JP2017013152A - Curved surface cutting apparatus - Google Patents

Curved surface cutting apparatus Download PDF

Info

Publication number
JP2017013152A
JP2017013152A JP2015129995A JP2015129995A JP2017013152A JP 2017013152 A JP2017013152 A JP 2017013152A JP 2015129995 A JP2015129995 A JP 2015129995A JP 2015129995 A JP2015129995 A JP 2015129995A JP 2017013152 A JP2017013152 A JP 2017013152A
Authority
JP
Japan
Prior art keywords
axis
cutting
cutting tool
curved surface
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015129995A
Other languages
Japanese (ja)
Other versions
JP6587842B2 (en
Inventor
勝 木野
Masaru Kino
勝 木野
良太 新藤
Ryota Shindo
良太 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Integrex Co Ltd
Original Assignee
Nagase Integrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Integrex Co Ltd filed Critical Nagase Integrex Co Ltd
Priority to JP2015129995A priority Critical patent/JP6587842B2/en
Publication of JP2017013152A publication Critical patent/JP2017013152A/en
Application granted granted Critical
Publication of JP6587842B2 publication Critical patent/JP6587842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a curved surface cutting apparatus capable of cutting a curved surface with a high degree of accuracy.SOLUTION: A surface-to-be-cut 101 of a workpiece 100 is cut by a cutting tool 36. A curved surface cutting apparatus includes control means for performing control so that a cutting face of the cutting tool 36 can be positioned in a plane orthogonal to a cutting direction of the cutting tool 36, in a state in which the cutting face is positioned on a normal line passing through a cutting point.SELECTED DRAWING: Figure 1

Description

本発明は、凹面や凸面等の曲面をバイトにより切削するための曲面切削装置に関するものである。   The present invention relates to a curved surface cutting apparatus for cutting a curved surface such as a concave surface or a convex surface with a cutting tool.

この種の切削装置が特許文献1に開示されている。この特許文献1の装置はバイトによってワークの被切削面に対して玉型加工を実行するものであって、バイトはX軸方向に、ワークはZ軸方向にそれぞれ移動されるという例が開示されている。   This type of cutting apparatus is disclosed in Patent Document 1. The device disclosed in Patent Document 1 performs an edging process on a surface to be cut of a workpiece by a cutting tool, and discloses an example in which the cutting tool is moved in the X-axis direction and the workpiece is moved in the Z-axis direction. ing.

特開2003−231001号公報JP 2003-231001 A

特許文献1の装置においては、ワークの被切削面が曲面である場合に、その曲面を高精度に仕上げるための手段は開示されていない。従って、特許文献1の構成においては、曲面上の切削加工を高精度に行なうことが困難である。   In the apparatus of Patent Document 1, when the surface to be cut of a workpiece is a curved surface, no means for finishing the curved surface with high accuracy is disclosed. Therefore, in the configuration of Patent Document 1, it is difficult to perform cutting on a curved surface with high accuracy.

本発明の目的は、曲面上の切削加工を高精度に行なうことができる曲面切削装置を提供することにある。   An object of the present invention is to provide a curved surface cutting apparatus capable of performing cutting on a curved surface with high accuracy.

上記の目的を達成するために、本発明においては、曲面よりなるワークの被切削面をバイトによって切削するための曲面切削装置であって、前記バイトのすくい面が切削点を通る法線上に位置する状態において前記すくい面がバイトの切削方向と直交する面内に位置するように制御する制御手段を設けたことを特徴とする。   In order to achieve the above object, in the present invention, a curved surface cutting apparatus for cutting a surface to be cut of a workpiece made of a curved surface with a cutting tool, wherein the rake face of the cutting tool is positioned on a normal line passing through a cutting point. And a control means for controlling the rake face to be positioned in a plane perpendicular to the cutting direction of the cutting tool.

このように構成すれば、ワークの切削中において、バイトのすくい面が切削加工点における法線上においてバイト切削方向と直交する面内に位置するため、曲面の位置や形状に関わらず、高精度切削加工が可能になる。   With this configuration, during cutting of the workpiece, the cutting face of the cutting tool is located in a plane perpendicular to the cutting direction of the cutting tool on the normal line at the cutting point, so that high-precision cutting is possible regardless of the position and shape of the curved surface. Processing becomes possible.

本発明によれば、バイトによってワークの曲面を高精度に切削できる効果がある。   According to the present invention, there is an effect that a curved surface of a workpiece can be cut with high precision by a cutting tool.

