JP2017011194A - Printed wiring board for additive method - Google Patents

Printed wiring board for additive method Download PDF

Info

Publication number
JP2017011194A
JP2017011194A JP2015127311A JP2015127311A JP2017011194A JP 2017011194 A JP2017011194 A JP 2017011194A JP 2015127311 A JP2015127311 A JP 2015127311A JP 2015127311 A JP2015127311 A JP 2015127311A JP 2017011194 A JP2017011194 A JP 2017011194A
Authority
JP
Japan
Prior art keywords
layer
thermosetting resin
printed wiring
wiring board
additive method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015127311A
Other languages
Japanese (ja)
Inventor
登坂 祐治
Yuji Tosaka
祐治 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015127311A priority Critical patent/JP2017011194A/en
Publication of JP2017011194A publication Critical patent/JP2017011194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board for additive method in which adhesion force is good between an inner copper foil layer and an outer thermosetting resin layer, by blocking penetration of oxygen in the outdoor air by means of an outermost oxygen barrier layer, when hardening the outer thermosetting resin layer in the air atmosphere.SOLUTION: A printed wiring board for additive method is manufactured by hardening the thermosetting resin of an outer layer, in a state where an inner copper foil layer, subjected to adhesion under air atmosphere, is not oxydized. The thermosetting resin of an outer layer has a thickness of 100 μm or less. In order to bring about a state where the inner copper foil layer is not oxydized, an oxygen barrier film is formed on the surface of the thermosetting resin of an outer layer.SELECTED DRAWING: None

Description

本発明は、アディティブ工法用プリント配線板に関する。   The present invention relates to a printed wiring board for an additive method.

日常生活は簡便化、効率化、省力化の点から身の周りの品々が電子化されている。それに使用されている電子部品は使用上の点から軽量・小型化が必要になる。そのため、使用されているプリント配線板も薄型,小型化され、配線の細密化、絶縁層厚みの薄型化が進められている。   In everyday life, everyday items are digitized from the viewpoint of simplicity, efficiency, and labor saving. The electronic parts used for it need to be light and small in terms of usage. For this reason, printed wiring boards used have also been made thinner and smaller, and finer wiring and thinner insulating layers have been promoted.

これらの要求を満たすため、ガラスクロスなどの骨材を使用せず、金属箔に直接熱硬化性樹脂を塗布し、熱硬化性樹脂に内層回路充填と絶縁層の機能を兼用させたり、熱硬化性樹脂層のみを外層に形成し、外層回路をアディティブ工法により形成することにより製造されている。   In order to meet these requirements, without using glass cloth or other aggregates, thermosetting resin is applied directly to the metal foil, and the inner layer circuit filling and the insulating layer function are combined in the thermosetting resin, or thermosetting is performed. It is manufactured by forming only the functional resin layer on the outer layer and forming the outer layer circuit by the additive method.

銅箔に熱硬化性樹脂を塗布した接着剤付き銅箔を、内層基板に接着し多層化する方法として、積層プレス法で加圧・加熱による接着・熱硬化を同時にする工法や、ロールラミネータを用いて接着後に乾燥機等で熱硬化する工法があるが(特許文献1)、アディティブ工法用の熱硬化性樹脂フィルムを使用した工法は、作業性や揮発分の点から、ロールラミネートでの接着と乾燥機等での加熱の2段階に分けて使用されるのが主流である(特許文献2)。   Adhesive copper foil coated with a thermosetting resin on copper foil is bonded to the inner layer substrate to create a multilayer structure, using a laminating press method with simultaneous pressure and heating adhesion and heat curing, or a roll laminator. There is a construction method that uses the thermosetting resin film for the additive construction method, but the construction method using the thermosetting resin film for the additive construction method is the adhesion by roll laminating from the point of workability and volatile matter. It is the mainstream that is divided into two stages of heating in a dryer or the like (Patent Document 2).

特開平8−315651号公報JP-A-8-315651 特開2004−137478号公報JP 2004-137478 A

一般的な積層プレス工法による多層化では、真空雰囲気下又は金属の鏡板、外層金属箔若しくは有機フィルムで表面を覆って加熱・加圧するため、内層銅箔層の表面の酸化は少ない。その後、外層金属箔を剥離しリフロー等で高温化しても、熱硬化樹脂層が硬化しているため、内層銅箔層の表面は保護される。しかし、アディティブ工法では、内層銅箔層上にはラミネートした未硬化の熱硬化性樹脂層しかないため、空気雰囲気下の加熱では未硬化の熱硬化性樹脂層を透過した酸素により、内層銅箔層の表面が酸化してしまう。   In multilayering by a general lamination press method, the surface of the inner copper foil layer is hardly oxidized because the surface is heated and pressed under a vacuum atmosphere or with a metal end plate, outer layer metal foil or organic film. Thereafter, even if the outer layer metal foil is peeled off and the temperature is increased by reflow or the like, the surface of the inner layer copper foil layer is protected because the thermosetting resin layer is cured. However, in the additive method, since there is only an uncured thermosetting resin layer laminated on the inner copper foil layer, the inner layer copper foil is heated by oxygen that has passed through the uncured thermosetting resin layer when heated in an air atmosphere. The surface of the layer is oxidized.

近年、絶縁樹脂層の薄層化によって、内層銅箔層の表面の酸化がより顕著になっている。また、使用する熱硬化性樹脂のガラス転移点を高くするために硬化温度も高くなっているため、より拍車がかかっている。内層銅箔層の表面が酸化すると、電圧印加時にイオンとして溶出し易くなったり、銅の酸化・還元反応による体積変化等で熱硬化性樹脂との密着性が低下し、加熱処理の際にふくれなどの不具合が発生し易くなる。   In recent years, the oxidation of the surface of the inner copper foil layer has become more prominent due to the thinning of the insulating resin layer. Moreover, since the curing temperature is also increased in order to increase the glass transition point of the thermosetting resin to be used, it is further spurred. When the surface of the inner copper foil layer is oxidized, it becomes easier to elute as ions when voltage is applied, or the adhesiveness with the thermosetting resin decreases due to volume change due to copper oxidation / reduction reaction, etc. It is easy for problems such as these to occur.

