JP2017014040A - Method for producing nickel oxide powder - Google Patents

Method for producing nickel oxide powder Download PDF

Info

Publication number
JP2017014040A
JP2017014040A JP2015130687A JP2015130687A JP2017014040A JP 2017014040 A JP2017014040 A JP 2017014040A JP 2015130687 A JP2015130687 A JP 2015130687A JP 2015130687 A JP2015130687 A JP 2015130687A JP 2017014040 A JP2017014040 A JP 2017014040A
Authority
JP
Japan
Prior art keywords
roasting furnace
intermediate hopper
nickel sulfate
nickel oxide
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015130687A
Other languages
Japanese (ja)
Other versions
JP6365443B2 (en
Inventor
泉 杉田
Izumi Sugita
泉 杉田
智志 松本
Tomoshi Matsumoto
智志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015130687A priority Critical patent/JP6365443B2/en
Publication of JP2017014040A publication Critical patent/JP2017014040A/en
Application granted granted Critical
Publication of JP6365443B2 publication Critical patent/JP6365443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing nickel oxide powder, when nickel sulfate powder containing crystallized water is roasted to produce nickel oxide powder, capable of preventing the mixing of the exhaust gas of the first roasting furnace and the second roasting furnace, solving the destabilization of the corrosion and operation of equipment caused by the generation of sulfuric acid, and stabilizing product quality.SOLUTION: Provided is a method for producing nickel oxide powder where anhydrous nickel sulfate powder obtained in the first roasting furnace is fed into the second roasting furnace in a space between the exhaust chute 1 of the first roasting furnace and a charge chute 2 to the second roasting furnace using a communication equipment having an intermediate hopper 3, further, the lower edge opening part of the exhaust chute 1 opened at the inside of the intermediate hopper 3 and the lower edge opening part of the intermediate hopper 3 opened at the inside of the charge chute 2 are provided with gate valves 1a, 3a capable of gas sealing, and the inside of the intermediate hopper 3 is fed with pressurized air.SELECTED DRAWING: Figure 3

Description

本発明は、結晶水を含有する硫酸ニッケル粉末を原料とし、これを焙焼して酸化ニッケル粉末を製造する方法に関する。   The present invention relates to a method for producing nickel oxide powder by using nickel sulfate powder containing crystal water as a raw material and baking it.

酸化ニッケル粉末は、フェライトの構成原料として電子部品であるインダクタ等の機能性材料や、ソーダ電解における電極の溶射ライニング材料等として工業的に広く用いられている。特に近年では、小型パーソナルコンピューターやスマートフォン等の移動式端末の普及とその性能向上に伴って、電子部品用途において旺盛な需要が続いている。   Nickel oxide powder is widely used industrially as a functional material such as an inductor, which is an electronic component, as a constituent material of ferrite, and as a thermal spray lining material for electrodes in soda electrolysis. Particularly in recent years, with the widespread use of mobile terminals such as small personal computers and smartphones and the improvement of their performance, there is a strong demand for electronic parts.

一般的にフェライト原料としての酸化ニッケル粉末は、酸化鉄や酸化亜鉛等の他の材料と混合して焼結されるが、高密度且つ均質な焼結体を得るため粒子径の小さなものが望まれている。また、フェライトがインダクタとして用いられる場合には、中心部のコイルを形成する銀が硫化反応により劣化するため、硫黄含有率が低い酸化ニッケル粉末が要求されている。   Generally, nickel oxide powder as a ferrite raw material is mixed with other materials such as iron oxide and zinc oxide and sintered. However, in order to obtain a high-density and homogeneous sintered body, a small particle size is desired. It is rare. Further, when ferrite is used as an inductor, the silver forming the central coil is deteriorated by a sulfurization reaction, so that nickel oxide powder having a low sulfur content is required.

一方で、電極用途としての酸化ニッケル粉末には、より低密度で多孔質の焼結体を得るために、電子部品用途と比較すれば粒子径が大きいのもが必要とされている。このように、酸化ニッケル粉末には機能性材料として多種多様な品質と性質が要求されており、従って酸化ニッケル粉末の製造工程では、これらの要求を満足する製品を安定的に製造することが非常に重要になっている。   On the other hand, in order to obtain a porous sintered body with a lower density, the nickel oxide powder for use as an electrode is required to have a larger particle size than that for use as an electronic component. As described above, nickel oxide powders are required to have a wide variety of quality and properties as functional materials. Therefore, in the production process of nickel oxide powders, it is very difficult to stably produce products that satisfy these requirements. Has become important.

かかる酸化ニッケル粉末は、一般的に硫酸ニッケル、炭酸ニッケル、水酸化ニッケル等のニッケル化合物を原料とし、キルン等の転動炉を用いて酸化性雰囲気で焙焼することによって製造される。例えば、結晶水を含有する硫酸ニッケル粉末を原料とし、これをロータリーキルン等の焙焼炉で焙焼して酸化ニッケル粉末を製造することが行われてきた。   Such nickel oxide powder is generally produced by using a nickel compound such as nickel sulfate, nickel carbonate, nickel hydroxide or the like as a raw material and baking it in an oxidizing atmosphere using a kiln or other rolling furnace. For example, nickel oxide powder has been produced by using nickel sulfate powder containing crystal water as a raw material and baking it in a roasting furnace such as a rotary kiln.

具体的な酸化ニッケル粉末の製造方法として、例えば図1に示すように、結晶水を含有する硫酸ニッケル粉末を原料とし、これを第1焙焼炉に定量装入して、450〜600℃の温度でか焼することにより無水硫酸ニッケル粉末とする。第1焙焼炉で得られた無水硫酸ニッケル粉末は、連通設備を用いて第2焙焼炉に供給され、950〜1150℃の温度で焙焼することによって酸化ニッケル粉末が得られる。   As a specific method for producing nickel oxide powder, for example, as shown in FIG. 1, nickel sulfate powder containing water of crystallization is used as a raw material, and this is quantitatively charged into a first roasting furnace, at 450 to 600 ° C. Calcined at temperature to obtain anhydrous nickel sulfate powder. The anhydrous nickel sulfate powder obtained in the first roasting furnace is supplied to the second roasting furnace using a communication facility, and nickel oxide powder is obtained by baking at a temperature of 950 to 1150 ° C.

更に詳しく説明すると、まず、原料の結晶水を含有する硫酸ニッケル粉末を第1焙焼炉において450〜600℃の温度でか焼する。この第1焙焼炉でのか焼によって、例えば原料の硫酸ニッケルが6水和物である場合には下記化学式1に示すように、硫酸ニッケル6水和物が熱分解によって無水硫酸ニッケルとなり、結晶水は水蒸気となって排ガスに持ち去られる。   More specifically, first, nickel sulfate powder containing raw crystal water is calcined at a temperature of 450 to 600 ° C. in a first roasting furnace. By calcination in the first roasting furnace, for example, when the raw material nickel sulfate is hexahydrate, as shown in the following chemical formula 1, nickel sulfate hexahydrate is converted into anhydrous nickel sulfate by thermal decomposition, and crystals Water becomes steam and is carried away in the exhaust gas.

