元移動が可能となるステージ駆動手段と、を備え、前記加熱手段によって焼結された焼結体の集合体として形成される焼結単層の、前記ステージ側とは反対の端面部の少なくとも一部を除去して平坦化する平坦化手段を備えることを特徴とする。
本適用例の3次元形成装置によれば、平坦化手段を備えることにより、焼結単層の上面に生じる起伏を除去することができ、略平坦な平面を有する焼結単層を得ることができる。また、焼結単層の上層に積層させる焼結単層を形成する場合、下層の焼結単層の上面が平坦な面に形成されていることにより、上層に積層される焼結単層として形成される供給材料を、均一な厚みで供給することができ、上層に積層される焼結単層の上面の起伏の高低差を小さくすることができる。従って、複数の焼結単層を積層しても、積層方向の起伏、あるいはうねりの少ない、精密な3次元形状造形物が形成できる3次元形成装置を得ることができる。
〔適用例2〕上述の適用例において、前記平坦化手段は、前記ステージに対して相対的に3次元移動が可能となる平坦化駆動部と、前記焼結単層の前記端面部を3次元計測可能とする計測部と、を備え、前記計測部による計測結果に基づいて前記平坦化駆動部を駆動させることを特徴とする。
上述の適用例によれば、平坦化装置の駆動は、計測部による端面部の3次元計測結果から、駆動の要否、あるいは平坦化のための焼結単層の除去量の決定、などを行うことで、平坦化手段の駆動時間を最適化することができる。従って、高い生産性を実現しながら、焼結単層の平坦化を行うことができる装置を得ることができる。
〔適用例3〕本適用例の3次元形成方法は、金属粉末と、バインダーと、が混練された被焼結材料を供給する材料供給工程と、前記材料供給工程によって供給された前記被焼結材料に向けて、前記被焼結材料を焼結可能とするエネルギーを供給し、前記被焼結材料を焼結させる焼結工程と、により単層を形成する単層形成工程と、前記単層形成工程によって形成された第一の単層に積層させ、前記単層形成工程によって第二の単層を形成する積層工程と、を含み、前記積層工程を所定の回数、繰り返して3次元形状造形物が形成される3次元形成方法であって、前記第一の単層の、前記第二の単層が積層される積層面部を平坦化する平坦化工程を含むことを特徴とする。
本適用例の3次元形成方法によれば、平坦化工程を備えることにより、焼結単層の上面に生じる起伏を除去することができ、略平坦な平面を有する焼結単層を得ることができる。また、焼結単層の上層に第2の焼結単層を形成する場合、下層の焼結単層の上面が平坦な面に形成されていることにより、第2の焼結単層に形成される供給材料を、均一な厚みで供給することができ、第2の焼結単層の上面の起伏の高低差を小さくすることができる。従って、複数の焼結単層を積層しても、積層方向の起伏、あるいはうねりの少ない、精密な3次元形状造形物が形成できる。
〔適用例4〕上述の適用例において、前記積層面部を3次元計測する3次元計測工程を備え、前記3次元計測工程によって得られた前記積層面部の3次元データに基づき、前記平坦化工程の要否を判定する平坦化要否判定工程を含むことを特徴とする。
上述の適用例によれば、平坦化工程の実行は、3次元計測工程による積層面部の3次元計測データから、平坦化工程の要否の判定を行うことで、平坦化工程の工数を最適化することができる。従って、高い生産性を実現しながら、焼結単層の平坦化を行うことができる。
第1実施形態に係る3次元形成装置の構成を示す構成図。 第1実施形態に係る3次元形成装置の動作を説明する概略構成図。 第1実施形態に係る3次元形成装置の動作を説明する概略構成図。 第1実施形態に係る3次元形成装置の動作を説明する概略構成図。 第1実施形態に係る3次元形成装置の動作を説明する概略構成図。 第1実施形態に係る3次元形成装置の動作を説明する概略構成図。 第1実施形態に係る3次元形成装置の動作を説明する概略構成図。 第1実施形態に係る3次元形成装置の平坦化部の実施形態の一例を示す外観斜視図。 第1実施形態に係る3次元形成装置の平坦化装置による平坦化の動作を説明する概念図。 第1実施形態に係る3次元形成装置の平坦化装置による平坦化の動作を説明する概念図。 第1実施形態に係る3次元形成装置の平坦化装置による平坦化の動作を説明する概念図。 第1実施形態に係る3次元形成装置の平坦化装置による平坦化の動作を説明する概念図。 第2実施形態に係る3次元形成方法を示すフローチャート。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。 第2実施形態に係る3次元形成方法の製造工程を示す部分断面図。
以下、図面を参照して、本発明に係る実施形態を説明する。
(第1実施形態)