曲面切削装置の斜視図。The perspective view of a curved surface cutting device. 曲面切削装置の一部正面図。The partial front view of a curved surface cutting device. 切削ヘッドの斜視図。The perspective view of a cutting head. 曲面切削装置の電気的構成を示すブロック図。The block diagram which shows the electric constitution of a curved surface cutting device. 曲面切削装置の切削状態を示す説明図。Explanatory drawing which shows the cutting state of a curved surface cutting device. 同じく曲面切削装置の切削状態を示す説明図。Explanatory drawing which similarly shows the cutting state of a curved surface cutting device. すくい面と切削進行方向との関係を示す説明図。Explanatory drawing which shows the relationship between a rake face and cutting progress direction. すくい面とA軸との関係を示す説明図。Explanatory drawing which shows the relationship between a rake face and an A-axis. 同じくすくい面とA軸との関係を示す説明図。Explanatory drawing which similarly shows the relationship between a rake face and an A-axis. 曲面切削装置の動作を示すフローチャート。The flowchart which shows operation | movement of a curved surface cutting device.

以下、本発明を具体化した曲面切削装置の実施形態を図面に基づいて説明する。
図1,図2及び図4に示すように、装置の機台11上には移動台12が支持されており、この移動台12は図4に示すY軸モータ13により水平な第1軸としてのY軸方向に往復移動される。移動台12上にはテーブル14が支持されており、このテーブル14はC軸モータ15により第2軸としての鉛直なC軸の周りにおいて回転される。
Embodiments of a curved surface cutting apparatus embodying the present invention will be described below with reference to the drawings.
As shown in FIGS. 1, 2 and 4, a moving table 12 is supported on a machine base 11 of the apparatus, and this moving table 12 serves as a horizontal first axis by a Y-axis motor 13 shown in FIG. Is reciprocated in the Y-axis direction. A table 14 is supported on the movable table 12, and the table 14 is rotated around a vertical C axis as a second axis by a C axis motor 15.

前記機台11の上方にはコラム16を介して水平方向に延びるクロスビーム17が架設されている。クロスビーム17には移動体18が支持されており、この移動体18はX軸モータ19により前記Y軸と直角をなす第3軸としての水平なX軸方向に往復移動される。移動体18には昇降体20が支持されており、この昇降体20はZ軸モータ21により第4軸としての鉛直なZ軸方向に昇降される。   A cross beam 17 extending in the horizontal direction via a column 16 is installed above the machine base 11. A movable body 18 is supported on the cross beam 17, and the movable body 18 is reciprocated in a horizontal X-axis direction as a third axis perpendicular to the Y-axis by an X-axis motor 19. A lift body 20 is supported on the moving body 18, and the lift body 20 is lifted and lowered in a vertical Z-axis direction as a fourth axis by a Z-axis motor 21.

図2〜図4に示すように、昇降体20には切削ヘッド22が支持されており、この切削ヘッド22はB軸モータ23により前記Y軸と平行な、かつ水平な第5軸としての軸24の周りにおいて回転される。この軸24をB軸とする。   As shown in FIGS. 2 to 4, a lifting head 20 supports a cutting head 22, and this cutting head 22 is a shaft serving as a horizontal fifth axis parallel to the Y axis by a B-axis motor 23. Rotated around 24. This shaft 24 is defined as a B-axis.

図2及び図3に示すように、前記切削ヘッド22のフレーム30にはヘッド本体32が支持されており、このヘッド本体32はD軸モータ33により前記B軸と直角な第6軸としての軸31の周りにおいて回転される。この軸31をD軸とする。   As shown in FIGS. 2 and 3, a head body 32 is supported on the frame 30 of the cutting head 22, and this head body 32 is a shaft serving as a sixth axis perpendicular to the B axis by a D-axis motor 33. It is rotated around 31. This axis 31 is defined as the D axis.

図2及び図3に示すように、ヘッド本体32には前記D軸の延長方向から見てD軸と直交する方向に延びるバイト軸34が支持されており、このバイト軸34はA軸モータ35により自身の軸線であって、第7軸であるバイト36の刃先362を通るA軸を中心に360度の範囲内で回転される。この回転により、後述のバイト36のすくい面361の向きが変更される。   As shown in FIGS. 2 and 3, the head body 32 supports a bite shaft 34 extending in a direction perpendicular to the D axis when viewed from the extending direction of the D axis. The bite shaft 34 is an A-axis motor 35. Is rotated within a range of 360 degrees about the A axis passing through the cutting edge 362 of the cutting tool 36 as the seventh axis. By this rotation, the direction of a rake face 361 of a cutting tool 36 to be described later is changed.