[化1]
NiSO・6HO→NiSO+6H
[Chemical 1]
NiSO 4 · 6H 2 O → NiSO 4 + 6H 2 O

第1焙焼炉で得られた無水硫酸ニッケル粉末は、連通設備により下方に設置された第2焙焼炉に送られ、更に950〜1150℃で焙焼する。この第2焙焼炉での焙焼によって、下記化学式2及び化学式3に示すように、無水硫酸ニッケルが熱分解されて酸化ニッケル粉末が得られる。その際、原料中の硫酸根(SO)は、硫酸ガス(SO)又は亜硫酸ガス(SO)となって排ガスに持ち去られる。 The anhydrous nickel sulfate powder obtained in the first roasting furnace is sent to the second roasting furnace installed below by the communication facility, and further roasted at 950 to 1150 ° C. By roasting in the second roasting furnace, as shown in the following chemical formula 2 and chemical formula 3, anhydrous nickel sulfate is thermally decomposed to obtain nickel oxide powder. At that time, the sulfate radical (SO 4 ) in the raw material is taken away into the exhaust gas as sulfuric acid gas (SO 3 ) or sulfurous acid gas (SO 2 ).

[化2]
NiSO→NiO+SO
[化3]
NiSO→NiO+SO+1/2O
[Chemical formula 2]
NiSO 4 → NiO + SO 3
[Chemical formula 3]
NiSO 4 → NiO + SO 2 + 1 / 2O 2

上記第1焙焼炉と第2焙焼炉では、それぞれ発生するガスを速やかに排出し、炉内で熱分解されている粉末の粒子界面における気相部のガスを速やかに空気と置換するために、図1に示すように、各焙焼炉の排出側からフリーエアーを導入しながら、装入側からファン等の吸引機によって排ガスを排出するようになっている。また、第1焙焼炉の排ガスと第2焙焼炉の排ガスは含まれる成分が異なるため、それぞれ別の排ガス処理設備による処理が行われている。   In the first roasting furnace and the second roasting furnace, the generated gas is quickly discharged, and the gas in the gas phase portion at the particle interface of the powder thermally decomposed in the furnace is quickly replaced with air. In addition, as shown in FIG. 1, exhaust gas is discharged from the charging side by a suction device such as a fan while introducing free air from the discharge side of each roasting furnace. Moreover, since the components contained in the exhaust gas of the first roasting furnace and the exhaust gas of the second roasting furnace are different, the processing is performed by different exhaust gas treatment facilities.

即ち、第1焙焼炉の排ガスについては、結晶水を含有する硫酸ニッケルや無水硫酸ニッケルから発生した微細なダストを含むため、これらのダストを除塵設備で回収した後、大気に放出される。一方、第2焙焼炉の排ガスについては、洗浄塔方式の除害塔により、水やアルカリ水溶液に硫酸ガス(SO)及び亜硫酸ガス(SO)を吸収して無害化された後、大気に放出される。尚、炉内で熱分解中の粒子界面に存在する気相部のガスを速やかに空気と置換するための最適な設備として、第1焙焼炉及び第2焙焼炉には一般にロータリーキルンが採用されている。 That is, since the exhaust gas from the first roasting furnace contains fine dust generated from nickel sulfate containing crystal water or anhydrous nickel sulfate, these dusts are collected in a dust removal facility and then released to the atmosphere. On the other hand, the exhaust gas from the second roasting furnace is rendered harmless by absorbing the sulfuric acid gas (SO 3 ) and sulfurous acid gas (SO 2 ) in water or an alkaline aqueous solution by the cleaning tower type detoxification tower, To be released. Note that rotary kilns are generally used for the first and second roasting furnaces as the optimal equipment for quickly replacing the gas in the gas phase existing at the particle interface during pyrolysis in the furnace with air. Has been.

上記第1焙焼炉で得られた無水硫酸ニッケル粉末は、図1に示すように、第1焙焼炉と第2焙焼炉の間に設けられた連通設備によって下方の第2焙焼炉に供給される。上記の連通設備は、一般的に図2に示すように、第1焙焼炉の出口に設けた排出シュート1及び第2焙焼炉の入口に設けた装入シュート2と、その間に設けた中間ホッパー3とを備え、排出シュート1の仕切弁1aと中間ホッパー3の仕切弁3aの開閉動作によって、第1焙焼炉から第2焙焼炉への無水硫酸ニッケル粉末の受渡しが行われるようになっている。尚、仕切弁としては一般的にダンパーが使用されている。   As shown in FIG. 1, the anhydrous nickel sulfate powder obtained in the first roasting furnace has a lower second roasting furnace provided by a communication facility provided between the first roasting furnace and the second roasting furnace. To be supplied. As shown in FIG. 2, the communication facility is generally provided between the discharge chute 1 provided at the outlet of the first roasting furnace and the charging chute 2 provided at the inlet of the second roasting furnace. An intermediate hopper 3 is provided, and by the opening / closing operation of the gate valve 1a of the discharge chute 1 and the gate valve 3a of the intermediate hopper 3, the anhydrous nickel sulfate powder is delivered from the first roasting furnace to the second roasting furnace. It has become. A damper is generally used as the gate valve.

一方、反応系の排ガス処理に関しては、例えば特許文献1には、粒状の吸着材を充填した移動層式の反応塔と、反応塔の塔底から吸着材を排出するための排出コンベアと、反応塔の塔頂に吸着材を供給するための供給コンベアとを備えた排ガス処理装置において、反応塔の排出口の下流側に2つの自動開閉弁により形成される第1の密閉系を設け、反応塔の供給口の上流側に2つの自動開閉弁により形成される第2の密閉系を設け、各密閉系を乾燥雰囲気とするためのガスの供給口を設け、且つ移動層における吸着材を断続的に流すように構成したことを特徴とする排ガス処理装置が開示されている。   On the other hand, regarding exhaust gas treatment of a reaction system, for example, Patent Document 1 discloses a moving bed type reaction tower filled with a granular adsorbent, a discharge conveyor for discharging the adsorbent from the bottom of the reaction tower, a reaction In an exhaust gas treatment apparatus provided with a supply conveyor for supplying adsorbent to the top of a tower, a first closed system formed by two automatic on-off valves is provided downstream of the outlet of the reaction tower, A second closed system formed by two automatic opening / closing valves is provided on the upstream side of the tower supply port, a gas supply port for making each closed system dry is provided, and the adsorbent in the moving bed is intermittently provided. An exhaust gas treatment device characterized in that it is configured to flow is disclosed.

しかしながら、上記特許文献1は、従来は連続的に吸着材を供給し且つ排出していた装置について、第1及び第2の密閉系を乾燥雰囲気とするためのガスの供給口を設けることで断続式の装置に変え、そのことによって装置を簡素化し、装置の高さを低くすることを狙ったものである。上記各密閉系へのガスの供給は、反応塔内のガスを反応塔外に流出させないための手段となっている。   However, the above-mentioned patent document 1 is intermittently provided by providing a gas supply port for making the first and second closed systems dry in an apparatus that conventionally supplies and discharges the adsorbent continuously. It aims to simplify the device and reduce the height of the device. The supply of gas to each of the closed systems is a means for preventing the gas in the reaction tower from flowing out of the reaction tower.