図1は、第1実施形態に係る3次元形成装置の構成を示す構成図である。図1に示す3次元形成装置1000(以下、装置1000という)は、基台10に材料層形成部20が備えられている。材料層形成部20は、原料Mが収納される原料槽21aと、原料槽21aに隣接して3次元造形物を構成する材料層が形成される形成槽21bと、を有する収容部21を備えている。原料槽21aの内部には、図示するZ軸方向、すなわち図表示の上下方向に摺動するテーブル23aと、テーブル23aを支持するテーブル支持部23bと、を備える原料昇降部23と、形成槽21bの内部には、図示するZ軸方向、すなわち図表示の上下方向に摺動するステージとしてのテーブル24aと、テーブル24aを支持するテーブル支持部24bと、を備える材料層昇降部24と、を備えている。なお、説明の便宜上、以下、原料昇降部23を第1昇降部23、材料層昇降部24を第2昇降部24、という。そして、テーブル支持部23bは、基台10に配置された昇降装置23cによって、テーブル支持部24bはステージ駆動手段としての昇降装置24cによって、それぞれ上下に駆動される。
基台10には、原料槽21aに収納された原料Mを所定の量、隣接す形成槽21bへ送出する、原料送出手段30を備えている。原料Mは、金属粉末と、バインダーと、が混練された被焼結材料である。金属粉末としては、例えばマグネシウム(Mg)、鉄(Fe)、コバルト(Co)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)などの単体粉末、もしくはこれらの金属の1つ以上を含む合金の粉末の混合粉末が用いられる。そして、金属粉末にバインダーとして、例えばポリビニルアルコール(PVA)、ナノセルロース(CeNF)などの水酸基を有したもの、あるいはポリ乳酸(PLA)、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)などの熱可塑性樹脂などが混練され、紛体状の原料Mが形成される。
原料送出手段30は、原料槽21aから原料Mを形成槽21bに押し出すように送出するリコータ31と、リコータ31に固定された駆動支持部32を介して、図示例ではX軸方向にリコータ31を移動可能とするリコータ駆動部33と、を備え、リコータ駆動部33に接続された可動支持部34によって基台10に設置されている。以下、原料送出手段30をスキージ装置30という。
原料槽21aに収容された原料Mを、第1昇降部23によって材料層形成部20の収容部21の上端面21cよりせり出させ、スキージ装置30に備えるリコータ31を形成槽21b側に移動させながら、上端面21cよりせり出した原料を形成槽21bに移送するものであり、原料供給手段としては、スキージ装置30と、原料槽21aと、第1昇降部23と、により構成される。
装置1000には、加熱手段として、レーザー光Lを照射するレーザー発振器41と、レーザー光Lを形成槽21bの第2昇降部24のテーブル24a上に配設された材料層に向けて、所定の照射位置に照射させるガルバノ装置42と、を備えるレーザー照射装置40が備えられている。なお、レーザー照射装置40は、図示しない駆動手段によって材料層形成部20の収容部21と、相対的に3次元移動可能に配置され、ガルバノ装置42は、レーザー光を反射するガルバノミラー42aと、ガルバノミラー42aを駆動し、レーザー発振器41からのレーザー光Lの光軸を所定の方向に反射させるミラー駆動部42bと、を備えている。
また、装置1000には、平坦化手段としての平坦化装置50を備えている。平坦化装置50は、詳細は後述するが、材料層がレーザー光Lによって焼結された焼結部の一部を除去する平坦化部51と、平坦化部51に接続され、図示例ではX軸方向に可動する可動腕52と、可動腕52を図示しない駆動装置によってX軸方向に駆動する駆動保持部53と、駆動保持部53がZ軸方向に移動可能に固定され、一端が基台10に固定された支持部54と、を備えている。
更に、装置1000には、第2昇降部24のテーブル24a上に形成される材料層を焼結して得られる焼結層の表面を3次元計測可能な計測手段としてのレーザー計測装置60を備えている。レーザー計測装置60は、図示しないが、収容部21に対して相対的に3次元移動を可能とする平坦化駆動部としての駆動部を備えている。
装置1000には、図示しない、例えばパーソナルコンピューター等のデータ出力装置から出力される3次元形状造形物の造形用データに基づいて、上述した第1昇降部23、第2昇降部24、スキージ装置30、レーザー照射装置40、および平坦化装置50を制御する制御手段としての制御ユニット100を備えている。制御ユニット100は、図示しないが、第1昇降部23の駆動制御部、第2昇降部24の駆動制御部、スキージ装置30の駆動制御部、レーザー照射装置40の駆動制御部、および平坦化装置50の駆動制御部を備え、それらを連携させて駆動するように制御する制御部と、を備えている。そして図示されない制御ユニットに備えるそれぞれの駆動制御部は、テーブル昇降コントローラー110、スキージ装置コントローラー120、レーザーコントローラー130、平坦化装置コントローラー140、および3次元計測装置コントローラー150に、所定の制御信号を送出する。
テーブル昇降コントローラー110は、制御ユニット100からの制御信号に基づき、第1昇降部23に備える昇降装置23c、および第2昇降部24に備える昇降装置24cを駆動させ、テーブル23a,24aの昇降を制御する。スキージ装置コントローラー120は、制御ユニット100からの制御信号に基づき、リコータ駆動部33を駆動させ、可動支持部34の、本例ではX軸方向のスライド移動を制御する。
