JP2009146057A - Method and unit for correcting position error - Google Patents

Method and unit for correcting position error Download PDF

Info

Publication number
JP2009146057A
JP2009146057A JP2007321181A JP2007321181A JP2009146057A JP 2009146057 A JP2009146057 A JP 2009146057A JP 2007321181 A JP2007321181 A JP 2007321181A JP 2007321181 A JP2007321181 A JP 2007321181A JP 2009146057 A JP2009146057 A JP 2009146057A
Authority
JP
Japan
Prior art keywords
tool
calculating
spindle
position error
tool length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007321181A
Other languages
Japanese (ja)
Inventor
Tetsuya Matsushita
哲也 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2007321181A priority Critical patent/JP2009146057A/en
Publication of JP2009146057A publication Critical patent/JP2009146057A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a unit for correcting a position error of a main shaft, which improves quality of a working surface while simplifying setting work. <P>SOLUTION: The position error correction method includes a first process for setting a tool length L<SB>i</SB>of a reference tool and origin coordinates X<SB>i</SB>, Y<SB>i</SB>, Z<SB>i</SB>which as tip coordinates of the mounted reference tool; a second process for calculating a tool length difference ΔL between a tool length L<SB>c</SB>of a tool in use for processing and a tool length L<SB>i</SB>of the reference tool; a third process for calculating a deviation amount, based on the tool length difference ΔL and a squareness error produced between orthogonally intersecting two shafts; a fourth process for calculating use origin coordinates X<SB>p</SB>, Y<SB>p</SB>, Z<SB>p</SB>as tip coordinates of the tool in use, based on the deviation amount; and a fifth processing for calculating an instruction position of the main shaft, using the use origin coordinates X<SB>p</SB>, Y<SB>p</SB>, Z<SB>p</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、工作機械における主軸の位置誤差を補正するための位置誤差補正方法、及び当該補正方法を実行するための位置誤差補正装置に関するものである。   The present invention relates to a position error correction method for correcting a position error of a spindle in a machine tool, and a position error correction apparatus for executing the correction method.

従来、一般的に知られている工作機械としては、図1に示すような工作機械31がある。工作機械31は、工具を装着可能な主軸32と、ワークを固定可能なテーブル33とを備えてなるものであって、主軸32は、直交する2軸(X軸及びZ軸)方向へ、テーブル33は、X軸及びZ軸に直交するY軸方向へ夫々移動可能に備えられており、主軸32は、テーブル33に固定されるワークに対して相対的に3軸方向へ送られながら加工を行うことになる。   Conventionally known machine tools include a machine tool 31 as shown in FIG. The machine tool 31 includes a main shaft 32 on which a tool can be mounted and a table 33 on which a workpiece can be fixed. The main shaft 32 is a table in two orthogonal directions (X axis and Z axis). 33 is provided to be movable in the Y-axis direction orthogonal to the X-axis and the Z-axis, respectively, and the main shaft 32 is processed while being fed in the three-axis direction relative to the workpiece fixed to the table 33. Will do.

しかしながら、製造誤差等により上記3軸は厳密には直交しておらず、各軸間において直角度誤差が存在している。たとえば、図2に示すようなX−Z軸間にあっては、直角度誤差αXZが存在し、設計上X軸と直交するはずのZ軸がZ’軸となっている。この場合、主軸32のZ’軸方向への移動によりX軸方向へ位置誤差が生じることになる。
また、工具長さが異なる工具を主軸32に装着するにあたり、工具先端のZ座標を合わせると、X軸方向へ位置誤差ΔXXZが生じることになる。したがって、工具の交換時に主軸32を工具長さの差だけ上昇させた際に、加工面にX軸方向への段差が形成されてしまい、加工面の品位が劣化してしまうという問題があった。
However, the three axes are not strictly orthogonal due to manufacturing errors and the like, and there is a squareness error between the axes. For example, there is a squareness error α XZ between the XZ axes as shown in FIG. 2, and the Z axis that should be orthogonal to the X axis in design is the Z ′ axis. In this case, a position error occurs in the X-axis direction due to the movement of the main shaft 32 in the Z′-axis direction.
Further, when a tool having a different tool length is mounted on the spindle 32, if the Z coordinate of the tool tip is matched, a position error ΔX XZ occurs in the X-axis direction. Therefore, when the spindle 32 is raised by the difference in tool length during tool replacement, there is a problem that a step in the X-axis direction is formed on the machining surface and the quality of the machining surface is deteriorated. .

そこで、上記問題に対応すべく、たとえば特許文献1に開示するような主軸の位置誤差補正方法が考案されている。該特許文献1に開示の位置誤差補正方法は、主軸の動作領域において所定の間隔で格子点を設定し、各格子点毎での位置誤差の補正量を算出しながら、主軸の3軸方向への送り動作を制御するものである。
また、各工具毎に、工具先端の原点座標を予め設定し、工具を交換する度に、当該工具に対応する原点座標を用いて主軸の送り動作を制御することで、上記段差の解消を図った方法もある。
Therefore, in order to cope with the above problem, for example, a position error correction method for the spindle as disclosed in Patent Document 1 has been devised. In the position error correction method disclosed in Patent Document 1, lattice points are set at predetermined intervals in the operation region of the main axis, and the correction amount of the position error for each lattice point is calculated, while moving in the three axis directions of the main axis. It controls the feeding operation.
In addition, the origin coordinate of the tool tip is set in advance for each tool, and each time the tool is replaced, the feed operation of the spindle is controlled using the origin coordinate corresponding to the tool, thereby eliminating the above step. There is also a method.