また、特許文献2には、廃棄物を投入するための投入口を有する投入ホッパーと、投入ホッパーに投入された廃棄物を高温溶融させて無害化する溶融炉と、投入ホッパーと溶融炉の間に配設され、複数個の仕切弁及びこれらの仕切弁で仕切られた閉空間をもち、閉空間内に不活性ガスを吹き込むガス供給ノズルを配設した複数個のホッパー室を有する多段仕切弁システムとを具え、仕切弁で仕切られたホッパー室の閉空間内にガス供給ノズルを通じて不活性ガスを充填し、閉空間内の圧力を炉内圧力に対して98〜980Paだけ高く設定することにより、溶融炉内への廃棄物投入時の炉内圧力の変動を抑制することを特徴とする廃棄物の処理装置が開示されている。   Patent Document 2 discloses a charging hopper having a charging port for charging waste, a melting furnace that melts waste charged in the charging hopper at a high temperature to make it harmless, and a gap between the charging hopper and the melting furnace. A multistage gate valve having a plurality of gate valves and a closed space partitioned by these gate valves and having a plurality of hopper chambers provided with gas supply nozzles for blowing inert gas into the closed space The system is filled with an inert gas through a gas supply nozzle in a closed space of a hopper chamber partitioned by a gate valve, and the pressure in the closed space is set higher by 98 to 980 Pa than the pressure in the furnace. In addition, a waste processing apparatus is disclosed that suppresses fluctuations in the pressure in the furnace when the waste is charged into the melting furnace.

上記特許文献2によれば、溶融炉内への廃棄物投入時の炉内圧力の変動を抑制することができ、これによって炉内の均一な燃焼状態が維持でき、燃焼効率を向上させることができ、加えて、生成ガス中の可燃ガスが炉外に排出されても大気中の酸素と接触することがないので、火災や爆発の恐れもなくなることが記載されている。   According to the above-mentioned Patent Document 2, it is possible to suppress fluctuations in the furnace pressure at the time of charging waste into the melting furnace, thereby maintaining a uniform combustion state in the furnace and improving combustion efficiency. In addition, it is described that even if the combustible gas in the generated gas is discharged outside the furnace, it does not come into contact with oxygen in the atmosphere, so there is no risk of fire or explosion.

しかし、上記の特許文献1及び特許文献2に開示された方法や装置は、反応塔や溶融炉内の排ガスが外部に漏洩することを防止するための技術であり、結晶水を含有する硫酸ニッケル粉末を原料として酸化ニッケル粉末を製造する際に、第1焙焼炉の出口と第2焙焼炉の入口の間に設ける連通設備において、それぞれの焙焼炉からの排ガスの混合を防止する技術とは異なる。   However, the methods and apparatuses disclosed in Patent Document 1 and Patent Document 2 described above are techniques for preventing the exhaust gas in the reaction tower and melting furnace from leaking to the outside, and nickel sulfate containing crystal water. Technology for preventing mixing of exhaust gas from each roasting furnace in a communication facility provided between the outlet of the first roasting furnace and the inlet of the second roasting furnace when producing nickel oxide powder using powder as a raw material Is different.

特開平11−137945号公報JP 11-137945 A 特開2005−042954号公報Japanese Patent Laid-Open No. 2005-042954

上記したように結晶水を含有する硫酸ニッケル粉末を原料とし、第1焙焼炉と第2焙焼炉を用いて酸化ニッケル粉末を製造する方法においては、第2焙焼炉での焙焼により発生した硫酸ガス(SO)及び亜硫酸ガス(SO)を含む排ガスが連通設備を通って第1焙焼炉に流入しないように、第2焙焼炉の入口側の負圧を第1焙焼炉の出口側よりも高く設定している。そのため、第2焙焼炉内で発生した硫酸ガス(SO)や亜硫酸ガス(SO)を含む排ガスは、第2焙焼炉への装入シュートまでは上昇しても、原則的に連通設備の中間ホッパー内に入ることはないと考えられていた。 As described above, in the method of producing nickel oxide powder using the nickel sulfate powder containing crystal water as a raw material and using the first roasting furnace and the second roasting furnace, the roasting in the second roasting furnace The negative pressure on the inlet side of the second roasting furnace is reduced to the first roasting temperature so that the generated exhaust gas containing sulfuric acid gas (SO 3 ) and sulfurous acid gas (SO 2 ) does not flow into the first roasting furnace through the communication facility. It is set higher than the exit side of the furnace. Therefore, even if the exhaust gas containing sulfuric acid gas (SO 3 ) and sulfurous acid gas (SO 2 ) generated in the second roasting furnace rises up to the charging chute to the second roasting furnace, it communicates in principle. It was thought that it would not enter the middle hopper of the facility.

しかしながら、第2焙焼炉の炉内温度は第1焙焼炉の炉内温度よりも高温であるため、中間ホッパーの仕切弁が開いた状態となったとき、第2焙焼炉で発生した硫酸ガス(SO)や亜硫酸ガス(SO)を含む排ガスの上昇流が発生することがある。図2を参照して説明すると、中間ホッパー3の仕切弁3aが開いた状態となったとき、第2焙焼炉から炉内温度が相対的に低い第1焙焼炉に向かって上昇流が発生する。その際に、第2焙焼炉で発生した硫酸ガス(SO)や亜硫酸ガス(SO)が、開いた仕切弁3aを通過して中間ホッパー3内に入り、第1焙焼炉で発生して中間ホッパー3内に滞留している水蒸気と混合することによって硫酸が生成される。 However, since the temperature in the second roasting furnace is higher than the temperature in the first roasting furnace, it was generated in the second roasting furnace when the gate valve of the intermediate hopper was opened. An upward flow of exhaust gas containing sulfuric acid gas (SO 3 ) or sulfurous acid gas (SO 2 ) may be generated. Referring to FIG. 2, when the gate valve 3a of the intermediate hopper 3 is in an open state, an upward flow is generated from the second roasting furnace toward the first roasting furnace having a relatively low furnace temperature. Occur. At that time, sulfuric acid gas (SO 3 ) or sulfurous acid gas (SO 2 ) generated in the second roasting furnace passes through the open gate valve 3a and enters the intermediate hopper 3 and is generated in the first roasting furnace. Then, sulfuric acid is generated by mixing with the water vapor staying in the intermediate hopper 3.

その結果、生成された硫酸が結露したり、結露した硫酸に無水硫酸ニッケル粉末が固着して付着物が生成したりすることによって、仕切弁の作動不良や、第1焙焼炉から第2焙焼炉への無水硫酸ニッケル粉末の供給不良あるいは供給バラツキの発生など、安定操業を阻害する数多くの要因が引き起こされることがあり、稀には腐食により中間ホッパー等に穴開きが発生することもある。このような場合には、操業を停止してメンテナンスをせざるを得なくなり、生産効率やコストにも重大な影響を及ぼすことになる。   As a result, the generated sulfuric acid condenses, or the anhydrous nickel sulfate powder adheres to the condensed sulfuric acid to generate deposits, thereby causing malfunction of the gate valve and the second roasting furnace. Numerous factors impeding stable operation, such as poor supply of anhydrous nickel sulfate powder to the furnace or the occurrence of supply variations, may occur, and rarely corrosion may cause holes in the intermediate hopper, etc. . In such a case, operation must be stopped and maintenance must be performed, and production efficiency and cost will be seriously affected.