レーザーコントローラー130は、制御ユニット100からの制御信号に基づき、レーザー発振器41からのレーザー光Lの出射と、出射されたレーザー光Lを所定の照射位置に照射させるガルバノ装置42の駆動と、を制御する。平坦化装置コントローラー140は、制御ユニット100からの制御信号に基づき、駆動保持部53を駆動させ可動腕52のX軸方向の移動と、支持部54に沿ったZ軸方向の移動と、平坦化部51に対して、後述する平坦化加工部の出力制御と、を行う。
3次元計測装置コントローラー150は、制御ユニット100からの制御信号に基づき、レーザー計測装置60の計測開始位置への移動と、計測の開始と終了、計測データの取得と制御ユニットへのデータ送出、などの制御を行う。
図2,3,4,5,6,7は、材料層形成部20における材料供給と材料層形成の装置1000の動作を説明する概略構成図である。先ず、図2に示すように、第1昇降部23のテーブル23aは、材料層形成部20の原料槽21aの図表示の下方、すなわち底部まで下降させ、原料槽21a内に原料補給部70から原料Mが補給、収容される。原料槽21aに原料Mが収容されると、図3に示すように、第1昇降部23は、テーブル23aをs1上昇させる。
テーブル23aの上面部23dをs1上昇させることによって、収容部21の上端面21cの面高さを超えて原料Mが丘状にせり出し、せり出し原料M1を形成する。一方、形成槽21bでは、第2昇降部24のテーブル24aの上面部24dを、収容部21の上端面21cからt1下降させ、形成槽21bと、テーブル24aの上面部24dと、によって凹部V1を形成する。テーブル24aの下降量t1は、後述する材料層の厚みとなり、凹部V1の容積と、せり出し原料M1の体積と、が略同量となるようにせり出し原料M1が形成されるように第1昇降部23のテーブル23aの上昇量s1が設定される。
次に、図4に示すようにスキージ装置30に備えるリコータ駆動部33によって駆動支持部32が駆動され、リコータ31は、図示するA位置(待機位置)から、B位置(スキージ終了位置)まで移動する。この時、リコータ31の収容部21に対向するリコータ下端面31bと、収容部21に上端面21cと、の間隙δ1は、上端面21c上をリコータ下端面31bが摺動可能でありながら、且つより0に近づけて設定されることが好ましい。
このように配置されたリコータ31がA位置からB位置に向けて移動する過程において、リコータ前端面31aは、せり出し原料M1を形成槽21bに向けて押し出し、形成槽21bの凹部V1に移動させる。せり出し原料M1は、形成槽21bに移送され、材料層M2に形成される。
材料層M2の形成では、リコータ31のリコータ下端面31bによってリコータ31の移動方向に沿って平坦面に成形され、凹部V1の体積に対してせり出し原料M1の体積の余剰分はリコータ前端面31aによって、形成槽21bの外部に排出される。この時、リコータ31の収容部21に対向するリコータ下端面31bと、収容部21に上端面21cと、の間隙δ2は、上端面21c上をリコータ下端面31bが摺動可能でありながら、且つより0に近づけて設定されることが好ましい。
図4に示す、材料層M2が形成されると、図5に示すように、リコータ31は待機位置のA位置に移動され、レーザー照射装置40によって、材料層M2に向けてレーザーLが照射される。材料層M2を構成する原料Mは、レーザーLの熱エネルギーによってレーザーLが照射された所定の領域において原料Mに含まれる金属粉末が焼結され、焼結単層としての後述する3次元造形物の第1層目となる部分造形物201が形成される。材料層M2を構成する原料Mは上述したように、金属粉末とバインダーとを混練して作成されており、この原料MにレーザーLを照射し熱エネルギーを付与することにより、原料Mに含まれるバインダー成分は蒸散され、金属粉末が互いに結合、集合して部分造形物201に形成されるため、収縮を伴った状態の変化が起きる。従って、材料層M2の厚みt1に対して、焼結後の部分造形物201の厚みt2は収縮によって、
t2<t1
の状態で形成される。
部分造形物201が形成されると、図6に示すように、第2昇降部24を駆動し、部分造形物201の上面が収容部21の上端面21cより所定量飛び出る位置までテーブル24aを上昇させる。すなわち、テーブル24aの上面部24dと、収容部21の上端面21cとの段差t3が、部分造形物201の厚みt2に対して、
t3<t2
となるようにする。そして、材料層M2において焼結されなかった部分、すなわち部分造形物201を除く未焼結材料層M2´を、テーブル24aから除去する。除去の方法には限定はないが、例えば圧縮空気の吹付による吹き飛ばし、あるいは吸引などの手段によって行うことができる。
未焼結材料層M2´が除去され、部分造形物201だけが載置された状態で、図7に示すように、部分造形物201の上面201aに対向して配置されたレーザー計測装置60によって、上面201aの3次元計測が行われる。測定された上面201aの3次元データに基づいて、平坦化装置50に備える駆動保持部53(図1参照)を駆動させ、平坦化部51を部分造形物201に対して相対的に所定の高さに移動させ、可動腕52を移動させて、部分造形物201の積層面部としての上面201aの平坦化を行う。