図10に示すように、前記フレーム30はリニアモータ37によってA軸方向に往復移動されるとともに、バイト36のA軸方向の位置が調節される。バイト軸34の下端にはバイト36が着脱可能に装着される。そして、図6〜図9に示すように、前記リニアモータ37により、バイト36がワーク100の表面の被切削面101に接触される。バイト36は、そのすくい面361及び刃先362が前記A軸上に位置する。   As shown in FIG. 10, the frame 30 is reciprocated in the A-axis direction by a linear motor 37, and the position of the cutting tool 36 in the A-axis direction is adjusted. A cutting tool 36 is detachably attached to the lower end of the cutting tool shaft 34. As shown in FIGS. 6 to 9, the cutting tool 101 on the surface of the work 100 is brought into contact with the cutting tool 36 by the linear motor 37. The cutting tool 361 and the cutting edge 362 of the cutting tool 36 are located on the A axis.

従って、テーブル14上のワーク100は、Y軸モータ13によって水平なY軸方向に移動されるとともに、C軸モータ15により鉛直なZ軸線と平行なC軸の周りにおいて回転される。この回転は、切削位置を移動するためのもので、低速回転である。また、バイト36は、X軸モータ19によって水平なX軸方向に移動されるとともに、Z軸モータ21により鉛直方向に昇降される。また、バイト36はB軸モータ23によりY軸と平行なB軸の周りに回転され、D軸モータ33によりB軸と直角なD軸の周りに回転される。そして、前記のように、バイト36はそのすくい面361がA軸上においてその向きが変更される。   Accordingly, the workpiece 100 on the table 14 is moved in the horizontal Y-axis direction by the Y-axis motor 13 and rotated around the C-axis parallel to the vertical Z-axis by the C-axis motor 15. This rotation is for moving the cutting position, and is a low-speed rotation. The cutting tool 36 is moved in the horizontal X-axis direction by the X-axis motor 19 and is moved up and down in the vertical direction by the Z-axis motor 21. Further, the cutting tool 36 is rotated around the B axis parallel to the Y axis by the B axis motor 23, and rotated around the D axis perpendicular to the B axis by the D axis motor 33. As described above, the direction of the rake face 361 of the cutting tool 36 on the A axis is changed.

従って、ワーク100とバイト36とはX,Y,Zの3軸方向に相対移動可能である。また、バイト軸34,すなわちバイト36は、図7に示すワーク100の被切削面101に対してA,B,Dの3軸方向に移動可能である。そして、被切削面101の曲面形状に従って、被切削面101の切削加工点においてバイト36のすくい面361が法線L上の位置に配置される。加えて、バイト36は後述の制御装置51の作用により、すくい面361が切削進行方向に対して直角をなすように、つまり切削進行方向の前方を向くように維持される(図7参照)。   Therefore, the workpiece 100 and the cutting tool 36 can be relatively moved in the three-axis directions of X, Y, and Z. Further, the cutting tool shaft 34, that is, the cutting tool 36 is movable in the three axis directions A, B, and D with respect to the cut surface 101 of the workpiece 100 shown in FIG. Then, according to the curved surface shape of the surface to be cut 101, the rake face 361 of the cutting tool 36 is arranged at a position on the normal line L at the cutting point of the surface to be cut 101. In addition, the cutting tool 36 is maintained by the action of the control device 51 described later so that the rake face 361 is perpendicular to the cutting progress direction, that is, facing forward in the cutting progress direction (see FIG. 7).

制御手段及び演算手段を構成する制御装置51は、CPU(中央処理装置)等よりなる制御部52と、記憶部53とを備えている。そして、制御装置51は、前記Y軸モータ13,C軸モータ15,X軸モータ19,Z軸モータ21,B軸モータ23,D軸モータ33,A軸モータ35,リニアモータ37の各動作を制御する。   The control device 51 that constitutes the control means and the calculation means includes a control unit 52 composed of a CPU (Central Processing Unit) and the like, and a storage unit 53. The control device 51 performs the operations of the Y-axis motor 13, C-axis motor 15, X-axis motor 19, Z-axis motor 21, B-axis motor 23, D-axis motor 33, A-axis motor 35, and linear motor 37. Control.