そのため、乾燥機の中を窒素で置換した窒素雰囲気下での乾燥が望ましいが、多量の窒素が必要でコストがかかったり、揮発した成分がタール化して不良の原因となったり、窒息の危険性から、トラブルが発生した時に換気を行ってからでないと、トラブルに対応できないといった問題がある。   Therefore, it is desirable to dry in a nitrogen atmosphere where the inside of the dryer is replaced with nitrogen. However, a large amount of nitrogen is required, which is costly, the volatilized components become tar and cause defects, and the danger of suffocation Therefore, there is a problem that the trouble cannot be dealt with unless ventilation is performed when trouble occurs.

すなわち本発明は、外層の熱硬化性樹脂層を空気雰囲気下で硬化する際に、最外層に配置した酸素バリア層により外気の酸素の進入を阻害し、内層銅箔層の表面の酸化を防止することで、内層銅箔層と外層の熱硬化性樹脂層との密着力のよいアディティブ工法用プリント配線板を提供するものである。   That is, according to the present invention, when the outer thermosetting resin layer is cured in an air atmosphere, the oxygen barrier layer disposed in the outermost layer inhibits the entry of oxygen from the outside air and prevents the surface of the inner copper foil layer from being oxidized. By doing this, the printed wiring board for an additive method with good adhesion between the inner copper foil layer and the outer thermosetting resin layer is provided.

本発明は、以下に関するものである。
1. 空気雰囲気下で密着処理された内層銅箔層を酸化させない状態で、外層の熱硬化性樹脂を硬化させたことを特徴とするアディティブ工法用プリント配線板。
2. 項1に記載の外層の熱硬化性樹脂の厚みが100μm以下であることを特徴とするアディティブ工法用プリント配線板。
3. 項1に記載の内層銅箔層を酸化させない状態とするために、外層の熱硬化性樹脂表面に酸素バリアフィルムを形成させたことを特徴とするアディティブ工法用プリント配線板。
The present invention relates to the following.
1. A printed wiring board for an additive method, wherein a thermosetting resin of an outer layer is cured without oxidizing an inner layer copper foil layer subjected to adhesion treatment in an air atmosphere.
2. Item 2. The printed wiring board for an additive method, wherein the thickness of the thermosetting resin of the outer layer according to Item 1 is 100 μm or less.
3. A printed wiring board for an additive method, wherein an oxygen barrier film is formed on a thermosetting resin surface of an outer layer in order to prevent the inner copper foil layer according to Item 1 from being oxidized.

本発明によれば、外層の熱硬化性樹脂層を空気雰囲気下で硬化する際に、最外層に配置した酸素バリア層により外気の酸素の進入を阻害し、内層銅箔層の表面の酸化を防止することで、内層銅箔層と外層の熱硬化性樹脂層との密着力のよいアディティブ工法用プリント配線板を提供することができる。   According to the present invention, when the thermosetting resin layer of the outer layer is cured in an air atmosphere, the oxygen barrier layer disposed in the outermost layer inhibits the entry of oxygen from the outside air and oxidizes the surface of the inner copper foil layer. By preventing this, it is possible to provide a printed wiring board for an additive method having good adhesion between the inner copper foil layer and the outer thermosetting resin layer.

以下本発明の詳細を説明する。
使用する熱硬化性樹脂は、例えば、フェノール樹脂、尿素樹脂、フラン樹脂、エポキシ樹脂が挙げられる。要求される特性に応じて、可とう性やじん性、伸び性等の付与を目的に、ポリイミド、ポリアミドイミド、ポリアセタール、ポリフェニレンエーテル、フェノキシ等の熱可塑性樹脂を単独又は混合して配合してもよい。また、増量、又は熱膨張量、応力緩和、硬度、熱伝導、レーザ加工性、メカニカルドリル加工性等を向上させるために、シリカ、アルミナ、水酸化アルミニウム、タルク等の無機充填材や、架橋ゴム粒子等の有機充填材、蛍光材などの添加剤を加えてもよい。
Details of the present invention will be described below.
Examples of the thermosetting resin to be used include phenol resin, urea resin, furan resin, and epoxy resin. Depending on the required properties, thermoplastic resins such as polyimide, polyamideimide, polyacetal, polyphenylene ether, phenoxy, etc. may be used alone or in combination for the purpose of imparting flexibility, toughness, extensibility, etc. . In addition, in order to improve the increase amount or thermal expansion amount, stress relaxation, hardness, heat conduction, laser workability, mechanical drill workability, etc., inorganic fillers such as silica, alumina, aluminum hydroxide and talc, and crosslinked rubber You may add additives, such as organic fillers, such as particle | grains, and a fluorescent material.

絶縁樹脂に難燃性が必要とされる場合は、使用する熱硬化性樹脂にハロゲン化エポキシ樹脂を配合する。また、ハロゲン化エポキシ樹脂を添加せずに難燃性を満足させるために、テトラブロモビスフェノールA、デカブロモジフェニルエーテル、酸化アンチモン、テトラフェニルフォスフィン、有機リン化合物、酸化亜鉛等の一般に難燃剤、難燃助剤といわれる化合物を、特性が著しく低下しない範囲で添加してよい。   When flame resistance is required for the insulating resin, a halogenated epoxy resin is added to the thermosetting resin to be used. In addition, in order to satisfy flame retardancy without adding halogenated epoxy resin, generally flame retardants such as tetrabromobisphenol A, decabromodiphenyl ether, antimony oxide, tetraphenylphosphine, organophosphorus compounds, zinc oxide, You may add the compound called a combustion aid in the range by which a characteristic does not fall remarkably.