図8は、平坦化部51の実施形態の一例を示す外観斜視図である。図8に例示する平坦化装置50に備える平坦化部51は、少なくとも、溶断ワイヤー51bと、溶断ワイヤー51bを保持するワイヤー保持枠51aと、を備えている。溶断ワイヤー51bには、平坦化装置コントローラー140の制御信号に基づいて溶断ワイヤー51bへ送電する電力を制御する電源制御部141から、電源制御部141と溶断ワイヤー51bとを電気的に接続するケーブル142を通して溶断ワイヤー51bに所定の電力が供給される。
溶断ワイヤー51bは、ワイヤー保持枠51aのワイヤー固定部51c,51dの間に、張力が与えられて固定され、電源制御部141から供給される電力によって発熱する黄銅線を用いることが好ましい。
図7に示す、平坦化装置50(図1参照)によって部分造形物201の上面201aを平坦化する動作について図9,10,11,12を用いて説明する。先ず、部分造形物201の上面201aの状態を図9に示す概念図によって説明する。図9は、部分造形物201の上面201aの状態を3次元ワイヤーフレームによって立体的に表した拡大概念図である。
図9に示すように、部分造形物201の上面201aは起伏をもって形成されている。図9では、第2昇降部24のテーブル24aの上面部24dに所定の厚みt2の基準上面201bの部分造形物201が形成されるが、基準上面201bに対して、形成される部分造形物201の上面201aは、厚みt2より厚い山部位置S1,S2,S3と、薄い谷部位置D1,D2と、を有するうねりのある上面201aとなっている。
部分造形物201は、第2昇降部24のテーブル24aの上面部24d上に、図4に示すように厚みt1の材料層M2を、図5に示すように、レーザーLによって焼結して得られる。しかし、図5を用いて上述したように、レーザーLの照射による焼結により、厚みt1の材料層M2から収縮した厚みt2の部分造形物201に形成されるが、この収縮の量(割合)に分布が存在する。
図10は、図9に示す切断面Cに沿った部分造形物201の断面図を示し、切断面Cと上面201aとの交線がCLである。交線CL上には、山部位置S1と、谷部位置D1と、を含んでいる。なお、図10におけるZ軸方向の位置、すなわち凹凸は強調して描画してある。
図10に示すように、材料層M2は厚みt1で形成され、レーザーLによって焼結されることで、所望の厚みt2の部分造形物201が形成される。材料層M2を構成する原料Mに含まれる金属粉末の密度ρは均一ではなく、分布をもっている。例えば、所望の厚みt2に形成される領域A2,A4での密度をρS、山部位置S1の領域A3での密度をρH、谷部位置D1の領域A1での密度をρL、とすると、
ρL<ρS<ρH
の関係にある。
領域A3における密度ρHは、領域A2,A4における密度ρSより高い密度で金属粉末を含んでいる、言い換えると領域A3に含まれるバインダーの割合が領域A2,A4より少ないことを意味している。従って、レーザーLの熱エネルギーによるバインダーが蒸散、除去されても領域A3にはより多くの金属成分が残留、焼結されることになり、所望の厚みt2より厚い厚みt2Hを有する山部位置S1を構成する。
そして、領域A1における密度ρLは、領域A2,A4における密度ρSより低い密度で金属粉末を含んでいる、言い換えると領域A1に含まれるバインダーの割合が領域A2,A4より多いことを意味している。従って、レーザーLの熱エネルギーによるバインダーが蒸散、除去されることで領域A1には残留する金属成分はより少ない量で焼結されることになり、所望厚みt2より薄い厚みt2Lを有する谷部位置D1を構成することとなる。
このように起伏のある部分造形物201の上面201aの高さt2,t2H,t2Lなどをレーザー計測装置60によって3次元計測し、その計測データを基に平坦化装置50が駆動される。図11および図12は、平坦化装置50による部分造形物201の平坦化の形態を示す断面概念図である。
図11に示すように、部分造形物201の上面201aの3次元データがレーザー計測装置60によって得られると、制御ユニット100において最適の部分造形物201の厚みtSが演算され、平坦化装置コントローラー140に制御信号が送出される(図1参照)。そして、平坦化装置に備える溶断ワイヤー51bの部分造形物201との相対位置、すなわち溶断ワイヤー51bと、テーブル24aの上面部24dと、のZ軸方向の離間距離tSが設定される。そして、図12に示すように、溶断ワイヤー51bは所定の電力が供給されて部分造形物201を構成する金属を溶融可能とする温度まで発熱し、離間距離tSが維持された状態で、図示矢印のX軸方向に移動する。そして、部分造形物201の上面201aの全面に亘って溶断ワイヤー51bが移動されることにより、厚みtSを最大厚みとする平坦化面201cに成形された平坦化部分造形物201Aが形成される。
このように平坦化装置50によって、部分造形物201の上面201aが持っている起伏を除去し、略平坦な平面を有する平坦化部分造形物201Aを得ることができる。また、平坦化部分造形物201Aの上層に第2の部分造形物を形成する場合、下層の平坦化部分造形物201Aの上面が平坦な面に形成されていることにより、第2の部分造形物となる材料層M2の形成厚みを、より均一に形成することができ、第2の部分造形物の上面の起伏の高低差を小さくすることができる。従って、複数の部分造形物を積層して得られる3次元形状造形物は、積層方向の起伏、あるいはうねりの少ない、精密な造形物とすることができる。