特許第3174704号公報Japanese Patent No. 3174704

上記特許文献1の補正方法を用いながら図5に示すような加工を行うと、X軸方向への指令値は、区間aにおける鉛直下方への加工時にはマイナス、区間bにおける傾斜角θ2での加工時にはプラスとなる。つまり、区間aから区間bへ移行する際の曲面加工時に、X軸方向への指令値が反転することになる。この反転時に、送りねじ等のバックラッシュやロストモーションに起因して追従遅れが生じ、結果として加工面に突起等が形成されてしまい、特に加工面が曲面となる際にその品位が劣化しやすいといった課題がある。
また、製造誤差等によりZ軸と主軸軸線とは厳密には平行でなく、図3に示すように、Z軸と主軸軸線との間のXZ平面内には平行度誤差βXZSが存在している。そのため、当該平行度誤差βXZSに起因して、工具長の異なる工具では、その工具先端のX座標に偏差ΔXZSが生じることになる。しかしながら、上記特許文献1の補正方法等では、当該偏差ΔXZSを補正することができないという課題もある。
さらに、各工具毎に工具先端の原点座標を予め設定して補正を試みるという方法では、工具毎に原点座標を設定しなければならず、手間がかかるという課題がある。
When machining as shown in FIG. 5 is performed using the correction method of Patent Document 1, the command value in the X-axis direction is minus when machining vertically downward in section a, and machining at an inclination angle θ2 in section b. Sometimes it is a plus. That is, the command value in the X-axis direction is inverted during curved surface processing when transitioning from section a to section b. At the time of this reversal, a follow-up delay occurs due to backlash or lost motion of the feed screw, etc., resulting in the formation of protrusions etc. on the machined surface, and the quality of the machined surface tends to deteriorate, especially when the machined surface is curved. There is a problem.
Also, the Z axis and the spindle axis are not strictly parallel due to manufacturing errors or the like, and there is a parallelism error β XZS in the XZ plane between the Z axis and the spindle axis as shown in FIG. Yes. Therefore, due to the parallelism error β XZS , in a tool having a different tool length, a deviation ΔX ZS occurs in the X coordinate of the tool tip. However, the correction method of Patent Document 1 has a problem in that the deviation ΔX ZS cannot be corrected.
Furthermore, in the method in which the origin coordinates of the tool tip are set in advance for each tool and correction is attempted, the origin coordinates must be set for each tool, which is troublesome.

そこで、本発明は上記課題に鑑みなされたものであって、加工面の品位を向上させることができるとともに、設定作業を簡略化することができる主軸の位置誤差補正方法、及び位置誤差補正装置を提供しようとするものである。   Accordingly, the present invention has been made in view of the above problems, and provides a spindle position error correction method and a position error correction apparatus capable of improving the quality of a machined surface and simplifying a setting operation. It is something to be offered.

上記目的を達成するために、本発明のうち請求項1に記載の発明は、工作機械本体に被加工物に対して相対移動可能に設けられ、且つ、工具長さの異なる工具を装着可能とされた主軸の位置誤差を補正するための位置誤差補正方法であって、基準工具の工具長さ、及び装着された基準工具の先端座標となる原点座標を設定する第1工程と、加工に使用する使用工具の工具長さと前記基準工具の工具長さとの工具長差を算出する第2工程と、前記工具長差と前記工作機械本体が有する幾何学的誤差とにもとづいて偏差量を算出する第3工程と、前記偏差量をもとに、前記使用工具の先端座標となる使用原点座標を算出する第4工程と、前記使用原点座標を用いて前記主軸の指令位置を演算する第5工程とを実行することを特徴とする。
なお、本発明における「幾何学的誤差」とは、工作機械本体にそもそも生じている精度誤差のことを示し、たとえば、直交する2軸の直角度誤差や回転軸と直進軸との直角度誤差・平行度誤差等を含む。
In order to achieve the above object, the invention according to claim 1 of the present invention is provided on the machine tool main body so as to be relatively movable with respect to the workpiece, and is capable of mounting tools having different tool lengths. A position error correction method for correcting a position error of a main spindle, which is used for machining, a first step of setting a tool length of a reference tool and an origin coordinate serving as a tip coordinate of a mounted reference tool The second step of calculating the tool length difference between the tool length of the tool to be used and the tool length of the reference tool, and calculating the deviation amount based on the tool length difference and the geometric error of the machine tool body A third step, a fourth step of calculating a use origin coordinate serving as a tip coordinate of the tool to be used based on the deviation amount, and a fifth step of calculating a command position of the spindle using the use origin coordinate And executing.
The “geometric error” in the present invention refers to an accuracy error originally occurring in the machine tool main body, for example, a perpendicularity error between two orthogonal axes or a perpendicularity error between a rotation axis and a rectilinear axis.・ Including parallelism error.