硬化剤としては、アミン化合物(例えば、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン等の脂肪族アミンや、メタフェニレンジアミン、4,4´−ジアミノジフェニルメタン等の芳香族アミン)、酸無水物(例えば、無水フタル酸、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等)、3フッ化ホウ素モノエチルアミン、イソシアネート、ジシアンジアミド、レゾール型フェノール樹脂、ユリア樹脂等がある。
これらの硬化剤は、単独でも併用でもよく、配合量は、エポキシ樹脂のエポキシ当量1に対して、硬化剤の反応基当量比が0.3〜1.5当量であるのが、熱硬化樹脂の樹脂硬化度制御に良好である。
Examples of the curing agent include amine compounds (for example, aliphatic amines such as triethylenetetramine, tetraethylenepentamine, and diethylaminopropylamine, and aromatic amines such as metaphenylenediamine and 4,4′-diaminodiphenylmethane), acid anhydrides. (For example, phthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc.) include boron trifluoride monoethylamine, isocyanate, dicyandiamide, resol type phenol resin, urea resin, and the like.
These curing agents may be used singly or in combination, and the compounding amount is 0.3 to 1.5 equivalents of the reactive group equivalent ratio of the curing agent to the epoxy equivalent 1 of the epoxy resin. It is good for controlling the degree of resin curing.

硬化促進剤としては、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が使用されるが、第2級アミノ基をアクリロニトリル、イソシアネート、メラミン、アクリレート等でマスク化して潜在性を持たせたイミダゾール化合物を用いてもよい。   As the curing accelerator, imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts, etc. are used, but the secondary amino group is masked with acrylonitrile, isocyanate, melamine, acrylate, etc. An imidazole compound provided with may be used.

ここで用いられるイミダゾール化合物としてイミダゾール、2−メチルイミダゾール、4−エチル−2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ヘプタデシルイミダゾール、4,5−ジフェニルイミダゾール、2−メチルイミダゾリン、2−エチル−4−メチルイミダゾリン、2−ウンデシルイミダゾリン、2−フェニル−4−メチルイミダゾリン等がある。   As imidazole compounds used here, imidazole, 2-methylimidazole, 4-ethyl-2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2-heptadecylimidazole, 4 , 5-diphenylimidazole, 2-methylimidazoline, 2-ethyl-4-methylimidazoline, 2-undecylimidazoline, 2-phenyl-4-methylimidazoline, and the like.

また、光分解によりラジカルやアニオン、カチオンを生成し硬化開始する光開始剤を使用しても良い。これらの硬化促進剤は単独でも併用でもよく、配合量はエポキシ樹脂100質量部に対して0.01〜20質量部が好ましい。0.01質量部未満では効果が小さく、20質量部を超える場合は熱硬化性樹脂の保存性や硬化物の物性が悪化したり、また価格が高くなるためである。   Moreover, you may use the photoinitiator which produces | generates a radical, an anion, and a cation by photolysis, and starts hardening. These curing accelerators may be used alone or in combination, and the blending amount is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin. If the amount is less than 0.01 parts by mass, the effect is small, and if it exceeds 20 parts by mass, the preservability of the thermosetting resin and the physical properties of the cured product deteriorate, and the price increases.

充填材の分散性の向上や接着力の向上をはかるために、カップリング剤を添加してもよい。カップリング剤としては、ビニルトリクロルシランやビニルトリエトキシシランのようなビニル官能基を有するもの、3−グリシドキシプロピルトリメトキシシランや2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能基を有するもの、3−アミノプロピルトリメトキシシランやN−2(アミノエチル)3−アミノプロピルトリエトキシシラン等のアミノ官能基を有するシラン系カップリング剤、シランの部分がチタネートに置き換わったチタネート系カップリング剤などが挙げられる。これらカップリング剤は単独もしくは併用して良い。添加量は充填材等を含む熱硬化性樹脂の固形分に対して0.01〜5質量部が好ましい。0.01質量部未満では骨材表面や充填材の表面を覆うのに不足十分で効果が少なく、5質量部を超える場合は効果が飽和してくるためである。   In order to improve the dispersibility of the filler and the adhesive strength, a coupling agent may be added. Coupling agents include those having a vinyl functional group such as vinyltrichlorosilane and vinyltriethoxysilane, and epoxy such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Titanates having functional groups, silane coupling agents having amino functional groups such as 3-aminopropyltrimethoxysilane and N-2 (aminoethyl) 3-aminopropyltriethoxysilane, and titanates in which the silane portion is replaced with titanates And a coupling agent. These coupling agents may be used alone or in combination. The addition amount is preferably 0.01 to 5 parts by mass with respect to the solid content of the thermosetting resin including the filler. If the amount is less than 0.01 part by mass, the effect is insufficient to cover the surface of the aggregate and the surface of the filler, and if the amount exceeds 5 parts by mass, the effect is saturated.

これらの材料を溶剤に溶解・分散させる。溶剤としては、アセトン、ブタノン、トルエン、キシレン、シクロヘキサノン、4メチル2ペンタノン、酢酸エチル、エチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等があり、単独もしくは併用して使用してよい。また、特性上問題なければ、粉末状にした上記材料を混合し鹸濁化等による水溶液化でもよい。   These materials are dissolved and dispersed in a solvent. Solvents include acetone, butanone, toluene, xylene, cyclohexanone, 4methyl 2-pentanone, ethyl acetate, ethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, N, N -Dimethylformamide, N, N-dimethylacetamide and the like may be used alone or in combination. If there is no problem in characteristics, the above-mentioned material in powder form may be mixed and made into an aqueous solution by saponification or the like.

上記の配合で得られた熱硬化性樹脂組成物を、キャリアフィルムに塗布し、不要な溶剤を除去させる。この際、貼り付け時に作業性が良い樹脂の粘度になるように熱硬化させるのが好ましい。   The thermosetting resin composition obtained by the above blending is applied to a carrier film, and unnecessary solvent is removed. At this time, it is preferable to perform thermosetting so that the viscosity of the resin has good workability at the time of pasting.