(第2実施形態)
第2実施形態に係る3次元形成方法は、上述した第1実施形態に係る装置1000を用いて3次元造形物を形成する方法である。図13は、第2実施形態に係る3次元形成方法を示すフローチャートである。そして図13のフローチャートに示す工程の製造方法を図14〜図24に示す。なお第1実施形態に係る装置1000と同じ構成要素には同じ符号を付し、説明は省略する。
(3次元造形用データ取得工程)
図13に示すように、本実施形態に係る3次元形成方法は後述する3次元形状造形物200の3次元造形用データを、図示しない、例えばパーソナルコンピューターなどから、図1に示す装置1000に備える制御ユニット100に取得する3次元造形用データ取得工程(S10)が実行される。3次元造形用データ取得工程(S10)において取得された3次元造形用データは、制御ユニット100から、テーブル昇降コントローラー110、スキージ装置コントローラー120、レーザーコントローラー130、平坦化装置コントローラー140、3次元計測装置コントローラー150、などに所定の制御信号が送出される。
(材料準備工程)
材料準備工程(S20)では、図14に示すように、3次元形状造形物200の原料Mが、図示しない混練装置から原料補給部70を経由して、第1昇降部23のテーブル23aが収容部21の原料槽21aの図表示の下方、すなわち底部まで下降させた状態での原料槽21aに供給され、収納される。原料Mは、金属粉末と、バインダーと、が混練された被焼結材料である。金属粉末としては、例えばマグネシウム(Mg)、鉄(Fe)、コバルト(Co)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)などの単体粉末、もしくはこれらの金属の1つ以上を含む合金の粉末の混合粉末が用いられる。そして、金属粉末にバインダーとして、例えばポリビニルアルコール(PVA)、ナノセルロース(CeNF)などの水酸基を有したもの、あるいはポリ乳酸(PLA)、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)などの熱可塑性樹脂などが混練され、紛体状の原料Mが形成される。
本実施形態における3次元形成方法は、紛体状の原料Mから形成される形態により説明するが、原料Mは紛体状に限定されず、上述の金属粉末と、バインダーと、に加えて溶剤、例えば水、水溶性の溶剤、などを混練し、スラリー状にして供給してもよく、あるいはシート状に成形した、いわゆるグリーンシートとして供給してもよい。
(材料供給工程)
原料槽24aに原料Mが供給されると、材料供給工程(S30)に移行される。材料供給工程(S30)は、図15に示すように、原料槽21aにおいて、テーブル23aの上面部23dをs1上昇させ、収容部21の上端面21cの面高さを超えて原料Mが丘状にせり出し、せり出し原料M1が形成される。合わせて、形成槽21bでは、第2昇降部24のテーブル24aの上面部24dを、収容部21の上端面21cからt1下降させ、形成槽21bと、テーブル24aの上面部24dと、によって凹部V1が形成される。テーブル24aの下降量t1は、後述する材料層の厚みとなり、凹部V1の容積と、せり出し原料M1の体積と、が略同量となるようにせり出し原料M1が形成されるように第1昇降部23のテーブル23aの上昇量s1が設定される。
そして、スキージ装置30に備えるリコータ31が、図示するA位置(待機位置)から、B位置(スキージ終了位置)まで移動する。リコータ31がA位置からB位置に向けて移動する過程において、リコータ前端面31aは、せり出し原料M1を形成槽21bに向けて押し出し、形成槽21bの凹部V1に、せり出し原料M1が移送される。そして、形成槽21bに移送されたせり出し原料M1は、リコータ31によって平坦にならされる、いわゆるスキージが行われ、材料層M2に形成されて材料供給工程(S30)が終了する。
(焼結工程)
材料供給工程(S30)の後、焼結工程(S40)に移行される。焼結工程(S40)では、図16に示すようにレーザー照射装置40によって、材料層M2に向けてレーザーLが照射され、レーザーLの熱エネルギーによってレーザーLが照射された所定の領域において原料Mに含まれる金属粉末が焼結され、焼結単層の第一の単層としての後述する3次元造形物の第1層目となる部分造形物201が形成される。材料層M2を構成する原料Mは上述したように、金属粉末とバインダーとを混練して作成されており、この原料MにレーザーLを照射し熱エネルギーを付与することにより、原料Mに含まれるバインダー成分は蒸散され、金属粉末が互いに結合、集合して部分造形物201に形成されるため、収縮を伴った状態の変化が起きる。従って、材料層M2の厚みt1に対して、焼結後の部分造形物201の厚みt2は収縮によって、
t2<t1
の状態で形成される。
なお、上述の「第一の単層」、および後述する「第二の単層」とは、後述するが、第一の単層の上に、第二の単層が積層されて3次元成形物が形成されることから、積層される単層の、いわゆる上下関係を区分するためのものであり、下層が第一の単層、上層が第二の単層としている。