また、請求項2に記載の発明は、請求項1に記載の発明において、被加工物に対して少なくとも直交する2軸方向へ相対移動可能に設けられた主軸の位置誤差を補正するための位置誤差補正方法であって、前記第3工程において、前記工具長差と前記直交する2軸間に生じている直角度誤差とにもとづいて偏差量を算出することを特徴とする。
さらに、請求項3に記載の発明は、請求項1又は2に記載の発明において、被加工物に対して少なくとも主軸軸線方向へ相対移動可能に設けられた主軸の位置誤差を補正するための位置誤差補正方法であって、前記第3工程において、前記工具長差と前記主軸軸線及び前記主軸の移動方向間に生じている平行度誤差とにもとづいて偏差量を算出することを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, a position for correcting a position error of a spindle provided so as to be relatively movable in a biaxial direction at least orthogonal to the workpiece. In the error correction method, in the third step, a deviation amount is calculated based on the tool length difference and a squareness error occurring between the two orthogonal axes.
Furthermore, the invention according to claim 3 is a position for correcting a position error of a spindle provided in the invention according to claim 1 or 2 so as to be relatively movable with respect to the workpiece in at least the spindle axis direction. In the error correction method, in the third step, a deviation amount is calculated based on the tool length difference and a parallelism error occurring between the spindle axis and the movement direction of the spindle.

一方、上記目的を達成するために、本発明のうち請求項4に記載の発明は、工作機械本体に被加工物に対して相対移動可能に設けられ、且つ、工具長さの異なる工具を装着可能とされた主軸の位置誤差を補正するための位置誤差補正装置であって、基準工具の工具長さ、加工に使用する使用工具の工具長さ、前記主軸に装着された基準工具の先端座標となる原点座標、及び前記工作機械本体が有する幾何学的誤差を記憶する格納手段と、前記使用工具の工具長さと前記基準工具の工具長さとから両者の工具長差を算出する工具長差演算手段と、前記工具長差と前記幾何学的誤差とにもとづいて偏差量を算出する偏差量演算手段と、前記偏差量をもとに、前記使用工具の先端座標となる使用原点座標を算出する使用原点座標演算手段と、前記使用原点座標を用いて前記主軸の指令位置を演算する指令位置演算手段とを備えることを特徴とする。   On the other hand, in order to achieve the above object, the invention according to claim 4 of the present invention is provided with a tool having a different tool length provided on the machine tool main body so as to be movable relative to the workpiece. A position error correction device for correcting a position error of a spindle that is made possible, the tool length of a reference tool, the tool length of a tool used for machining, and the tip coordinates of a reference tool mounted on the spindle Tool length difference calculation for calculating the tool length difference between the origin coordinates and the storage means for storing the geometric error of the machine tool body and the tool length of the tool used and the tool length of the reference tool Means, a deviation amount calculating means for calculating a deviation amount based on the tool length difference and the geometric error, and calculating a use origin coordinate serving as a tip coordinate of the tool to be used based on the deviation amount. Use origin coordinate calculation means, Characterized in that it comprises a command position calculating means for calculating a command position of the main spindle with the origin coordinates.

本発明によれば、工具長さの異なる工具を主軸に装着する度に、使用工具の工具長さや原点座標に基づいて使用原点座標を新たに算出し、当該使用原点座標を用いて主軸の位置指令を行う。したがって、工具交換により生じる偏差等に起因して加工面に段差等が形成されたりせず、加工面の品位を向上することができる。また、一旦、基準工具を用いて原点座標を設定してやれば、たとえ加工にあたって工具を交換したとしても使用工具の工具長さに基づいて使用原点座標を新たに算出するようにしているため、工具毎に原点座標を設定する等といった煩雑な作業を必要とせず、作業効率の向上を図ることができる。
また、特に請求項2に記載の発明によれば、直角度誤差に起因する偏差を補正可能としているにもかかわらず、加工点毎に直角度誤差に起因する偏差を補正するといった従来の位置指令とは異なり、たとえば図5に示す加工を行うにあたって、区間aから区間bにわたる曲面加工時にX軸方向への指令値が反転することもない。したがって、従来では当該反転時のバックラッシュやロストモーションに起因して加工面に形成されてしまっていた突起が形成されたりせず、加工面品位の更なる向上を図ることができる。
一方、特に請求項3に記載の発明によれば、主軸軸線と主軸の移動方向との間の平行度誤差に起因する偏差を考慮した位置誤差補正を行うため、加工面を極めて高品位とすることができる。
According to the present invention, every time a tool having a different tool length is mounted on the spindle, the use origin coordinate is newly calculated based on the tool length and the origin coordinate of the tool used, and the position of the spindle is calculated using the use origin coordinate. Make a command. Therefore, a step or the like is not formed on the processed surface due to a deviation or the like caused by tool change, and the quality of the processed surface can be improved. In addition, once the origin coordinates are set using the reference tool, the use origin coordinates are newly calculated based on the tool length of the tool used even if the tool is replaced during machining. Thus, it is possible to improve work efficiency without requiring complicated work such as setting the origin coordinates.
In particular, according to the second aspect of the present invention, the conventional position command for correcting the deviation caused by the squareness error for each machining point, although the deviation caused by the squareness error can be corrected. Unlike the case, for example, when performing the machining shown in FIG. 5, the command value in the X-axis direction is not reversed during curved surface machining from the section a to the section b. Therefore, the projections that have been formed on the processed surface due to backlash or lost motion during the reversal are not formed, and the quality of the processed surface can be further improved.
On the other hand, in particular, according to the invention described in claim 3, the position error correction is performed in consideration of the deviation caused by the parallelism error between the spindle axis and the moving direction of the spindle, so that the machined surface has an extremely high quality. be able to.