熱硬化性樹脂組成物中に骨材として繊維状物質を添加してもよい。骨材としてガラスクロス等の無機繊維基材やアラミド、セルロース等を単体、もしくは混合使用した織布、不織布が挙げられる。   A fibrous substance may be added as an aggregate in the thermosetting resin composition. Examples of the aggregate include inorganic fiber base materials such as glass cloth, woven fabrics and non-woven fabrics using aramid, cellulose and the like alone or in combination.

また、熱硬化性樹脂組成物を塗布したキャリアフィルムの裏面へ接着しないように離型性を有したフィルムで挟んでサンドウィッチ状にするか、キャリアフィルムの裏面を強離型処理しておくと、フィルムを巻き付けて作業するのに行い易い。   Moreover, when sandwiched between films having releasability so as not to adhere to the back surface of the carrier film coated with the thermosetting resin composition, or when the back surface of the carrier film is subjected to strong release treatment, Easy to work with film wrapped.

このキャリアフィルムとしては、PET、OPP、ポリエチレン、ポリビニルフルオレート等の有機フィルム又は銅、アルミニウム、及びこれら金属の合金等の金属フィルム、これら金属フィルムの表面に離型剤で離型処理を行った金属フィルムなどが挙げられる。   As the carrier film, an organic film such as PET, OPP, polyethylene, polyvinyl fluorate or the like, or a metal film such as copper, aluminum, and an alloy of these metals, and the surface of these metal films were subjected to a release treatment with a release agent. A metal film etc. are mentioned.

熱硬化性樹脂組成物を塗布したキャリアフィルムを内層基板にラミネートし熱硬化をおこなう。内層基板の回路表面(内層銅箔層の表面)には、密着性を良くするため、銅表面に対して用いられる密着処理を行う。密着処理としては、化学的粗化処理で銅の酸化・還元皮膜を形成したり、結晶粒界を利用して凹凸を形成したり、異金属による処理等が挙げられる。   The carrier film to which the thermosetting resin composition is applied is laminated on the inner layer substrate, and thermosetting is performed. In order to improve the adhesion to the circuit surface of the inner layer substrate (the surface of the inner layer copper foil layer), the adhesion treatment used for the copper surface is performed. Examples of the adhesion treatment include forming a copper oxidation / reduction film by chemical roughening, forming irregularities using crystal grain boundaries, and treating with a different metal.

熱硬化性樹脂組成物を塗布したキャリアフィルムを、そのまま乾燥機で酸素バリアフィルムとして使用しても良いし、キャリアフィルムの酸素バリア能力で不足なら、ラミネート後に一度キャリアフィルムを剥がし、別のフィルムを表面に貼りなおして乾燥する。酸素バリアの能力は、酸素透過係数で考えることができ、酸素透過係数が大きい物もフィルム厚みを厚くすることで実質透過量を軽減できる。   The carrier film coated with the thermosetting resin composition may be used as it is as an oxygen barrier film in a dryer, or if the carrier film has insufficient oxygen barrier capability, the carrier film is peeled off once after lamination and another film is attached. Reattach to the surface and dry. The ability of the oxygen barrier can be considered in terms of an oxygen permeability coefficient, and even a material having a large oxygen permeability coefficient can reduce the substantial permeation amount by increasing the film thickness.

この熱硬化性樹脂の硬化を乾燥機等の加熱装置で行うが、通常の工法においては、空気雰囲気下では未硬化の熱硬化性樹脂を通過した空気中の酸素により、内層銅箔層の表面が酸化等で劣化されてしまう。しかし、本実施の形態においては、未硬化の熱硬化性樹脂層の外側に、酸素の侵入を阻害する酸素バリアフィルム層を形成してあるため、内層銅箔層の表面が酸化により劣化しない。   This thermosetting resin is cured by a heating device such as a dryer. In a normal construction method, the surface of the inner copper foil layer is formed by oxygen in the air that has passed through the uncured thermosetting resin in an air atmosphere. Will deteriorate due to oxidation or the like. However, in this embodiment, since the oxygen barrier film layer that inhibits the entry of oxygen is formed outside the uncured thermosetting resin layer, the surface of the inner copper foil layer does not deteriorate due to oxidation.

乾燥後、キャリアフィルムを剥がして次の工程に進むが、レーザ加工やNCメカニカルドリル等の機械加工を行う際に、表面樹脂の傷除けとして、キャリアフィルムをつけたまま加工を行い、デスミア処理等の直前まで貼っていてもよい。その後、デスミア、無電解前処理、無電解銅めっき、電気銅めっき等の工程により、外層に導体層を形成し、内層回路との接続を行った後、外層回路の形成を行いプリント配線とする。   After drying, the carrier film is peeled off and the process proceeds to the next process, but when machining such as laser processing or NC mechanical drill, processing is performed with the carrier film attached as a surface resin scratch remover, desmear treatment, etc. It may be pasted up to just before. After that, a conductor layer is formed on the outer layer by a process such as desmear, electroless pretreatment, electroless copper plating, electrolytic copper plating, etc., and after connection with the inner layer circuit, the outer layer circuit is formed and printed wiring is obtained. .