(未焼結部除去工程)
焼結工程(S40)によって、部分造形物201が形成されると、未焼結部除去工程(S50)に移行される。未焼結部除去工程(S50)は、図17に示すように、第2昇降部24を駆動し、部分造形物201の上面が収容部21の上端面21cより所定量飛び出る位置までテーブル24aを上昇させる。すなわち、テーブル24aの上面部24dと、収容部21の上端面21cとの段差t3が、部分造形物201の厚みt2に対して、
t3<t2
となるようにする。そして、材料層M2において焼結されなかった部分、すなわち部分造形物201を除く未焼結材料層M2´を、テーブル24aから除去する。除去の方法には限定はないが、例えば圧縮空気の吹付による吹き飛ばし、あるいは吸引などの手段によって行うことができる。
(3次元計測工程)
未焼結部除去工程(S50)によって、テーブル24aの上面部24d上に載置された第1層目の部分造形物201の上面201aの3次元計測を行う3次元計測工程(S60)に移行される。本実施形態での3次元計測工程(S60)では、図18に示すように、装置1000に備えるレーザー計測装置60によって、部分造形物201の上面201aの3次元形状データを取得する。3次元形状データとは、例えば図9に示すように、山部位置S1,S2,S3、および谷部位置D1,D2の、XYZ座標位置を計測して取得することである。
図19は、部分造形物201の上面201aの起伏を概念的に表した概念図である。図9、および図10を用いて説明したが、部分造形物201の上面201aは図19に示すように起伏を有する面となっている。その起伏の内、基準となるテーブル24aの上面部24dからの高さ、すなわち部分造形物201の厚みを測定し、少なくとも最も厚いtMAXと、最も薄いtMINの厚みデータを取得する。
(平坦化要否判定工程)
3次元計測工程(S60)によって得られたtMAXと、tMINのデータから、後述する平坦化工程(S80)の要否を判定する平坦化要否判定工程(S70)に移行する。平坦化要否判定工程(S70)では、tMAXとtMINと、の差、
τMAX=tMAX−tMIN
を求める。そして、制御ユニット100に備える図示しない演算部において、平坦化工程(S80)の要否を決める閾値としての上面201aの起伏高低差許容範囲τSと、τMAXと、を比較し、
τMAX≦τS
すなわち、
(tMAX−tMIN)≦τS
であるかを判定する。
ここで、
(tMAX−tMIN)>τS
すなわち、平坦化要否判定工程(S70)においてNOと判定されると、次の平坦化工程(S80)に移行される。しかし、YESと判定された場合には、平坦化工程(S80)には移行せず、後述する積層数比較工程(S90)に移行される。なお、閾値の起伏高低差許容範囲τSは、3次元形状造形物200の形成、完成精度などによって適宜決定されるものであり、特に限定されるものではない。
(平坦化工程)
上述の平坦化要否判定工程(S70)において、
(tMAX−tMIN)>τS
すなわち、平坦化要否判定工程(S70)においてNOと判定された場合、平坦化工程(S80)に移行される。平坦化工程(S80)は、図20に示すように、平坦化装置50に備える可動腕52を駆動保持部53によって駆動させ、平坦化部51を所定の位置まで移動させる(図1参照)。そして、平坦化部51に備える溶断ワイヤー51bに通電、発熱させ、部分造形物201の上面201aをなぞるように移動させる。
この時の溶断ワイヤー51bと部分造形物201との関係を図21に示す。図21に示すように、溶断ワイヤー51bは、3次元計測工程(S60)で得られた部分造形物201の最も薄いtMINに対して少なくとも起伏高低差許容範囲τSを加えた、最適厚みtSを形成するようにZ軸方向の位置が設定され、厚みtSを超える部分が溶断、除去される。そして溶断、除去後の平坦化面201cが形成され、平坦化部分造形物201Aに形成される。
(積層数比較工程)
少なくとも、材料供給工程(S30)と、焼結工程(S40)と、未焼結部除去工程(S50)と、3次元計測工程(S60)と、平坦化要否判定工程(S70)と、平坦化工程(S80)と、を含む単層形成工程(S300)が実行されると、積層数比較工程(S90)に移行される。積層数比較工程(S90)では、3次元造形用データ取得工程(S10)によって取得された造形データに含まれる、3次元形状造形物200を構成するために必要な単層の積層数Nと、積層数比較工程(S90)の直前の単層形成工程(S300)まで積層された単層の積層数jと、を比較する。積層数比較工程(S90)において、j<Nと判定された場合、再度、単層形成工程(S300)を実行させる積層工程(S200)に移行される。
(積層工程)
積層工程(S200)は、積層数比較工程(S90)において、j<Nと判定され、再度、単層形成工程(S300)を実行させるための指令工程であり、単層形成工程(S300)の開始工程である材料供給工程(S30)を実行させる。