以下、本発明の一実施形態となる主軸の位置誤差補正方法、及び位置誤差補正装置について、図面をもとに説明する。尚、本実施形態における位置誤差補正方法、及び位置誤差補正装置は、図1に示す工作機械31に適用されるものとして説明する。
図2は、工作機械31においてX−Z軸間に直角度誤差αXZが存在することを模式的に示した説明図であり、図3は、工作機械31においてZ軸と主軸軸線との間のXZ平面内に平行度誤差βXZSが存在することを模式的に示した説明図である。また、図4は、位置誤差補正装置1のブロック構成図である。
Hereinafter, a spindle position error correction method and a position error correction apparatus according to an embodiment of the present invention will be described with reference to the drawings. Note that the position error correction method and the position error correction apparatus in this embodiment will be described as being applied to the machine tool 31 shown in FIG.
FIG. 2 is an explanatory view schematically showing that a squareness error α XZ exists between the X and Z axes in the machine tool 31, and FIG. 3 is a diagram between the Z axis and the spindle axis line in the machine tool 31. It is explanatory drawing which showed typically that the parallelism error (beta) XZS exists in XZ plane. FIG. 4 is a block diagram of the position error correction apparatus 1.

位置誤差補正装置1は、後述の如くして設定する基準工具での原点座標X、Y、Z、基準工具長さL、各種工具の工具長さL、及び工作機械31が有する直角度誤差αや平行度誤差β等の幾何学的誤差を記憶するための格納手段2と、当該格納手段2から基準工具長さL及び使用する工具長さLを読み出して工具長差ΔLを演算するための工具長差演算手段3と、格納手段2に記憶されている直角度誤差α、平行度誤差β及び工具長差演算手段3により算出された工具長差ΔLに基づいて原点座標の補正量δX、δY、δZを演算するための補正量演算手段(偏差量演算手段)4と、格納手段2に記憶されている原点座標X、Y、Z及び補正量演算手段4により算出された補正量δX、δY、δZに基づいて使用原点座標X、Y、Zを求めるための使用原点座標演算手段5と、当該使用原点座標演算手段5により算出された使用原点座標X、Y、Zを用いて主軸32を移動させるための指令位置を演算する指令位置演算手段6とを備えている。そして、指令位置演算手段6は、算出した指令位置を各サーボアンプ7へ出力し、各サーボアンプ7では、その指令位置に基づいて各軸のサーボモータ8を制御して、主軸32のX軸、Y軸、及びZ軸方向への移動を制御するようになっている。尚、指令位置演算手段6は、後述の如く直角度誤差αXZに起因するX軸方向への偏差ΔXXZ等を予め加味した使用原点座標X、Y、Zに基づいて指令位置の演算を行うものであり、特許文献1に記載の補正方法のように加工点毎に直角度誤差補正を実施したりしない。 The position error correction apparatus 1 includes origin coordinates X i , Y i , Z i , reference tool length L i , tool length L c of various tools, and machine tool 31 set as described later. tool length reads the storage means 2 for storing a geometric errors such as squareness error α and parallelism errors beta, a reference tool length L i and tool length L c to be used from the storage means 2 with Based on the tool length difference calculation means 3 for calculating the difference ΔL, the squareness error α, the parallelism error β stored in the storage means 2 and the tool length difference ΔL calculated by the tool length difference calculation means 3. Correction amount calculation means (deviation amount calculation means) 4 for calculating correction amounts δX, δY, δZ of the origin coordinates, origin coordinates X i , Y i , Z i and correction amount calculation stored in the storage means 2 Based on the correction amounts δX, δY, δZ calculated by the means 4, Moving the coordinates X p, Y p, as used origin coordinate calculation means 5 for determining the Z p, use was calculated by the use origin coordinate computing means 5 origin coordinates X p, Y p, the main shaft 32 using Z p Command position calculating means 6 for calculating a command position for the control. Then, the command position calculation means 6 outputs the calculated command position to each servo amplifier 7, and each servo amplifier 7 controls the servo motor 8 of each axis based on the command position, and the X axis of the main shaft 32. The movement in the Y-axis and Z-axis directions is controlled. Note that the command position calculation means 6 determines the command position based on the use origin coordinates X p , Y p , Z p in consideration of the deviation ΔX XZ in the X-axis direction caused by the squareness error α XZ as described later. The calculation is performed, and right angle error correction is not performed for each processing point as in the correction method described in Patent Document 1.

ここで、上記位置誤差補正装置1による位置誤差補正方法について説明する。
まず、工作機械31において加工を行うにあたり、テーブル33上にワークを固定するとともに、主軸32に基準工具Tを装着し、ワークの所定の角部に2方向から基準工具Tを接触させる等して原点座標X、Y、Zを設定し、当該原点座標X、Y、Zとその設定に用いた基準工具Tの工具長さ(すなわち基準工具長さ)Lとを格納手段2へ記憶させる(第1工程)。その後、該基準工具Tを用いて加工を行う場合、指令位置演算手段6は、設定した原点座標X、Y、Zを用いて指令位置の演算を行う。
Here, a position error correction method by the position error correction apparatus 1 will be described.
First, when machining with the machine tool 31, the work is fixed on the table 33, the reference tool Ti is attached to the spindle 32, and the reference tool Ti is brought into contact with a predetermined corner of the work from two directions. Then, the origin coordinates X i , Y i , Z i are set, and the origin coordinates X i , Y i , Z i and the tool length of the reference tool T i used for the setting (that is, the reference tool length) L i Are stored in the storage means 2 (first step). Thereafter, when machining is performed using the reference tool T i , the command position calculation means 6 calculates the command position using the set origin coordinates X i , Y i , and Z i .