(実施例1)
以下のようにして熱硬化性樹脂ワニスAを作製した。
まず、エポキシ樹脂NC−3000(ビフェニルアラルキル型エポキシ樹脂、日本化薬株式会社製、商品名)50質量部、硬化剤KA−1165(クレゾールノボラック樹脂、DIC株式会社製、商品名)20質量部、有機充填材BPAM−155(フェノール性水酸基含有ポリアミド、日本化薬株式会社製、商品名)18質量部を、N,N−ジメチルアセトアミド(DMAc)30質量部で溶解した。
次に、硬化促進剤2PZ−CN(シアノマスク 2−フェニルイミダゾール、四国化成工業株式会社製、商品名)0.5質量部を加えた。
次に、これをDMAc、ブタノン(MEK)各140質量部を添加し希釈した。
次に、充填材アエロジル(R202、日本アエロジル株式会社製、「アエロジル」は登録商標。)5質量部を加え撹拌した。
次に、充填材の分散性を向上させるため、ナノマイザー分散機(吉田機械興業株式会社製)で分散させ、不揮発分約25質量%の熱硬化性樹脂ワニスAを得た。
Example 1
A thermosetting resin varnish A was produced as follows.
First, epoxy resin NC-3000 (biphenyl aralkyl type epoxy resin, Nippon Kayaku Co., Ltd., trade name) 50 parts by mass, curing agent KA-1165 (cresol novolac resin, DIC Corporation, trade name) 20 parts by mass, 18 parts by mass of organic filler BPAM-155 (phenolic hydroxyl group-containing polyamide, manufactured by Nippon Kayaku Co., Ltd., trade name) was dissolved in 30 parts by mass of N, N-dimethylacetamide (DMAc).
Next, 0.5 mass part of hardening accelerator 2PZ-CN (cyano mask 2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd. make, brand name) was added.
Next, 140 parts by mass of DMAc and butanone (MEK) were added and diluted.
Next, 5 parts by mass of filler Aerosil (R202, manufactured by Nippon Aerosil Co., Ltd., “Aerosil” is a registered trademark) was added and stirred.
Next, in order to improve the dispersibility of the filler, it was dispersed with a nanomizer disperser (manufactured by Yoshida Kikai Kogyo Co., Ltd.) to obtain a thermosetting resin varnish A having a nonvolatile content of about 25% by mass.

以下を用いて熱硬化性樹脂ワニスBを作製した。
まず、エポキシ樹脂N−673−80M(ノボラック型エポキシ樹脂、DIC株式会社製、商品名)125質量部、ビスマレイミドBMI−2300(大和化成株式会社製、商品名)115質量部、p−アミノフェノール110質量部、2−メトキシエタノール45質量部を、125±3℃で2時間反応させた後、冷却しMEKで希釈して固形分65質量%のビスマレイミド変性エポキシ樹脂を得た。
次に、ビスマレイミド変性エポキシ樹脂:190質量部、硬化剤LA−3018−50P(フェノールノボラック樹脂、DIC株式会社製):10質量部、リン系難燃剤HCA−HQ(三光株式会社製、商品名):40質量部、シランカップリング処理シリカSC−2050(株式会社アドマテックス製、商品名):155質量部、硬化促進剤キュアゾール2PZ−CN(1−シアノエチル−2−フェニルイミダゾール、四国化成工業株式会社製、商品名、「キュアゾール」は登録商標。)0.5質量部に、MEK100質量部を添加し溶解し分散した。
次に、充填材の分散性を向上させるため、ナノマイザー分散機で分散させ、不揮発分約65質量%の熱硬化性樹脂ワニスBを得た。
A thermosetting resin varnish B was prepared using the following.
First, 125 parts by mass of epoxy resin N-673-80M (Novolac type epoxy resin, manufactured by DIC Corporation, trade name), 115 parts by mass of bismaleimide BMI-2300 (trade name, manufactured by Daiwa Kasei Co., Ltd.), p-aminophenol 110 parts by mass and 45 parts by mass of 2-methoxyethanol were reacted at 125 ± 3 ° C. for 2 hours, then cooled and diluted with MEK to obtain a bismaleimide-modified epoxy resin having a solid content of 65% by mass.
Next, bismaleimide-modified epoxy resin: 190 parts by mass, curing agent LA-3018-50P (phenol novolac resin, manufactured by DIC Corporation): 10 parts by mass, phosphorus flame retardant HCA-HQ (trade name, manufactured by Sanko Co., Ltd.) ): 40 parts by mass, silane coupling treated silica SC-2050 (manufactured by Admatechs Co., Ltd., trade name): 155 parts by mass, curing accelerator Curezol 2PZ-CN (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd.) 100 parts by mass of MEK was added to 0.5 parts by mass and dissolved and dispersed.
Next, in order to improve the dispersibility of the filler, it was dispersed with a nanomizer disperser to obtain a thermosetting resin varnish B having a nonvolatile content of about 65% by mass.

次に、熱硬化性樹脂ワニスAを560mm幅の離型処理アルミ箔(セパニウム20B2C、東洋アルミ千葉株式会社製、商品名、「セパニウム」は登録商標。)の離型処理面に塗布した。熱硬化性樹脂Aの塗布量は、乾燥後の熱硬化性樹脂A層の厚みで3μmであるように調整した。   Next, the thermosetting resin varnish A was applied to a release-treated surface of a release-treated aluminum foil having a width of 560 mm (Seponium 20B2C, manufactured by Toyo Aluminum Chiba Co., Ltd., trade name, “Seponium” is a registered trademark). The coating amount of the thermosetting resin A was adjusted so that the thickness of the thermosetting resin A layer after drying was 3 μm.

次に、熱硬化性樹脂Aの上に熱硬化性樹脂ワニスBを、乾燥後の熱硬化性樹脂B層の厚みで37μmになるように塗布した。加熱する熱量は、樹脂流れ測定(IPC−TM−650 2.3.17)で15%になるように調整した。以上のようにして、熱硬化性絶縁シート(1)を作製した。   Next, the thermosetting resin varnish B was applied on the thermosetting resin A so that the thickness of the dried thermosetting resin B layer was 37 μm. The amount of heat to be heated was adjusted to 15% by resin flow measurement (IPC-TM-650 2.3.17). The thermosetting insulating sheet (1) was produced as described above.