更には、第2焙焼炉の排ガスの一部が連通設備を通って第1焙焼炉にまで達すると、第1焙焼炉の排ガス処理設備にまで硫酸ガス(SO)及び亜硫酸ガス(SO)が導入されることになる。その場合には、連続式のSOx計の測定値が閾値を超えることがあるため、排ガスルートの切替えや操業停止など、環境トラブルに対する緊急の処置が必要となることがあった。 Further, when a part of the exhaust gas from the second roasting furnace reaches the first roasting furnace through the communication facility, sulfuric acid gas (SO 3 ) and sulfurous acid gas (up to the exhaust gas treatment facility of the first roasting furnace ( SO 2 ) will be introduced. In that case, since the measured value of the continuous SOx meter may exceed the threshold value, urgent measures against environmental troubles such as switching of the exhaust gas route or operation stop may be required.

また、結晶水を含有する硫酸ニッケル粉末を原料とし、これを焙焼して酸化ニッケル粉末を製造する方法においては、たとえ原料として高純度の硫酸ニッケル粉末を用いたとしても、硫酸ニッケルにはニッケルと等モルの硫酸根が含まれているため、焙焼条件等にもよるが、得られる酸化ニッケル粉末の硫黄含有率が高目になり易いという課題があり、その解決も望まれていた。   In addition, in the method of producing nickel oxide powder by using nickel sulfate powder containing crystal water as a raw material and roasting it, nickel sulfate is used as the nickel sulfate even if high-purity nickel sulfate powder is used as the raw material. However, depending on roasting conditions and the like, there is a problem that the sulfur content of the obtained nickel oxide powder tends to be high, and a solution has been desired.

ところが、上記した第1焙焼炉の排ガスと第2焙焼炉の排ガスが混合した場合には、仕切弁を含めた連通設備内への付着物の生成によって第2焙焼炉への無水硫酸ニッケル粉末の供給速度が変動し、且つ仕切弁のシール性の悪化や穴開き部からの空気の混入によって第2焙焼炉内の空気の流通状態が悪くなるため、得られる酸化ニッケル粉末の硫黄含有率が高くなり、また、硫黄含有率のバラツキが大きくなるという製品品質面での問題も発生していた。   However, when the exhaust gas from the first roasting furnace and the exhaust gas from the second roasting furnace described above are mixed, sulfuric acid anhydride to the second roasting furnace is generated by the generation of deposits in the communication facility including the gate valve. Since the supply speed of the nickel powder fluctuates and the air flow state in the second roasting furnace deteriorates due to the deterioration of the sealing performance of the gate valve and the mixing of air from the hole, the sulfur of the nickel oxide powder obtained There has been a problem in terms of product quality that the content rate is increased and the variation of the sulfur content rate is increased.

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、結晶水を含有する硫酸ニッケル粉末を原料とし、焙焼して酸化ニッケル粉末を製造する方法において、第1焙焼炉の排ガスと第2焙焼炉の排ガスの混合を防止して、設備の腐食、付着物の生成、環境トラブルによる操業不安定化を解消し、製品品質を安定化させることが可能な、酸化ニッケル粉末の製造方法を提供するものである。   The present invention has been made in view of the above-mentioned problems of the prior art. In the method for producing nickel oxide powder by using nickel sulfate powder containing crystallization water as a raw material, the first roasting furnace is provided. Nickel oxide that prevents mixing of waste gas from the exhaust gas from the second roasting furnace, eliminates corrosion of equipment, generation of deposits, and unstable operation due to environmental problems, and stabilizes product quality A method for producing a powder is provided.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、第1焙焼炉の出口と第2焙焼炉の入口の間に配設された無水硫酸ニッケル粉末を受渡しするための連通設備において、複数の仕切弁にて間仕切りをすることで閉空間を形成できる中間ホッパーに加圧空気を供給することによって、第1焙焼炉の排ガスと第2焙焼炉の排ガスの混合を防止することができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have delivered anhydrous nickel sulfate powder disposed between the outlet of the first roasting furnace and the inlet of the second roasting furnace. In the communication facility, by supplying pressurized air to an intermediate hopper that can form a closed space by partitioning with a plurality of gate valves, the exhaust gas from the first roasting furnace and the exhaust gas from the second roasting furnace are mixed. The inventors have found that this can be prevented, and have completed the present invention.

即ち、本発明の酸化ニッケル粉末の製造方法は、結晶水を含有する硫酸ニッケル粉末を第1焙焼炉でか焼して無水硫酸ニッケル粉末とし、得られた無水硫酸ニッケル粉末を第2焙焼炉で焙焼して酸化ニッケル粉末を製造する方法において、第1焙焼炉で得られた無水硫酸ニッケル粉末を、第1焙焼炉の排出シュートと第2焙焼炉への装入シュートの間に中間ホッパーを有する連通設備を用いて第2焙焼炉に供給すると共に、中間ホッパー内に開口した排出シュートの下端開口部と装入シュート内に開口した中間ホッパーの下端開口部とにガスシール可能な仕切弁を設け、且つ中間ホッパー内に加圧空気を供給することを特徴とする。   That is, in the method for producing nickel oxide powder of the present invention, nickel sulfate powder containing crystal water is calcined in a first roasting furnace to obtain anhydrous nickel sulfate powder, and the obtained anhydrous nickel sulfate powder is second roasted. In the method for producing nickel oxide powder by roasting in a furnace, the anhydrous nickel sulfate powder obtained in the first roasting furnace is used for the discharge chute of the first roasting furnace and the charging chute to the second roasting furnace. Gas is supplied to the lower roasting opening of the discharge chute opened in the intermediate hopper and the lower opening of the intermediate hopper opened in the charging chute while supplying to the second roasting furnace using a communication facility having an intermediate hopper in between. A gate valve capable of being sealed is provided, and pressurized air is supplied into the intermediate hopper.

本発明によれば、結晶水を含有する硫酸ニッケル粉末を焙焼して酸化ニッケル粉末を製造する際に、第1焙焼炉の排ガスと第2焙焼炉の排ガスの混合によって引き起こされる不具合、即ち設備の腐食、付着物の生成、環境トラブル等による操業の不安定化を解消して、製品品質を安定化させることができる。   According to the present invention, when nickel oxide powder is produced by roasting nickel sulfate powder containing crystal water, a malfunction caused by mixing of exhaust gas from the first roasting furnace and exhaust gas from the second roasting furnace, In other words, the instability of the operation due to the corrosion of the equipment, the generation of deposits, environmental troubles, etc. can be eliminated, and the product quality can be stabilized.