一方、基準工具Tとは工具長さの異なる工具Tに交換して加工を継続する場合、位置誤差補正装置1では、使用する工具Tの工具長さLと基準工具Tの工具長さLとを格納手段2から読み出し、工具長差演算手段3において工具長差ΔL=L−Lを算出する(第2工程)。次に、補正量演算手段4において、算出された工具長差ΔLとX−Z軸間での直角度誤差αXZとを用いてX軸方向に生じる偏差ΔXXZ=αXZ・ΔLを求め(第3工程)、補正量δXXZ=−ΔXXZを算出する。また、Y−Z軸間での直角度誤差αYZを用いてY軸方向に生じる偏差ΔYYZ=αYZ・ΔLを求め(第3工程)、補正量δYYZ=−ΔYYZを算出する。
さらに、補正量演算手段4では、算出された工具長差ΔL、及びZ軸と主軸軸線との間のXZ平面内での平行度誤差βXZSを用いて当該平行度誤差βXZSに起因するX軸方向への偏差ΔXZS=βXZS・ΔLを求め(第3工程)、補正量δXZS=−ΔXZSを算出する。加えて、Z軸と主軸軸線との間のYZ平面内での平行度誤差βYZSに起因するY軸方向への偏差ΔYZS=βYZS・ΔLを求め(第3工程)、補正量δYZS=−ΔYZSを算出する。尚、今回は、Z軸座標を基準にして補正量を求めているため、Z軸方向への補正量δZは0となる。また、X−Z軸間での直角度誤差αXZやZ軸と主軸軸線との間の平行度誤差βXZS等は予め測定され、格納手段2に記憶されているものとする。
On the other hand, when the machining is continued by exchanging with a tool T c having a different tool length from the reference tool T i , the position error correction device 1 uses the tool length L c of the tool T c to be used and the reference tool T i . The tool length Li is read from the storage means 2, and the tool length difference calculation means 3 calculates the tool length difference ΔL = L c −L i (second step). Next, the correction amount calculation means 4 obtains a deviation ΔX XZ = α XZ · ΔL generated in the X-axis direction using the calculated tool length difference ΔL and the squareness error α XZ between the X-Z axes ( Third step), a correction amount δX XZ = −ΔX XZ is calculated. Further, a deviation ΔY YZ = α YZ · ΔL generated in the Y-axis direction is obtained using the squareness error α YZ between the Y-Z axes (third step), and a correction amount δY YZ = −ΔY YZ is calculated.
Further, the correction amount calculation means 4 uses the calculated tool length difference ΔL and the parallelism error β XZS in the XZ plane between the Z axis and the spindle axis to obtain X resulting from the parallelism error β XZS. A deviation ΔX ZS = β XZS · ΔL in the axial direction is obtained (third step), and a correction amount δX ZS = −ΔX ZS is calculated. In addition, a deviation ΔY ZS = β YZS · ΔL in the Y-axis direction due to the parallelism error β YZS in the YZ plane between the Z axis and the main axis is obtained (third step), and the correction amount δY ZS = −ΔY ZS is calculated. In this case, since the correction amount is obtained based on the Z-axis coordinates, the correction amount δZ in the Z-axis direction is zero. Further, it is assumed that the squareness error α XZ between the X and Z axes, the parallelism error β XZS between the Z axis and the spindle axis, and the like are measured in advance and stored in the storage unit 2.

上述の如くして各軸方向への補正量δX(=δXXZ+δXZS)、δY(=δYYZ+δYZS)、δZ(=0)が算出されると、使用原点座標演算手段5では、格納手段2から原点座標X、Y、Zを読み出すとともに、当該原点座標X、Y、Zに補正量δX、δY、δZを加算して、使用原点座標X、Y、Zを算出する(第4工程)。そして、指令位置演算手段6において、新たに算出された使用原点座標X、Y、Zを用いて指令位置の演算を行い(第5工程)、算出した指令位置により主軸32の各軸方向への移動を制御しながら、新たに装着された工具Tによる加工が行われることになる。 When the correction amounts δX (= δX XZ + δX ZS ), δY (= δY YZ + δY ZS ), and δZ (= 0) in the respective axis directions are calculated as described above, the use origin coordinate calculation means 5 stores them. The origin coordinates X i , Y i , Z i are read from the means 2 and the correction amounts δX, δY, δZ are added to the origin coordinates X i , Y i , Z i , and used origin coordinates X p , Y p , calculating a Z p (fourth step). Then, the command position calculation means 6 calculates the command position using the newly calculated use origin coordinates X p , Y p , Z p (fifth step), and each axis of the spindle 32 is calculated according to the calculated command position. Machining with the newly mounted tool Tc is performed while controlling movement in the direction.