銅張り積層板MCL−E−679F(FR−4材、日立化成株式会社製、商品名、「MCL」は登録商標。)、板厚0.4mm、銅箔厚18μmの表面に対して、内層銅密着処理を行った。この内層銅密着処理としては、酸化還元処理であるBF処理(日立化成株式会社製、商品名)を行った。次に、熱硬化性絶縁シート(1)を内層銅密着処理を行った内層銅箔の表面に配置し、真空ラミネータMVL P500(名機株式会社製、商品名)で130℃、1分間の加熱加圧により接着した。   Copper clad laminate MCL-E-679F (FR-4 material, manufactured by Hitachi Chemical Co., Ltd., trade name, “MCL” is a registered trademark), with a plate thickness of 0.4 mm and a copper foil thickness of 18 μm on the inner layer Copper adhesion treatment was performed. As this inner layer copper adhesion treatment, BF treatment (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a redox treatment, was performed. Next, the thermosetting insulating sheet (1) is arranged on the surface of the inner layer copper foil subjected to the inner layer copper adhesion treatment, and heated at 130 ° C. for 1 minute with a vacuum laminator MVL P500 (trade name, manufactured by Meiki Co., Ltd.). Bonded by pressing.

接着後、熱風乾燥機で180℃、1時間の加熱処理を行ない、デスミア処理前の樹脂硬化を行った。以上のようにして、アディティブ工法用プリント配線板を作製した。   After bonding, heat treatment was performed at 180 ° C. for 1 hour with a hot air dryer to cure the resin before desmear treatment. As described above, a printed wiring board for an additive method was produced.

硬化後、離形処理アルミ箔を剥離し、レーザ穴あけ実施後、デスミア処理、めっき、エッチング等を行い、アディティブ工法で最外層の銅層(理論値厚さ20μm)を形成し、4層のプリント配線板とした。   After curing, the release-treated aluminum foil is peeled off, laser drilling is performed, desmearing, plating, etching, etc. are performed, and the outermost copper layer (theoretical thickness: 20 μm) is formed by an additive method. A wiring board was used.

(実施例2)
実施例1の熱硬化性樹脂ワニスA及びBを使用して塗工を行った。
熱硬化性樹脂ワニスAを560mm幅の離型処理ポリエチレンテレフタレート(PET)フィルムPET−38X(リンテック株式会社製、商品名)の離型処理面に塗布した。熱硬化性樹脂Aの塗布量は、乾燥後の熱硬化性樹脂A層の厚みで3μmであるように調整した。
(Example 2)
Coating was performed using the thermosetting resin varnishes A and B of Example 1.
Thermosetting resin varnish A was applied to a release-treated surface of a release-treated polyethylene terephthalate (PET) film PET-38X (trade name, manufactured by Lintec Corporation) having a width of 560 mm. The coating amount of the thermosetting resin A was adjusted so that the thickness of the thermosetting resin A layer after drying was 3 μm.

次に、熱硬化性樹脂Aの上に熱硬化性樹脂ワニスBを、乾燥後の熱硬化性樹脂B層の厚みで15μmになるように塗布した。加熱する熱量は、樹脂流れ測定で8%になるように調整した。以上のようにして、熱硬化性絶縁シート(2)を作製した。   Next, the thermosetting resin varnish B was applied onto the thermosetting resin A so that the thickness of the dried thermosetting resin B layer was 15 μm. The amount of heat to be heated was adjusted to 8% by resin flow measurement. As described above, a thermosetting insulating sheet (2) was produced.

次に、PETの離型処理面に熱硬化性樹脂ワニスBを、乾燥後の熱硬化性樹脂B層の厚みで20μmになるように塗布した。加熱する熱量は、樹脂流れ測定で12%になるように調整した。使用したPETは、酸素透過係数が69cc・20μ/m2・day・atm (25℃50%RH ASTM D1434−66)のものである。以上のようにして、熱硬化性絶縁シート(3)を作製した。   Next, the thermosetting resin varnish B was applied to the release treatment surface of PET so that the thickness of the dried thermosetting resin B layer was 20 μm. The amount of heat to be heated was adjusted to 12% by resin flow measurement. The PET used has an oxygen permeability coefficient of 69 cc · 20 μ / m 2 · day · atm (25 ° C., 50% RH ASTM D1434-66). A thermosetting insulating sheet (3) was produced as described above.

次に、IPCStyle1017のガラスクロスE01Z SK(ユニチカ株式会社製、商品名)の両面に、前述の熱硬化性絶縁シート(2)と熱硬化性絶縁シート(3)を配置し、加熱ロール温度(130℃、線圧4kgf/m)で加熱ラミネートし、ガラスクロスに樹脂を含浸させてガラスクロス入り熱硬化性樹脂シート(4)を作製した。   Next, the thermosetting insulating sheet (2) and the thermosetting insulating sheet (3) described above are arranged on both surfaces of the IPCSstyle 1017 glass cloth E01Z SK (trade name, manufactured by Unitika Ltd.), and the heating roll temperature (130 A glass cloth-containing thermosetting resin sheet (4) was produced by heating and laminating at a temperature of 4 ° C. and a linear pressure of 4 kgf / m) and impregnating the glass cloth with a resin.

次に、このガラスクロス入り熱硬化性樹脂シート(4)の両面にあるPETフィルムのうち、熱硬化性絶縁シート(3)由来のPETフィルムを剥がし、これを内側に向け、内層基板に接着した。   Next, among the PET films on both surfaces of the glass cloth-containing thermosetting resin sheet (4), the PET film derived from the thermosetting insulating sheet (3) was peeled off, and this was directed inward and adhered to the inner layer substrate. .