結晶水を含有する硫酸ニッケルを原料とし、これを焙焼して酸化ニッケル粉末を製造する工程を示す概略図である。It is the schematic which shows the process of using nickel sulfate containing crystal water as a raw material, and baking this, and manufacturing nickel oxide powder. 第1焙焼炉の出口と第2焙焼炉の入口の間に設ける連通設備を示す概略の断面図である。It is a schematic sectional drawing which shows the communication equipment provided between the exit of a 1st roasting furnace, and the entrance of a 2nd roasting furnace. 連通設備による第1焙焼炉の出口から第2焙焼炉の入口への無水硫酸ニッケル粉末の供給過程(a)〜(d)を示す概略の断面図である。It is general | schematic sectional drawing which shows the supply process (a)-(d) of the anhydrous nickel sulfate powder from the exit of the 1st roasting furnace by the communication equipment to the entrance of the 2nd roasting furnace.

一般的に、連通設備による第1焙焼炉の出口から第2焙焼炉の入口への無水硫酸ニッケル粉末の供給過程においては、まず図3(a)に示すように、排出シュート1の仕切弁1aと中間ホッパー3の仕切弁3aを共に閉じた状態で、第1焙焼炉(図示せず)の出口から無水硫酸ニッケル粉末を排出シュート1に投入する。尚、第1焙焼炉の出口から排出シュート1への無水硫酸ニッケル粉末の投入は、排出シュート1の仕切弁1aの開閉状態にかかわらず続けることができる。   In general, in the process of supplying anhydrous nickel sulfate powder from the outlet of the first roasting furnace to the inlet of the second roasting furnace using the communication facility, first, as shown in FIG. With both the valve 1a and the gate valve 3a of the intermediate hopper 3 closed, anhydrous nickel sulfate powder is charged into the discharge chute 1 from the outlet of the first roasting furnace (not shown). The addition of anhydrous nickel sulfate powder from the outlet of the first roasting furnace to the discharge chute 1 can be continued regardless of the open / close state of the gate valve 1a of the discharge chute 1.

排出シュート1内に所定量の無水硫酸ニッケル粉末が溜まったとき、図3(b)に示すように、排出シュート1の仕切弁1aが開き、排出シュート1内の無水硫酸ニッケル粉末は中間ホッパー3に投入される。次に排出シュート1の仕切弁1aが閉じられ、図3(c)に示すように、排出シュート1の仕切弁1aと中間ホッパー3の仕切弁3aが共に閉じた状態で、第1焙焼炉の出口から排出シュート1への無水硫酸ニッケル粉末の投入が続けられる。   When a predetermined amount of anhydrous nickel sulfate powder accumulates in the discharge chute 1, as shown in FIG. 3 (b), the gate valve 1a of the discharge chute 1 opens, and the anhydrous nickel sulfate powder in the discharge chute 1 becomes the intermediate hopper 3. It is thrown into. Next, the gate valve 1a of the discharge chute 1 is closed, and as shown in FIG. 3C, the first roasting furnace with the gate valve 1a of the discharge chute 1 and the gate valve 3a of the intermediate hopper 3 closed together. The anhydrous nickel sulfate powder is continuously fed into the discharge chute 1 from the outlet.

そして、中間ホッパー3内に所定量の無水硫酸ニッケル粉末が溜まると、図3(d)に示すように、中間ホッパー3の仕切弁3aが開かれて、中間ホッパー3内の無水硫酸ニッケル粉末は装入シュート2に投入され、第2焙焼炉(図示せず)に供給される。このように図3の(a)〜(d)の動作を繰り返すことによって、第1焙焼炉の排ガスと第2焙焼炉の排ガスを混合させることなく、無水硫酸ニッケル粉末を第1焙焼炉から第2焙焼炉に受け渡すことができる。   When a predetermined amount of anhydrous nickel sulfate powder accumulates in the intermediate hopper 3, as shown in FIG. 3D, the gate valve 3a of the intermediate hopper 3 is opened, and the anhydrous nickel sulfate powder in the intermediate hopper 3 is It is put into the charging chute 2 and supplied to a second roasting furnace (not shown). Thus, by repeating the operations of (a) to (d) in FIG. 3, the anhydrous nickel sulfate powder is first roasted without mixing the exhaust gas of the first roasting furnace and the exhaust gas of the second roasting furnace. It can be transferred from the furnace to the second roasting furnace.

しかしながら、上記したように従来の酸化ニッケル粉末の製造方法では、上記供給過程において図3(d)に示すように中間ホッパー3の仕切弁3aが開かれた際に、第2焙焼炉から第1焙焼炉に向かって硫酸ガス(SO)や亜硫酸ガス(SO)を含む排ガスの上昇流が発生しやすいという問題があった。この上昇流により、既に述べたように連通設備の主に中間ホッパー3内において、第1焙焼炉で発生した排ガス中の水蒸気と反応して硫酸が生成され、この硫酸によって設備の腐食や付着物の生成等が起こり、操業の不安定化等が生じていた。 However, as described above, in the conventional manufacturing method of nickel oxide powder, when the gate valve 3a of the intermediate hopper 3 is opened as shown in FIG. There was a problem that an upward flow of exhaust gas containing sulfuric acid gas (SO 3 ) and sulfurous acid gas (SO 2 ) tends to be generated toward one roasting furnace. Due to this upward flow, as already described, sulfuric acid is produced by reacting with the water vapor in the exhaust gas generated in the first roasting furnace in the intermediate hopper 3 of the communication equipment. Generation of kimono, etc. occurred, causing unstable operation.

そこで、本発明においては、第1焙焼炉で得られた無水硫酸ニッケル粉末を排出シュートと中間ホッパーと装入シュートが上下方向に順に配設された連通設備を用いて第2焙焼炉に供給すると共に、中間ホッパー内に開口した排出シュートの下端開口部と装入シュート内に開口した中間ホッパーの下端開口部とにガスシール可能な仕切弁を設け、且つ中間ホッパー内に加圧空気を供給する。この中間ホッパー内への加圧空気の供給によって、上記した第2焙焼炉から第1焙焼炉への上昇流の発生を抑え、硫酸の生成をなくすことができる。   Therefore, in the present invention, the anhydrous nickel sulfate powder obtained in the first roasting furnace is transferred to the second roasting furnace using a communication facility in which a discharge chute, an intermediate hopper, and a charging chute are arranged in order in the vertical direction. In addition to the supply, a gate valve capable of gas sealing is provided at the lower end opening of the discharge chute opened in the intermediate hopper and the lower end opening of the intermediate hopper opened in the charging chute, and pressurized air is supplied into the intermediate hopper. Supply. By supplying the pressurized air into the intermediate hopper, the generation of the upward flow from the second roasting furnace to the first roasting furnace can be suppressed, and the generation of sulfuric acid can be eliminated.