以上のような位置誤差補正を行う位置誤差補正装置1によれば、工具長さの異なる工具を主軸32に装着する度に、原点座標X、Y、Zに基づいて使用原点座標X、Y、Zを新たに算出し、当該使用原点座標X、Y、Zを用いて主軸32の位置指令を行う。したがって、工具交換により生じる偏差ΔXXZ等に起因して加工面に段差等が形成されたりせず、加工面の品位を向上することができる。 According to the position error correction apparatus 1 that performs position error correction as described above, every time a tool having a different tool length is mounted on the spindle 32, the use origin coordinate X is based on the origin coordinates X i , Y i , Z i. p, Y p, newly calculated Z p, performs a position command of the spindle 32 with the use origin coordinates X p, Y p, the Z p. Therefore, a step or the like is not formed on the processed surface due to the deviation ΔX XZ or the like caused by tool change, and the quality of the processed surface can be improved.

また、X−Z軸間での直角度誤差αのみならず、従来の位置誤差補正方法では補正できなかったZ軸と主軸軸線との間の平行度誤差βに起因する偏差ΔXZS、ΔYZSをも考慮した位置誤差補正を行うため、加工面を極めて高品位とすることができる。
さらに、一旦、基準工具Tを用いて原点座標X、Y、Zを設定してやれば、交換後の工具長さLに基づいて使用原点座標X、Y、Zを新たに算出するようにしているため、工具毎に原点座標を設定する等といった煩雑な作業を必要とせず、作業効率の向上をも図ることができる。
加えて、加工点毎に直角度誤差に起因する偏差(たとえばΔXXZ)を補正するといった位置指令を行う(すなわち、Z軸と平行方向へ移動させるにも拘わらずX軸方向への補正を随時行う)ものとは異なり、たとえば図5に示す加工を行うにあたって、区間aから区間bにわたる曲面加工時にX軸方向への指令値が反転することもない。したがって、従来では当該反転時のバックラッシュやロストモーションに起因して加工面に形成されてしまっていた突起が形成されたりせず、加工面品位の更なる向上を図ることができる。
Further, not only the squareness error α between the X and Z axes, but also the deviations ΔX ZS and ΔY ZS caused by the parallelism error β between the Z axis and the spindle axis that could not be corrected by the conventional position error correction method. Therefore, the processed surface can be made extremely high quality.
Furthermore, once the origin coordinates X i , Y i , Z i are set using the reference tool T i , the used origin coordinates X p , Y p , Z p are newly set based on the tool length L c after the replacement. Therefore, a complicated operation such as setting the origin coordinates for each tool is not required, and the work efficiency can be improved.
In addition, a position command such as correcting a deviation (for example, ΔX XZ ) due to the squareness error for each machining point is performed (that is, correction in the X-axis direction is performed at any time despite moving in the direction parallel to the Z-axis). For example, when the machining shown in FIG. 5 is performed, the command value in the X-axis direction is not reversed during the curved surface machining from the section a to the section b. Therefore, the projections that have been formed on the processed surface due to backlash or lost motion during the reversal are not formed, and the quality of the processed surface can be further improved.

なお、本発明の位置誤差補正方法、及び位置誤差補正装置に係る構成は、上記実施形態に記載の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で必要に応じて適宜変更可能である。   Note that the configuration according to the position error correction method and the position error correction apparatus of the present invention is not limited to the aspect described in the above embodiment, and is appropriately selected as necessary without departing from the spirit of the present invention. It can be changed.

たとえば、上記実施形態ではZ軸座標を基準として補正量δX、δY、δZを算出するようにしているが、当然、X軸座標或いはY軸座標を基準として補正量δX、δY、δZを算出しても何ら問題はない。
また、上記実施形態では、直交する2軸間の直角度誤差に起因する偏差、及び主軸軸線と主軸の移動方向との間の平行度誤差に起因する偏差の両者を補正する構成としているが、どちらか一方の偏差のみを行うように構成しても何ら問題はない。加えて、本発明の位置誤差補正方法を、例えば、ワークを載置するためのテーブルを回転可能に備えているような5軸制御工作機械において、当該テーブルの回転軸と主軸の直進軸との平行度誤差や直角度誤差に起因する偏差の補正に適用することも可能である。但し、この場合、回転軸を割り出しての加工が前提となる。
さらに、上記実施形態では、補正量演算手段において偏差量の算出及び補正量の算出の両者を行うようにしているが、偏差量の算出と補正量の算出とを別個の演算手段が行うように構成したり、原点座標演算手段が偏差量をうけて補正量を算出するとともに使用原点座標の算出をも行うように構成しても何ら問題はない。
For example, in the above embodiment, the correction amounts δX, δY, and δZ are calculated based on the Z-axis coordinates, but naturally the correction amounts δX, δY, and δZ are calculated based on the X-axis coordinates or the Y-axis coordinates. There is no problem.
In the above embodiment, both the deviation caused by the perpendicularity error between the two orthogonal axes and the deviation caused by the parallelism error between the spindle axis and the moving direction of the spindle are corrected. There is no problem even if it is configured to perform only one of the deviations. In addition, in the position error correction method of the present invention, for example, in a 5-axis control machine tool that is rotatably provided with a table for placing a workpiece, the rotation axis of the table and the straight axis of the main shaft It is also possible to apply to correction of deviation caused by parallelism error or squareness error. However, in this case, it is premised on machining with the rotation axis determined.
Further, in the above embodiment, the correction amount calculation means performs both the calculation of the deviation amount and the correction amount. However, the calculation of the deviation amount and the calculation of the correction amount are performed by separate calculation means. There is no problem even if it is configured, or the origin coordinate calculation means calculates the correction amount by receiving the deviation amount and also calculates the use origin coordinate.