次に、銅張り積層板MCL−E−679F(FR−4材、日立化成株式会社製、商品名)、板厚0.4mm、銅箔厚18μmの表面に対して、内層銅密着処理を行った。この内層銅密着処理としては、化学的粗化処理であるCZ−8101処理(メック株式会社製、商品名)を行い、熱硬化性絶縁シート(1)を内層層密着処理を行った内層銅箔の表面に配置し、真空ラミネータMVL P500(名機株式会社製、商品名)で130℃、1分間の加熱加圧により接着した。   Next, an inner layer copper adhesion treatment is performed on the surface of the copper clad laminate MCL-E-679F (FR-4 material, manufactured by Hitachi Chemical Co., Ltd., trade name), 0.4 mm thick, and 18 μm thick copper foil. It was. As this inner layer copper adhesion treatment, a CZ-8101 treatment (trade name, manufactured by MEC Co., Ltd.), which is a chemical roughening treatment, was performed, and the inner layer copper foil obtained by subjecting the thermosetting insulating sheet (1) to the inner layer adhesion treatment. And bonded by heating and pressing at 130 ° C. for 1 minute with a vacuum laminator MVL P500 (trade name, manufactured by Meiki Co., Ltd.).

接着後、熱風乾燥機で130℃で20分間及び180℃で50分間の加熱処理を行ない、デスミア処理前の樹脂硬化を行った。以上のようにして、アディティブ工法用プリント配線板を作製した。   After bonding, heat treatment was performed at 130 ° C. for 20 minutes and at 180 ° C. for 50 minutes with a hot air drier to cure the resin before desmear treatment. As described above, a printed wiring board for an additive method was produced.

硬化後、必要部にレーザ穴あけを実施し、外層のPETフィルムを剥離後、デスミア処理、めっき、エッチング等を行い、アディティブ工法で最外層の銅層(理論値厚さ20μm)を形成し、4層のプリント配線板とした。   After curing, laser drilling is performed on the necessary parts, the outer PET film is peeled off, desmear treatment, plating, etching, etc. are performed, and the outermost copper layer (theoretical thickness: 20 μm) is formed by an additive method. Layered printed wiring board.

(比較例1)
実施例1記載の内容で熱硬化性絶縁シートを接着後、アルミ箔を剥がしてから熱風乾燥機で180℃、1時間の加熱処理をすること以外は同様にして、アディティブ工法用プリント配線板を作製し、次に、このアディティブ工法用プリント配線板を用いて4層のプリント配線板を作製した。
(Comparative Example 1)
In the same manner as in Example 1, except that the thermosetting insulating sheet was bonded, the aluminum foil was peeled off, and then heat treatment was performed at 180 ° C. for 1 hour with a hot air dryer. Next, a four-layer printed wiring board was produced using this additive printed wiring board.

(比較例2)
実施例2記載の内容で熱硬化性絶縁シートを接着後、PETを剥がしてから熱風乾燥機で130℃で20分間及び180℃で50分間の加熱処理をすること以外は同様にして、アディティブ工法用プリント配線板を作製し、次に、このアディティブ工法用プリント配線板を用いて4層のプリント配線板を作製した。
(Comparative Example 2)
In the same manner as in Example 2, except that the thermosetting insulating sheet was adhered and the PET was peeled off, followed by heat treatment at 130 ° C. for 20 minutes and 180 ° C. for 50 minutes with an air dryer. Next, a printed wiring board for four layers was produced using this printed wiring board for additive method.

(比較例3)
実施例2記載の内容で熱硬化性樹脂A及びBを、PETフィルムでなく、OPPフィルム(二軸延伸ポリプロピレンフィルム、厚さ40μm、株式会社エコリーフ製)に塗工すること以外は同様にして、アディティブ工法用プリント配線板を作製し、次に、このアディティブ工法用プリント配線板を用いて4層のプリント配線板を作製した。OPPフィルムの酸素透過係数は、2300cc・20μ/m2・day・atm (25℃、50%RH:ASTM D1434−66)である。
(Comparative Example 3)
In the same manner as described in Example 2, except that the thermosetting resins A and B are applied to an OPP film (biaxially stretched polypropylene film, thickness 40 μm, manufactured by Ecoleaf Co., Ltd.) instead of a PET film. A printed wiring board for additive method was prepared, and then a four-layer printed wiring board was prepared using the printed wiring board for additive method. The oxygen transmission coefficient of the OPP film is 2300 cc · 20 μ / m 2 · day · atm (25 ° C., 50% RH: ASTM D1434-66).

(比較例4)
比較例1の熱風乾燥を窒素雰囲気下の乾燥機に変えたこと以外は、比較例1と同様にして、アディティブ工法用プリント配線板を作製し、次に、このアディティブ工法用プリント配線板を用いて4層のプリント配線板を作製した。
(Comparative Example 4)
A printed wiring board for an additive method was prepared in the same manner as in Comparative Example 1 except that the hot air drying in Comparative Example 1 was changed to a dryer under a nitrogen atmosphere. Next, this printed wiring board for the additive method was used. A four-layer printed wiring board was produced.

(効果の確認)
実施例1、2並びに比較例1〜4で作製したプリント配線板に対して、以下の評価を行なった。
1、レーザ加工を行った部位の内層基板へのめっき染込み(ハローイング)を確認した。めっき染込み(ハローイング)の評価は、レーザ加工部位を研磨し、内層銅の変色量を測定した。変色量とは、レーザ加工で形成した穴の内壁から、めっき染込みによる変色が広がった先端までの距離(μm)をいう。
2、4層板の耐熱性評価を行った。
260℃のはんだ浴上に、縦50mm×横50mmに切断したサンプルを浮かべ、膨れが発生するまで放置し、膨れが発生した位置を断面観察によって観察した。これらの結果をまとめて表1に示した。
(Confirmation of effect)
The following evaluation was performed on the printed wiring boards produced in Examples 1 and 2 and Comparative Examples 1 to 4.
1. The plating penetration (haloing) to the inner layer board | substrate of the site | part which performed laser processing was confirmed. For evaluation of plating soaking (haloing), the laser-processed portion was polished, and the amount of discoloration of the inner layer copper was measured. The amount of color change refers to the distance (μm) from the inner wall of a hole formed by laser processing to the tip where the color change due to plating dyeing spreads.
Two- and four-layer plates were evaluated for heat resistance.
A sample cut in a length of 50 mm × width 50 mm was floated on a 260 ° C. solder bath and left to stand until swelling occurred, and the position where the swelling occurred was observed by cross-sectional observation. These results are summarized in Table 1.