前記記憶部53には、図9に示すプログラムや、後述の数式データ等、各種のデータが記憶されている。そして、制御部52の制御のもとに、前記プログラムが実行される。
次に、実施形態の曲面切削装置の作用を説明する。
The storage unit 53 stores various types of data such as the program shown in FIG. Then, the program is executed under the control of the control unit 52.
Next, the operation of the curved surface cutting apparatus of the embodiment will be described.

図10のステップ(以下、Sと略称する)1においてワーク100の例えば球面である曲面の切削が開始されると、図5及び図6に示すように、バイト36は切削加工点を通る法線L上に保持される。S2においてバイト36の角度,すなわち法線Lの位置が変化されると、S3においては、バイト36のすくい面361の切削進行方向における向きが設定される。   When the cutting of a curved surface, for example, a spherical surface, of the workpiece 100 is started in step (hereinafter abbreviated as S) 1 in FIG. 10, the cutting tool 36 is a normal line passing through the cutting point as shown in FIGS. 5 and 6. Held on L. When the angle of the cutting tool 36, that is, the position of the normal L is changed in S2, the direction of the rake face 361 of the cutting tool 36 in the cutting progress direction is set in S3.

すなわち、図8に示すように、第5軸としてのB軸(軸24)の回転中心からバイト36の刃先までの距離の長さを「H」とする。また、B軸を中心としたバイト36の刃先362の角度を「B」とする。また、Aは第7軸としてのA軸を中心としたバイト36の刃先362の角度を示す。Xは図1に示した第3軸方向であるX方向の位置で第2軸であるC軸の回転中心とB=0の状態におけるバイト36の刃先362の位置が一致する点を原点とする。Yは第1軸方向であるY方向の位置、V・V・Vは図1に示したX(第3軸)・Y(第1軸)・Z(第4軸)軸の駆動速度、V・Vは図1に示したB(第5軸)・C(第2軸)軸の角速度である。 That is, as shown in FIG. 8, the length of the distance from the rotation center of the B-axis (axis 24) as the fifth axis to the cutting edge of the cutting tool 36 is “H”. Further, the angle of the cutting edge 362 of the cutting tool 36 around the B axis is assumed to be “B”. A indicates the angle of the cutting edge 362 of the cutting tool 36 around the A axis as the seventh axis. X is the position in the X direction which is the third axis direction shown in FIG. 1, and the origin is the point where the rotation center of the C axis which is the second axis coincides with the position of the cutting edge 362 of the cutting tool 36 in the state of B = 0. . Y is the position in the Y direction which is the first axis direction, and V X · V Y · V Z is the drive of the X (third axis) · Y (first axis) · Z (fourth axis) axis shown in FIG. V B and V C are angular velocities of the B (fifth axis) and C (second axis) axes shown in FIG.