さらにまた、一度算出した使用原点座標X、Y、Zを使用工具Tに対応付けて格納手段2等へ記憶させ、次回以降における同一形状を有するワークへの工具Tによる加工に際しては、使用原点座標演算手段5が格納手段2から使用原点座標X、Y、Zを読み出すように構成することも可能である。
加えて、本発明に係る位置誤差補正装置を、図1に示す如き門形マシニングセンタ以外の工作機械に対して適用可能であることは言うまでもない。
Further, the use origin coordinates X p , Y p , Z p calculated once are stored in the storage means 2 or the like in association with the use tool T c , and the workpiece having the same shape is processed by the tool T c on and after the next time. Can also be configured such that the use origin coordinate calculation means 5 reads the use origin coordinates X p , Y p , Z p from the storage means 2.
In addition, it goes without saying that the position error correction apparatus according to the present invention is applicable to machine tools other than the portal machining center as shown in FIG.

従来、一般的に知られている工作機械の外観を示した説明図である。It is explanatory drawing which showed the external appearance of the machine tool generally known conventionally. 工作機械においてX−Z軸間に直角度誤差αXZが存在することを模式的に示した説明図である。It is explanatory drawing which showed typically that squareness error (alpha) XZ exists between XZ axes in a machine tool. 工作機械においてZ軸と主軸軸線との間のXZ平面内に平行度誤差βXZSが存在することを模式的に示した説明図である。It is explanatory drawing which showed typically that parallelism error (beta) XZS exists in the XZ plane between a Z-axis and a spindle axis in a machine tool. 位置誤差補正装置のブロック構成図である。It is a block block diagram of a position error correction apparatus. 加工の一例を示した説明図である。It is explanatory drawing which showed an example of a process.

符号の説明Explanation of symbols

1・・位置誤差補正装置、2・・格納手段、3・・工具長差演算手段、4・・補正量演算手段、5・・使用原点座標演算手段、6・・指令位置演算手段、7・・サーボアンプ、8・・サーボモータ。   1 .... Position error correction device 2 .... Storage means 3 .... Tool length difference calculation means 4 .... Correction amount calculation means 5 .... Use origin coordinate calculation means 6 .... Command position calculation means 7.・ Servo amplifier, 8. ・ Servo motor.

Claims (4)

工作機械本体に被加工物に対して相対移動可能に設けられ、且つ、工具長さの異なる工具を装着可能とされた主軸の位置誤差を補正するための位置誤差補正方法であって、
基準工具の工具長さ、及び装着された基準工具の先端座標となる原点座標を設定する第1工程と、
加工に使用する使用工具の工具長さと前記基準工具の工具長さとの工具長差を算出する第2工程と、
前記工具長差と前記工作機械本体が有する幾何学的誤差とにもとづいて偏差量を算出する第3工程と、
前記偏差量をもとに、前記使用工具の先端座標となる使用原点座標を算出する第4工程と、
前記使用原点座標を用いて前記主軸の指令位置を演算する第5工程と
を実行することを特徴とする位置誤差補正方法。
A position error correction method for correcting a position error of a spindle provided on a machine tool body so as to be relatively movable with respect to a workpiece and capable of mounting a tool having a different tool length,
A first step of setting a tool length of the reference tool and an origin coordinate serving as a tip coordinate of the mounted reference tool;
A second step of calculating a tool length difference between a tool length of a tool used for machining and a tool length of the reference tool;
A third step of calculating a deviation amount based on the tool length difference and a geometric error of the machine tool body;
A fourth step of calculating a use origin coordinate serving as a tip coordinate of the use tool based on the deviation amount;
And a fifth step of calculating a command position of the spindle using the use origin coordinates.
被加工物に対して少なくとも直交する2軸方向へ相対移動可能に設けられた主軸の位置誤差を補正するための位置誤差補正方法であって、
前記第3工程において、前記工具長差と前記直交する2軸間に生じている直角度誤差とにもとづいて偏差量を算出することを特徴とする請求項1に記載の位置誤差補正方法。
A position error correction method for correcting a position error of a spindle provided so as to be relatively movable in two axial directions orthogonal to a workpiece,
2. The position error correction method according to claim 1, wherein, in the third step, a deviation amount is calculated based on the tool length difference and a squareness error occurring between the two orthogonal axes.
被加工物に対して少なくとも主軸軸線方向へ相対移動可能に設けられた主軸の位置誤差を補正するための位置誤差補正方法であって、
前記第3工程において、前記工具長差と前記主軸軸線及び前記主軸の移動方向間に生じている平行度誤差とにもとづいて偏差量を算出することを特徴とする請求項1又は2に記載の位置誤差補正方法。
A position error correction method for correcting a position error of a spindle provided to be movable relative to a workpiece at least in the direction of the spindle axis,
3. The deviation amount according to claim 1, wherein, in the third step, a deviation amount is calculated based on the tool length difference and a parallelism error occurring between the spindle axis and the movement direction of the spindle. Position error correction method.
工作機械本体に被加工物に対して相対移動可能に設けられ、且つ、工具長さの異なる工具を装着可能とされた主軸の位置誤差を補正するための位置誤差補正装置であって、
基準工具の工具長さ、加工に使用する使用工具の工具長さ、前記主軸に装着された基準工具の先端座標となる原点座標、及び前記工作機械本体が有する幾何学的誤差を記憶する格納手段と、
前記使用工具の工具長さと前記基準工具の工具長さとから両者の工具長差を算出する工具長差演算手段と、
前記工具長差と前記幾何学的誤差とにもとづいて偏差量を算出する偏差量演算手段と、
前記偏差量をもとに、前記使用工具の先端座標となる使用原点座標を算出する使用原点座標演算手段と、
前記使用原点座標を用いて前記主軸の指令位置を演算する指令位置演算手段と
を備えることを特徴とする位置誤差補正装置。
A position error correction device for correcting a position error of a spindle that is provided in a machine tool main body so as to be movable relative to a workpiece and that can be mounted with tools having different tool lengths,
Storage means for storing a tool length of a reference tool, a tool length of a tool used for machining, an origin coordinate serving as a tip coordinate of a reference tool mounted on the spindle, and a geometric error of the machine tool body When,
Tool length difference calculating means for calculating the tool length difference between the tool length of the tool used and the tool length of the reference tool;
A deviation amount calculating means for calculating a deviation amount based on the tool length difference and the geometric error;
Based on the deviation amount, a use origin coordinate calculation means for calculating a use origin coordinate serving as a tip coordinate of the use tool;
A position error correction device comprising command position calculation means for calculating a command position of the spindle using the use origin coordinates.
JP2007321181A 2007-12-12 2007-12-12 Method and unit for correcting position error Pending JP2009146057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321181A JP2009146057A (en) 2007-12-12 2007-12-12 Method and unit for correcting position error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321181A JP2009146057A (en) 2007-12-12 2007-12-12 Method and unit for correcting position error