また、酸化ニッケル粉末の製造原料として結晶水を含有する硫酸ニッケル粉末を用いた場合、硫酸ニッケルが規則的な結晶構造を持つため、粒子径が小さく粒径分布の狭い酸化ニッケル粉末が得られる利点がある。このような粒子径が小さく粒径分布の狭い酸化ニッケル粉末は、電子部品のフェライト原料として極めて良好なものである。しかしながら、得られる酸化ニッケル粉末の硫黄含有率に関しては、たとえ原料として高純度の硫酸ニッケル粉末を用いたとしても、ニッケルと等モルの硫酸根が含まれるため、焙焼条件等にもよるが硫黄含有率が高目になり易いという課題があった。   In addition, when nickel sulfate powder containing crystallization water is used as a raw material for producing nickel oxide powder, nickel sulfate powder has a regular crystal structure, so that nickel oxide powder having a small particle size and a narrow particle size distribution can be obtained. There is. Such a nickel oxide powder having a small particle size and a narrow particle size distribution is extremely good as a ferrite raw material for electronic parts. However, regarding the sulfur content of the resulting nickel oxide powder, even if high-purity nickel sulfate powder is used as a raw material, it contains sulfur in an equimolar amount with nickel. There was a problem that the content rate tends to be high.

得られる酸化ニッケル粉末の硫黄含有率を低くするためには、基本的には、第2焙焼炉での焙焼温度を上昇させて、無水硫酸ニッケルの熱分解反応速度を増加させればよいことが知られている。しかしながら、第2焙焼炉での焙焼温度を上昇させると、得られる酸化ニッケル粉末の粒径が大きくなる、即ち1次粒子同士が焼結した2次粒子がより肥大化し易くなるという欠点がある。   In order to lower the sulfur content of the resulting nickel oxide powder, basically, the roasting temperature in the second roasting furnace should be increased to increase the thermal decomposition reaction rate of anhydrous nickel sulfate. It is known. However, when the roasting temperature in the second roasting furnace is increased, the particle diameter of the resulting nickel oxide powder increases, that is, the secondary particles obtained by sintering the primary particles are more easily enlarged. is there.

一方、無水硫酸ニッケルの熱分解反応では、ガス拡散率速となって反応が進むことから、得られる酸化ニッケル粉末の硫黄含有率を低下させる方策として、粒子界面の気相部におけるSO及びSOの濃度を低下させることが有効である。そのためには、粒子表面に均一に空気を当てることで粒子界面の気相部のSOガスやSOガスを空気と置換すること、並びに無水硫酸ニッケルの供給速度を極力一定にすることが大事になる。 On the other hand, in the thermal decomposition reaction of anhydrous nickel sulfate, the reaction proceeds at a high gas diffusivity rate. Therefore, as a measure for reducing the sulfur content of the resulting nickel oxide powder, SO 3 and SO 3 in the gas phase part of the particle interface are used. It is effective to reduce the concentration of 2 . For this purpose, it is important to uniformly apply air to the particle surface to replace the SO 3 gas or SO 2 gas in the gas phase at the particle interface with air, and to keep the supply rate of anhydrous nickel sulfate as constant as possible. become.

以上まとめると、本発明の酸化ニッケル粉末の製造方法により粒子径が小さく且つ硫黄含有率が低い酸化ニッケル粉末を安定的に製造するためには、上記のごとく中間ホッパー内に加圧空気を供給することに加えて、第2焙焼炉での焙焼温度を出来るだけ上昇させずに、原料である無水硫酸ニッケル粉末の供給速度を極力一定に保持することによって粉末粒子の表面に均一に空気を当てることが重要となる。   In summary, in order to stably produce nickel oxide powder having a small particle size and low sulfur content by the method for producing nickel oxide powder of the present invention, pressurized air is supplied into the intermediate hopper as described above. In addition, air is uniformly distributed on the surface of the powder particles by keeping the feed rate of the anhydrous nickel sulfate powder as a raw material as constant as possible without increasing the roasting temperature in the second roasting furnace as much as possible. It is important to guess.

ただし、中間ホッパー内への加圧空気の過剰な供給は、上記のごとく第1焙焼炉の排ガスと第2焙焼炉の排ガスの分離には有効ではあるが、本来なら第2焙焼炉の排出側から導入されるはずのフリーエアーの代わりに装入側からエアー(加圧空気)を導入することになる。そのため、供給された加圧空気の分だけ排出側のフリーエアー量が低下し、第2焙焼炉内における硫酸ガス(SO)及び亜硫酸ガス(SO)の置換効率が低下して、得られる酸化ニッケル粉末の硫黄含有率が高くなりやすい。逆に加圧空気の供給量が少な過ぎると、第1焙焼炉の排ガスと第2焙焼炉の排ガスの混合を防止するという本発明本来の効果が得られなくなる。 However, excessive supply of pressurized air into the intermediate hopper is effective for separating the exhaust gas from the first roasting furnace and the exhaust gas from the second roasting furnace as described above, but originally the second roasting furnace. Instead of free air that should be introduced from the discharge side, air (pressurized air) is introduced from the charging side. As a result, the amount of free air on the discharge side is reduced by the amount of pressurized air supplied, and the replacement efficiency of sulfuric acid gas (SO 3 ) and sulfurous acid gas (SO 2 ) in the second roasting furnace is reduced. The sulfur content of the nickel oxide powder is likely to be high. On the other hand, if the supply amount of the pressurized air is too small, the original effect of the present invention of preventing mixing of the exhaust gas of the first roasting furnace and the exhaust gas of the second roasting furnace cannot be obtained.

これらの点を考慮すると、加圧空気を供給する中間ホッパー内のゲージ圧力は、排出シュートの下端開口部と中間ホッパーの下端開口部に設けた仕切弁が閉じて閉空間が形成された状態において、490〜980Pa(50〜100mm水柱)の範囲に制御することが好ましい。その際、圧力制御ではなく、中間ホッパー内が上記ゲージ圧力となるような流量を供給し、流量制御とすることが好ましい。酸化ニッケル粉末の硫黄含有率を決定する重要な因子が第2焙焼炉の排出側から導入されるフリーエアー量であり、また中間ホッパー内のゲージ圧力の低下によって、本発明の副次的な効果として仕切弁のシール性の悪化を検出することができるからである。   Considering these points, the gauge pressure in the intermediate hopper supplying the pressurized air is determined in the state where the closed valves are formed by closing the lower end opening of the discharge chute and the lower end opening of the intermediate hopper. 490 to 980 Pa (50 to 100 mm water column). At this time, it is preferable to supply the flow rate at which the inside of the intermediate hopper becomes the gauge pressure, instead of the pressure control, and set the flow rate control. An important factor that determines the sulfur content of the nickel oxide powder is the amount of free air introduced from the discharge side of the second roasting furnace, and the decrease in gauge pressure in the intermediate hopper is a secondary factor of the present invention. This is because the deterioration of the sealing performance of the gate valve can be detected as an effect.

[従来例]
原料である結晶水を含有する硫酸ニッケル粉末を第1焙焼炉でか焼して無水硫酸ニッケル粉末とし、得られた無水硫酸ニッケル粉末を第2焙焼炉で焙焼することによって、酸化ニッケル粉末を製造する操業を約9ヶ月間継続して実施した。尚、第1焙焼炉としては外径800mm、長さ10.5mのステンレス鋼製の外熱式ロータリーキルンを用い、第2焙焼炉としては外径827mm、長さ9mのNi−Cr−W合金製の外熱式ロータリーキルンを用いた。
[Conventional example]
The nickel sulfate powder containing crystal water, which is a raw material, is calcined in a first roasting furnace to obtain anhydrous nickel sulfate powder, and the obtained anhydrous nickel sulfate powder is roasted in a second roasting furnace, thereby obtaining nickel oxide. The operation for producing the powder was continued for about 9 months. As the first roasting furnace, an externally heated rotary kiln made of stainless steel having an outer diameter of 800 mm and a length of 10.5 m was used. As the second roasting furnace, Ni-Cr-W having an outer diameter of 827 mm and a length of 9 m was used. An alloy externally heated rotary kiln was used.