図22に示すように、積層工程(S200)の指令により開始される2層目の材料層M22を形成する材料供給工程(S30)では、第一の単層としての第1層目の平坦化部分造形物201Aに原料Mが供給される。図22に示すように、原料槽21aにおいて、テーブル23aの上面部23dをs21上昇させ、収容部21の上端面21cの面高さを超えて原料Mが丘状にせり出し、せり出し原料M21が形成される。合わせて、形成槽21bでは、第2昇降部24のテーブル24aの上面部24dを、収容部21の上端面21cから第1層目の平坦化部分造形物201Aの平坦化面201cがt21の深さになるまで下降させ、形成槽21bと、テーブル24aの上面部24dと、によって凹部V21が形成される。テーブル24aの下降量t21は、第2層目の材料層M22の厚みとなり、凹部V21の容積と、せり出し原料M21の体積と、が略同量となるようにせり出し原料M21が形成されるように第1昇降部23のテーブル23aの上昇量s21が設定される。
そして、スキージ装置30に備えるリコータ31が、図示するA位置(待機位置)から、B位置(スキージ終了位置)まで移動する。リコータ31がA位置からB位置に向けて移動する過程において、リコータ前端面31aは、せり出し原料M21を形成槽21bに向けて押し出し、形成槽21bの凹部V21に、せり出し原料M21が移送される。そして、形成槽21bに移送されたせり出し原料M21は、リコータ31によって平坦にならされる、いわゆるスキージが行われ、材料層M22に形成されて第2層目の材料供給工程(S30)が終了する。
そして、図23に示すように第2層目の焼結工程(S40)によって部分造形物202が形成され、形成された部分造形物202に対して、未焼結部除去工程(S50)と、3次元計測工程(S60)と、平坦化要否判定工程(S70)と、平坦化工程(S80)と、が行われ、図示しないが第二の単層としての平坦化部分造形物202Aが形成される単層形成工程(S300)が実行され、積層数比較工程(S90)に移行される。
積層数比較工程(S90)で、j<Nと判定されると、再度、積層工程(S200)に移行し、上述の単層形成工程(S300)が、図示しないが第二の単層としての平坦化部分造形物202Aを第一の単層として、3層目の単層を第二の単層として積層される。そして、図24に示すように、所定の積層数Nまで積層され、積層数比較工程(S90)においてj=Nと判定された状態において、3次元形状造形物200を得ることができる。
以上説明したように、本実施形態に係る3次元形成方法は、平坦化工程(S80)を備えることにより、第二の単層、例えば第1層目の部分造形物201上に積層される第2層目の部分造形物202は、第1層目の部分造形物201の上面201aを平坦化することにより、材料層M22を平坦化部分造形物201A上に均一な厚みで形成することができる。従って、均一な厚みで形成された材料層M22を焼結することにより得られる第二の単層としての第2層目の部分造形物202を均一な厚みで形成することができる。
また、平坦化工程(S80)では、部分造形物の上面の部分的な凹凸を平坦化するだけではなく、面の傾きやうねりを検出して平坦化することができる。従って、部分造形物を多数、積層させて3次元形状造形物200を形成しても、平坦化工程(S80)で形成された平坦な面上に第二の単層となる部分造形物を積層、形成させることができ、安定した単層形成工程(S300)を実行することができる。
10…基台、20…材料層形成部、30…スキージ装置、40…レーザー照射装置、50…平坦化装置、60…レーザー計測装置、100…制御ユニット、110…テーブル昇降コントローラー、120…スキージ装置コントローラー、130…レーザーコントローラー、140…平坦化装置コントローラー、150…3次元計測装置コントローラー、1000…3次元形成装置。

Claims (4)

  1. ステージと、
    金属粉末と、バインダーと、が混練された被焼結材料を前記ステージに供給する材料供給手段と、
    前記材料供給手段から供給された前記被焼結材料に、前記被焼結材料を焼結可能とするエネルギーを供給する加熱手段と、
    前記ステージに対して、前記材料供給手段と、前記加熱手段と、が、相対的に3次元移動が可能となるステージ駆動手段と、を備え、
    前記加熱手段によって焼結された焼結体の集合体として形成される焼結単層の、前記ステージ側とは反対の端面部の少なくとも一部を除去して平坦化する平坦化手段を備える、
    ことを特徴とする3次元形成装置。
  2. 前記平坦化手段は、
    前記ステージに対して相対的に3次元移動が可能となる平坦化駆動部と、
    前記焼結単層の前記端面部を3次元計測可能とする計測部と、を備え、
    前記計測部による計測結果に基づいて前記平坦化駆動部を駆動させる、
    ことを特徴とする請求項1に記載の3次元形成装置。
  3. 金属粉末と、バインダーと、が混練された被焼結材料を供給する材料供給工程と、
    前記材料供給工程によって供給された前記被焼結材料に向けて、前記被焼結材料を焼結可能とするエネルギーを供給し、前記被焼結材料を焼結させる焼結工程と、により単層を形成する単層形成工程と、
    前記単層形成工程によって形成された第一の単層に積層させ、前記単層形成工程によって第二の単層を形成する積層工程と、を含み、