Publications (1)

Publication Number Publication Date
JP2009146057A true JP2009146057A (en) 2009-07-02

Family

ID=40916616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321181A Pending JP2009146057A (en) 2007-12-12 2007-12-12 Method and unit for correcting position error

Country Status (1)

Country Link
JP (1) JP2009146057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222586A1 (en) 2011-12-13 2013-06-13 Mori Seiki Co., Ltd. machine tool
KR101771840B1 (en) 2016-02-24 2017-08-25 현대위아 주식회사 Tool transfer method considering wear of tool and lathe using the same
JP2020183007A (en) * 2019-05-08 2020-11-12 Dgshape株式会社 Cutting machine and correction method
US11241766B2 (en) 2019-11-05 2022-02-08 Fanuc Corporation Numerical control apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278742A (en) * 1987-05-08 1988-11-16 Yaskawa Electric Mfg Co Ltd Tool length correction method for nc machine tool
JP2004272887A (en) * 2003-02-19 2004-09-30 Fanuc Ltd Numerical control unit and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278742A (en) * 1987-05-08 1988-11-16 Yaskawa Electric Mfg Co Ltd Tool length correction method for nc machine tool
JP2004272887A (en) * 2003-02-19 2004-09-30 Fanuc Ltd Numerical control unit and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222586A1 (en) 2011-12-13 2013-06-13 Mori Seiki Co., Ltd. machine tool
US8682456B2 (en) 2011-12-13 2014-03-25 Mori Seiki Co., Ltd. Machine tool
KR101771840B1 (en) 2016-02-24 2017-08-25 현대위아 주식회사 Tool transfer method considering wear of tool and lathe using the same
JP2020183007A (en) * 2019-05-08 2020-11-12 Dgshape株式会社 Cutting machine and correction method
JP7316090B2 (en) 2019-05-08 2023-07-27 Dgshape株式会社 Cutting machine and compensation method
US11241766B2 (en) 2019-11-05 2022-02-08 Fanuc Corporation Numerical control apparatus

Similar Documents

Publication Publication Date Title
JP5789114B2 (en) Correction value calculation method and program for machine tool
JP5037704B2 (en) Numerical control device with work placement error correction unit for 3-axis processing machine
JP5105024B2 (en) Numerical controller
US9411330B2 (en) Numerical control device
JP2017204072A (en) Process program processing device and multiple spindle processor having the same
JP2008269316A (en) Numerical control machine tool and numerical control device
JP2009093269A (en) Numerical controller having workpiece setting error compensation means
JP2007168013A (en) Tool knife edge position computing method and machine tool
WO2012056554A1 (en) Tool path generation method and tool path generation device
JP5713764B2 (en) Correction value calculation method and program for machine tool
JP5413913B2 (en) Non-circular machining method by turning
JP2005071016A (en) Numerical control device
JP2009146057A (en) Method and unit for correcting position error
US10452051B2 (en) Numerical control device
JPH06143019A (en) Controller of crankshaft mirror
US20210331261A1 (en) Gear machining apparatus
US20140364993A1 (en) Control method for machine tool
JP6184363B2 (en) Method and apparatus for controlling machine tool
JP6467208B2 (en) NC machine tool, its circular or spherical machining method and machining program
JP2012220999A (en) Correction value operation method and program of machine tool
JP2016038674A (en) Correction value computing method and correction value computing program for machine tool
JP2012033203A (en) Numerical control machine tool
JP6623061B2 (en) Machine tool and control method of machine tool
JP6587842B2 (en) Curved cutting device
JP5266020B2 (en) Machine tool and error correction method in machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A131 Notification of reasons for refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02