第1焙焼炉の出口と第2焙焼炉の入口の間には、図2に示すように、排出シュート1と中間ホッパー3と装入シュート2が上下方向に順に配設された構造の連通設備を設置した。また、操業条件は、第1焙焼炉への硫酸ニッケル粉末の装入量を90〜120kg/h、第1焙焼炉のか焼温度を450〜600℃及び回転数を0.33rpmとし、第2焙焼炉の焙焼温度は950〜1150℃及び回転数を1rpmとした。   Between the outlet of the first roasting furnace and the inlet of the second roasting furnace, as shown in FIG. 2, a discharge chute 1, an intermediate hopper 3, and a charging chute 2 are arranged in order in the vertical direction. Communication equipment was installed. The operating conditions were as follows: the amount of nickel sulfate powder charged into the first roasting furnace was 90 to 120 kg / h, the calcination temperature of the first roasting furnace was 450 to 600 ° C., and the rotation speed was 0.33 rpm. The roasting temperature of 2 roasting furnaces was 950-1150 ° C. and the rotation speed was 1 rpm.

原料として用いた硫酸ニッケル粉末は、Niが22.3重量%、Coが10重量ppm未満、Cuが1重量ppm未満、Feが1重量ppm未満、Znが1重量ppm未満、Mgが100重量ppm未満、Siが50重量ppm未満、Naが20重量ppm未満、Caが30重量ppm未満の組成であった。   The nickel sulfate powder used as a raw material has Ni of 22.3% by weight, Co of less than 10 ppm by weight, Cu of less than 1 ppm by weight, Fe of less than 1 ppm by weight, Zn of less than 1 ppm by weight, and Mg of 100 ppm by weight. Less than 50 ppm by weight, Na less than 20 ppm by weight, and Ca less than 30 ppm by weight.

第2焙焼炉から排出された焙焼物を常温まで冷却した後、アトマイザーで粉砕して酸化ニッケル粉末を得た。得られた酸化ニッケル粉末の硫黄含有率を、ロット毎に、高周波燃焼−赤外吸収法により測定した。尚、1ロットの大きさは1〜2tであり、1〜4日の産出分に相当する。   The roasted product discharged from the second roasting furnace was cooled to room temperature and then pulverized with an atomizer to obtain nickel oxide powder. The sulfur content of the obtained nickel oxide powder was measured for each lot by a high frequency combustion-infrared absorption method. The size of one lot is 1 to 2 t, which corresponds to the output for 1 to 4 days.

その結果、得られた酸化ニッケル粉末の硫黄含有率は、平均で592重量ppmであり、標準偏差は211重量ppmであった。尚、約9か月間の継続操業の間に、中間ホッパーの入口側及び出口側の仕切弁が腐食したため、それぞれ2回の交換作業を行った。また、第1焙焼炉の排ガス中のSOx濃度について、管理値を超えるトラブルが3回発生した。   As a result, the sulfur content of the obtained nickel oxide powder was 592 ppm by weight on average, and the standard deviation was 211 ppm by weight. In addition, since the gate valve on the inlet side and the outlet side of the intermediate hopper corroded during the continuous operation for about 9 months, the replacement work was performed twice. Moreover, about the SOx density | concentration in the exhaust gas of a 1st roasting furnace, the trouble exceeding a control value generate | occur | produced 3 times.

[実施例1]
上記従来例と同じ第1焙焼炉と第2焙焼炉及び連通設備を使用し、中間ホッパー2内に約1m/分の流量で加圧空気を供給した以外は上記従来例と同じ条件により、原料の結晶水を含有する硫酸ニッケル粉末を焙焼して酸化ニッケル粉末を製造する操業を約9ヶ月間継続して実施した。尚、中間ホッパー内のゲージ圧力は、排出シュートの下端開口部と中間ホッパーの下端開口部に設けた仕切弁が閉じて閉空間が形成された状態において、490〜980Pa(50〜100mm水柱)の範囲となるように調整した。
[Example 1]
The same conditions as in the above conventional example except that the same first roasting furnace and second roasting furnace as in the above conventional example and communication equipment are used and pressurized air is supplied into the intermediate hopper 2 at a flow rate of about 1 m 3 / min. Thus, the operation of producing the nickel oxide powder by roasting the nickel sulfate powder containing the raw crystal water was continued for about 9 months. The gauge pressure in the intermediate hopper is 490 to 980 Pa (50 to 100 mm water column) in a state in which the closed valve is formed by closing the lower end opening of the discharge chute and the lower end opening of the intermediate hopper. The range was adjusted.

その結果、得られた酸化ニッケル粉末の硫黄含有率は、平均で314重量ppmであり、標準偏差は65重量ppmであった。また、仕切弁を含めた中間ホッパーの腐食は認められず、その交換作業も実施する必要が無かった。また、第1焙焼炉の排ガス中のSOx濃度についても、管理値を超えるトラブルは発生しなかった。   As a result, the sulfur content of the obtained nickel oxide powder was 314 ppm by weight on average, and the standard deviation was 65 ppm by weight. Moreover, no corrosion of the intermediate hopper including the gate valve was observed, and it was not necessary to carry out replacement work. Moreover, the trouble which exceeded a control value did not generate | occur | produce also about the SOx density | concentration in the waste gas of a 1st roasting furnace.

以上の結果から、本発明の実施によって、第1焙焼炉の排ガスと第2焙焼炉の排ガスの混合によって引き起こされる不具合、即ち設備の腐食、付着物の生成、環境トラブルによる操業不安定化を解消し、製品品質を安定化させることができることが分かる。   From the above results, by the practice of the present invention, malfunctions caused by mixing of the exhaust gas of the first roasting furnace and the exhaust gas of the second roasting furnace, that is, corrosion of equipment, generation of deposits, and unstable operation due to environmental troubles It can be seen that product quality can be eliminated and product quality can be stabilized.