すなわち
B軸回転中心〜工具先端の高さ(距離)・・・H
A軸回転中心〜工具先端の偏芯・・・0
A軸の原点はX+方向
B軸の原点は真下方向
X,Yの原点はB=0において工具先端がC軸回転中心と一致する場所
Z,C軸の原点は任意
工具の速度:vtool
toolX=v−HvcosB
toolY=0
toolZ=v+HvsinB
ワークの速度:vwork
workX=RvsinC´=Yv
workY=v+RvccosC´=v+(X−HsinB)v
workZ=0
ただし、C軸と工具先端の距離(R) R2=(X−HsinB)2+Y2
C軸から見た工具先端の方向 tanC´=Y/(X−HsinB)
工具とワークの速度差:V
=vtoolX−vworkX=v−HvBcosB−Yv
Y=vtoolY−vworkY=−v−(X−HsinB)v
Z=vtoolZ−vworkZ=v+HvsinB
Y軸をY´軸、A軸回転軸をZ´軸と直交系(Bだけ傾いた座標系)での速度差:V´
V´=VcosB−VsinB
=(v−HvBcosB−Yv)cosB−(v+HvBsinB)sinB
=(v−Yv)cosB−vsinB−Hv
V´=V
=−v−(X−HsinB)v
V´=VcosB+VsinB
=使わないので省略
A軸を法線とする面内での速度ベクトルの方向
tanA=−V´/V´
よって、
That is, B-axis rotation center to tool tip height (distance) ... H
A-axis rotation center to tool tip eccentricity 0
The origin of the A axis is the X + direction. The origin of the B axis is the downward direction. The origin of the X and Y axes is where B = 0 and the tool tip coincides with the C axis rotation center. The origin of the Z and C axes is arbitrary. Tool speed: v tool
v toolX = v X -Hv B cosB
v toolY = 0
v toolZ = v Z + Hv B sinB
Work speed: v work
v workX = Rv C sinC '= Yv C
v workY = v Y + Rv c cos C ′ = v Y + (X−H sin B) v C
v workZ = 0
However, the distance between the C axis and the tool tip (R) R 2 = (X−H sin B) 2 + Y 2
Tool tip direction viewed from C axis tanC '= Y / (X-HsinB)
Speed difference between tool and workpiece: V
V X = v toolX -v workX = v X -Hv B cos B -Yv C
V Y = v toolY −v workY = −v Y − (X−HsinB) v C
V Z = v toolZ -v workZ = v Z + Hv B sinB
Speed difference in the orthogonal system (coordinate system tilted by B) with the Y-axis as the Y′-axis and the A-axis rotation axis as the Z′-axis: V ′
V ′ X = V X cosB−V Z sinB
= (V X -Hv B cosB- Yv C) cosB- (v Z + Hv B sinB) sinB
= (V X -Yv C) cosB -v Z sinB-Hv B
V'Y = V Y
= -V Y- (X-HsinB) v C
V'Z = V Z cosB + V X sinB
= Omitted because it is not used Direction of velocity vector in the plane with A-axis as normal
tanA = −V ′ Y / V ′ X
Therefore,

この(1)式の関係が維持されるように演算が実行される。この演算結果に従って、バイト36の向きを設定すれば、すくい面361はワーク100の被切削面101の位置が変更されても、切削進行方向と直角に維持される。 The calculation is executed so that the relationship of the expression (1) is maintained. If the direction of the cutting tool 36 is set according to the calculation result, the rake face 361 is maintained at a right angle to the cutting progress direction even if the position of the work surface 101 of the workpiece 100 is changed.

以上のようにして、ワークの被切削面に対する切削位置が変更されても、バイト36のすくい面361が切削進行方向と直交する面内に配置される。従って、被切削面の位置に関わらず、高精度で良好な切れ味を維持できる。   As described above, even when the cutting position of the workpiece with respect to the surface to be cut is changed, the rake face 361 of the cutting tool 36 is arranged in a plane perpendicular to the cutting progress direction. Therefore, a good sharpness can be maintained with high accuracy regardless of the position of the surface to be cut.

そして、S4において、加工終了の有無が判別され、加工終了前の場合はS1に戻り、加工終了にともない、プログラムが終了される。
従って、本実施形態においては、以下の効果がある。
Then, in S4, it is determined whether or not machining has been completed. If the machining has not been completed, the process returns to S1 and the program is terminated upon completion of machining.
Therefore, this embodiment has the following effects.

(1)ワーク100の被切削面101に対する切削位置が変更されても、バイト36のすくい面361が切削進行方向と直交する面内に配置される。従って、被切削面101の位置に関わらず、高精度で良好な切れ味を維持できる。   (1) Even if the cutting position of the workpiece 100 with respect to the surface to be cut 101 is changed, the rake face 361 of the cutting tool 36 is arranged in a plane perpendicular to the cutting progress direction. Therefore, regardless of the position of the cut surface 101, it is possible to maintain a good sharpness with high accuracy.

(2)バイト36のすくい面361を切削進行方向と直交する面内に維持するために、バイト36を前記(1)式に基づいて維持するだけであるから、装置の構成の複雑化や大型化を避けることができる。   (2) In order to maintain the rake face 361 of the cutting tool 36 in a plane orthogonal to the cutting progress direction, the cutting tool 36 is only maintained based on the formula (1). Can be avoided.

(3)バイト36のすくい面361が法線L上に維持されるため、高精度加工が可能になる。
本発明は前記実施形態に限定されるものではなく、以下のような態様でも具体化できる。
(3) Since the rake face 361 of the cutting tool 36 is maintained on the normal line L, high-precision machining becomes possible.
The present invention is not limited to the above embodiment, and can be embodied in the following aspects.