Figure 2017011194
Figure 2017011194

表1に示したとおり、実施例1は、比較例1と比較してめっきによる内層銅の変色が小さい。実施例1,2は、耐熱性評価時のふくれ位置が内層銅−絶縁樹脂界面又は外層銅−絶縁樹脂界面であり、ふくれは偏在しない。一方、比較例1,2,3は、ふくれ位置が内層銅−絶縁樹脂界面に偏在し、これは内層銅表面の劣化を示唆する。実施例1は、窒素雰囲気で加熱した比較例4と比較して、変色量が同等で、ふくれ位置も比較例4と同様に偏在しないため、空気雰囲気下で処理が行えるメリットが確認できた。   As shown in Table 1, in Example 1, discoloration of the inner layer copper due to plating is smaller than that in Comparative Example 1. In Examples 1 and 2, the blister position at the time of heat resistance evaluation is the inner layer copper-insulating resin interface or the outer layer copper-insulating resin interface, and the blisters are not unevenly distributed. On the other hand, in Comparative Examples 1, 2, and 3, the blister position is unevenly distributed at the inner layer copper-insulating resin interface, which suggests deterioration of the inner layer copper surface. Since Example 1 has the same amount of discoloration as Comparative Example 4 heated in a nitrogen atmosphere and the blistering position is not unevenly distributed as in Comparative Example 4, it was confirmed that the treatment can be performed in an air atmosphere.

Claims (3)

空気雰囲気下で密着処理された内層銅箔層を酸化させない状態で、外層の熱硬化性樹脂を硬化させたことを特徴とするアディティブ工法用プリント配線板。   A printed wiring board for an additive method, wherein a thermosetting resin of an outer layer is cured without oxidizing an inner layer copper foil layer subjected to adhesion treatment in an air atmosphere. 請求項1に記載の外層の熱硬化性樹脂の厚みが100μm以下であることを特徴とするアディティブ工法用プリント配線板。   The printed wiring board for an additive method, wherein the thickness of the thermosetting resin of the outer layer according to claim 1 is 100 µm or less. 請求項1に記載の内層銅箔層を酸化させない状態とするために、外層の熱硬化性樹脂表面に酸素バリアフィルムを形成させたことを特徴とするアディティブ工法用プリント配線板。   A printed wiring board for an additive method, wherein an oxygen barrier film is formed on a surface of a thermosetting resin of an outer layer so that the inner copper foil layer according to claim 1 is not oxidized.
JP2015127311A 2015-06-25 2015-06-25 Printed wiring board for additive method Pending JP2017011194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127311A JP2017011194A (en) 2015-06-25 2015-06-25 Printed wiring board for additive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127311A JP2017011194A (en) 2015-06-25 2015-06-25 Printed wiring board for additive method

Publications (1)

Publication Number Publication Date
JP2017011194A true JP2017011194A (en) 2017-01-12

Family

ID=57764381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127311A Pending JP2017011194A (en) 2015-06-25 2015-06-25 Printed wiring board for additive method

Country Status (1)

Country Link
JP (1) JP2017011194A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217537A (en) * 2001-01-18 2002-08-02 Matsushita Electric Works Ltd Method for manufacturing multilayer wiring board
WO2012020713A2 (en) * 2010-08-10 2012-02-16 日立化成工業株式会社 Resin composition, cured resin product, wiring board, and manufacturing method for wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217537A (en) * 2001-01-18 2002-08-02 Matsushita Electric Works Ltd Method for manufacturing multilayer wiring board
WO2012020713A2 (en) * 2010-08-10 2012-02-16 日立化成工業株式会社 Resin composition, cured resin product, wiring board, and manufacturing method for wiring board

Similar Documents

Publication Publication Date Title
JP5396805B2 (en) Epoxy resin composition
JP5249903B2 (en) Resin composition
JP5446866B2 (en) Epoxy resin composition
KR20080030933A (en) Flame retardant adhesive composition, and adhesive sheet, coverlay film and flexible copper-clad laminate using same
JP2010168470A (en) Resin composition
JP2008291171A (en) Flame-retardant adhesive composition and cover-lay film using the same
JPWO2007097209A1 (en) Epoxy resin composition
JP2013234328A (en) Epoxy resin composition
KR101100381B1 (en) Adhesive Composition for Halogen-Free Coverlay Film and Coverlay Film Coated by the Same
JP5904256B2 (en) Resin composition
JP2012241179A (en) Epoxy resin composition for prepreg, the prepreg, and multilayer printed wiring board
KR20090078051A (en) Adhesive composition for halogen-free coverlay film and coverlay film using the same
JP2010144081A (en) Adhesive composition, and adhesive sheet and cover-lay film, using the same
JP2006232984A (en) Adhesive composition, and coverlay film and adhesive sheet obtained using the same
JP4706332B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP5644823B2 (en) Resin composition
TWI504663B (en) Resin composition
JP2002020714A (en) Method for producing double-sided copper-clad laminate
JP5278179B2 (en) Adhesive composition, and adhesive sheet and coverlay film using the same
JP2010006921A (en) Adhesive composition as well as adhesive sheet and coverlay film using it
JP4241304B2 (en) Resin composition, prepreg and laminate
JP2017011194A (en) Printed wiring board for additive method
JP2010087402A (en) Method of manufacturing multilayered board for printed wiring board
JP2010126642A (en) Adhesive composition preservable at ordinary temperaturer and adhesive sheet and coverlay film using the same
JP2009132780A (en) Resin composition for circuit board, insulating layer with supporting substrate, laminate, and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190822