1 排出シュート
1a 仕切弁
2 装入シュート
3 中間ホッパー
3a 仕切弁
1 Discharge chute 1a Gate valve 2 Charging chute 3 Intermediate hopper 3a Gate valve

Claims (2)

結晶水を含有する硫酸ニッケル粉末を第1焙焼炉でか焼して無水硫酸ニッケル粉末とし、得られた無水硫酸ニッケル粉末を第2焙焼炉で焙焼して酸化ニッケル粉末を製造する方法において、
第1焙焼炉で得られた無水硫酸ニッケル粉末を、第1焙焼炉の排出シュートと第2焙焼炉への装入シュートの間に中間ホッパーを有する連通設備を用いて第2焙焼炉に供給すると共に、中間ホッパー内に開口した排出シュートの下端開口部と装入シュート内に開口した中間ホッパーの下端開口部とにガスシール可能な仕切弁を設け、且つ中間ホッパー内に加圧空気を供給することを特徴とする酸化ニッケル粉末の製造方法。
Method of producing nickel oxide powder by calcining nickel sulfate powder containing crystal water in first roasting furnace to make anhydrous nickel sulfate powder and roasting obtained anhydrous nickel sulfate powder in second roasting furnace In
The anhydrous nickel sulfate powder obtained in the first roasting furnace is second roasted using a communication facility having an intermediate hopper between the discharge chute of the first roasting furnace and the charging chute to the second roasting furnace. A gate valve capable of gas sealing is provided at the lower end opening of the discharge chute opened in the intermediate hopper and the lower end opening of the intermediate hopper opened in the charging chute, and pressurized in the intermediate hopper. The manufacturing method of the nickel oxide powder characterized by supplying air.
前記中間ホッパーのゲージ圧力を、排出シュートの下端開口部と中間ホッパーの下端開口部に設けた仕切弁が閉じて閉空間が形成された状態において、490〜980Paの範囲に制御することを特徴とする、請求項1に記載の酸化ニッケル粉末の製造方法。

The gauge pressure of the intermediate hopper is controlled within a range of 490 to 980 Pa in a state where a closed valve is formed by closing a lower end opening of the discharge chute and a lower end opening of the intermediate hopper. The method for producing a nickel oxide powder according to claim 1.

JP2015130687A 2015-06-30 2015-06-30 Method for producing nickel oxide powder Active JP6365443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015130687A JP6365443B2 (en) 2015-06-30 2015-06-30 Method for producing nickel oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015130687A JP6365443B2 (en) 2015-06-30 2015-06-30 Method for producing nickel oxide powder

Publications (2)

Publication Number Publication Date
JP2017014040A true JP2017014040A (en) 2017-01-19
JP6365443B2 JP6365443B2 (en) 2018-08-01

Family

ID=57829137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015130687A Active JP6365443B2 (en) 2015-06-30 2015-06-30 Method for producing nickel oxide powder

Country Status (1)

Country Link
JP (1) JP6365443B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423479U (en) * 1977-07-19 1979-02-15
JPS55167140A (en) * 1979-06-11 1980-12-26 Nippon Mining Co Ltd External heating type kiln for manufacturing cobalt oxide
JPS5936027A (en) * 1982-08-18 1984-02-28 Mitsubishi Heavy Ind Ltd Plant conveying powdery granular body, etc., affected under atmospheric pressure to high pressure receiving device
JPH03140409A (en) * 1989-10-27 1991-06-14 Nippon Steel Corp Device for charging auxiliary raw material in pressurizing type converter
JPH05203368A (en) * 1992-01-24 1993-08-10 Showa Kiyabotsuto Suupaa Metal Kk Raw material charging device for hermetic furnace
JPH0710544A (en) * 1993-06-23 1995-01-13 Tdk Corp Production of nickel oxide powder
JPH10102065A (en) * 1996-10-03 1998-04-21 Shin Meiwa Ind Co Ltd Firing system
JP2004123487A (en) * 2002-10-07 2004-04-22 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel oxide powder
JP2005042954A (en) * 2003-07-24 2005-02-17 Tokyo Elex Kk Waste treating device and waste treating method
JP2010196924A (en) * 2009-02-23 2010-09-09 Nippon Steel Engineering Co Ltd Purge method of intermediate hopper of waste charging device of waste melting furnace, and intermediate hopper of waste charging device of waste melting furnace
JP2012180967A (en) * 2011-03-01 2012-09-20 Chugai Ro Co Ltd Continuous baking device for powder

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423479U (en) * 1977-07-19 1979-02-15
JPS55167140A (en) * 1979-06-11 1980-12-26 Nippon Mining Co Ltd External heating type kiln for manufacturing cobalt oxide
JPS5936027A (en) * 1982-08-18 1984-02-28 Mitsubishi Heavy Ind Ltd Plant conveying powdery granular body, etc., affected under atmospheric pressure to high pressure receiving device
JPH03140409A (en) * 1989-10-27 1991-06-14 Nippon Steel Corp Device for charging auxiliary raw material in pressurizing type converter
JPH05203368A (en) * 1992-01-24 1993-08-10 Showa Kiyabotsuto Suupaa Metal Kk Raw material charging device for hermetic furnace
JPH0710544A (en) * 1993-06-23 1995-01-13 Tdk Corp Production of nickel oxide powder
JPH10102065A (en) * 1996-10-03 1998-04-21 Shin Meiwa Ind Co Ltd Firing system
JP2004123487A (en) * 2002-10-07 2004-04-22 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel oxide powder
JP2005042954A (en) * 2003-07-24 2005-02-17 Tokyo Elex Kk Waste treating device and waste treating method
JP2010196924A (en) * 2009-02-23 2010-09-09 Nippon Steel Engineering Co Ltd Purge method of intermediate hopper of waste charging device of waste melting furnace, and intermediate hopper of waste charging device of waste melting furnace
JP2012180967A (en) * 2011-03-01 2012-09-20 Chugai Ro Co Ltd Continuous baking device for powder

Also Published As

Publication number Publication date
JP6365443B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
KR101043642B1 (en) Continuous process for preparing fine particulate zinc oxide, and the apparatus therefor
US5911967A (en) Process and apparatus for production of ferric oxide from iron chloride solutions
US10513789B2 (en) Integrated gas treatment
WO2017185858A1 (en) Serial flash furnace and smelting method thereof
JP2006511324A (en) Method and equipment for removing gaseous pollutants from exhaust gas
WO2017185859A1 (en) Skyflash furnace
US20160153061A1 (en) Raw material for direct reduction, method of producing raw material for direct reduction, and method of producing reduced iron
KR100418591B1 (en) Method and apparatus for manufacturing metal powder
CN103069023A (en) Method and apparatus for recovering metal from electric furnace dust
JP2019075253A (en) Method for manufacturing positive electrode active material for lithium secondary battery
JP4191811B2 (en) Method for producing metal oxide powder
JP6365443B2 (en) Method for producing nickel oxide powder
JP4966317B2 (en) Molten iron manufacturing equipment
CN104797721B (en) The method and suspension smelting furnace of melting non-ferrous metal sulfide in suspension smelting furnace
KR100626437B1 (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
CN104291554A (en) Polluted gas discharge device for float glass tin baths
WO2021221529A1 (en) Method for directly reducing iron ore concentrate and producing a melt of soft magnetic iron (armco) and apparatus for the implementation thereof
JP5798793B2 (en) Metal oxide reduction treatment method
JP6942942B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP2004123487A (en) Method for manufacturing nickel oxide powder
JPS58176108A (en) Fluidized roasting for metal sulfide
JP2004123488A (en) Method for manufacturing nickel oxide powder
EP4317463A1 (en) Reduced iron production method and reduced iron production device
CN219347338U (en) Cement kiln hot raw material dechlorination system
CN108910860A (en) A kind of depth purifying plant of carbon materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6365443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150