・前記実施形態の曲面切削装置を球面以外の凸状曲面あるいは球面,非球面の凹状曲面の切削において使用すること。この場合も、前記(1)式を用いてバイト36のすくい面361の向きを調節できる。   The curved surface cutting device of the above embodiment is used for cutting a convex curved surface other than a spherical surface, or a spherical curved surface or an aspherical concave curved surface. Also in this case, the direction of the rake face 361 of the cutting tool 36 can be adjusted by using the equation (1).

・バイト36の位置調節をリニアモータ37に代えて、サーボモータと、このサーボモータによって作動されるネジ送り機構とを用いること。   -Instead of the linear motor 37 for adjusting the position of the cutting tool 36, use a servo motor and a screw feed mechanism operated by the servo motor.

36…バイト、100…ワーク、101…被切削面、361…すくい面、362…刃先、L…法線。   36: Bite, 100: Workpiece, 101: Surface to be cut, 361: Rake face, 362: Cutting edge, L: Normal.

Claims (5)

曲面よりなるワークの被切削面をバイトによって切削するための曲面切削装置であって、
前記バイトのすくい面が前記曲面の切削点を通る法線上に位置する状態において前記すくい面がバイトの切削方向と直交する面内に位置するように制御する制御手段を設けた曲面切削装置。
A curved surface cutting device for cutting a cut surface of a workpiece made of a curved surface with a cutting tool,
A curved surface cutting apparatus provided with control means for controlling the rake face to be positioned in a plane perpendicular to the cutting direction of the cutting tool in a state where the rake face of the cutting tool is located on a normal line passing through the cutting point of the curved surface.
前記ワークを第1軸方向に移動可能に支持するとともに、その第1軸と直交する第2軸を中心に回転可能に支持し、前記バイトを前記第1軸及び前記第2軸と直角な第3軸方向に移動可能に、かつ前記第2軸と平行な第4軸方向に移動可能に支持し、さらに、前記バイトを前記第1軸と平行な第5軸を中心に回動可能に、かつ前記第3軸と平行な第6軸を中心に回動可能にするとともに、前記バイトをその先端の刃先を通る第7軸を中心に回動可能にした請求項1に記載の曲面切削装置。   The work is supported so as to be movable in the first axis direction, and is supported so as to be rotatable around a second axis orthogonal to the first axis. The tool is supported at a right angle to the first axis and the second axis. Supports movement in three axis directions and movement in a fourth axis direction parallel to the second axis, and further enables the bite to rotate around a fifth axis parallel to the first axis. The curved cutting apparatus according to claim 1, wherein the cutting tool is rotatable about a sixth axis parallel to the third axis, and the cutting tool is rotatable about a seventh axis passing through a cutting edge at the tip. . 前記制御手段は、
前記第5軸から前記バイトの刃先までの距離の長さをH,前記第5軸を中心とした前記バイトの刃先の角度をBとし、前記第7軸を中心とした前記バイトの刃先の角度をA、前記第3軸方向の位置で前記第2軸の回転中心と前記角度B=0の状態における前記バイトの刃先の位置が一致する点を原点とし、その原点から前記第1軸方向の位置をY、前記第3軸,前記第1軸,前記第4軸の駆動速度をそれぞれV・V・Vとし、前記第5軸,前記第2軸の角速度をV・Vとした場合において、
以上の式に基づいて前記バイトのすくい面の角度を調節する請求項2に記載の曲面切削装置。
The control means includes
The length of the distance from the fifth axis to the cutting edge of the cutting tool is H, the angle of the cutting edge of the cutting tool centered on the fifth axis is B, and the angle of the cutting edge of the cutting tool about the seventh axis A, the point where the position of the cutting edge of the cutting tool coincides with the rotation center of the second axis at the position of the third axis and the angle B = 0 at the position in the third axis direction as the origin, and from the origin to the first axis direction The position is Y, the driving speeds of the third axis, the first axis, and the fourth axis are V X , V Y, and V Z , respectively, and the angular velocities of the fifth axis and the second axis are V B and V C, respectively. If
The curved surface cutting device according to claim 2, wherein the angle of the rake face of the cutting tool is adjusted based on the above formula.
前記第2軸を鉛直線上に設置した請求項2または3に記載の曲面切削装置。   The curved surface cutting device according to claim 2 or 3, wherein the second axis is installed on a vertical line. 前記バイトを前記ワークの上方位置に設けた請求項4に記載の曲面切削装置。   The curved cutting apparatus according to claim 4, wherein the cutting tool is provided at an upper position of the workpiece.
JP2015129995A 2015-06-29 2015-06-29 Curved cutting device Active JP6587842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129995A JP6587842B2 (en) 2015-06-29 2015-06-29 Curved cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129995A JP6587842B2 (en) 2015-06-29 2015-06-29 Curved cutting device