    前記積層工程を所定の回数、繰り返して3次元形状造形物が形成される3次元形成方法であって、
    前記第一の単層の、前記第二の単層が積層される積層面部を平坦化する平坦化工程を含む、
    ことを特徴とする3次元形成方法。
  4. 前記積層面部を3次元計測する3次元計測工程を備え、
    前記3次元計測工程によって得られた前記積層面部の3次元データに基づき、前記平坦化工程の要否を判定する平坦化要否判定工程を含む、
    ことを特徴とする請求項3に記載の3次元形成方法。
JP2015133342A 2015-07-02 2015-07-02 3次元形成装置および3次元形成方法 Pending JP2017014581A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133342A JP2017014581A (ja) 2015-07-02 2015-07-02 3次元形成装置および3次元形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133342A JP2017014581A (ja) 2015-07-02 2015-07-02 3次元形成装置および3次元形成方法

Publications (1)

Publication Number Publication Date
JP2017014581A true JP2017014581A (ja) 2017-01-19

Family

ID=57829104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133342A Pending JP2017014581A (ja) 2015-07-02 2015-07-02 3次元形成装置および3次元形成方法

Country Status (1)

Country Link
JP (1) JP2017014581A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141224A (ja) * 2017-02-28 2018-09-13 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141224A (ja) * 2017-02-28 2018-09-13 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置

Similar Documents

Publication Publication Date Title
CN107584760B (zh) 用于制造三维制造物体的三维制造方法和装置
JP7150936B2 (ja) 三次元造形物の製造方法、および三次元造形装置
CN101309766B (zh) 制造三维物体的方法
JP5612278B2 (ja) 三次元形状造形物の製造方法およびその製造装置
JP5539347B2 (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
US20140010908A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP6643631B2 (ja) 三次元形状造形物の製造方法
JP2015199195A (ja) 三次元造形装置
EP3041625A2 (en) Powder distribution in additive manufacturing of three dimensional/articles
JP7487102B2 (ja) Dmlmビルドプラットフォームおよび表面平坦化
JP2003245981A (ja) 三次元形状造形物の製造方法及びその製造装置
JP4487636B2 (ja) 三次元形状造形物の製造方法
CN104159724A (zh) 三维形状造型物的制造方法
CN109562614B (zh) 用于微细特征细节以便增材制造的方法
JP6628024B2 (ja) 三次元形状造形物の製造方法および三次元形状造形物
JP2010132961A (ja) 積層造形装置及び積層造形方法
JP2006257463A (ja) レーザ焼結処理用の粉状材料及びその製造方法、並びに、3次元構造物及びその製造方法
US20200361147A1 (en) Method for manufacturing product, and additive manufacturing apparatus
CN104875394A (zh) 一种3d器件打印设备及方法
JP5588925B2 (ja) 三次元形状造形物の製造方法
JP2017014581A (ja) 3次元形成装置および3次元形成方法
TW200422123A (en) Method of making a three-dimensional sintered product
JP6643643B2 (ja) 三次元形状造形物の製造方法
JP6817561B2 (ja) 三次元形状造形物の製造方法
US11911848B2 (en) Systems and methods for additive manufacturing