Publications (2)

Publication Number Publication Date
JP2017013152A true JP2017013152A (en) 2017-01-19
JP6587842B2 JP6587842B2 (en) 2019-10-09

Family

ID=57827617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129995A Active JP6587842B2 (en) 2015-06-29 2015-06-29 Curved cutting device

Country Status (1)

Country Link
JP (1) JP6587842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953687A (en) * 2021-12-08 2022-01-21 业成科技(成都)有限公司 Cutting method and cutting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123603A (en) * 1986-11-13 1988-05-27 Mitsubishi Heavy Ind Ltd Device for finish machining
JPH08118205A (en) * 1994-10-24 1996-05-14 Toshiba Mach Co Ltd Main spindle normal direction control method of numerically controlled machine tool
JP2003231001A (en) * 2002-02-06 2003-08-19 Seiko Epson Corp Lens shape machining method and device thereof
JP2004351606A (en) * 2003-05-08 2004-12-16 Matsushita Electric Ind Co Ltd Non-rotary cutting tool
JP2007172325A (en) * 2005-12-22 2007-07-05 Toshiba Mach Co Ltd Method of machining free curve and numerical control device
WO2009028329A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Opto, Inc. Multiaxis working machine
JP2013018106A (en) * 2011-07-14 2013-01-31 Jkm:Kk Machining device and machining method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123603A (en) * 1986-11-13 1988-05-27 Mitsubishi Heavy Ind Ltd Device for finish machining
JPH08118205A (en) * 1994-10-24 1996-05-14 Toshiba Mach Co Ltd Main spindle normal direction control method of numerically controlled machine tool
JP2003231001A (en) * 2002-02-06 2003-08-19 Seiko Epson Corp Lens shape machining method and device thereof
JP2004351606A (en) * 2003-05-08 2004-12-16 Matsushita Electric Ind Co Ltd Non-rotary cutting tool
JP2007172325A (en) * 2005-12-22 2007-07-05 Toshiba Mach Co Ltd Method of machining free curve and numerical control device
WO2009028329A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Opto, Inc. Multiaxis working machine
JP2013018106A (en) * 2011-07-14 2013-01-31 Jkm:Kk Machining device and machining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953687A (en) * 2021-12-08 2022-01-21 业成科技(成都)有限公司 Cutting method and cutting device
CN113953687B (en) * 2021-12-08 2023-05-05 业成科技(成都)有限公司 Cutting method and cutting device

Also Published As

Publication number Publication date
JP6587842B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
US8921734B2 (en) Laser cutting machine
JP2008126322A (en) Cutting tool working method and cutting tool working device
JPWO2015037143A1 (en) Tool path evaluation method, tool path generation method, and tool path generation device
JP6617454B2 (en) Cutting apparatus and cutting method
US10180675B2 (en) Machine tool control device and machine tool
JP2014172123A (en) Gear-cutting processing method and device of bevel gear
JP5413913B2 (en) Non-circular machining method by turning
JP6184363B2 (en) Method and apparatus for controlling machine tool
JP2016093882A (en) Gear processing device and gear processing method
JP4503326B2 (en) Tool path data generation device and control device including the same
JP6587842B2 (en) Curved cutting device
JP2014238782A (en) Control method of machine tool
JP2019166635A (en) Cutting device and cutting method
JP4743649B2 (en) Curved surface polishing apparatus and curved surface polishing method
JP6480896B2 (en) Numerical control apparatus and tool movement control method
JP2009146057A (en) Method and unit for correcting position error
WO2018146728A1 (en) Machine tool
JP2015139831A (en) Polishing robot and polishing robot control method
JP2011251401A (en) Machining method for machining workpiece surface
JP2005349520A (en) Wire-cut electric-discharge machining method, machining program producing method in wire-cut electric-discharge machining method, and wire cut electric-discharge machining program producing device
JP6980357B1 (en) Information processing equipment and information processing programs
JP2006318268A (en) Machining data production method and cutting method
JP7013195B2 (en) Finishing method
JP2583397Y2 (en) Optical copy grinding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6587842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250